1df8bae1dSRodney W. Grimes /*- 2df8bae1dSRodney W. Grimes * Copyright (c) 1982, 1986, 1991, 1993 3df8bae1dSRodney W. Grimes * The Regents of the University of California. All rights reserved. 4df8bae1dSRodney W. Grimes * (c) UNIX System Laboratories, Inc. 5df8bae1dSRodney W. Grimes * All or some portions of this file are derived from material licensed 6df8bae1dSRodney W. Grimes * to the University of California by American Telephone and Telegraph 7df8bae1dSRodney W. Grimes * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8df8bae1dSRodney W. Grimes * the permission of UNIX System Laboratories, Inc. 9df8bae1dSRodney W. Grimes * 10df8bae1dSRodney W. Grimes * Redistribution and use in source and binary forms, with or without 11df8bae1dSRodney W. Grimes * modification, are permitted provided that the following conditions 12df8bae1dSRodney W. Grimes * are met: 13df8bae1dSRodney W. Grimes * 1. Redistributions of source code must retain the above copyright 14df8bae1dSRodney W. Grimes * notice, this list of conditions and the following disclaimer. 15df8bae1dSRodney W. Grimes * 2. Redistributions in binary form must reproduce the above copyright 16df8bae1dSRodney W. Grimes * notice, this list of conditions and the following disclaimer in the 17df8bae1dSRodney W. Grimes * documentation and/or other materials provided with the distribution. 18df8bae1dSRodney W. Grimes * 3. All advertising materials mentioning features or use of this software 19df8bae1dSRodney W. Grimes * must display the following acknowledgement: 20df8bae1dSRodney W. Grimes * This product includes software developed by the University of 21df8bae1dSRodney W. Grimes * California, Berkeley and its contributors. 22df8bae1dSRodney W. Grimes * 4. Neither the name of the University nor the names of its contributors 23df8bae1dSRodney W. Grimes * may be used to endorse or promote products derived from this software 24df8bae1dSRodney W. Grimes * without specific prior written permission. 25df8bae1dSRodney W. Grimes * 26df8bae1dSRodney W. Grimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27df8bae1dSRodney W. Grimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28df8bae1dSRodney W. Grimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29df8bae1dSRodney W. Grimes * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30df8bae1dSRodney W. Grimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31df8bae1dSRodney W. Grimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32df8bae1dSRodney W. Grimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33df8bae1dSRodney W. Grimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34df8bae1dSRodney W. Grimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35df8bae1dSRodney W. Grimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36df8bae1dSRodney W. Grimes * SUCH DAMAGE. 37df8bae1dSRodney W. Grimes * 38df8bae1dSRodney W. Grimes * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 39797f2d22SPoul-Henning Kamp * $Id: kern_clock.c,v 1.8 1994/09/29 00:52:06 wollman Exp $ 40df8bae1dSRodney W. Grimes */ 41df8bae1dSRodney W. Grimes 423f31c649SGarrett Wollman /* Portions of this software are covered by the following: */ 433f31c649SGarrett Wollman /****************************************************************************** 443f31c649SGarrett Wollman * * 453f31c649SGarrett Wollman * Copyright (c) David L. Mills 1993, 1994 * 463f31c649SGarrett Wollman * * 473f31c649SGarrett Wollman * Permission to use, copy, modify, and distribute this software and its * 483f31c649SGarrett Wollman * documentation for any purpose and without fee is hereby granted, provided * 493f31c649SGarrett Wollman * that the above copyright notice appears in all copies and that both the * 503f31c649SGarrett Wollman * copyright notice and this permission notice appear in supporting * 513f31c649SGarrett Wollman * documentation, and that the name University of Delaware not be used in * 523f31c649SGarrett Wollman * advertising or publicity pertaining to distribution of the software * 533f31c649SGarrett Wollman * without specific, written prior permission. The University of Delaware * 543f31c649SGarrett Wollman * makes no representations about the suitability this software for any * 553f31c649SGarrett Wollman * purpose. It is provided "as is" without express or implied warranty. * 563f31c649SGarrett Wollman * * 573f31c649SGarrett Wollman *****************************************************************************/ 583f31c649SGarrett Wollman 59df8bae1dSRodney W. Grimes #include <sys/param.h> 60df8bae1dSRodney W. Grimes #include <sys/systm.h> 61df8bae1dSRodney W. Grimes #include <sys/dkstat.h> 62df8bae1dSRodney W. Grimes #include <sys/callout.h> 63df8bae1dSRodney W. Grimes #include <sys/kernel.h> 64df8bae1dSRodney W. Grimes #include <sys/proc.h> 65df8bae1dSRodney W. Grimes #include <sys/resourcevar.h> 66797f2d22SPoul-Henning Kamp #include <sys/signalvar.h> 673f31c649SGarrett Wollman #include <sys/timex.h> 688a129caeSDavid Greenman #include <vm/vm.h> 69797f2d22SPoul-Henning Kamp #include <sys/sysctl.h> 70df8bae1dSRodney W. Grimes 71df8bae1dSRodney W. Grimes #include <machine/cpu.h> 723f31c649SGarrett Wollman #include <machine/clock.h> 73df8bae1dSRodney W. Grimes 74df8bae1dSRodney W. Grimes #ifdef GPROF 75df8bae1dSRodney W. Grimes #include <sys/gmon.h> 76df8bae1dSRodney W. Grimes #endif 77df8bae1dSRodney W. Grimes 78f23b4c91SGarrett Wollman /* Does anybody else really care about these? */ 79f23b4c91SGarrett Wollman struct callout *callfree, *callout, calltodo; 80f23b4c91SGarrett Wollman int ncallout; 81f23b4c91SGarrett Wollman 82f23b4c91SGarrett Wollman /* Some of these don't belong here, but it's easiest to concentrate them. */ 83f23b4c91SGarrett Wollman long cp_time[CPUSTATES]; 84f23b4c91SGarrett Wollman long dk_seek[DK_NDRIVE]; 85f23b4c91SGarrett Wollman long dk_time[DK_NDRIVE]; 86f23b4c91SGarrett Wollman long dk_wds[DK_NDRIVE]; 87f23b4c91SGarrett Wollman long dk_wpms[DK_NDRIVE]; 88f23b4c91SGarrett Wollman long dk_xfer[DK_NDRIVE]; 89f23b4c91SGarrett Wollman 90f23b4c91SGarrett Wollman int dk_busy; 91f23b4c91SGarrett Wollman int dk_ndrive = DK_NDRIVE; 92f23b4c91SGarrett Wollman 93f23b4c91SGarrett Wollman long tk_cancc; 94f23b4c91SGarrett Wollman long tk_nin; 95f23b4c91SGarrett Wollman long tk_nout; 96f23b4c91SGarrett Wollman long tk_rawcc; 97f23b4c91SGarrett Wollman 98df8bae1dSRodney W. Grimes /* 99df8bae1dSRodney W. Grimes * Clock handling routines. 100df8bae1dSRodney W. Grimes * 101df8bae1dSRodney W. Grimes * This code is written to operate with two timers that run independently of 102df8bae1dSRodney W. Grimes * each other. The main clock, running hz times per second, is used to keep 103df8bae1dSRodney W. Grimes * track of real time. The second timer handles kernel and user profiling, 104df8bae1dSRodney W. Grimes * and does resource use estimation. If the second timer is programmable, 105df8bae1dSRodney W. Grimes * it is randomized to avoid aliasing between the two clocks. For example, 106df8bae1dSRodney W. Grimes * the randomization prevents an adversary from always giving up the cpu 107df8bae1dSRodney W. Grimes * just before its quantum expires. Otherwise, it would never accumulate 108df8bae1dSRodney W. Grimes * cpu ticks. The mean frequency of the second timer is stathz. 109df8bae1dSRodney W. Grimes * 110df8bae1dSRodney W. Grimes * If no second timer exists, stathz will be zero; in this case we drive 111df8bae1dSRodney W. Grimes * profiling and statistics off the main clock. This WILL NOT be accurate; 112df8bae1dSRodney W. Grimes * do not do it unless absolutely necessary. 113df8bae1dSRodney W. Grimes * 114df8bae1dSRodney W. Grimes * The statistics clock may (or may not) be run at a higher rate while 115df8bae1dSRodney W. Grimes * profiling. This profile clock runs at profhz. We require that profhz 116df8bae1dSRodney W. Grimes * be an integral multiple of stathz. 