1df8bae1dSRodney W. Grimes /*- 2df8bae1dSRodney W. Grimes * Copyright (c) 1982, 1986, 1991, 1993 3df8bae1dSRodney W. Grimes * The Regents of the University of California. All rights reserved. 4df8bae1dSRodney W. Grimes * (c) UNIX System Laboratories, Inc. 5df8bae1dSRodney W. Grimes * All or some portions of this file are derived from material licensed 6df8bae1dSRodney W. Grimes * to the University of California by American Telephone and Telegraph 7df8bae1dSRodney W. Grimes * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8df8bae1dSRodney W. Grimes * the permission of UNIX System Laboratories, Inc. 9df8bae1dSRodney W. Grimes * 10df8bae1dSRodney W. Grimes * Redistribution and use in source and binary forms, with or without 11df8bae1dSRodney W. Grimes * modification, are permitted provided that the following conditions 12df8bae1dSRodney W. Grimes * are met: 13df8bae1dSRodney W. Grimes * 1. Redistributions of source code must retain the above copyright 14df8bae1dSRodney W. Grimes * notice, this list of conditions and the following disclaimer. 15df8bae1dSRodney W. Grimes * 2. Redistributions in binary form must reproduce the above copyright 16df8bae1dSRodney W. Grimes * notice, this list of conditions and the following disclaimer in the 17df8bae1dSRodney W. Grimes * documentation and/or other materials provided with the distribution. 18df8bae1dSRodney W. Grimes * 3. All advertising materials mentioning features or use of this software 19df8bae1dSRodney W. Grimes * must display the following acknowledgement: 20df8bae1dSRodney W. Grimes * This product includes software developed by the University of 21df8bae1dSRodney W. Grimes * California, Berkeley and its contributors. 22df8bae1dSRodney W. Grimes * 4. Neither the name of the University nor the names of its contributors 23df8bae1dSRodney W. Grimes * may be used to endorse or promote products derived from this software 24df8bae1dSRodney W. Grimes * without specific prior written permission. 25df8bae1dSRodney W. Grimes * 26df8bae1dSRodney W. Grimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27df8bae1dSRodney W. Grimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28df8bae1dSRodney W. Grimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29df8bae1dSRodney W. Grimes * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30df8bae1dSRodney W. Grimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31df8bae1dSRodney W. Grimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32df8bae1dSRodney W. Grimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33df8bae1dSRodney W. Grimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34df8bae1dSRodney W. Grimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35df8bae1dSRodney W. Grimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36df8bae1dSRodney W. Grimes * SUCH DAMAGE. 37df8bae1dSRodney W. Grimes * 38df8bae1dSRodney W. Grimes * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39f5e9e8ecSBruce Evans * $Id: kern_clock.c,v 1.25 1996/06/23 17:40:42 bde Exp $ 40df8bae1dSRodney W. Grimes */ 41df8bae1dSRodney W. Grimes 423f31c649SGarrett Wollman /* Portions of this software are covered by the following: */ 433f31c649SGarrett Wollman /****************************************************************************** 443f31c649SGarrett Wollman * * 453f31c649SGarrett Wollman * Copyright (c) David L. Mills 1993, 1994 * 463f31c649SGarrett Wollman * * 473f31c649SGarrett Wollman * Permission to use, copy, modify, and distribute this software and its * 483f31c649SGarrett Wollman * documentation for any purpose and without fee is hereby granted, provided * 493f31c649SGarrett Wollman * that the above copyright notice appears in all copies and that both the * 503f31c649SGarrett Wollman * copyright notice and this permission notice appear in supporting * 513f31c649SGarrett Wollman * documentation, and that the name University of Delaware not be used in * 523f31c649SGarrett Wollman * advertising or publicity pertaining to distribution of the software * 533f31c649SGarrett Wollman * without specific, written prior permission. The University of Delaware * 543f31c649SGarrett Wollman * makes no representations about the suitability this software for any * 553f31c649SGarrett Wollman * purpose. It is provided "as is" without express or implied warranty. * 563f31c649SGarrett Wollman * * 573f31c649SGarrett Wollman *****************************************************************************/ 583f31c649SGarrett Wollman 59df8bae1dSRodney W. Grimes #include <sys/param.h> 60df8bae1dSRodney W. Grimes #include <sys/systm.h> 61df8bae1dSRodney W. Grimes #include <sys/dkstat.h> 62df8bae1dSRodney W. Grimes #include <sys/callout.h> 63df8bae1dSRodney W. Grimes #include <sys/kernel.h> 64df8bae1dSRodney W. Grimes #include <sys/proc.h> 65df8bae1dSRodney W. Grimes #include <sys/resourcevar.h> 66797f2d22SPoul-Henning Kamp #include <sys/signalvar.h> 673f31c649SGarrett Wollman #include <sys/timex.h> 688a129caeSDavid Greenman #include <vm/vm.h> 69efeaf95aSDavid Greenman #include <vm/vm_param.h> 70efeaf95aSDavid Greenman #include <vm/vm_prot.h> 71efeaf95aSDavid Greenman #include <vm/lock.h> 72efeaf95aSDavid Greenman #include <vm/pmap.h> 73efeaf95aSDavid Greenman #include <vm/vm_map.h> 74797f2d22SPoul-Henning Kamp #include <sys/sysctl.h> 75df8bae1dSRodney W. Grimes 76df8bae1dSRodney W. Grimes #include <machine/cpu.h> 773f31c649SGarrett Wollman #include <machine/clock.h> 78df8bae1dSRodney W. Grimes 79df8bae1dSRodney W. Grimes #ifdef GPROF 80df8bae1dSRodney W. Grimes #include <sys/gmon.h> 81df8bae1dSRodney W. Grimes #endif 82df8bae1dSRodney W. Grimes 83d841aaa7SBruce Evans static void initclocks __P((void *dummy)); 842b14f991SJulian Elischer SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 852b14f991SJulian Elischer 86cc3d5226SBruce Evans /* Exported to machdep.c. */ 8727a0b398SPoul-Henning Kamp struct callout *callfree, *callout; 88f23b4c91SGarrett Wollman 89cc3d5226SBruce Evans static struct callout calltodo; 90cc3d5226SBruce Evans 91f23b4c91SGarrett Wollman /* Some of these don't belong here, but it's easiest to concentrate them. */ 9227a0b398SPoul-Henning Kamp static long cp_time[CPUSTATES]; 93f23b4c91SGarrett Wollman long dk_seek[DK_NDRIVE]; 9427a0b398SPoul-Henning Kamp static long dk_time[DK_NDRIVE]; 95f23b4c91SGarrett Wollman long dk_wds[DK_NDRIVE]; 96f23b4c91SGarrett Wollman long dk_wpms[DK_NDRIVE]; 97f23b4c91SGarrett Wollman long dk_xfer[DK_NDRIVE]; 98f23b4c91SGarrett Wollman 99f23b4c91SGarrett Wollman int dk_busy; 1008478cabaSGarrett Wollman int dk_ndrive = 0; 1018478cabaSGarrett Wollman char dk_names[DK_NDRIVE][DK_NAMELEN]; 102f23b4c91SGarrett Wollman 103f23b4c91SGarrett Wollman long tk_cancc; 104f23b4c91SGarrett Wollman long tk_nin; 105f23b4c91SGarrett Wollman long tk_nout; 106f23b4c91SGarrett Wollman long tk_rawcc; 107f23b4c91SGarrett Wollman 108df8bae1dSRodney W. Grimes /* 109df8bae1dSRodney W. Grimes * Clock handling routines. 110df8bae1dSRodney W. Grimes * 111df8bae1dSRodney W. Grimes * This code is written to operate with two timers that run independently of 112df8bae1dSRodney W. Grimes * each other. The main clock, running hz times per second, is used to keep 113df8bae1dSRodney W. Grimes * track of real time. The second timer handles kernel and user profiling, 114df8bae1dSRodney W. Grimes * and does resource use estimation. If the second timer is programmable, 115df8bae1dSRodney W. Grimes * it is randomized to avoid aliasing between the two clocks. For example, 116df8bae1dSRodney W. Grimes * the randomization prevents an adversary from always giving up the cpu 117df8bae1dSRodney W. Grimes * just before its quantum expires. Otherwise, it would never accumulate 118df8bae1dSRodney W. Grimes * cpu ticks. The mean frequency of the second timer is stathz. 119df8bae1dSRodney W. Grimes * 120df8bae1dSRodney W. Grimes * If no second timer exists, stathz will be zero; in this case we drive 121df8bae1dSRodney W. Grimes * profiling and statistics off the main clock. This WILL NOT be accurate; 122df8bae1dSRodney W. Grimes * do not do it unless absolutely necessary. 123df8bae1dSRodney W. Grimes * 124df8bae1dSRodney W. Grimes * The statistics clock may (or may not) be run at a higher rate while 125df8bae1dSRodney W. Grimes * profiling. This profile clock runs at profhz. We require that profhz 126df8bae1dSRodney W. Grimes * be an integral multiple of stathz. 127df8bae1dSRodney W. Grimes * 128df8bae1dSRodney W. Grimes * If the statistics clock is running fast, it must be divided by the ratio 129df8bae1dSRodney W. Grimes * profhz/stathz for statistics. (For profiling, every tick counts.) 130df8bae1dSRodney W. Grimes */ 131df8bae1dSRodney W. Grimes 132df8bae1dSRodney W. Grimes /* 133df8bae1dSRodney W. Grimes * TODO: 134df8bae1dSRodney W. Grimes * allocate more timeout table slots when table overflows. 135df8bae1dSRodney W. Grimes */ 136df8bae1dSRodney W. Grimes 137df8bae1dSRodney W. Grimes /* 138df8bae1dSRodney W. Grimes * Bump a timeval by a small number of usec's. 139df8bae1dSRodney W. Grimes */ 140df8bae1dSRodney W. Grimes #define BUMPTIME(t, usec) { \ 141df8bae1dSRodney W. Grimes register volatile struct timeval *tp = (t); \ 142df8bae1dSRodney W. Grimes register long us; \ 143df8bae1dSRodney W. Grimes \ 144df8bae1dSRodney W. Grimes tp->tv_usec = us = tp->tv_usec + (usec); \ 145df8bae1dSRodney W. Grimes if (us >= 1000000) { \ 146df8bae1dSRodney W. Grimes tp->tv_usec = us - 1000000; \ 147df8bae1dSRodney W. Grimes tp->tv_sec++; \ 148df8bae1dSRodney W. Grimes } \ 149df8bae1dSRodney W. Grimes } 150df8bae1dSRodney W. Grimes 151df8bae1dSRodney W. Grimes int stathz; 152df8bae1dSRodney W. Grimes int profhz; 153cc3d5226SBruce Evans static int profprocs; 154df8bae1dSRodney W. Grimes int ticks; 155df8bae1dSRodney W. Grimes static int psdiv, pscnt; /* prof => stat divider */ 156cc3d5226SBruce Evans int psratio; /* ratio: prof / stat */ 157df8bae1dSRodney W. Grimes 158df8bae1dSRodney W. Grimes volatile struct timeval time; 159df8bae1dSRodney W. Grimes volatile struct timeval mono_time; 160df8bae1dSRodney W. Grimes 161df8bae1dSRodney W. Grimes /* 1623f31c649SGarrett Wollman * Phase-lock loop (PLL) definitions 1633f31c649SGarrett Wollman * 1643f31c649SGarrett Wollman * The following variables are read and set by the ntp_adjtime() system 1653f31c649SGarrett Wollman * call. 1663f31c649SGarrett Wollman * 1673f31c649SGarrett Wollman * time_state shows the state of the system clock, with values defined 1683f31c649SGarrett Wollman * in the timex.h header file. 1693f31c649SGarrett Wollman * 1703f31c649SGarrett Wollman * time_status shows the status of the system clock, with bits defined 1713f31c649SGarrett Wollman * in the timex.h header file. 1723f31c649SGarrett Wollman * 1733f31c649SGarrett Wollman * time_offset is used by the PLL to adjust the system time in small 1743f31c649SGarrett Wollman * increments. 1753f31c649SGarrett Wollman * 1763f31c649SGarrett Wollman * time_constant determines the bandwidth or "stiffness" of the PLL. 1773f31c649SGarrett Wollman * 1783f31c649SGarrett Wollman * time_tolerance determines maximum frequency error or tolerance of the 1793f31c649SGarrett Wollman * CPU clock oscillator and is a property of the architecture; however, 1803f31c649SGarrett Wollman * in principle it could change as result of the presence of external 1813f31c649SGarrett Wollman * discipline signals, for instance. 1823f31c649SGarrett Wollman * 1833f31c649SGarrett Wollman * time_precision is usually equal to the kernel tick variable; however, 1843f31c649SGarrett Wollman * in cases where a precision clock counter or external clock is 1853f31c649SGarrett Wollman * available, the resolution can be much less than this and depend on 1863f31c649SGarrett Wollman * whether the external clock is working or not. 1873f31c649SGarrett Wollman * 1883f31c649SGarrett Wollman * time_maxerror is initialized by a ntp_adjtime() call and increased by 1893f31c649SGarrett Wollman * the kernel once each second to reflect the maximum error 1903f31c649SGarrett Wollman * bound growth. 1913f31c649SGarrett Wollman * 1923f31c649SGarrett Wollman * time_esterror is set and read by the ntp_adjtime() call, but 1933f31c649SGarrett Wollman * otherwise not used by the kernel. 1943f31c649SGarrett Wollman */ 1953f31c649SGarrett Wollman int time_status = STA_UNSYNC; /* clock status bits */ 1963f31c649SGarrett Wollman int time_state = TIME_OK; /* clock state */ 1973f31c649SGarrett Wollman long time_offset = 0; /* time offset (us) */ 1983f31c649SGarrett Wollman long time_constant = 0; /* pll time constant */ 1993f31c649SGarrett Wollman long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 2003f31c649SGarrett Wollman long time_precision = 1; /* clock precision (us) */ 2013f31c649SGarrett Wollman long time_maxerror = MAXPHASE; /* maximum error (us) */ 2023f31c649SGarrett Wollman long time_esterror = MAXPHASE; /* estimated error (us) */ 2033f31c649SGarrett Wollman 2043f31c649SGarrett Wollman /* 2053f31c649SGarrett Wollman * The following variables establish the state of the PLL and the 2063f31c649SGarrett Wollman * residual time and frequency offset of the local clock. The scale 2073f31c649SGarrett Wollman * factors are defined in the timex.h header file. 2083f31c649SGarrett Wollman * 2093f31c649SGarrett Wollman * time_phase and time_freq are the phase increment and the frequency 2103f31c649SGarrett Wollman * increment, respectively, of the kernel time variable at each tick of 2113f31c649SGarrett Wollman * the clock. 2123f31c649SGarrett Wollman * 2133f31c649SGarrett Wollman * time_freq is set via ntp_adjtime() from a value stored in a file when 2143f31c649SGarrett Wollman * the synchronization daemon is first started. Its value is retrieved 2153f31c649SGarrett Wollman * via ntp_adjtime() and written to the file about once per hour by the 2163f31c649SGarrett Wollman * daemon. 2173f31c649SGarrett Wollman * 2183f31c649SGarrett Wollman * time_adj is the adjustment added to the value of tick at each timer 2193f31c649SGarrett Wollman * interrupt and is recomputed at each timer interrupt. 2203f31c649SGarrett Wollman * 2213f31c649SGarrett Wollman * time_reftime is the second's portion of the system time on the last 2223f31c649SGarrett Wollman * call to ntp_adjtime(). It is used to adjust the time_freq variable 2233f31c649SGarrett Wollman * and to increase the time_maxerror as the time since last update 2243f31c649SGarrett Wollman * increases. 2253f31c649SGarrett Wollman */ 22627a0b398SPoul-Henning Kamp static long time_phase = 0; /* phase offset (scaled us) */ 2273f31c649SGarrett Wollman long time_freq = 0; /* frequency offset (scaled ppm) */ 22827a0b398SPoul-Henning Kamp static long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 22927a0b398SPoul-Henning Kamp static long time_reftime = 0; /* time at last adjustment (s) */ 2303f31c649SGarrett Wollman 2313f31c649SGarrett Wollman #ifdef PPS_SYNC 2323f31c649SGarrett Wollman /* 2333f31c649SGarrett Wollman * The following variables are used only if the if the kernel PPS 2343f31c649SGarrett Wollman * discipline code is configured (PPS_SYNC). The scale factors are 2353f31c649SGarrett Wollman * defined in the timex.h header file. 2363f31c649SGarrett Wollman * 2373f31c649SGarrett Wollman * pps_time contains the time at each calibration interval, as read by 2383f31c649SGarrett Wollman * microtime(). 2393f31c649SGarrett Wollman * 2403f31c649SGarrett Wollman * pps_offset is the time offset produced by the time median filter 2413f31c649SGarrett Wollman * pps_tf[], while pps_jitter is the dispersion measured by this 2423f31c649SGarrett Wollman * filter. 2433f31c649SGarrett Wollman * 2443f31c649SGarrett Wollman * pps_freq is the frequency offset produced by the frequency median 2453f31c649SGarrett Wollman * filter pps_ff[], while pps_stabil is the dispersion measured by 2463f31c649SGarrett Wollman * this filter. 2473f31c649SGarrett Wollman * 2483f31c649SGarrett Wollman * pps_usec is latched from a high resolution counter or external clock 2493f31c649SGarrett Wollman * at pps_time. Here we want the hardware counter contents only, not the 2503f31c649SGarrett Wollman * contents plus the time_tv.usec as usual. 2513f31c649SGarrett Wollman * 2523f31c649SGarrett Wollman * pps_valid counts the number of seconds since the last PPS update. It 2533f31c649SGarrett Wollman * is used as a watchdog timer to disable the PPS discipline should the 2543f31c649SGarrett Wollman * PPS signal be lost. 2553f31c649SGarrett Wollman * 2563f31c649SGarrett Wollman * pps_glitch counts the number of seconds since the beginning of an 2573f31c649SGarrett Wollman * offset burst more than tick/2 from current nominal offset. It is used 2583f31c649SGarrett Wollman * mainly to suppress error bursts due to priority conflicts between the 2593f31c649SGarrett Wollman * PPS interrupt and timer interrupt. 