117df8bae1dSRodney W. Grimes * 118df8bae1dSRodney W. Grimes * If the statistics clock is running fast, it must be divided by the ratio 119df8bae1dSRodney W. Grimes * profhz/stathz for statistics. (For profiling, every tick counts.) 120df8bae1dSRodney W. Grimes */ 121df8bae1dSRodney W. Grimes 122df8bae1dSRodney W. Grimes /* 123df8bae1dSRodney W. Grimes * TODO: 124df8bae1dSRodney W. Grimes * allocate more timeout table slots when table overflows. 125df8bae1dSRodney W. Grimes */ 126df8bae1dSRodney W. Grimes 127df8bae1dSRodney W. Grimes /* 128df8bae1dSRodney W. Grimes * Bump a timeval by a small number of usec's. 129df8bae1dSRodney W. Grimes */ 130df8bae1dSRodney W. Grimes #define BUMPTIME(t, usec) { \ 131df8bae1dSRodney W. Grimes register volatile struct timeval *tp = (t); \ 132df8bae1dSRodney W. Grimes register long us; \ 133df8bae1dSRodney W. Grimes \ 134df8bae1dSRodney W. Grimes tp->tv_usec = us = tp->tv_usec + (usec); \ 135df8bae1dSRodney W. Grimes if (us >= 1000000) { \ 136df8bae1dSRodney W. Grimes tp->tv_usec = us - 1000000; \ 137df8bae1dSRodney W. Grimes tp->tv_sec++; \ 138df8bae1dSRodney W. Grimes } \ 139df8bae1dSRodney W. Grimes } 140df8bae1dSRodney W. Grimes 141df8bae1dSRodney W. Grimes int stathz; 142df8bae1dSRodney W. Grimes int profhz; 143df8bae1dSRodney W. Grimes int profprocs; 144df8bae1dSRodney W. Grimes int ticks; 145df8bae1dSRodney W. Grimes static int psdiv, pscnt; /* prof => stat divider */ 146df8bae1dSRodney W. Grimes int psratio; /* ratio: prof / stat */ 147df8bae1dSRodney W. Grimes 148df8bae1dSRodney W. Grimes volatile struct timeval time; 149df8bae1dSRodney W. Grimes volatile struct timeval mono_time; 150df8bae1dSRodney W. Grimes 151df8bae1dSRodney W. Grimes /* 1523f31c649SGarrett Wollman * Phase-lock loop (PLL) definitions 1533f31c649SGarrett Wollman * 1543f31c649SGarrett Wollman * The following variables are read and set by the ntp_adjtime() system 1553f31c649SGarrett Wollman * call. 1563f31c649SGarrett Wollman * 1573f31c649SGarrett Wollman * time_state shows the state of the system clock, with values defined 1583f31c649SGarrett Wollman * in the timex.h header file. 1593f31c649SGarrett Wollman * 1603f31c649SGarrett Wollman * time_status shows the status of the system clock, with bits defined 1613f31c649SGarrett Wollman * in the timex.h header file. 1623f31c649SGarrett Wollman * 1633f31c649SGarrett Wollman * time_offset is used by the PLL to adjust the system time in small 1643f31c649SGarrett Wollman * increments. 1653f31c649SGarrett Wollman * 1663f31c649SGarrett Wollman * time_constant determines the bandwidth or "stiffness" of the PLL. 1673f31c649SGarrett Wollman * 1683f31c649SGarrett Wollman * time_tolerance determines maximum frequency error or tolerance of the 1693f31c649SGarrett Wollman * CPU clock oscillator and is a property of the architecture; however, 1703f31c649SGarrett Wollman * in principle it could change as result of the presence of external 1713f31c649SGarrett Wollman * discipline signals, for instance. 1723f31c649SGarrett Wollman * 1733f31c649SGarrett Wollman * time_precision is usually equal to the kernel tick variable; however, 1743f31c649SGarrett Wollman * in cases where a precision clock counter or external clock is 1753f31c649SGarrett Wollman * available, the resolution can be much less than this and depend on 1763f31c649SGarrett Wollman * whether the external clock is working or not. 1773f31c649SGarrett Wollman * 1783f31c649SGarrett Wollman * time_maxerror is initialized by a ntp_adjtime() call and increased by 1793f31c649SGarrett Wollman * the kernel once each second to reflect the maximum error 1803f31c649SGarrett Wollman * bound growth. 1813f31c649SGarrett Wollman * 1823f31c649SGarrett Wollman * time_esterror is set and read by the ntp_adjtime() call, but 1833f31c649SGarrett Wollman * otherwise not used by the kernel. 1843f31c649SGarrett Wollman */ 1853f31c649SGarrett Wollman int time_status = STA_UNSYNC; /* clock status bits */ 1863f31c649SGarrett Wollman int time_state = TIME_OK; /* clock state */ 1873f31c649SGarrett Wollman long time_offset = 0; /* time offset (us) */ 1883f31c649SGarrett Wollman long time_constant = 0; /* pll time constant */ 1893f31c649SGarrett Wollman long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 1903f31c649SGarrett Wollman long time_precision = 1; /* clock precision (us) */ 1913f31c649SGarrett Wollman long time_maxerror = MAXPHASE; /* maximum error (us) */ 1923f31c649SGarrett Wollman long time_esterror = MAXPHASE; /* estimated error (us) */ 1933f31c649SGarrett Wollman 1943f31c649SGarrett Wollman /* 1953f31c649SGarrett Wollman * The following variables establish the state of the PLL and the 1963f31c649SGarrett Wollman * residual time and frequency offset of the local clock. The scale 1973f31c649SGarrett Wollman * factors are defined in the timex.h header file. 1983f31c649SGarrett Wollman * 1993f31c649SGarrett Wollman * time_phase and time_freq are the phase increment and the frequency 2003f31c649SGarrett Wollman * increment, respectively, of the kernel time variable at each tick of 2013f31c649SGarrett Wollman * the clock. 2023f31c649SGarrett Wollman * 2033f31c649SGarrett Wollman * time_freq is set via ntp_adjtime() from a value stored in a file when 2043f31c649SGarrett Wollman * the synchronization daemon is first started. Its value is retrieved 2053f31c649SGarrett Wollman * via ntp_adjtime() and written to the file about once per hour by the 2063f31c649SGarrett Wollman * daemon. 2073f31c649SGarrett Wollman * 2083f31c649SGarrett Wollman * time_adj is the adjustment added to the value of tick at each timer 2093f31c649SGarrett Wollman * interrupt and is recomputed at each timer interrupt. 2103f31c649SGarrett Wollman * 2113f31c649SGarrett Wollman * time_reftime is the second's portion of the system time on the last 2123f31c649SGarrett Wollman * call to ntp_adjtime(). It is used to adjust the time_freq variable 2133f31c649SGarrett Wollman * and to increase the time_maxerror as the time since last update 2143f31c649SGarrett Wollman * increases. 2153f31c649SGarrett Wollman */ 2163f31c649SGarrett Wollman long time_phase = 0; /* phase offset (scaled us) */ 2173f31c649SGarrett Wollman long time_freq = 0; /* frequency offset (scaled ppm) */ 2183f31c649SGarrett Wollman long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 2193f31c649SGarrett Wollman long time_reftime = 0; /* time at last adjustment (s) */ 2203f31c649SGarrett Wollman 2213f31c649SGarrett Wollman #ifdef PPS_SYNC 2223f31c649SGarrett Wollman /* 2233f31c649SGarrett Wollman * The following variables are used only if the if the kernel PPS 2243f31c649SGarrett Wollman * discipline code is configured (PPS_SYNC). The scale factors are 2253f31c649SGarrett Wollman * defined in the timex.h header file. 2263f31c649SGarrett Wollman * 2273f31c649SGarrett Wollman * pps_time contains the time at each calibration interval, as read by 2283f31c649SGarrett Wollman * microtime(). 2293f31c649SGarrett Wollman * 2303f31c649SGarrett Wollman * pps_offset is the time offset produced by the time median filter 2313f31c649SGarrett Wollman * pps_tf[], while pps_jitter is the dispersion measured by this 2323f31c649SGarrett Wollman * filter. 2333f31c649SGarrett Wollman * 2343f31c649SGarrett Wollman * pps_freq is the frequency offset produced by the frequency median 2353f31c649SGarrett Wollman * filter pps_ff[], while pps_stabil is the dispersion measured by 2363f31c649SGarrett Wollman * this filter. 2373f31c649SGarrett Wollman * 2383f31c649SGarrett Wollman * pps_usec is latched from a high resolution counter or external clock 2393f31c649SGarrett Wollman * at pps_time. Here we want the hardware counter contents only, not the 2403f31c649SGarrett Wollman * contents plus the time_tv.usec as usual. 