2603f31c649SGarrett Wollman * 2613f31c649SGarrett Wollman * pps_count counts the seconds of the calibration interval, the 2623f31c649SGarrett Wollman * duration of which is pps_shift in powers of two. 2633f31c649SGarrett Wollman * 2643f31c649SGarrett Wollman * pps_intcnt counts the calibration intervals for use in the interval- 2653f31c649SGarrett Wollman * adaptation algorithm. It's just too complicated for words. 2663f31c649SGarrett Wollman */ 2673f31c649SGarrett Wollman struct timeval pps_time; /* kernel time at last interval */ 2683f31c649SGarrett Wollman long pps_offset = 0; /* pps time offset (us) */ 2693f31c649SGarrett Wollman long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ 2703f31c649SGarrett Wollman long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 2713f31c649SGarrett Wollman long pps_freq = 0; /* frequency offset (scaled ppm) */ 2723f31c649SGarrett Wollman long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 2733f31c649SGarrett Wollman long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ 2743f31c649SGarrett Wollman long pps_usec = 0; /* microsec counter at last interval */ 2753f31c649SGarrett Wollman long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 2763f31c649SGarrett Wollman int pps_glitch = 0; /* pps signal glitch counter */ 2773f31c649SGarrett Wollman int pps_count = 0; /* calibration interval counter (s) */ 2783f31c649SGarrett Wollman int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 2793f31c649SGarrett Wollman int pps_intcnt = 0; /* intervals at current duration */ 2803f31c649SGarrett Wollman 2813f31c649SGarrett Wollman /* 2823f31c649SGarrett Wollman * PPS signal quality monitors 2833f31c649SGarrett Wollman * 2843f31c649SGarrett Wollman * pps_jitcnt counts the seconds that have been discarded because the 2853f31c649SGarrett Wollman * jitter measured by the time median filter exceeds the limit MAXTIME 2863f31c649SGarrett Wollman * (100 us). 2873f31c649SGarrett Wollman * 2883f31c649SGarrett Wollman * pps_calcnt counts the frequency calibration intervals, which are 2893f31c649SGarrett Wollman * variable from 4 s to 256 s. 2903f31c649SGarrett Wollman * 2913f31c649SGarrett Wollman * pps_errcnt counts the calibration intervals which have been discarded 2923f31c649SGarrett Wollman * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 2933f31c649SGarrett Wollman * calibration interval jitter exceeds two ticks. 2943f31c649SGarrett Wollman * 2953f31c649SGarrett Wollman * pps_stbcnt counts the calibration intervals that have been discarded 2963f31c649SGarrett Wollman * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 2973f31c649SGarrett Wollman */ 2983f31c649SGarrett Wollman long pps_jitcnt = 0; /* jitter limit exceeded */ 2993f31c649SGarrett Wollman long pps_calcnt = 0; /* calibration intervals */ 3003f31c649SGarrett Wollman long pps_errcnt = 0; /* calibration errors */ 3013f31c649SGarrett Wollman long pps_stbcnt = 0; /* stability limit exceeded */ 3023f31c649SGarrett Wollman #endif /* PPS_SYNC */ 3033f31c649SGarrett Wollman 3043f31c649SGarrett Wollman /* XXX none of this stuff works under FreeBSD */ 3053f31c649SGarrett Wollman #ifdef EXT_CLOCK 3063f31c649SGarrett Wollman /* 3073f31c649SGarrett Wollman * External clock definitions 3083f31c649SGarrett Wollman * 3093f31c649SGarrett Wollman * The following definitions and declarations are used only if an 3103f31c649SGarrett Wollman * external clock (HIGHBALL or TPRO) is configured on the system. 3113f31c649SGarrett Wollman */ 3123f31c649SGarrett Wollman #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 3133f31c649SGarrett Wollman 3143f31c649SGarrett Wollman /* 3153f31c649SGarrett Wollman * The clock_count variable is set to CLOCK_INTERVAL at each PPS 3163f31c649SGarrett Wollman * interrupt and decremented once each second. 3173f31c649SGarrett Wollman */ 3183f31c649SGarrett Wollman int clock_count = 0; /* CPU clock counter */ 3193f31c649SGarrett Wollman 3203f31c649SGarrett Wollman #ifdef HIGHBALL 3213f31c649SGarrett Wollman /* 3223f31c649SGarrett Wollman * The clock_offset and clock_cpu variables are used by the HIGHBALL 3233f31c649SGarrett Wollman * interface. The clock_offset variable defines the offset between 3243f31c649SGarrett Wollman * system time and the HIGBALL counters. The clock_cpu variable contains 3253f31c649SGarrett Wollman * the offset between the system clock and the HIGHBALL clock for use in 3263f31c649SGarrett Wollman * disciplining the kernel time variable. 3273f31c649SGarrett Wollman */ 3283f31c649SGarrett Wollman extern struct timeval clock_offset; /* Highball clock offset */ 3293f31c649SGarrett Wollman long clock_cpu = 0; /* CPU clock adjust */ 3303f31c649SGarrett Wollman #endif /* HIGHBALL */ 3313f31c649SGarrett Wollman #endif /* EXT_CLOCK */ 3323f31c649SGarrett Wollman 3333f31c649SGarrett Wollman /* 3343f31c649SGarrett Wollman * hardupdate() - local clock update 3353f31c649SGarrett Wollman * 3363f31c649SGarrett Wollman * This routine is called by ntp_adjtime() to update the local clock 3373f31c649SGarrett Wollman * phase and frequency. This is used to implement an adaptive-parameter, 3383f31c649SGarrett Wollman * first-order, type-II phase-lock loop. The code computes new time and 3393f31c649SGarrett Wollman * frequency offsets each time it is called. The hardclock() routine 3403f31c649SGarrett Wollman * amortizes these offsets at each tick interrupt. If the kernel PPS 3413f31c649SGarrett Wollman * discipline code is configured (PPS_SYNC), the PPS signal itself 3423f31c649SGarrett Wollman * determines the new time offset, instead of the calling argument. 3433f31c649SGarrett Wollman * Presumably, calls to ntp_adjtime() occur only when the caller 3443f31c649SGarrett Wollman * believes the local clock is valid within some bound (+-128 ms with 3453f31c649SGarrett Wollman * NTP). If the caller's time is far different than the PPS time, an 3463f31c649SGarrett Wollman * argument will ensue, and it's not clear who will lose. 3473f31c649SGarrett Wollman * 3483f31c649SGarrett Wollman * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the 3493f31c649SGarrett Wollman * maximum interval between updates is 4096 s and the maximum frequency 3503f31c649SGarrett Wollman * offset is +-31.25 ms/s. 3513f31c649SGarrett Wollman * 3523f31c649SGarrett Wollman * Note: splclock() is in effect. 3533f31c649SGarrett Wollman */ 3543f31c649SGarrett Wollman void 3553f31c649SGarrett Wollman hardupdate(offset) 3563f31c649SGarrett Wollman long offset; 3573f31c649SGarrett Wollman { 3583f31c649SGarrett Wollman long ltemp, mtemp; 3593f31c649SGarrett Wollman 3603f31c649SGarrett Wollman if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 3613f31c649SGarrett Wollman return; 3623f31c649SGarrett Wollman ltemp = offset; 3633f31c649SGarrett Wollman #ifdef PPS_SYNC 3643f31c649SGarrett Wollman if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 3653f31c649SGarrett Wollman ltemp = pps_offset; 3663f31c649SGarrett Wollman #endif /* PPS_SYNC */ 3673f31c649SGarrett Wollman if (ltemp > MAXPHASE) 3683f31c649SGarrett Wollman time_offset = MAXPHASE << SHIFT_UPDATE; 3693f31c649SGarrett Wollman else if (ltemp < -MAXPHASE) 3703f31c649SGarrett Wollman time_offset = -(MAXPHASE << SHIFT_UPDATE); 3713f31c649SGarrett Wollman else 3723f31c649SGarrett Wollman time_offset = ltemp << SHIFT_UPDATE; 3733f31c649SGarrett Wollman mtemp = time.tv_sec - time_reftime; 3743f31c649SGarrett Wollman time_reftime = time.tv_sec; 3753f31c649SGarrett Wollman if (mtemp > MAXSEC) 3763f31c649SGarrett Wollman mtemp = 0; 3773f31c649SGarrett Wollman 3783f31c649SGarrett Wollman /* ugly multiply should be replaced */ 3793f31c649SGarrett Wollman if (ltemp < 0) 3803f31c649SGarrett Wollman time_freq -= (-ltemp * mtemp) >> (time_constant + 3813f31c649SGarrett Wollman time_constant + SHIFT_KF - SHIFT_USEC); 3823f31c649SGarrett Wollman else 3833f31c649SGarrett Wollman time_freq += (ltemp * mtemp) >> (time_constant + 3843f31c649SGarrett Wollman time_constant + SHIFT_KF - SHIFT_USEC); 3853f31c649SGarrett Wollman if (time_freq > time_tolerance) 3863f31c649SGarrett Wollman time_freq = time_tolerance; 3873f31c649SGarrett Wollman else if (time_freq < -time_tolerance) 3883f31c649SGarrett Wollman time_freq = -time_tolerance; 3893f31c649SGarrett Wollman } 3903f31c649SGarrett Wollman 3913f31c649SGarrett Wollman 3923f31c649SGarrett Wollman 3933f31c649SGarrett Wollman /* 394df8bae1dSRodney W. Grimes * Initialize clock frequencies and start both clocks running. 395df8bae1dSRodney W. Grimes */ 3962b14f991SJulian Elischer /* ARGSUSED*/ 3972b14f991SJulian Elischer static void 398d841aaa7SBruce Evans initclocks(dummy) 399d841aaa7SBruce Evans void *dummy; 400df8bae1dSRodney W. Grimes { 401df8bae1dSRodney W. Grimes register int i; 402df8bae1dSRodney W. Grimes 403df8bae1dSRodney W. Grimes /* 404df8bae1dSRodney W. Grimes * Set divisors to 1 (normal case) and let the machine-specific 405df8bae1dSRodney W. Grimes * code do its bit. 406df8bae1dSRodney W. Grimes */ 407df8bae1dSRodney W. Grimes psdiv = pscnt = 1; 408df8bae1dSRodney W. Grimes cpu_initclocks(); 409df8bae1dSRodney W. Grimes 410df8bae1dSRodney W. Grimes /* 411df8bae1dSRodney W. Grimes * Compute profhz/stathz, and fix profhz if needed. 412df8bae1dSRodney W. Grimes */ 413df8bae1dSRodney W. Grimes i = stathz ? stathz : hz; 414df8bae1dSRodney W. Grimes if (profhz == 0) 415df8bae1dSRodney W. Grimes profhz = i; 416df8bae1dSRodney W. Grimes psratio = profhz / i; 417df8bae1dSRodney W. Grimes } 418df8bae1dSRodney W. Grimes 419df8bae1dSRodney W. Grimes /* 420df8bae1dSRodney W. Grimes * The real-time timer, interrupting hz times per second. 421df8bae1dSRodney W. Grimes */ 422df8bae1dSRodney W. Grimes void 423df8bae1dSRodney W. Grimes hardclock(frame) 424df8bae1dSRodney W. Grimes register struct clockframe *frame; 425df8bae1dSRodney W. Grimes { 426df8bae1dSRodney W. Grimes register struct callout *p1; 427df8bae1dSRodney W. Grimes register struct proc *p; 428bb56ec4aSPoul-Henning Kamp register int needsoft; 429df8bae1dSRodney W. Grimes 430df8bae1dSRodney W. Grimes /* 431df8bae1dSRodney W. Grimes * Update real-time timeout queue. 432df8bae1dSRodney W. Grimes * At front of queue are some number of events which are ``due''. 433df8bae1dSRodney W. Grimes * The time to these is <= 0 and if negative represents the 434df8bae1dSRodney W. Grimes * number of ticks which have passed since it was supposed to happen. 435df8bae1dSRodney W. Grimes * The rest of the q elements (times > 0) are events yet to happen, 436df8bae1dSRodney W. Grimes * where the time for each is given as a delta from the previous. 437df8bae1dSRodney W. Grimes * Decrementing just the first of these serves to decrement the time 438df8bae1dSRodney W. Grimes * to all events. 439df8bae1dSRodney W. Grimes */ 440df8bae1dSRodney W. Grimes needsoft = 0; 441df8bae1dSRodney W. Grimes for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 442df8bae1dSRodney W. Grimes if (--p1->c_time > 0) 443df8bae1dSRodney W. Grimes break; 444df8bae1dSRodney W. Grimes needsoft = 1; 445df8bae1dSRodney W. Grimes if (p1->c_time == 0) 446df8bae1dSRodney W. Grimes break; 447df8bae1dSRodney W. Grimes } 448df8bae1dSRodney W. Grimes 449df8bae1dSRodney W. Grimes p = curproc; 450df8bae1dSRodney W. Grimes if (p) { 451df8bae1dSRodney W. Grimes register struct pstats *pstats; 452df8bae1dSRodney W. Grimes 453df8bae1dSRodney W. Grimes /* 454df8bae1dSRodney W. Grimes * Run current process's virtual and profile time, as needed. 455df8bae1dSRodney W. Grimes */ 456df8bae1dSRodney W. Grimes pstats = p->p_stats; 457df8bae1dSRodney W. Grimes if (CLKF_USERMODE(frame) && 458df8bae1dSRodney W. Grimes timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 459df8bae1dSRodney W. Grimes itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 460df8bae1dSRodney W. Grimes psignal(p, SIGVTALRM); 461df8bae1dSRodney W. Grimes if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 462df8bae1dSRodney W. Grimes itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 463df8bae1dSRodney W. Grimes psignal(p, SIGPROF); 464df8bae1dSRodney W. Grimes } 465df8bae1dSRodney W. Grimes 466df8bae1dSRodney W. Grimes /* 467df8bae1dSRodney W. Grimes * If no separate statistics clock is available, run it from here. 468df8bae1dSRodney W. Grimes */ 469df8bae1dSRodney W. Grimes if (stathz == 0) 470df8bae1dSRodney W. Grimes statclock(frame); 471df8bae1dSRodney W. Grimes 472df8bae1dSRodney W. Grimes /* 4733f31c649SGarrett Wollman * Increment the time-of-day. 474df8bae1dSRodney W. Grimes */ 475df8bae1dSRodney W. Grimes ticks++; 4763f31c649SGarrett Wollman { 4773f31c649SGarrett Wollman int time_update; 4783f31c649SGarrett Wollman struct timeval newtime = time; 4793f31c649SGarrett Wollman long ltemp; 4803f31c649SGarrett Wollman 4813f31c649SGarrett Wollman if (timedelta == 0) { 48207e3b0c2SGarrett Wollman time_update = CPU_THISTICKLEN(tick); 4833f31c649SGarrett Wollman } else { 48407e3b0c2SGarrett Wollman time_update = CPU_THISTICKLEN(tick) + tickdelta; 485df8bae1dSRodney W. Grimes timedelta -= tickdelta; 486df8bae1dSRodney W. Grimes } 4873f31c649SGarrett Wollman BUMPTIME(&mono_time, time_update); 4883f31c649SGarrett Wollman 4893f31c649SGarrett Wollman /* 4903f31c649SGarrett Wollman * Compute the phase adjustment. If the low-order bits 4913f31c649SGarrett Wollman * (time_phase) of the update overflow, bump the high-order bits 4923f31c649SGarrett Wollman * (time_update). 4933f31c649SGarrett Wollman */ 4943f31c649SGarrett Wollman time_phase += time_adj; 4953f31c649SGarrett Wollman if (time_phase <= -FINEUSEC) { 4963f31c649SGarrett Wollman ltemp = -time_phase >> SHIFT_SCALE; 4973f31c649SGarrett Wollman time_phase += ltemp << SHIFT_SCALE; 4983f31c649SGarrett Wollman time_update -= ltemp; 4993f31c649SGarrett Wollman } 5003f31c649SGarrett Wollman else if (time_phase >= FINEUSEC) { 5013f31c649SGarrett Wollman ltemp = time_phase >> SHIFT_SCALE; 5023f31c649SGarrett Wollman time_phase -= ltemp << SHIFT_SCALE; 5033f31c649SGarrett Wollman time_update += ltemp; 5043f31c649SGarrett Wollman } 5053f31c649SGarrett Wollman 5063f31c649SGarrett Wollman newtime.tv_usec += time_update; 5073f31c649SGarrett Wollman /* 5083f31c649SGarrett Wollman * On rollover of the second the phase adjustment to be used for 5093f31c649SGarrett Wollman * the next second is calculated. Also, the maximum error is 5103f31c649SGarrett Wollman * increased by the tolerance. If the PPS frequency discipline 5113f31c649SGarrett Wollman * code is present, the phase is increased to compensate for the 5123f31c649SGarrett Wollman * CPU clock oscillator frequency error. 5133f31c649SGarrett Wollman * 5143f31c649SGarrett Wollman * With SHIFT_SCALE = 23, the maximum frequency adjustment is 5153f31c649SGarrett Wollman * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100 5163f31c649SGarrett Wollman * Hz. The time contribution is shifted right a minimum of two 5173f31c649SGarrett Wollman * bits, while the frequency contribution is a right shift. 5183f31c649SGarrett Wollman * Thus, overflow is prevented if the frequency contribution is 5193f31c649SGarrett Wollman * limited to half the maximum or 15.625 ms/s. 5203f31c649SGarrett Wollman */ 5213f31c649SGarrett Wollman if (newtime.tv_usec >= 1000000) { 5223f31c649SGarrett Wollman newtime.tv_usec -= 1000000; 5233f31c649SGarrett Wollman newtime.tv_sec++; 5243f31c649SGarrett Wollman time_maxerror += time_tolerance >> SHIFT_USEC; 5253f31c649SGarrett Wollman if (time_offset < 0) { 5263f31c649SGarrett Wollman ltemp = -time_offset >> 5273f31c649SGarrett Wollman (SHIFT_KG + time_constant); 5283f31c649SGarrett Wollman time_offset += ltemp; 5293f31c649SGarrett Wollman time_adj = -ltemp << 5303f31c649SGarrett Wollman (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 5313f31c649SGarrett Wollman } else { 5323f31c649SGarrett Wollman ltemp = time_offset >> 5333f31c649SGarrett Wollman (SHIFT_KG + time_constant); 5343f31c649SGarrett Wollman time_offset -= ltemp; 5353f31c649SGarrett Wollman time_adj = ltemp << 5363f31c649SGarrett Wollman (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 5373f31c649SGarrett Wollman } 5383f31c649SGarrett Wollman #ifdef PPS_SYNC 5393f31c649SGarrett Wollman /* 5403f31c649SGarrett Wollman * Gnaw on the watchdog counter and update the frequency 5413f31c649SGarrett Wollman * computed by the pll and the PPS signal. 