2413f31c649SGarrett Wollman * 2423f31c649SGarrett Wollman * pps_valid counts the number of seconds since the last PPS update. It 2433f31c649SGarrett Wollman * is used as a watchdog timer to disable the PPS discipline should the 2443f31c649SGarrett Wollman * PPS signal be lost. 2453f31c649SGarrett Wollman * 2463f31c649SGarrett Wollman * pps_glitch counts the number of seconds since the beginning of an 2473f31c649SGarrett Wollman * offset burst more than tick/2 from current nominal offset. It is used 2483f31c649SGarrett Wollman * mainly to suppress error bursts due to priority conflicts between the 2493f31c649SGarrett Wollman * PPS interrupt and timer interrupt. 2503f31c649SGarrett Wollman * 2513f31c649SGarrett Wollman * pps_count counts the seconds of the calibration interval, the 2523f31c649SGarrett Wollman * duration of which is pps_shift in powers of two. 2533f31c649SGarrett Wollman * 2543f31c649SGarrett Wollman * pps_intcnt counts the calibration intervals for use in the interval- 2553f31c649SGarrett Wollman * adaptation algorithm. It's just too complicated for words. 2563f31c649SGarrett Wollman */ 2573f31c649SGarrett Wollman struct timeval pps_time; /* kernel time at last interval */ 2583f31c649SGarrett Wollman long pps_offset = 0; /* pps time offset (us) */ 2593f31c649SGarrett Wollman long pps_jitter = MAXTIME; /* pps time dispersion (jitter) (us) */ 2603f31c649SGarrett Wollman long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 2613f31c649SGarrett Wollman long pps_freq = 0; /* frequency offset (scaled ppm) */ 2623f31c649SGarrett Wollman long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 2633f31c649SGarrett Wollman long pps_ff[] = {0, 0, 0}; /* frequency offset median filter */ 2643f31c649SGarrett Wollman long pps_usec = 0; /* microsec counter at last interval */ 2653f31c649SGarrett Wollman long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 2663f31c649SGarrett Wollman int pps_glitch = 0; /* pps signal glitch counter */ 2673f31c649SGarrett Wollman int pps_count = 0; /* calibration interval counter (s) */ 2683f31c649SGarrett Wollman int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 2693f31c649SGarrett Wollman int pps_intcnt = 0; /* intervals at current duration */ 2703f31c649SGarrett Wollman 2713f31c649SGarrett Wollman /* 2723f31c649SGarrett Wollman * PPS signal quality monitors 2733f31c649SGarrett Wollman * 2743f31c649SGarrett Wollman * pps_jitcnt counts the seconds that have been discarded because the 2753f31c649SGarrett Wollman * jitter measured by the time median filter exceeds the limit MAXTIME 2763f31c649SGarrett Wollman * (100 us). 2773f31c649SGarrett Wollman * 2783f31c649SGarrett Wollman * pps_calcnt counts the frequency calibration intervals, which are 2793f31c649SGarrett Wollman * variable from 4 s to 256 s. 2803f31c649SGarrett Wollman * 2813f31c649SGarrett Wollman * pps_errcnt counts the calibration intervals which have been discarded 2823f31c649SGarrett Wollman * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 2833f31c649SGarrett Wollman * calibration interval jitter exceeds two ticks. 2843f31c649SGarrett Wollman * 2853f31c649SGarrett Wollman * pps_stbcnt counts the calibration intervals that have been discarded 2863f31c649SGarrett Wollman * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 2873f31c649SGarrett Wollman */ 2883f31c649SGarrett Wollman long pps_jitcnt = 0; /* jitter limit exceeded */ 2893f31c649SGarrett Wollman long pps_calcnt = 0; /* calibration intervals */ 2903f31c649SGarrett Wollman long pps_errcnt = 0; /* calibration errors */ 2913f31c649SGarrett Wollman long pps_stbcnt = 0; /* stability limit exceeded */ 2923f31c649SGarrett Wollman #endif /* PPS_SYNC */ 2933f31c649SGarrett Wollman 2943f31c649SGarrett Wollman /* XXX none of this stuff works under FreeBSD */ 2953f31c649SGarrett Wollman #ifdef EXT_CLOCK 2963f31c649SGarrett Wollman /* 2973f31c649SGarrett Wollman * External clock definitions 2983f31c649SGarrett Wollman * 2993f31c649SGarrett Wollman * The following definitions and declarations are used only if an 3003f31c649SGarrett Wollman * external clock (HIGHBALL or TPRO) is configured on the system. 3013f31c649SGarrett Wollman */ 3023f31c649SGarrett Wollman #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 3033f31c649SGarrett Wollman 3043f31c649SGarrett Wollman /* 3053f31c649SGarrett Wollman * The clock_count variable is set to CLOCK_INTERVAL at each PPS 3063f31c649SGarrett Wollman * interrupt and decremented once each second. 3073f31c649SGarrett Wollman */ 3083f31c649SGarrett Wollman int clock_count = 0; /* CPU clock counter */ 3093f31c649SGarrett Wollman 3103f31c649SGarrett Wollman #ifdef HIGHBALL 3113f31c649SGarrett Wollman /* 3123f31c649SGarrett Wollman * The clock_offset and clock_cpu variables are used by the HIGHBALL 3133f31c649SGarrett Wollman * interface. The clock_offset variable defines the offset between 3143f31c649SGarrett Wollman * system time and the HIGBALL counters. The clock_cpu variable contains 3153f31c649SGarrett Wollman * the offset between the system clock and the HIGHBALL clock for use in 3163f31c649SGarrett Wollman * disciplining the kernel time variable. 3173f31c649SGarrett Wollman */ 3183f31c649SGarrett Wollman extern struct timeval clock_offset; /* Highball clock offset */ 3193f31c649SGarrett Wollman long clock_cpu = 0; /* CPU clock adjust */ 3203f31c649SGarrett Wollman #endif /* HIGHBALL */ 3213f31c649SGarrett Wollman #endif /* EXT_CLOCK */ 3223f31c649SGarrett Wollman 3233f31c649SGarrett Wollman /* 3243f31c649SGarrett Wollman * hardupdate() - local clock update 3253f31c649SGarrett Wollman * 3263f31c649SGarrett Wollman * This routine is called by ntp_adjtime() to update the local clock 3273f31c649SGarrett Wollman * phase and frequency. This is used to implement an adaptive-parameter, 3283f31c649SGarrett Wollman * first-order, type-II phase-lock loop. The code computes new time and 3293f31c649SGarrett Wollman * frequency offsets each time it is called. The hardclock() routine 3303f31c649SGarrett Wollman * amortizes these offsets at each tick interrupt. If the kernel PPS 3313f31c649SGarrett Wollman * discipline code is configured (PPS_SYNC), the PPS signal itself 3323f31c649SGarrett Wollman * determines the new time offset, instead of the calling argument. 3333f31c649SGarrett Wollman * Presumably, calls to ntp_adjtime() occur only when the caller 3343f31c649SGarrett Wollman * believes the local clock is valid within some bound (+-128 ms with 3353f31c649SGarrett Wollman * NTP). If the caller's time is far different than the PPS time, an 3363f31c649SGarrett Wollman * argument will ensue, and it's not clear who will lose. 3373f31c649SGarrett Wollman * 3383f31c649SGarrett Wollman * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the 3393f31c649SGarrett Wollman * maximum interval between updates is 4096 s and the maximum frequency 3403f31c649SGarrett Wollman * offset is +-31.25 ms/s. 3413f31c649SGarrett Wollman * 3423f31c649SGarrett Wollman * Note: splclock() is in effect. 3433f31c649SGarrett Wollman */ 3443f31c649SGarrett Wollman void 3453f31c649SGarrett Wollman hardupdate(offset) 3463f31c649SGarrett Wollman long offset; 3473f31c649SGarrett Wollman { 3483f31c649SGarrett Wollman long ltemp, mtemp; 3493f31c649SGarrett Wollman 3503f31c649SGarrett Wollman if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 3513f31c649SGarrett Wollman return; 3523f31c649SGarrett Wollman ltemp = offset; 3533f31c649SGarrett Wollman #ifdef PPS_SYNC 3543f31c649SGarrett Wollman if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 3553f31c649SGarrett Wollman ltemp = pps_offset; 3563f31c649SGarrett Wollman #endif /* PPS_SYNC */ 3573f31c649SGarrett Wollman if (ltemp > MAXPHASE) 3583f31c649SGarrett Wollman time_offset = MAXPHASE << SHIFT_UPDATE; 3593f31c649SGarrett Wollman else if (ltemp < -MAXPHASE) 3603f31c649SGarrett Wollman time_offset = -(MAXPHASE << SHIFT_UPDATE); 3613f31c649SGarrett Wollman else 3623f31c649SGarrett Wollman time_offset = ltemp << SHIFT_UPDATE; 3633f31c649SGarrett Wollman mtemp = time.tv_sec - time_reftime; 3643f31c649SGarrett Wollman time_reftime = time.tv_sec; 3653f31c649SGarrett Wollman if (mtemp > MAXSEC) 3663f31c649SGarrett Wollman mtemp = 0; 3673f31c649SGarrett Wollman 3683f31c649SGarrett Wollman /* ugly multiply should be replaced */ 3693f31c649SGarrett Wollman if (ltemp < 0) 3703f31c649SGarrett Wollman time_freq -= (-ltemp * mtemp) >> (time_constant + 3713f31c649SGarrett Wollman time_constant + SHIFT_KF - SHIFT_USEC); 3723f31c649SGarrett Wollman else 3733f31c649SGarrett Wollman time_freq += (ltemp * mtemp) >> (time_constant + 3743f31c649SGarrett Wollman time_constant + SHIFT_KF - SHIFT_USEC); 3753f31c649SGarrett Wollman if (time_freq > time_tolerance) 3763f31c649SGarrett Wollman time_freq = time_tolerance; 3773f31c649SGarrett Wollman else if (time_freq < -time_tolerance) 3783f31c649SGarrett Wollman time_freq = -time_tolerance; 3793f31c649SGarrett Wollman } 3803f31c649SGarrett Wollman 3813f31c649SGarrett Wollman 3823f31c649SGarrett Wollman 3833f31c649SGarrett Wollman /* 384df8bae1dSRodney W. Grimes * Initialize clock frequencies and start both clocks running. 