5423f31c649SGarrett Wollman */ 5433f31c649SGarrett Wollman pps_valid++; 5443f31c649SGarrett Wollman if (pps_valid == PPS_VALID) { 5453f31c649SGarrett Wollman pps_jitter = MAXTIME; 5463f31c649SGarrett Wollman pps_stabil = MAXFREQ; 5473f31c649SGarrett Wollman time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 5483f31c649SGarrett Wollman STA_PPSWANDER | STA_PPSERROR); 5493f31c649SGarrett Wollman } 5503f31c649SGarrett Wollman ltemp = time_freq + pps_freq; 5513f31c649SGarrett Wollman #else 5523f31c649SGarrett Wollman ltemp = time_freq; 5533f31c649SGarrett Wollman #endif /* PPS_SYNC */ 5543f31c649SGarrett Wollman if (ltemp < 0) 5553f31c649SGarrett Wollman time_adj -= -ltemp >> 5563f31c649SGarrett Wollman (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 5573f31c649SGarrett Wollman else 5583f31c649SGarrett Wollman time_adj += ltemp >> 5593f31c649SGarrett Wollman (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 5603f31c649SGarrett Wollman 5613f31c649SGarrett Wollman /* 5623f31c649SGarrett Wollman * When the CPU clock oscillator frequency is not a 5633f31c649SGarrett Wollman * power of two in Hz, the SHIFT_HZ is only an 5643f31c649SGarrett Wollman * approximate scale factor. In the SunOS kernel, this 5653f31c649SGarrett Wollman * results in a PLL gain factor of 1/1.28 = 0.78 what it 5663f31c649SGarrett Wollman * should be. In the following code the overall gain is 5673f31c649SGarrett Wollman * increased by a factor of 1.25, which results in a 5683f31c649SGarrett Wollman * residual error less than 3 percent. 5693f31c649SGarrett Wollman */ 5703f31c649SGarrett Wollman /* Same thing applies for FreeBSD --GAW */ 5713f31c649SGarrett Wollman if (hz == 100) { 5723f31c649SGarrett Wollman if (time_adj < 0) 5733f31c649SGarrett Wollman time_adj -= -time_adj >> 2; 5743f31c649SGarrett Wollman else 5753f31c649SGarrett Wollman time_adj += time_adj >> 2; 5763f31c649SGarrett Wollman } 5773f31c649SGarrett Wollman 5783f31c649SGarrett Wollman /* XXX - this is really bogus, but can't be fixed until 5793f31c649SGarrett Wollman xntpd's idea of the system clock is fixed to know how 5803f31c649SGarrett Wollman the user wants leap seconds handled; in the mean time, 5813f31c649SGarrett Wollman we assume that users of NTP are running without proper 5823f31c649SGarrett Wollman leap second support (this is now the default anyway) */ 5833f31c649SGarrett Wollman /* 5843f31c649SGarrett Wollman * Leap second processing. If in leap-insert state at 5853f31c649SGarrett Wollman * the end of the day, the system clock is set back one 5863f31c649SGarrett Wollman * second; if in leap-delete state, the system clock is 5873f31c649SGarrett Wollman * set ahead one second. The microtime() routine or 5883f31c649SGarrett Wollman * external clock driver will insure that reported time 5893f31c649SGarrett Wollman * is always monotonic. The ugly divides should be 5903f31c649SGarrett Wollman * replaced. 5913f31c649SGarrett Wollman */ 5923f31c649SGarrett Wollman switch (time_state) { 5933f31c649SGarrett Wollman 5943f31c649SGarrett Wollman case TIME_OK: 5953f31c649SGarrett Wollman if (time_status & STA_INS) 5963f31c649SGarrett Wollman time_state = TIME_INS; 5973f31c649SGarrett Wollman else if (time_status & STA_DEL) 5983f31c649SGarrett Wollman time_state = TIME_DEL; 5993f31c649SGarrett Wollman break; 6003f31c649SGarrett Wollman 6013f31c649SGarrett Wollman case TIME_INS: 6023f31c649SGarrett Wollman if (newtime.tv_sec % 86400 == 0) { 6033f31c649SGarrett Wollman newtime.tv_sec--; 6043f31c649SGarrett Wollman time_state = TIME_OOP; 6053f31c649SGarrett Wollman } 6063f31c649SGarrett Wollman break; 6073f31c649SGarrett Wollman 6083f31c649SGarrett Wollman case TIME_DEL: 6093f31c649SGarrett Wollman if ((newtime.tv_sec + 1) % 86400 == 0) { 6103f31c649SGarrett Wollman newtime.tv_sec++; 6113f31c649SGarrett Wollman time_state = TIME_WAIT; 6123f31c649SGarrett Wollman } 6133f31c649SGarrett Wollman break; 6143f31c649SGarrett Wollman 6153f31c649SGarrett Wollman case TIME_OOP: 6163f31c649SGarrett Wollman time_state = TIME_WAIT; 6173f31c649SGarrett Wollman break; 6183f31c649SGarrett Wollman 6193f31c649SGarrett Wollman case TIME_WAIT: 6203f31c649SGarrett Wollman if (!(time_status & (STA_INS | STA_DEL))) 6213f31c649SGarrett Wollman time_state = TIME_OK; 6223f31c649SGarrett Wollman } 6233f31c649SGarrett Wollman } 6243f31c649SGarrett Wollman CPU_CLOCKUPDATE(&time, &newtime); 6253f31c649SGarrett Wollman } 626df8bae1dSRodney W. Grimes 627df8bae1dSRodney W. Grimes /* 628df8bae1dSRodney W. Grimes * Process callouts at a very low cpu priority, so we don't keep the 629df8bae1dSRodney W. Grimes * relatively high clock interrupt priority any longer than necessary. 630df8bae1dSRodney W. Grimes */ 631df8bae1dSRodney W. Grimes if (needsoft) { 632df8bae1dSRodney W. Grimes if (CLKF_BASEPRI(frame)) { 633df8bae1dSRodney W. Grimes /* 634df8bae1dSRodney W. Grimes * Save the overhead of a software interrupt; 635df8bae1dSRodney W. Grimes * it will happen as soon as we return, so do it now. 636df8bae1dSRodney W. Grimes */ 637df8bae1dSRodney W. Grimes (void)splsoftclock(); 638df8bae1dSRodney W. Grimes softclock(); 639df8bae1dSRodney W. Grimes } else 640df8bae1dSRodney W. Grimes setsoftclock(); 641df8bae1dSRodney W. Grimes } 642df8bae1dSRodney W. Grimes } 643df8bae1dSRodney W. Grimes 644df8bae1dSRodney W. Grimes /* 645df8bae1dSRodney W. Grimes * Software (low priority) clock interrupt. 646df8bae1dSRodney W. Grimes * Run periodic events from timeout queue. 647df8bae1dSRodney W. Grimes */ 648df8bae1dSRodney W. Grimes /*ARGSUSED*/ 649df8bae1dSRodney W. Grimes void 650df8bae1dSRodney W. Grimes softclock() 651df8bae1dSRodney W. Grimes { 652df8bae1dSRodney W. Grimes register struct callout *c; 653df8bae1dSRodney W. Grimes register void *arg; 654df8bae1dSRodney W. Grimes register void (*func) __P((void *)); 655df8bae1dSRodney W. Grimes register int s; 656df8bae1dSRodney W. Grimes 657df8bae1dSRodney W. Grimes s = splhigh(); 658df8bae1dSRodney W. Grimes while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 659df8bae1dSRodney W. Grimes func = c->c_func; 660df8bae1dSRodney W. Grimes arg = c->c_arg; 661df8bae1dSRodney W. Grimes calltodo.c_next = c->c_next; 662df8bae1dSRodney W. Grimes c->c_next = callfree; 663df8bae1dSRodney W. Grimes callfree = c; 664df8bae1dSRodney W. Grimes splx(s); 665df8bae1dSRodney W. Grimes (*func)(arg); 666df8bae1dSRodney W. Grimes (void) splhigh(); 667df8bae1dSRodney W. Grimes } 668df8bae1dSRodney W. Grimes splx(s); 669df8bae1dSRodney W. Grimes } 670df8bae1dSRodney W. Grimes 671df8bae1dSRodney W. Grimes /* 672df8bae1dSRodney W. Grimes * timeout -- 673df8bae1dSRodney W. Grimes * Execute a function after a specified length of time. 674df8bae1dSRodney W. Grimes * 675df8bae1dSRodney W. Grimes * untimeout -- 676df8bae1dSRodney W. Grimes * Cancel previous timeout function call. 677df8bae1dSRodney W. Grimes * 678df8bae1dSRodney W. Grimes * See AT&T BCI Driver Reference Manual for specification. This 679df8bae1dSRodney W. Grimes * implementation differs from that one in that no identification 680df8bae1dSRodney W. Grimes * value is returned from timeout, rather, the original arguments 681df8bae1dSRodney W. Grimes * to timeout are used to identify entries for untimeout. 682df8bae1dSRodney W. Grimes */ 683df8bae1dSRodney W. Grimes void 684df8bae1dSRodney W. Grimes timeout(ftn, arg, ticks) 685f23b4c91SGarrett Wollman timeout_t ftn; 686df8bae1dSRodney W. Grimes void *arg; 687df8bae1dSRodney W. Grimes register int ticks; 688df8bae1dSRodney W. Grimes { 689df8bae1dSRodney W. Grimes register struct callout *new, *p, *t; 690df8bae1dSRodney W. Grimes register int s; 691df8bae1dSRodney W. Grimes 692df8bae1dSRodney W. Grimes if (ticks <= 0) 693df8bae1dSRodney W. Grimes ticks = 1; 694df8bae1dSRodney W. Grimes 695df8bae1dSRodney W. Grimes /* Lock out the clock. */ 696df8bae1dSRodney W. Grimes s = splhigh(); 697df8bae1dSRodney W. Grimes 698df8bae1dSRodney W. Grimes /* Fill in the next free callout structure. */ 699df8bae1dSRodney W. Grimes if (callfree == NULL) 700df8bae1dSRodney W. Grimes panic("timeout table full"); 701df8bae1dSRodney W. Grimes new = callfree; 702df8bae1dSRodney W. Grimes callfree = new->c_next; 703df8bae1dSRodney W. Grimes new->c_arg = arg; 704df8bae1dSRodney W. Grimes new->c_func = ftn; 705df8bae1dSRodney W. Grimes 706df8bae1dSRodney W. Grimes /* 707df8bae1dSRodney W. Grimes * The time for each event is stored as a difference from the time 708df8bae1dSRodney W. Grimes * of the previous event on the queue. Walk the queue, correcting 709df8bae1dSRodney W. Grimes * the ticks argument for queue entries passed. Correct the ticks 710df8bae1dSRodney W. Grimes * value for the queue entry immediately after the insertion point 711df8bae1dSRodney W. Grimes * as well. Watch out for negative c_time values; these represent 712df8bae1dSRodney W. Grimes * overdue events. 713df8bae1dSRodney W. Grimes */ 714df8bae1dSRodney W. Grimes for (p = &calltodo; 715df8bae1dSRodney W. Grimes (t = p->c_next) != NULL && ticks > t->c_time; p = t) 716df8bae1dSRodney W. Grimes if (t->c_time > 0) 717df8bae1dSRodney W. Grimes ticks -= t->c_time; 718df8bae1dSRodney W. Grimes new->c_time = ticks; 719df8bae1dSRodney W. Grimes if (t != NULL) 720df8bae1dSRodney W. Grimes t->c_time -= ticks; 721df8bae1dSRodney W. Grimes 722df8bae1dSRodney W. Grimes /* Insert the new entry into the queue. */ 723df8bae1dSRodney W. Grimes p->c_next = new; 724df8bae1dSRodney W. Grimes new->c_next = t; 725df8bae1dSRodney W. Grimes splx(s); 726df8bae1dSRodney W. Grimes } 727df8bae1dSRodney W. Grimes 728df8bae1dSRodney W. Grimes void 729df8bae1dSRodney W. Grimes untimeout(ftn, arg) 730f23b4c91SGarrett Wollman timeout_t ftn; 731df8bae1dSRodney W. Grimes void *arg; 732df8bae1dSRodney W. Grimes { 733df8bae1dSRodney W. Grimes register struct callout *p, *t; 734df8bae1dSRodney W. Grimes register int s; 735df8bae1dSRodney W. Grimes 736df8bae1dSRodney W. Grimes s = splhigh(); 737df8bae1dSRodney W. Grimes for (p = &calltodo; (t = p->c_next) != NULL; p = t) 738df8bae1dSRodney W. Grimes if (t->c_func == ftn && t->c_arg == arg) { 739df8bae1dSRodney W. Grimes /* Increment next entry's tick count. */ 740df8bae1dSRodney W. Grimes if (t->c_next && t->c_time > 0) 741df8bae1dSRodney W. Grimes t->c_next->c_time += t->c_time; 742df8bae1dSRodney W. Grimes 743df8bae1dSRodney W. Grimes /* Move entry from callout queue to callfree queue. */ 744df8bae1dSRodney W. Grimes p->c_next = t->c_next; 745df8bae1dSRodney W. Grimes t->c_next = callfree; 746df8bae1dSRodney W. Grimes callfree = t; 747df8bae1dSRodney W. Grimes break; 748df8bae1dSRodney W. Grimes } 749df8bae1dSRodney W. Grimes splx(s); 750df8bae1dSRodney W. Grimes } 751df8bae1dSRodney W. Grimes 752df8bae1dSRodney W. Grimes /* 753df8bae1dSRodney W. Grimes * Compute number of hz until specified time. Used to 754df8bae1dSRodney W. Grimes * compute third argument to timeout() from an absolute time. 755df8bae1dSRodney W. Grimes */ 756df8bae1dSRodney W. Grimes int 757df8bae1dSRodney W. Grimes hzto(tv) 758df8bae1dSRodney W. Grimes struct timeval *tv; 759df8bae1dSRodney W. Grimes { 7606976af69SBruce Evans register unsigned long ticks; 7616976af69SBruce Evans register long sec, usec; 762df8bae1dSRodney W. Grimes int s; 763df8bae1dSRodney W. Grimes 764df8bae1dSRodney W. Grimes /* 7656976af69SBruce Evans * If the number of usecs in the whole seconds part of the time 7666976af69SBruce Evans * difference fits in a long, then the total number of usecs will 7676976af69SBruce Evans * fit in an unsigned long. Compute the total and convert it to 7686976af69SBruce Evans * ticks, rounding up and adding 1 to allow for the current tick 7696976af69SBruce Evans * to expire. Rounding also depends on unsigned long arithmetic 7706976af69SBruce Evans * to avoid overflow. 771df8bae1dSRodney W. Grimes * 7726976af69SBruce Evans * Otherwise, if the number of ticks in the whole seconds part of 7736976af69SBruce Evans * the time difference fits in a long, then convert the parts to 7746976af69SBruce Evans * ticks separately and add, using similar rounding methods and 7756976af69SBruce Evans * overflow avoidance. This method would work in the previous 7766976af69SBruce Evans * case but it is slightly slower and assumes that hz is integral. 7776976af69SBruce Evans * 7786976af69SBruce Evans * Otherwise, round the time difference down to the maximum 7796976af69SBruce Evans * representable value. 7806976af69SBruce Evans * 7816976af69SBruce Evans * If ints have 32 bits, then the maximum value for any timeout in 7826976af69SBruce Evans * 10ms ticks is 248 days. 783df8bae1dSRodney W. Grimes */ 7846976af69SBruce Evans s = splclock(); 785df8bae1dSRodney W. Grimes sec = tv->tv_sec - time.tv_sec; 7866976af69SBruce Evans usec = tv->tv_usec - time.tv_usec; 787df8bae1dSRodney W. Grimes splx(s); 7886976af69SBruce Evans if (usec < 0) { 7896976af69SBruce Evans sec--; 7906976af69SBruce Evans usec += 1000000; 7916976af69SBruce Evans } 7926976af69SBruce Evans if (sec < 0) { 7936976af69SBruce Evans #ifdef DIAGNOSTIC 7946976af69SBruce Evans printf("hzto: negative time difference %ld sec %ld usec\n", 7956976af69SBruce Evans sec, usec); 7966976af69SBruce Evans #endif 7976976af69SBruce Evans ticks = 1; 7986976af69SBruce Evans } else if (sec <= LONG_MAX / 1000000) 7996976af69SBruce Evans ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 8006976af69SBruce Evans / tick + 1; 8016976af69SBruce Evans else if (sec <= LONG_MAX / hz) 8026976af69SBruce Evans ticks = sec * hz 8036976af69SBruce Evans + ((unsigned long)usec + (tick - 1)) / tick + 1; 8046976af69SBruce Evans else 8056976af69SBruce Evans ticks = LONG_MAX; 8066976af69SBruce Evans if (ticks > INT_MAX) 8076976af69SBruce Evans ticks = INT_MAX; 808df8bae1dSRodney W. Grimes return (ticks); 809df8bae1dSRodney W. Grimes } 810df8bae1dSRodney W. Grimes 811df8bae1dSRodney W. Grimes /* 812df8bae1dSRodney W. Grimes * Start profiling on a process. 813df8bae1dSRodney W. Grimes * 814df8bae1dSRodney W. Grimes * Kernel profiling passes proc0 which never exits and hence 815df8bae1dSRodney W. Grimes * keeps the profile clock running constantly. 816df8bae1dSRodney W. Grimes */ 817df8bae1dSRodney W. Grimes void 818df8bae1dSRodney W. Grimes startprofclock(p) 819df8bae1dSRodney W. Grimes register struct proc *p; 820df8bae1dSRodney W. Grimes { 821df8bae1dSRodney W. Grimes int s; 822df8bae1dSRodney W. Grimes 823df8bae1dSRodney W. Grimes if ((p->p_flag & P_PROFIL) == 0) { 824df8bae1dSRodney W. Grimes p->p_flag |= P_PROFIL; 825df8bae1dSRodney W. Grimes if (++profprocs == 1 && stathz != 0) { 826df8bae1dSRodney W. Grimes s = splstatclock(); 827df8bae1dSRodney W. Grimes psdiv = pscnt = psratio; 828df8bae1dSRodney W. Grimes setstatclockrate(profhz); 829df8bae1dSRodney W. Grimes splx(s); 830df8bae1dSRodney W. Grimes } 831df8bae1dSRodney W. Grimes } 832df8bae1dSRodney W. Grimes } 833df8bae1dSRodney W. Grimes 834df8bae1dSRodney W. Grimes /* 835df8bae1dSRodney W. Grimes * Stop profiling on a process. 836df8bae1dSRodney W. Grimes */ 837df8bae1dSRodney W. Grimes void 838df8bae1dSRodney W. Grimes stopprofclock(p) 839df8bae1dSRodney W. Grimes register struct proc *p; 840df8bae1dSRodney W. Grimes { 841df8bae1dSRodney W. Grimes int s; 842df8bae1dSRodney W. Grimes 843df8bae1dSRodney W. Grimes if (p->p_flag & P_PROFIL) { 844df8bae1dSRodney W. Grimes p->p_flag &= ~P_PROFIL; 845df8bae1dSRodney W. Grimes if (--profprocs == 0 && stathz != 0) { 846df8bae1dSRodney W. Grimes s = splstatclock(); 847df8bae1dSRodney W. Grimes psdiv = pscnt = 1; 848df8bae1dSRodney W. Grimes setstatclockrate(stathz); 849df8bae1dSRodney W. Grimes splx(s); 850df8bae1dSRodney W. Grimes } 851df8bae1dSRodney W. Grimes } 852df8bae1dSRodney W. Grimes } 853df8bae1dSRodney W. Grimes 854df8bae1dSRodney W. Grimes /* 855df8bae1dSRodney W. Grimes * Statistics clock. Grab profile sample, and if divider reaches 0, 856df8bae1dSRodney W. Grimes * do process and kernel statistics. 857df8bae1dSRodney W. Grimes */ 858df8bae1dSRodney W. Grimes void 859df8bae1dSRodney W. Grimes statclock(frame) 860df8bae1dSRodney W. Grimes register struct clockframe *frame; 861df8bae1dSRodney W. Grimes { 862df8bae1dSRodney W. Grimes #ifdef GPROF 863df8bae1dSRodney W. Grimes register struct gmonparam *g; 864df8bae1dSRodney W. Grimes #endif 865f5e9e8ecSBruce Evans register struct proc *p; 866df8bae1dSRodney W. Grimes register int i; 8678a129caeSDavid Greenman struct pstats *pstats; 868f5e9e8ecSBruce Evans long rss; 8698a129caeSDavid Greenman struct rusage *ru; 8708a129caeSDavid Greenman struct vmspace *vm; 8718a129caeSDavid Greenman 872df8bae1dSRodney W. Grimes if (CLKF_USERMODE(frame)) { 873f5e9e8ecSBruce Evans p = curproc; 874df8bae1dSRodney W. Grimes if (p->p_flag & P_PROFIL) 875df8bae1dSRodney W. Grimes addupc_intr(p, CLKF_PC(frame), 1); 876df8bae1dSRodney W. Grimes if (--pscnt > 0) 877df8bae1dSRodney W. Grimes return; 878df8bae1dSRodney W. Grimes /* 879df8bae1dSRodney W. Grimes * Came from user mode; CPU was in user state. 