385df8bae1dSRodney W. Grimes */ 386df8bae1dSRodney W. Grimes void 387df8bae1dSRodney W. Grimes initclocks() 388df8bae1dSRodney W. Grimes { 389df8bae1dSRodney W. Grimes register int i; 390df8bae1dSRodney W. Grimes 391df8bae1dSRodney W. Grimes /* 392df8bae1dSRodney W. Grimes * Set divisors to 1 (normal case) and let the machine-specific 393df8bae1dSRodney W. Grimes * code do its bit. 394df8bae1dSRodney W. Grimes */ 395df8bae1dSRodney W. Grimes psdiv = pscnt = 1; 396df8bae1dSRodney W. Grimes cpu_initclocks(); 397df8bae1dSRodney W. Grimes 398df8bae1dSRodney W. Grimes /* 399df8bae1dSRodney W. Grimes * Compute profhz/stathz, and fix profhz if needed. 400df8bae1dSRodney W. Grimes */ 401df8bae1dSRodney W. Grimes i = stathz ? stathz : hz; 402df8bae1dSRodney W. Grimes if (profhz == 0) 403df8bae1dSRodney W. Grimes profhz = i; 404df8bae1dSRodney W. Grimes psratio = profhz / i; 405df8bae1dSRodney W. Grimes } 406df8bae1dSRodney W. Grimes 407df8bae1dSRodney W. Grimes /* 408df8bae1dSRodney W. Grimes * The real-time timer, interrupting hz times per second. 409df8bae1dSRodney W. Grimes */ 410df8bae1dSRodney W. Grimes void 411df8bae1dSRodney W. Grimes hardclock(frame) 412df8bae1dSRodney W. Grimes register struct clockframe *frame; 413df8bae1dSRodney W. Grimes { 414df8bae1dSRodney W. Grimes register struct callout *p1; 415df8bae1dSRodney W. Grimes register struct proc *p; 416bb56ec4aSPoul-Henning Kamp register int needsoft; 417df8bae1dSRodney W. Grimes extern int tickdelta; 418df8bae1dSRodney W. Grimes extern long timedelta; 419df8bae1dSRodney W. Grimes 420df8bae1dSRodney W. Grimes /* 421df8bae1dSRodney W. Grimes * Update real-time timeout queue. 422df8bae1dSRodney W. Grimes * At front of queue are some number of events which are ``due''. 423df8bae1dSRodney W. Grimes * The time to these is <= 0 and if negative represents the 424df8bae1dSRodney W. Grimes * number of ticks which have passed since it was supposed to happen. 425df8bae1dSRodney W. Grimes * The rest of the q elements (times > 0) are events yet to happen, 426df8bae1dSRodney W. Grimes * where the time for each is given as a delta from the previous. 427df8bae1dSRodney W. Grimes * Decrementing just the first of these serves to decrement the time 428df8bae1dSRodney W. Grimes * to all events. 429df8bae1dSRodney W. Grimes */ 430df8bae1dSRodney W. Grimes needsoft = 0; 431df8bae1dSRodney W. Grimes for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 432df8bae1dSRodney W. Grimes if (--p1->c_time > 0) 433df8bae1dSRodney W. Grimes break; 434df8bae1dSRodney W. Grimes needsoft = 1; 435df8bae1dSRodney W. Grimes if (p1->c_time == 0) 436df8bae1dSRodney W. Grimes break; 437df8bae1dSRodney W. Grimes } 438df8bae1dSRodney W. Grimes 439df8bae1dSRodney W. Grimes p = curproc; 440df8bae1dSRodney W. Grimes if (p) { 441df8bae1dSRodney W. Grimes register struct pstats *pstats; 442df8bae1dSRodney W. Grimes 443df8bae1dSRodney W. Grimes /* 444df8bae1dSRodney W. Grimes * Run current process's virtual and profile time, as needed. 445df8bae1dSRodney W. Grimes */ 446df8bae1dSRodney W. Grimes pstats = p->p_stats; 447df8bae1dSRodney W. Grimes if (CLKF_USERMODE(frame) && 448df8bae1dSRodney W. Grimes timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 449df8bae1dSRodney W. Grimes itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 450df8bae1dSRodney W. Grimes psignal(p, SIGVTALRM); 451df8bae1dSRodney W. Grimes if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 452df8bae1dSRodney W. Grimes itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 453df8bae1dSRodney W. Grimes psignal(p, SIGPROF); 454df8bae1dSRodney W. Grimes } 455df8bae1dSRodney W. Grimes 456df8bae1dSRodney W. Grimes /* 457df8bae1dSRodney W. Grimes * If no separate statistics clock is available, run it from here. 458df8bae1dSRodney W. Grimes */ 459df8bae1dSRodney W. Grimes if (stathz == 0) 460df8bae1dSRodney W. Grimes statclock(frame); 461df8bae1dSRodney W. Grimes 462df8bae1dSRodney W. Grimes /* 4633f31c649SGarrett Wollman * Increment the time-of-day. 464df8bae1dSRodney W. Grimes */ 465df8bae1dSRodney W. Grimes ticks++; 4663f31c649SGarrett Wollman { 4673f31c649SGarrett Wollman int time_update; 4683f31c649SGarrett Wollman struct timeval newtime = time; 4693f31c649SGarrett Wollman long ltemp; 4703f31c649SGarrett Wollman 4713f31c649SGarrett Wollman if (timedelta == 0) { 4723f31c649SGarrett Wollman time_update = tick; 4733f31c649SGarrett Wollman } else { 4743f31c649SGarrett Wollman time_update = tick + tickdelta; 475df8bae1dSRodney W. Grimes timedelta -= tickdelta; 476df8bae1dSRodney W. Grimes } 4773f31c649SGarrett Wollman BUMPTIME(&mono_time, time_update); 4783f31c649SGarrett Wollman 4793f31c649SGarrett Wollman /* 4803f31c649SGarrett Wollman * Compute the phase adjustment. If the low-order bits 4813f31c649SGarrett Wollman * (time_phase) of the update overflow, bump the high-order bits 4823f31c649SGarrett Wollman * (time_update). 4833f31c649SGarrett Wollman */ 4843f31c649SGarrett Wollman time_phase += time_adj; 4853f31c649SGarrett Wollman if (time_phase <= -FINEUSEC) { 4863f31c649SGarrett Wollman ltemp = -time_phase >> SHIFT_SCALE; 4873f31c649SGarrett Wollman time_phase += ltemp << SHIFT_SCALE; 4883f31c649SGarrett Wollman time_update -= ltemp; 4893f31c649SGarrett Wollman } 4903f31c649SGarrett Wollman else if (time_phase >= FINEUSEC) { 4913f31c649SGarrett Wollman ltemp = time_phase >> SHIFT_SCALE; 4923f31c649SGarrett Wollman time_phase -= ltemp << SHIFT_SCALE; 4933f31c649SGarrett Wollman time_update += ltemp; 4943f31c649SGarrett Wollman } 4953f31c649SGarrett Wollman 4963f31c649SGarrett Wollman newtime.tv_usec += time_update; 4973f31c649SGarrett Wollman /* 4983f31c649SGarrett Wollman * On rollover of the second the phase adjustment to be used for 4993f31c649SGarrett Wollman * the next second is calculated. Also, the maximum error is 5003f31c649SGarrett Wollman * increased by the tolerance. If the PPS frequency discipline 5013f31c649SGarrett Wollman * code is present, the phase is increased to compensate for the 5023f31c649SGarrett Wollman * CPU clock oscillator frequency error. 5033f31c649SGarrett Wollman * 5043f31c649SGarrett Wollman * With SHIFT_SCALE = 23, the maximum frequency adjustment is 5053f31c649SGarrett Wollman * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100 5063f31c649SGarrett Wollman * Hz. The time contribution is shifted right a minimum of two 5073f31c649SGarrett Wollman * bits, while the frequency contribution is a right shift. 