880df8bae1dSRodney W. Grimes * If this process is being profiled record the tick. 881df8bae1dSRodney W. Grimes */ 882df8bae1dSRodney W. Grimes p->p_uticks++; 883df8bae1dSRodney W. Grimes if (p->p_nice > NZERO) 884df8bae1dSRodney W. Grimes cp_time[CP_NICE]++; 885df8bae1dSRodney W. Grimes else 886df8bae1dSRodney W. Grimes cp_time[CP_USER]++; 887df8bae1dSRodney W. Grimes } else { 888df8bae1dSRodney W. Grimes #ifdef GPROF 889df8bae1dSRodney W. Grimes /* 890df8bae1dSRodney W. Grimes * Kernel statistics are just like addupc_intr, only easier. 891df8bae1dSRodney W. Grimes */ 892df8bae1dSRodney W. Grimes g = &_gmonparam; 893df8bae1dSRodney W. Grimes if (g->state == GMON_PROF_ON) { 894df8bae1dSRodney W. Grimes i = CLKF_PC(frame) - g->lowpc; 895df8bae1dSRodney W. Grimes if (i < g->textsize) { 896df8bae1dSRodney W. Grimes i /= HISTFRACTION * sizeof(*g->kcount); 897df8bae1dSRodney W. Grimes g->kcount[i]++; 898df8bae1dSRodney W. Grimes } 899df8bae1dSRodney W. Grimes } 900df8bae1dSRodney W. Grimes #endif 901df8bae1dSRodney W. Grimes if (--pscnt > 0) 902df8bae1dSRodney W. Grimes return; 903df8bae1dSRodney W. Grimes /* 904df8bae1dSRodney W. Grimes * Came from kernel mode, so we were: 905df8bae1dSRodney W. Grimes * - handling an interrupt, 906df8bae1dSRodney W. Grimes * - doing syscall or trap work on behalf of the current 907df8bae1dSRodney W. Grimes * user process, or 908df8bae1dSRodney W. Grimes * - spinning in the idle loop. 909df8bae1dSRodney W. Grimes * Whichever it is, charge the time as appropriate. 910df8bae1dSRodney W. Grimes * Note that we charge interrupts to the current process, 911df8bae1dSRodney W. Grimes * regardless of whether they are ``for'' that process, 912df8bae1dSRodney W. Grimes * so that we know how much of its real time was spent 913df8bae1dSRodney W. Grimes * in ``non-process'' (i.e., interrupt) work. 914df8bae1dSRodney W. Grimes */ 915f5e9e8ecSBruce Evans p = curproc; 916df8bae1dSRodney W. Grimes if (CLKF_INTR(frame)) { 917df8bae1dSRodney W. Grimes if (p != NULL) 918df8bae1dSRodney W. Grimes p->p_iticks++; 919df8bae1dSRodney W. Grimes cp_time[CP_INTR]++; 920df8bae1dSRodney W. Grimes } else if (p != NULL) { 921df8bae1dSRodney W. Grimes p->p_sticks++; 922df8bae1dSRodney W. Grimes cp_time[CP_SYS]++; 923df8bae1dSRodney W. Grimes } else 924df8bae1dSRodney W. Grimes cp_time[CP_IDLE]++; 925df8bae1dSRodney W. Grimes } 926df8bae1dSRodney W. Grimes pscnt = psdiv; 927df8bae1dSRodney W. Grimes 928df8bae1dSRodney W. Grimes /* 929df8bae1dSRodney W. Grimes * We maintain statistics shown by user-level statistics 930df8bae1dSRodney W. Grimes * programs: the amount of time in each cpu state, and 931df8bae1dSRodney W. Grimes * the amount of time each of DK_NDRIVE ``drives'' is busy. 932df8bae1dSRodney W. Grimes * 933df8bae1dSRodney W. Grimes * XXX should either run linked list of drives, or (better) 934df8bae1dSRodney W. Grimes * grab timestamps in the start & done code. 935df8bae1dSRodney W. Grimes */ 936df8bae1dSRodney W. Grimes for (i = 0; i < DK_NDRIVE; i++) 937df8bae1dSRodney W. Grimes if (dk_busy & (1 << i)) 938df8bae1dSRodney W. Grimes dk_time[i]++; 939df8bae1dSRodney W. Grimes 940df8bae1dSRodney W. Grimes /* 941df8bae1dSRodney W. Grimes * We adjust the priority of the current process. The priority of 942df8bae1dSRodney W. Grimes * a process gets worse as it accumulates CPU time. The cpu usage 943df8bae1dSRodney W. Grimes * estimator (p_estcpu) is increased here. The formula for computing 944df8bae1dSRodney W. Grimes * priorities (in kern_synch.c) will compute a different value each 945df8bae1dSRodney W. Grimes * time p_estcpu increases by 4. The cpu usage estimator ramps up 946df8bae1dSRodney W. Grimes * quite quickly when the process is running (linearly), and decays 947df8bae1dSRodney W. Grimes * away exponentially, at a rate which is proportionally slower when 948df8bae1dSRodney W. Grimes * the system is busy. The basic principal is that the system will 949df8bae1dSRodney W. Grimes * 90% forget that the process used a lot of CPU time in 5 * loadav 950df8bae1dSRodney W. Grimes * seconds. This causes the system to favor processes which haven't 951df8bae1dSRodney W. Grimes * run much recently, and to round-robin among other processes. 952df8bae1dSRodney W. Grimes */ 953df8bae1dSRodney W. Grimes if (p != NULL) { 954df8bae1dSRodney W. Grimes p->p_cpticks++; 955df8bae1dSRodney W. Grimes if (++p->p_estcpu == 0) 956df8bae1dSRodney W. Grimes p->p_estcpu--; 957df8bae1dSRodney W. Grimes if ((p->p_estcpu & 3) == 0) { 958df8bae1dSRodney W. Grimes resetpriority(p); 959df8bae1dSRodney W. Grimes if (p->p_priority >= PUSER) 960df8bae1dSRodney W. Grimes p->p_priority = p->p_usrpri; 961df8bae1dSRodney W. Grimes } 962f5e9e8ecSBruce Evans 963f5e9e8ecSBruce Evans /* Update resource usage integrals and maximums. */ 964f5e9e8ecSBruce Evans if ((pstats = p->p_stats) != NULL && 965f5e9e8ecSBruce Evans (ru = &pstats->p_ru) != NULL && 966f5e9e8ecSBruce Evans (vm = p->p_vmspace) != NULL) { 967f5e9e8ecSBruce Evans ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; 968f5e9e8ecSBruce Evans ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; 969f5e9e8ecSBruce Evans ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; 970f5e9e8ecSBruce Evans rss = vm->vm_pmap.pm_stats.resident_count * 971f5e9e8ecSBruce Evans PAGE_SIZE / 1024; 972f5e9e8ecSBruce Evans if (ru->ru_maxrss < rss) 973f5e9e8ecSBruce Evans ru->ru_maxrss = rss; 974f5e9e8ecSBruce Evans } 975df8bae1dSRodney W. Grimes } 976df8bae1dSRodney W. Grimes } 977df8bae1dSRodney W. Grimes 978df8bae1dSRodney W. Grimes /* 979df8bae1dSRodney W. Grimes * Return information about system clocks. 980df8bae1dSRodney W. Grimes */ 981787d58f2SPoul-Henning Kamp static int 982787d58f2SPoul-Henning Kamp sysctl_kern_clockrate SYSCTL_HANDLER_ARGS 983df8bae1dSRodney W. Grimes { 984df8bae1dSRodney W. Grimes struct clockinfo clkinfo; 985df8bae1dSRodney W. Grimes /* 986df8bae1dSRodney W. Grimes * Construct clockinfo structure. 987df8bae1dSRodney W. Grimes */ 988df8bae1dSRodney W. Grimes clkinfo.hz = hz; 989df8bae1dSRodney W. Grimes clkinfo.tick = tick; 990df8bae1dSRodney W. Grimes clkinfo.profhz = profhz; 991df8bae1dSRodney W. Grimes clkinfo.stathz = stathz ? stathz : hz; 992ae0eb976SPoul-Henning Kamp return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 993df8bae1dSRodney W. Grimes } 9943f31c649SGarrett Wollman 995946bb7a2SPoul-Henning Kamp SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 99665d0bc13SPoul-Henning Kamp 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 997787d58f2SPoul-Henning Kamp 9983f31c649SGarrett Wollman /*#ifdef PPS_SYNC*/ 9993f31c649SGarrett Wollman #if 0 10003f31c649SGarrett Wollman /* This code is completely bogus; if anybody ever wants to use it, get 10013f31c649SGarrett Wollman * the current version from Dave Mills. */ 10023f31c649SGarrett Wollman 10033f31c649SGarrett Wollman /* 10043f31c649SGarrett Wollman * hardpps() - discipline CPU clock oscillator to external pps signal 10053f31c649SGarrett Wollman * 10063f31c649SGarrett Wollman * This routine is called at each PPS interrupt in order to discipline 10073f31c649SGarrett Wollman * the CPU clock oscillator to the PPS signal. It integrates successive 10083f31c649SGarrett Wollman * phase differences between the two oscillators and calculates the 10093f31c649SGarrett Wollman * frequency offset. This is used in hardclock() to discipline the CPU 10103f31c649SGarrett Wollman * clock oscillator so that intrinsic frequency error is cancelled out. 10113f31c649SGarrett Wollman * The code requires the caller to capture the time and hardware 10123f31c649SGarrett Wollman * counter value at the designated PPS signal transition. 10133f31c649SGarrett Wollman */ 10143f31c649SGarrett Wollman void 10153f31c649SGarrett Wollman hardpps(tvp, usec) 10163f31c649SGarrett Wollman struct timeval *tvp; /* time at PPS */ 10173f31c649SGarrett Wollman long usec; /* hardware counter at PPS */ 10183f31c649SGarrett Wollman { 10193f31c649SGarrett Wollman long u_usec, v_usec, bigtick; 10203f31c649SGarrett Wollman long cal_sec, cal_usec; 10213f31c649SGarrett Wollman 10223f31c649SGarrett Wollman /* 10233f31c649SGarrett Wollman * During the calibration interval adjust the starting time when 10243f31c649SGarrett Wollman * the tick overflows. At the end of the interval compute the 10253f31c649SGarrett Wollman * duration of the interval and the difference of the hardware 10263f31c649SGarrett Wollman * counters at the beginning and end of the interval. This code 10273f31c649SGarrett Wollman * is deliciously complicated by the fact valid differences may 10283f31c649SGarrett Wollman * exceed the value of tick when using long calibration 10293f31c649SGarrett Wollman * intervals and small ticks. Note that the counter can be 10303f31c649SGarrett Wollman * greater than tick if caught at just the wrong instant, but 10313f31c649SGarrett Wollman * the values returned and used here are correct. 10323f31c649SGarrett Wollman */ 10333f31c649SGarrett Wollman bigtick = (long)tick << SHIFT_USEC; 10343f31c649SGarrett Wollman pps_usec -= ntp_pll.ybar; 10353f31c649SGarrett Wollman if (pps_usec >= bigtick) 10363f31c649SGarrett Wollman pps_usec -= bigtick; 10373f31c649SGarrett Wollman if (pps_usec < 0) 10383f31c649SGarrett Wollman pps_usec += bigtick; 10393f31c649SGarrett Wollman pps_time.tv_sec++; 10403f31c649SGarrett Wollman pps_count++; 10413f31c649SGarrett Wollman if (pps_count < (1 << pps_shift)) 10423f31c649SGarrett Wollman return; 10433f31c649SGarrett Wollman pps_count = 0; 10443f31c649SGarrett Wollman ntp_pll.calcnt++; 10453f31c649SGarrett Wollman u_usec = usec << SHIFT_USEC; 10463f31c649SGarrett Wollman v_usec = pps_usec - u_usec; 10473f31c649SGarrett Wollman if (v_usec >= bigtick >> 1) 10483f31c649SGarrett Wollman v_usec -= bigtick; 10493f31c649SGarrett Wollman if (v_usec < -(bigtick >> 1)) 10503f31c649SGarrett Wollman v_usec += bigtick; 10513f31c649SGarrett Wollman if (v_usec < 0) 10523f31c649SGarrett Wollman v_usec = -(-v_usec >> ntp_pll.shift); 10533f31c649SGarrett Wollman else 10543f31c649SGarrett Wollman v_usec = v_usec >> ntp_pll.shift; 10553f31c649SGarrett Wollman pps_usec = u_usec; 10563f31c649SGarrett Wollman cal_sec = tvp->tv_sec; 10573f31c649SGarrett Wollman cal_usec = tvp->tv_usec; 10583f31c649SGarrett Wollman cal_sec -= pps_time.tv_sec; 10593f31c649SGarrett Wollman cal_usec -= pps_time.tv_usec; 10603f31c649SGarrett Wollman if (cal_usec < 0) { 10613f31c649SGarrett Wollman cal_usec += 1000000; 10623f31c649SGarrett Wollman cal_sec--; 10633f31c649SGarrett Wollman } 10643f31c649SGarrett Wollman pps_time = *tvp; 10653f31c649SGarrett Wollman 10663f31c649SGarrett Wollman /* 10673f31c649SGarrett Wollman * Check for lost interrupts, noise, excessive jitter and 10683f31c649SGarrett Wollman * excessive frequency error. The number of timer ticks during 10693f31c649SGarrett Wollman * the interval may vary +-1 tick. Add to this a margin of one 10703f31c649SGarrett Wollman * tick for the PPS signal jitter and maximum frequency 10713f31c649SGarrett Wollman * deviation. If the limits are exceeded, the calibration 10723f31c649SGarrett Wollman * interval is reset to the minimum and we start over. 10733f31c649SGarrett Wollman */ 10743f31c649SGarrett Wollman u_usec = (long)tick << 1; 10753f31c649SGarrett Wollman if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 10763f31c649SGarrett Wollman || (cal_sec == 0 && cal_usec < u_usec)) 10773f31c649SGarrett Wollman || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) { 10783f31c649SGarrett Wollman ntp_pll.jitcnt++; 10793f31c649SGarrett Wollman ntp_pll.shift = NTP_PLL.SHIFT; 10803f31c649SGarrett Wollman pps_dispinc = PPS_DISPINC; 10813f31c649SGarrett Wollman ntp_pll.intcnt = 0; 10823f31c649SGarrett Wollman return; 10833f31c649SGarrett Wollman } 10843f31c649SGarrett Wollman 10853f31c649SGarrett Wollman /* 10863f31c649SGarrett Wollman * A three-stage median filter is used to help deglitch the pps 10873f31c649SGarrett Wollman * signal. The median sample becomes the offset estimate; the 10883f31c649SGarrett Wollman * difference between the other two samples becomes the 10893f31c649SGarrett Wollman * dispersion estimate. 10903f31c649SGarrett Wollman */ 10913f31c649SGarrett Wollman pps_mf[2] = pps_mf[1]; 10923f31c649SGarrett Wollman pps_mf[1] = pps_mf[0]; 10933f31c649SGarrett Wollman pps_mf[0] = v_usec; 10943f31c649SGarrett Wollman if (pps_mf[0] > pps_mf[1]) { 10953f31c649SGarrett Wollman if (pps_mf[1] > pps_mf[2]) { 10963f31c649SGarrett Wollman u_usec = pps_mf[1]; /* 0 1 2 */ 10973f31c649SGarrett Wollman v_usec = pps_mf[0] - pps_mf[2]; 10983f31c649SGarrett Wollman } else if (pps_mf[2] > pps_mf[0]) { 10993f31c649SGarrett Wollman u_usec = pps_mf[0]; /* 2 0 1 */ 11003f31c649SGarrett Wollman v_usec = pps_mf[2] - pps_mf[1]; 11013f31c649SGarrett Wollman } else { 11023f31c649SGarrett Wollman u_usec = pps_mf[2]; /* 0 2 1 */ 11033f31c649SGarrett Wollman v_usec = pps_mf[0] - pps_mf[1]; 11043f31c649SGarrett Wollman } 11053f31c649SGarrett Wollman } else { 11063f31c649SGarrett Wollman if (pps_mf[1] < pps_mf[2]) { 11073f31c649SGarrett Wollman u_usec = pps_mf[1]; /* 2 1 0 */ 11083f31c649SGarrett Wollman v_usec = pps_mf[2] - pps_mf[0]; 11093f31c649SGarrett Wollman } else if (pps_mf[2] < pps_mf[0]) { 11103f31c649SGarrett Wollman u_usec = pps_mf[0]; /* 1 0 2 */ 11113f31c649SGarrett Wollman v_usec = pps_mf[1] - pps_mf[2]; 11123f31c649SGarrett Wollman } else { 11133f31c649SGarrett Wollman u_usec = pps_mf[2]; /* 1 2 0 */ 11143f31c649SGarrett Wollman v_usec = pps_mf[1] - pps_mf[0]; 11153f31c649SGarrett Wollman } 11163f31c649SGarrett Wollman } 11173f31c649SGarrett Wollman 11183f31c649SGarrett Wollman /* 11193f31c649SGarrett Wollman * Here the dispersion average is updated. If it is less than 11203f31c649SGarrett Wollman * the threshold pps_dispmax, the frequency average is updated 11213f31c649SGarrett Wollman * as well, but clamped to the tolerance. 11223f31c649SGarrett Wollman */ 11233f31c649SGarrett Wollman v_usec = (v_usec >> 1) - ntp_pll.disp; 11243f31c649SGarrett Wollman if (v_usec < 0) 11253f31c649SGarrett Wollman ntp_pll.disp -= -v_usec >> PPS_AVG; 11263f31c649SGarrett Wollman else 11273f31c649SGarrett Wollman ntp_pll.disp += v_usec >> PPS_AVG; 11283f31c649SGarrett Wollman if (ntp_pll.disp > pps_dispmax) { 11293f31c649SGarrett Wollman ntp_pll.discnt++; 11303f31c649SGarrett Wollman return; 11313f31c649SGarrett Wollman } 11323f31c649SGarrett Wollman if (u_usec < 0) { 11333f31c649SGarrett Wollman ntp_pll.ybar -= -u_usec >> PPS_AVG; 11343f31c649SGarrett Wollman if (ntp_pll.ybar < -ntp_pll.tolerance) 11353f31c649SGarrett Wollman ntp_pll.ybar = -ntp_pll.tolerance; 11363f31c649SGarrett Wollman u_usec = -u_usec; 11373f31c649SGarrett Wollman } else { 11383f31c649SGarrett Wollman ntp_pll.ybar += u_usec >> PPS_AVG; 11393f31c649SGarrett Wollman if (ntp_pll.ybar > ntp_pll.tolerance) 11403f31c649SGarrett Wollman ntp_pll.ybar = ntp_pll.tolerance; 11413f31c649SGarrett Wollman } 11423f31c649SGarrett Wollman 11433f31c649SGarrett Wollman /* 11443f31c649SGarrett Wollman * Here the calibration interval is adjusted. If the maximum 11453f31c649SGarrett Wollman * time difference is greater than tick/4, reduce the interval 11463f31c649SGarrett Wollman * by half. If this is not the case for four consecutive 11473f31c649SGarrett Wollman * intervals, double the interval. 11483f31c649SGarrett Wollman */ 11493f31c649SGarrett Wollman if (u_usec << ntp_pll.shift > bigtick >> 2) { 11503f31c649SGarrett Wollman ntp_pll.intcnt = 0; 11513f31c649SGarrett Wollman if (ntp_pll.shift > NTP_PLL.SHIFT) { 11523f31c649SGarrett Wollman ntp_pll.shift--; 11533f31c649SGarrett Wollman pps_dispinc <<= 1; 11543f31c649SGarrett Wollman } 11553f31c649SGarrett Wollman } else if (ntp_pll.intcnt >= 4) { 11563f31c649SGarrett Wollman ntp_pll.intcnt = 0; 11573f31c649SGarrett Wollman if (ntp_pll.shift < NTP_PLL.SHIFTMAX) { 11583f31c649SGarrett Wollman ntp_pll.shift++; 11593f31c649SGarrett Wollman pps_dispinc >>= 1; 11603f31c649SGarrett Wollman } 11613f31c649SGarrett Wollman } else 11623f31c649SGarrett Wollman ntp_pll.intcnt++; 11633f31c649SGarrett Wollman } 11643f31c649SGarrett Wollman #endif /* PPS_SYNC */ 1165