5083f31c649SGarrett Wollman * Thus, overflow is prevented if the frequency contribution is 5093f31c649SGarrett Wollman * limited to half the maximum or 15.625 ms/s. 5103f31c649SGarrett Wollman */ 5113f31c649SGarrett Wollman if (newtime.tv_usec >= 1000000) { 5123f31c649SGarrett Wollman newtime.tv_usec -= 1000000; 5133f31c649SGarrett Wollman newtime.tv_sec++; 5143f31c649SGarrett Wollman time_maxerror += time_tolerance >> SHIFT_USEC; 5153f31c649SGarrett Wollman if (time_offset < 0) { 5163f31c649SGarrett Wollman ltemp = -time_offset >> 5173f31c649SGarrett Wollman (SHIFT_KG + time_constant); 5183f31c649SGarrett Wollman time_offset += ltemp; 5193f31c649SGarrett Wollman time_adj = -ltemp << 5203f31c649SGarrett Wollman (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 5213f31c649SGarrett Wollman } else { 5223f31c649SGarrett Wollman ltemp = time_offset >> 5233f31c649SGarrett Wollman (SHIFT_KG + time_constant); 5243f31c649SGarrett Wollman time_offset -= ltemp; 5253f31c649SGarrett Wollman time_adj = ltemp << 5263f31c649SGarrett Wollman (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 5273f31c649SGarrett Wollman } 5283f31c649SGarrett Wollman #ifdef PPS_SYNC 5293f31c649SGarrett Wollman /* 5303f31c649SGarrett Wollman * Gnaw on the watchdog counter and update the frequency 5313f31c649SGarrett Wollman * computed by the pll and the PPS signal. 5323f31c649SGarrett Wollman */ 5333f31c649SGarrett Wollman pps_valid++; 5343f31c649SGarrett Wollman if (pps_valid == PPS_VALID) { 5353f31c649SGarrett Wollman pps_jitter = MAXTIME; 5363f31c649SGarrett Wollman pps_stabil = MAXFREQ; 5373f31c649SGarrett Wollman time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 5383f31c649SGarrett Wollman STA_PPSWANDER | STA_PPSERROR); 5393f31c649SGarrett Wollman } 5403f31c649SGarrett Wollman ltemp = time_freq + pps_freq; 5413f31c649SGarrett Wollman #else 5423f31c649SGarrett Wollman ltemp = time_freq; 5433f31c649SGarrett Wollman #endif /* PPS_SYNC */ 5443f31c649SGarrett Wollman if (ltemp < 0) 5453f31c649SGarrett Wollman time_adj -= -ltemp >> 5463f31c649SGarrett Wollman (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 5473f31c649SGarrett Wollman else 5483f31c649SGarrett Wollman time_adj += ltemp >> 5493f31c649SGarrett Wollman (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); 5503f31c649SGarrett Wollman 5513f31c649SGarrett Wollman /* 5523f31c649SGarrett Wollman * When the CPU clock oscillator frequency is not a 5533f31c649SGarrett Wollman * power of two in Hz, the SHIFT_HZ is only an 5543f31c649SGarrett Wollman * approximate scale factor. In the SunOS kernel, this 5553f31c649SGarrett Wollman * results in a PLL gain factor of 1/1.28 = 0.78 what it 5563f31c649SGarrett Wollman * should be. In the following code the overall gain is 5573f31c649SGarrett Wollman * increased by a factor of 1.25, which results in a 5583f31c649SGarrett Wollman * residual error less than 3 percent. 5593f31c649SGarrett Wollman */ 5603f31c649SGarrett Wollman /* Same thing applies for FreeBSD --GAW */ 5613f31c649SGarrett Wollman if (hz == 100) { 5623f31c649SGarrett Wollman if (time_adj < 0) 5633f31c649SGarrett Wollman time_adj -= -time_adj >> 2; 5643f31c649SGarrett Wollman else 5653f31c649SGarrett Wollman time_adj += time_adj >> 2; 5663f31c649SGarrett Wollman } 5673f31c649SGarrett Wollman 5683f31c649SGarrett Wollman /* XXX - this is really bogus, but can't be fixed until 5693f31c649SGarrett Wollman xntpd's idea of the system clock is fixed to know how 5703f31c649SGarrett Wollman the user wants leap seconds handled; in the mean time, 5713f31c649SGarrett Wollman we assume that users of NTP are running without proper 5723f31c649SGarrett Wollman leap second support (this is now the default anyway) */ 5733f31c649SGarrett Wollman /* 5743f31c649SGarrett Wollman * Leap second processing. If in leap-insert state at 5753f31c649SGarrett Wollman * the end of the day, the system clock is set back one 5763f31c649SGarrett Wollman * second; if in leap-delete state, the system clock is 5773f31c649SGarrett Wollman * set ahead one second. The microtime() routine or 5783f31c649SGarrett Wollman * external clock driver will insure that reported time 5793f31c649SGarrett Wollman * is always monotonic. The ugly divides should be 5803f31c649SGarrett Wollman * replaced. 5813f31c649SGarrett Wollman */ 5823f31c649SGarrett Wollman switch (time_state) { 5833f31c649SGarrett Wollman 5843f31c649SGarrett Wollman case TIME_OK: 5853f31c649SGarrett Wollman if (time_status & STA_INS) 5863f31c649SGarrett Wollman time_state = TIME_INS; 5873f31c649SGarrett Wollman else if (time_status & STA_DEL) 5883f31c649SGarrett Wollman time_state = TIME_DEL; 5893f31c649SGarrett Wollman break; 5903f31c649SGarrett Wollman 5913f31c649SGarrett Wollman case TIME_INS: 5923f31c649SGarrett Wollman if (newtime.tv_sec % 86400 == 0) { 5933f31c649SGarrett Wollman newtime.tv_sec--; 5943f31c649SGarrett Wollman time_state = TIME_OOP; 5953f31c649SGarrett Wollman } 5963f31c649SGarrett Wollman break; 5973f31c649SGarrett Wollman 5983f31c649SGarrett Wollman case TIME_DEL: 5993f31c649SGarrett Wollman if ((newtime.tv_sec + 1) % 86400 == 0) { 6003f31c649SGarrett Wollman newtime.tv_sec++; 6013f31c649SGarrett Wollman time_state = TIME_WAIT; 6023f31c649SGarrett Wollman } 6033f31c649SGarrett Wollman break; 6043f31c649SGarrett Wollman 6053f31c649SGarrett Wollman case TIME_OOP: 6063f31c649SGarrett Wollman time_state = TIME_WAIT; 6073f31c649SGarrett Wollman break; 6083f31c649SGarrett Wollman 6093f31c649SGarrett Wollman case TIME_WAIT: 6103f31c649SGarrett Wollman if (!(time_status & (STA_INS | STA_DEL))) 6113f31c649SGarrett Wollman time_state = TIME_OK; 6123f31c649SGarrett Wollman } 6133f31c649SGarrett Wollman } 6143f31c649SGarrett Wollman CPU_CLOCKUPDATE(&time, &newtime); 6153f31c649SGarrett Wollman } 616df8bae1dSRodney W. Grimes 617df8bae1dSRodney W. Grimes /* 618df8bae1dSRodney W. Grimes * Process callouts at a very low cpu priority, so we don't keep the 619df8bae1dSRodney W. Grimes * relatively high clock interrupt priority any longer than necessary. 620df8bae1dSRodney W. Grimes */ 621df8bae1dSRodney W. Grimes if (needsoft) { 622df8bae1dSRodney W. Grimes if (CLKF_BASEPRI(frame)) { 623df8bae1dSRodney W. Grimes /* 624df8bae1dSRodney W. Grimes * Save the overhead of a software interrupt; 625df8bae1dSRodney W. Grimes * it will happen as soon as we return, so do it now. 626df8bae1dSRodney W. Grimes */ 627df8bae1dSRodney W. Grimes (void)splsoftclock(); 628df8bae1dSRodney W. Grimes softclock(); 629df8bae1dSRodney W. Grimes } else 630df8bae1dSRodney W. Grimes setsoftclock(); 631df8bae1dSRodney W. Grimes } 632df8bae1dSRodney W. Grimes } 633df8bae1dSRodney W. Grimes 634df8bae1dSRodney W. Grimes /* 635df8bae1dSRodney W. Grimes * Software (low priority) clock interrupt. 636df8bae1dSRodney W. Grimes * Run periodic events from timeout queue. 637df8bae1dSRodney W. Grimes */ 638df8bae1dSRodney W. Grimes /*ARGSUSED*/ 639df8bae1dSRodney W. Grimes void 640df8bae1dSRodney W. Grimes softclock() 641df8bae1dSRodney W. Grimes { 642df8bae1dSRodney W. Grimes register struct callout *c; 643df8bae1dSRodney W. Grimes register void *arg; 644df8bae1dSRodney W. Grimes register void (*func) __P((void *)); 645df8bae1dSRodney W. Grimes register int s; 646df8bae1dSRodney W. Grimes 647df8bae1dSRodney W. Grimes s = splhigh(); 648df8bae1dSRodney W. Grimes while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 649df8bae1dSRodney W. Grimes func = c->c_func; 650df8bae1dSRodney W. Grimes arg = c->c_arg; 651df8bae1dSRodney W. Grimes calltodo.c_next = c->c_next; 652df8bae1dSRodney W. Grimes c->c_next = callfree; 653df8bae1dSRodney W. Grimes callfree = c; 654df8bae1dSRodney W. Grimes splx(s); 655df8bae1dSRodney W. Grimes (*func)(arg); 656df8bae1dSRodney W. Grimes (void) splhigh(); 657df8bae1dSRodney W. Grimes } 658df8bae1dSRodney W. Grimes splx(s); 659df8bae1dSRodney W. Grimes } 660df8bae1dSRodney W. Grimes 661df8bae1dSRodney W. Grimes /* 662df8bae1dSRodney W. Grimes * timeout -- 663df8bae1dSRodney W. Grimes * Execute a function after a specified length of time. 664df8bae1dSRodney W. Grimes * 665df8bae1dSRodney W. Grimes * untimeout -- 666df8bae1dSRodney W. Grimes * Cancel previous timeout function call. 667df8bae1dSRodney W. Grimes * 668df8bae1dSRodney W. Grimes * See AT&T BCI Driver Reference Manual for specification. This 669df8bae1dSRodney W. Grimes * implementation differs from that one in that no identification 670df8bae1dSRodney W. Grimes * value is returned from timeout, rather, the original arguments 671df8bae1dSRodney W. Grimes * to timeout are used to identify entries for untimeout. 672df8bae1dSRodney W. Grimes */ 673df8bae1dSRodney W. Grimes void 674df8bae1dSRodney W. Grimes timeout(ftn, arg, ticks) 675f23b4c91SGarrett Wollman timeout_t ftn; 676df8bae1dSRodney W. Grimes void *arg; 677df8bae1dSRodney W. Grimes register int ticks; 678df8bae1dSRodney W. Grimes { 679df8bae1dSRodney W. Grimes register struct callout *new, *p, *t; 680df8bae1dSRodney W. Grimes register int s; 681df8bae1dSRodney W. Grimes 682df8bae1dSRodney W. Grimes if (ticks <= 0) 683df8bae1dSRodney W. Grimes ticks = 1; 684df8bae1dSRodney W. Grimes 685df8bae1dSRodney W. Grimes /* Lock out the clock. */ 686df8bae1dSRodney W. Grimes s = splhigh(); 687df8bae1dSRodney W. Grimes 688df8bae1dSRodney W. Grimes /* Fill in the next free callout structure. */ 689df8bae1dSRodney W. Grimes if (callfree == NULL) 690df8bae1dSRodney W. Grimes panic("timeout table full"); 691df8bae1dSRodney W. Grimes new = callfree; 692df8bae1dSRodney W. Grimes callfree = new->c_next; 693df8bae1dSRodney W. Grimes new->c_arg = arg; 694df8bae1dSRodney W. Grimes new->c_func = ftn; 695df8bae1dSRodney W. Grimes 696df8bae1dSRodney W. Grimes /* 697df8bae1dSRodney W. Grimes * The time for each event is stored as a difference from the time 698df8bae1dSRodney W. Grimes * of the previous event on the queue. Walk the queue, correcting 699df8bae1dSRodney W. Grimes * the ticks argument for queue entries passed. Correct the ticks 700df8bae1dSRodney W. Grimes * value for the queue entry immediately after the insertion point 701df8bae1dSRodney W. Grimes * as well. Watch out for negative c_time values; these represent 702df8bae1dSRodney W. Grimes * overdue events. 703df8bae1dSRodney W. Grimes */ 704df8bae1dSRodney W. Grimes for (p = &calltodo; 705df8bae1dSRodney W. Grimes (t = p->c_next) != NULL && ticks > t->c_time; p = t) 706df8bae1dSRodney W. Grimes if (t->c_time > 0) 707df8bae1dSRodney W. Grimes ticks -= t->c_time; 708df8bae1dSRodney W. Grimes new->c_time = ticks; 709df8bae1dSRodney W. Grimes if (t != NULL) 710df8bae1dSRodney W. Grimes t->c_time -= ticks; 711df8bae1dSRodney W. Grimes 712df8bae1dSRodney W. Grimes /* Insert the new entry into the queue. */ 713df8bae1dSRodney W. Grimes p->c_next = new; 714df8bae1dSRodney W. Grimes new->c_next = t; 715df8bae1dSRodney W. Grimes splx(s); 716df8bae1dSRodney W. Grimes } 717df8bae1dSRodney W. Grimes 718df8bae1dSRodney W. Grimes void 719df8bae1dSRodney W. Grimes untimeout(ftn, arg) 720f23b4c91SGarrett Wollman timeout_t ftn; 721df8bae1dSRodney W. Grimes void *arg; 722df8bae1dSRodney W. Grimes { 723df8bae1dSRodney W. Grimes register struct callout *p, *t; 724df8bae1dSRodney W. Grimes register int s; 725df8bae1dSRodney W. Grimes 726df8bae1dSRodney W. Grimes s = splhigh(); 727df8bae1dSRodney W. Grimes for (p = &calltodo; (t = p->c_next) != NULL; p = t) 728df8bae1dSRodney W. Grimes if (t->c_func == ftn && t->c_arg == arg) { 729df8bae1dSRodney W. Grimes /* Increment next entry's tick count. */ 730df8bae1dSRodney W. Grimes if (t->c_next && t->c_time > 0) 731df8bae1dSRodney W. Grimes t->c_next->c_time += t->c_time; 732df8bae1dSRodney W. Grimes 733df8bae1dSRodney W. Grimes /* Move entry from callout queue to callfree queue. */ 734df8bae1dSRodney W. Grimes p->c_next = t->c_next; 735df8bae1dSRodney W. Grimes t->c_next = callfree; 736df8bae1dSRodney W. Grimes callfree = t; 737df8bae1dSRodney W. Grimes break; 738df8bae1dSRodney W. Grimes } 739df8bae1dSRodney W. Grimes splx(s); 740df8bae1dSRodney W. Grimes } 741df8bae1dSRodney W. Grimes 742df8bae1dSRodney W. Grimes /* 743df8bae1dSRodney W. Grimes * Compute number of hz until specified time. Used to 744df8bae1dSRodney W. Grimes * compute third argument to timeout() from an absolute time. 745df8bae1dSRodney W. Grimes */ 746df8bae1dSRodney W. Grimes int 747df8bae1dSRodney W. Grimes hzto(tv) 748df8bae1dSRodney W. Grimes struct timeval *tv; 749df8bae1dSRodney W. Grimes { 750df8bae1dSRodney W. Grimes register long ticks, sec; 751df8bae1dSRodney W. Grimes int s; 752df8bae1dSRodney W. Grimes 753df8bae1dSRodney W. Grimes /* 754df8bae1dSRodney W. Grimes * If number of milliseconds will fit in 32 bit arithmetic, 755df8bae1dSRodney W. Grimes * then compute number of milliseconds to time and scale to 756df8bae1dSRodney W. Grimes * ticks. Otherwise just compute number of hz in time, rounding 757df8bae1dSRodney W. Grimes * times greater than representible to maximum value. 758df8bae1dSRodney W. Grimes * 759df8bae1dSRodney W. Grimes * Delta times less than 25 days can be computed ``exactly''. 760df8bae1dSRodney W. Grimes * Maximum value for any timeout in 10ms ticks is 250 days. 761df8bae1dSRodney W. Grimes */ 762df8bae1dSRodney W. Grimes s = splhigh(); 763df8bae1dSRodney W. Grimes sec = tv->tv_sec - time.tv_sec; 764df8bae1dSRodney W. Grimes if (sec <= 0x7fffffff / 1000 - 1000) 765df8bae1dSRodney W. Grimes ticks = ((tv->tv_sec - time.tv_sec) * 1000 + 766df8bae1dSRodney W. Grimes (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000); 767df8bae1dSRodney W. Grimes else if (sec <= 0x7fffffff / hz) 768df8bae1dSRodney W. Grimes ticks = sec * hz; 769df8bae1dSRodney W. Grimes else 770df8bae1dSRodney W. Grimes ticks = 0x7fffffff; 771df8bae1dSRodney W. Grimes splx(s); 772df8bae1dSRodney W. Grimes return (ticks); 773df8bae1dSRodney W. Grimes } 774df8bae1dSRodney W. Grimes 775df8bae1dSRodney W. Grimes /* 776df8bae1dSRodney W. Grimes * Start profiling on a process. 777df8bae1dSRodney W. Grimes * 778df8bae1dSRodney W. Grimes * Kernel profiling passes proc0 which never exits and hence 779df8bae1dSRodney W. Grimes * keeps the profile clock running constantly. 780df8bae1dSRodney W. Grimes */ 781df8bae1dSRodney W. Grimes void 782df8bae1dSRodney W. Grimes startprofclock(p) 783df8bae1dSRodney W. Grimes register struct proc *p; 784df8bae1dSRodney W. Grimes { 785df8bae1dSRodney W. Grimes int s; 786df8bae1dSRodney W. Grimes 787df8bae1dSRodney W. Grimes if ((p->p_flag & P_PROFIL) == 0) { 788df8bae1dSRodney W. Grimes p->p_flag |= P_PROFIL; 789df8bae1dSRodney W. Grimes if (++profprocs == 1 && stathz != 0) { 790df8bae1dSRodney W. Grimes s = splstatclock(); 791df8bae1dSRodney W. Grimes psdiv = pscnt = psratio; 792df8bae1dSRodney W. Grimes setstatclockrate(profhz); 793df8bae1dSRodney W. Grimes splx(s); 794df8bae1dSRodney W. Grimes } 795df8bae1dSRodney W. Grimes } 796df8bae1dSRodney W. Grimes } 797df8bae1dSRodney W. Grimes 798df8bae1dSRodney W. Grimes /* 799df8bae1dSRodney W. Grimes * Stop profiling on a process. 800df8bae1dSRodney W. Grimes */ 801df8bae1dSRodney W. Grimes void 802df8bae1dSRodney W. Grimes stopprofclock(p) 803df8bae1dSRodney W. Grimes register struct proc *p; 804df8bae1dSRodney W. Grimes { 805df8bae1dSRodney W. Grimes int s; 806df8bae1dSRodney W. Grimes 807df8bae1dSRodney W. Grimes if (p->p_flag & P_PROFIL) { 808df8bae1dSRodney W. Grimes p->p_flag &= ~P_PROFIL; 809df8bae1dSRodney W. Grimes if (--profprocs == 0 && stathz != 0) { 810df8bae1dSRodney W. Grimes s = splstatclock(); 811df8bae1dSRodney W. Grimes psdiv = pscnt = 1; 812df8bae1dSRodney W. Grimes setstatclockrate(stathz); 813df8bae1dSRodney W. Grimes splx(s); 814df8bae1dSRodney W. Grimes } 815df8bae1dSRodney W. Grimes } 816df8bae1dSRodney W. Grimes } 817df8bae1dSRodney W. Grimes 818df8bae1dSRodney W. Grimes /* 819df8bae1dSRodney W. Grimes * Statistics clock. Grab profile sample, and if divider reaches 0, 820df8bae1dSRodney W. Grimes * do process and kernel statistics. 821df8bae1dSRodney W. Grimes */ 822df8bae1dSRodney W. Grimes void 823df8bae1dSRodney W. Grimes statclock(frame) 824df8bae1dSRodney W. Grimes register struct clockframe *frame; 825df8bae1dSRodney W. Grimes { 826df8bae1dSRodney W. Grimes #ifdef GPROF 827df8bae1dSRodney W. Grimes register struct gmonparam *g; 828df8bae1dSRodney W. Grimes #endif 8298a129caeSDavid Greenman register struct proc *p = curproc; 830df8bae1dSRodney W. Grimes register int i; 831df8bae1dSRodney W. Grimes 8328a129caeSDavid Greenman if (p) { 8338a129caeSDavid Greenman struct pstats *pstats; 8348a129caeSDavid Greenman struct rusage *ru; 8358a129caeSDavid Greenman struct vmspace *vm; 8368a129caeSDavid Greenman 8378a129caeSDavid Greenman /* bump the resource usage of integral space use */ 8388a129caeSDavid Greenman if ((pstats = p->p_stats) && (ru = &pstats->p_ru) && (vm = p->p_vmspace)) { 8398a129caeSDavid Greenman ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024; 8408a129caeSDavid Greenman ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024; 8418a129caeSDavid Greenman ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024; 8428a129caeSDavid Greenman if ((vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024) > 8438a129caeSDavid Greenman ru->ru_maxrss) { 8448a129caeSDavid Greenman ru->ru_maxrss = 8458a129caeSDavid Greenman vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024; 8468a129caeSDavid Greenman } 8478a129caeSDavid Greenman } 8488a129caeSDavid Greenman } 8498a129caeSDavid Greenman 850df8bae1dSRodney W. Grimes if (CLKF_USERMODE(frame)) { 851df8bae1dSRodney W. Grimes if (p->p_flag & P_PROFIL) 852df8bae1dSRodney W. Grimes addupc_intr(p, CLKF_PC(frame), 1); 853df8bae1dSRodney W. Grimes if (--pscnt > 0) 854df8bae1dSRodney W. Grimes return; 855df8bae1dSRodney W. Grimes /* 856df8bae1dSRodney W. Grimes * Came from user mode; CPU was in user state. 857df8bae1dSRodney W. Grimes * If this process is being profiled record the tick. 858df8bae1dSRodney W. Grimes */ 859df8bae1dSRodney W. Grimes p->p_uticks++; 860df8bae1dSRodney W. Grimes if (p->p_nice > NZERO) 861df8bae1dSRodney W. Grimes cp_time[CP_NICE]++; 862df8bae1dSRodney W. Grimes else 863df8bae1dSRodney W. Grimes cp_time[CP_USER]++; 864df8bae1dSRodney W. Grimes } else { 865df8bae1dSRodney W. Grimes #ifdef GPROF 866df8bae1dSRodney W. Grimes /* 867df8bae1dSRodney W. Grimes * Kernel statistics are just like addupc_intr, only easier. 868df8bae1dSRodney W. Grimes */ 869df8bae1dSRodney W. Grimes g = &_gmonparam; 870df8bae1dSRodney W. Grimes if (g->state == GMON_PROF_ON) { 871df8bae1dSRodney W. Grimes i = CLKF_PC(frame) - g->lowpc; 872df8bae1dSRodney W. Grimes if (i < g->textsize) { 873df8bae1dSRodney W. Grimes i /= HISTFRACTION * sizeof(*g->kcount); 874df8bae1dSRodney W. Grimes g->kcount[i]++; 875df8bae1dSRodney W. Grimes } 876df8bae1dSRodney W. Grimes } 877df8bae1dSRodney W. Grimes #endif 878df8bae1dSRodney W. Grimes if (--pscnt > 0) 879df8bae1dSRodney W. Grimes return; 880df8bae1dSRodney W. Grimes /* 881df8bae1dSRodney W. Grimes * Came from kernel mode, so we were: 882df8bae1dSRodney W. Grimes * - handling an interrupt, 883df8bae1dSRodney W. Grimes * - doing syscall or trap work on behalf of the current 884df8bae1dSRodney W. Grimes * user process, or 885df8bae1dSRodney W. Grimes * - spinning in the idle loop. 886df8bae1dSRodney W. Grimes * Whichever it is, charge the time as appropriate. 887df8bae1dSRodney W. Grimes * Note that we charge interrupts to the current process, 888df8bae1dSRodney W. Grimes * regardless of whether they are ``for'' that process, 889df8bae1dSRodney W. Grimes * so that we know how much of its real time was spent 890df8bae1dSRodney W. Grimes * in ``non-process'' (i.e., interrupt) work. 891df8bae1dSRodney W. Grimes */ 892df8bae1dSRodney W. Grimes if (CLKF_INTR(frame)) { 893df8bae1dSRodney W. Grimes if (p != NULL) 894df8bae1dSRodney W. Grimes p->p_iticks++; 895df8bae1dSRodney W. Grimes cp_time[CP_INTR]++; 896df8bae1dSRodney W. Grimes } else if (p != NULL) { 897df8bae1dSRodney W. Grimes p->p_sticks++; 898df8bae1dSRodney W. Grimes cp_time[CP_SYS]++; 899df8bae1dSRodney W. Grimes } else 900df8bae1dSRodney W. Grimes cp_time[CP_IDLE]++; 901df8bae1dSRodney W. Grimes } 902df8bae1dSRodney W. Grimes pscnt = psdiv; 903df8bae1dSRodney W. Grimes 904df8bae1dSRodney W. Grimes /* 905df8bae1dSRodney W. Grimes * We maintain statistics shown by user-level statistics 906df8bae1dSRodney W. Grimes * programs: the amount of time in each cpu state, and 907df8bae1dSRodney W. Grimes * the amount of time each of DK_NDRIVE ``drives'' is busy. 908df8bae1dSRodney W. Grimes * 909df8bae1dSRodney W. Grimes * XXX should either run linked list of drives, or (better) 910df8bae1dSRodney W. Grimes * grab timestamps in the start & done code. 911df8bae1dSRodney W. Grimes */ 912df8bae1dSRodney W. Grimes for (i = 0; i < DK_NDRIVE; i++) 913df8bae1dSRodney W. Grimes if (dk_busy & (1 << i)) 914df8bae1dSRodney W. Grimes dk_time[i]++; 915df8bae1dSRodney W. Grimes 916df8bae1dSRodney W. Grimes /* 917df8bae1dSRodney W. Grimes * We adjust the priority of the current process. The priority of 918df8bae1dSRodney W. Grimes * a process gets worse as it accumulates CPU time. The cpu usage 919df8bae1dSRodney W. Grimes * estimator (p_estcpu) is increased here. The formula for computing 920df8bae1dSRodney W. Grimes * priorities (in kern_synch.c) will compute a different value each 921df8bae1dSRodney W. Grimes * time p_estcpu increases by 4. The cpu usage estimator ramps up 922df8bae1dSRodney W. Grimes * quite quickly when the process is running (linearly), and decays 923df8bae1dSRodney W. Grimes * away exponentially, at a rate which is proportionally slower when 924df8bae1dSRodney W. Grimes * the system is busy. The basic principal is that the system will 925df8bae1dSRodney W. Grimes * 90% forget that the process used a lot of CPU time in 5 * loadav 926df8bae1dSRodney W. Grimes * seconds. This causes the system to favor processes which haven't 927df8bae1dSRodney W. Grimes * run much recently, and to round-robin among other processes. 928df8bae1dSRodney W. Grimes */ 929df8bae1dSRodney W. Grimes if (p != NULL) { 930df8bae1dSRodney W. Grimes p->p_cpticks++; 931df8bae1dSRodney W. Grimes if (++p->p_estcpu == 0) 932df8bae1dSRodney W. Grimes p->p_estcpu--; 933df8bae1dSRodney W. Grimes if ((p->p_estcpu & 3) == 0) { 934df8bae1dSRodney W. Grimes resetpriority(p); 935df8bae1dSRodney W. Grimes if (p->p_priority >= PUSER) 936df8bae1dSRodney W. Grimes p->p_priority = p->p_usrpri; 937df8bae1dSRodney W. Grimes } 938df8bae1dSRodney W. Grimes } 939df8bae1dSRodney W. Grimes } 940df8bae1dSRodney W. Grimes 941df8bae1dSRodney W. Grimes /* 942df8bae1dSRodney W. Grimes * Return information about system clocks. 943df8bae1dSRodney W. Grimes */ 94426f9a767SRodney W. Grimes int 945df8bae1dSRodney W. Grimes sysctl_clockrate(where, sizep) 946df8bae1dSRodney W. Grimes register char *where; 947df8bae1dSRodney W. Grimes size_t *sizep; 948df8bae1dSRodney W. Grimes { 949df8bae1dSRodney W. Grimes struct clockinfo clkinfo; 950df8bae1dSRodney W. Grimes 951df8bae1dSRodney W. Grimes /* 952df8bae1dSRodney W. Grimes * Construct clockinfo structure. 953df8bae1dSRodney W. Grimes */ 954df8bae1dSRodney W. Grimes clkinfo.hz = hz; 955df8bae1dSRodney W. Grimes clkinfo.tick = tick; 956df8bae1dSRodney W. Grimes clkinfo.profhz = profhz; 957df8bae1dSRodney W. Grimes clkinfo.stathz = stathz ? stathz : hz; 958df8bae1dSRodney W. Grimes return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 959df8bae1dSRodney W. Grimes } 9603f31c649SGarrett Wollman 9613f31c649SGarrett Wollman /*#ifdef PPS_SYNC*/ 9623f31c649SGarrett Wollman #if 0 9633f31c649SGarrett Wollman /* This code is completely bogus; if anybody ever wants to use it, get 9643f31c649SGarrett Wollman * the current version from Dave Mills. */ 9653f31c649SGarrett Wollman 9663f31c649SGarrett Wollman /* 9673f31c649SGarrett Wollman * hardpps() - discipline CPU clock oscillator to external pps signal 9683f31c649SGarrett Wollman * 9693f31c649SGarrett Wollman * This routine is called at each PPS interrupt in order to discipline 9703f31c649SGarrett Wollman * the CPU clock oscillator to the PPS signal. It integrates successive 9713f31c649SGarrett Wollman * phase differences between the two oscillators and calculates the 9723f31c649SGarrett Wollman * frequency offset. This is used in hardclock() to discipline the CPU 9733f31c649SGarrett Wollman * clock oscillator so that intrinsic frequency error is cancelled out. 9743f31c649SGarrett Wollman * The code requires the caller to capture the time and hardware 9753f31c649SGarrett Wollman * counter value at the designated PPS signal transition. 9763f31c649SGarrett Wollman */ 9773f31c649SGarrett Wollman void 9783f31c649SGarrett Wollman hardpps(tvp, usec) 9793f31c649SGarrett Wollman struct timeval *tvp; /* time at PPS */ 9803f31c649SGarrett Wollman long usec; /* hardware counter at PPS */ 9813f31c649SGarrett Wollman { 9823f31c649SGarrett Wollman long u_usec, v_usec, bigtick; 9833f31c649SGarrett Wollman long cal_sec, cal_usec; 9843f31c649SGarrett Wollman 9853f31c649SGarrett Wollman /* 9863f31c649SGarrett Wollman * During the calibration interval adjust the starting time when 9873f31c649SGarrett Wollman * the tick overflows. At the end of the interval compute the 9883f31c649SGarrett Wollman * duration of the interval and the difference of the hardware 9893f31c649SGarrett Wollman * counters at the beginning and end of the interval. This code 9903f31c649SGarrett Wollman * is deliciously complicated by the fact valid differences may 9913f31c649SGarrett Wollman * exceed the value of tick when using long calibration 9923f31c649SGarrett Wollman * intervals and small ticks. Note that the counter can be 9933f31c649SGarrett Wollman * greater than tick if caught at just the wrong instant, but 9943f31c649SGarrett Wollman * the values returned and used here are correct. 9953f31c649SGarrett Wollman */ 9963f31c649SGarrett Wollman bigtick = (long)tick << SHIFT_USEC; 9973f31c649SGarrett Wollman pps_usec -= ntp_pll.ybar; 9983f31c649SGarrett Wollman if (pps_usec >= bigtick) 9993f31c649SGarrett Wollman pps_usec -= bigtick; 10003f31c649SGarrett Wollman if (pps_usec < 0) 10013f31c649SGarrett Wollman pps_usec += bigtick; 10023f31c649SGarrett Wollman pps_time.tv_sec++; 10033f31c649SGarrett Wollman pps_count++; 10043f31c649SGarrett Wollman if (pps_count < (1 << pps_shift)) 10053f31c649SGarrett Wollman return; 10063f31c649SGarrett Wollman pps_count = 0; 10073f31c649SGarrett Wollman ntp_pll.calcnt++; 10083f31c649SGarrett Wollman u_usec = usec << SHIFT_USEC; 10093f31c649SGarrett Wollman v_usec = pps_usec - u_usec; 10103f31c649SGarrett Wollman if (v_usec >= bigtick >> 1) 10113f31c649SGarrett Wollman v_usec -= bigtick; 10123f31c649SGarrett Wollman if (v_usec < -(bigtick >> 1)) 10133f31c649SGarrett Wollman v_usec += bigtick; 10143f31c649SGarrett Wollman if (v_usec < 0) 10153f31c649SGarrett Wollman v_usec = -(-v_usec >> ntp_pll.shift); 10163f31c649SGarrett Wollman else 10173f31c649SGarrett Wollman v_usec = v_usec >> ntp_pll.shift; 10183f31c649SGarrett Wollman pps_usec = u_usec; 10193f31c649SGarrett Wollman cal_sec = tvp->tv_sec; 10203f31c649SGarrett Wollman cal_usec = tvp->tv_usec; 10213f31c649SGarrett Wollman cal_sec -= pps_time.tv_sec; 10223f31c649SGarrett Wollman cal_usec -= pps_time.tv_usec; 10233f31c649SGarrett Wollman if (cal_usec < 0) { 10243f31c649SGarrett Wollman cal_usec += 1000000; 10253f31c649SGarrett Wollman cal_sec--; 10263f31c649SGarrett Wollman } 10273f31c649SGarrett Wollman pps_time = *tvp; 10283f31c649SGarrett Wollman 10293f31c649SGarrett Wollman /* 10303f31c649SGarrett Wollman * Check for lost interrupts, noise, excessive jitter and 10313f31c649SGarrett Wollman * excessive frequency error. The number of timer ticks during 10323f31c649SGarrett Wollman * the interval may vary +-1 tick. Add to this a margin of one 10333f31c649SGarrett Wollman * tick for the PPS signal jitter and maximum frequency 10343f31c649SGarrett Wollman * deviation. If the limits are exceeded, the calibration 10353f31c649SGarrett Wollman * interval is reset to the minimum and we start over. 10363f31c649SGarrett Wollman */ 10373f31c649SGarrett Wollman u_usec = (long)tick << 1; 10383f31c649SGarrett Wollman if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 10393f31c649SGarrett Wollman || (cal_sec == 0 && cal_usec < u_usec)) 10403f31c649SGarrett Wollman || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) { 10413f31c649SGarrett Wollman ntp_pll.jitcnt++; 10423f31c649SGarrett Wollman ntp_pll.shift = NTP_PLL.SHIFT; 10433f31c649SGarrett Wollman pps_dispinc = PPS_DISPINC; 10443f31c649SGarrett Wollman ntp_pll.intcnt = 0; 10453f31c649SGarrett Wollman return; 10463f31c649SGarrett Wollman } 10473f31c649SGarrett Wollman 10483f31c649SGarrett Wollman /* 10493f31c649SGarrett Wollman * A three-stage median filter is used to help deglitch the pps 10503f31c649SGarrett Wollman * signal. The median sample becomes the offset estimate; the 10513f31c649SGarrett Wollman * difference between the other two samples becomes the 10523f31c649SGarrett Wollman * dispersion estimate. 10533f31c649SGarrett Wollman */ 10543f31c649SGarrett Wollman pps_mf[2] = pps_mf[1]; 10553f31c649SGarrett Wollman pps_mf[1] = pps_mf[0]; 10563f31c649SGarrett Wollman pps_mf[0] = v_usec; 10573f31c649SGarrett Wollman if (pps_mf[0] > pps_mf[1]) { 10583f31c649SGarrett Wollman if (pps_mf[1] > pps_mf[2]) { 10593f31c649SGarrett Wollman u_usec = pps_mf[1]; /* 0 1 2 */ 10603f31c649SGarrett Wollman v_usec = pps_mf[0] - pps_mf[2]; 10613f31c649SGarrett Wollman } else if (pps_mf[2] > pps_mf[0]) { 10623f31c649SGarrett Wollman u_usec = pps_mf[0]; /* 2 0 1 */ 10633f31c649SGarrett Wollman v_usec = pps_mf[2] - pps_mf[1]; 10643f31c649SGarrett Wollman } else { 10653f31c649SGarrett Wollman u_usec = pps_mf[2]; /* 0 2 1 */ 10663f31c649SGarrett Wollman v_usec = pps_mf[0] - pps_mf[1]; 10673f31c649SGarrett Wollman } 10683f31c649SGarrett Wollman } else { 10693f31c649SGarrett Wollman if (pps_mf[1] < pps_mf[2]) { 10703f31c649SGarrett Wollman u_usec = pps_mf[1]; /* 2 1 0 */ 10713f31c649SGarrett Wollman v_usec = pps_mf[2] - pps_mf[0]; 10723f31c649SGarrett Wollman } else if (pps_mf[2] < pps_mf[0]) { 10733f31c649SGarrett Wollman u_usec = pps_mf[0]; /* 1 0 2 */ 10743f31c649SGarrett Wollman v_usec = pps_mf[1] - pps_mf[2]; 10753f31c649SGarrett Wollman } else { 10763f31c649SGarrett Wollman u_usec = pps_mf[2]; /* 1 2 0 */ 10773f31c649SGarrett Wollman v_usec = pps_mf[1] - pps_mf[0]; 10783f31c649SGarrett Wollman } 10793f31c649SGarrett Wollman } 10803f31c649SGarrett Wollman 10813f31c649SGarrett Wollman /* 10823f31c649SGarrett Wollman * Here the dispersion average is updated. If it is less than 10833f31c649SGarrett Wollman * the threshold pps_dispmax, the frequency average is updated 10843f31c649SGarrett Wollman * as well, but clamped to the tolerance. 10853f31c649SGarrett Wollman */ 10863f31c649SGarrett Wollman v_usec = (v_usec >> 1) - ntp_pll.disp; 10873f31c649SGarrett Wollman if (v_usec < 0) 10883f31c649SGarrett Wollman ntp_pll.disp -= -v_usec >> PPS_AVG; 10893f31c649SGarrett Wollman else 10903f31c649SGarrett Wollman ntp_pll.disp += v_usec >> PPS_AVG; 10913f31c649SGarrett Wollman if (ntp_pll.disp > pps_dispmax) { 10923f31c649SGarrett Wollman ntp_pll.discnt++; 10933f31c649SGarrett Wollman return; 10943f31c649SGarrett Wollman } 10953f31c649SGarrett Wollman if (u_usec < 0) { 10963f31c649SGarrett Wollman ntp_pll.ybar -= -u_usec >> PPS_AVG; 10973f31c649SGarrett Wollman if (ntp_pll.ybar < -ntp_pll.tolerance) 10983f31c649SGarrett Wollman ntp_pll.ybar = -ntp_pll.tolerance; 10993f31c649SGarrett Wollman u_usec = -u_usec; 11003f31c649SGarrett Wollman } else { 11013f31c649SGarrett Wollman ntp_pll.ybar += u_usec >> PPS_AVG; 11023f31c649SGarrett Wollman if (ntp_pll.ybar > ntp_pll.tolerance) 11033f31c649SGarrett Wollman ntp_pll.ybar = ntp_pll.tolerance; 11043f31c649SGarrett Wollman } 11053f31c649SGarrett Wollman 11063f31c649SGarrett Wollman /* 11073f31c649SGarrett Wollman * Here the calibration interval is adjusted. If the maximum 11083f31c649SGarrett Wollman * time difference is greater than tick/4, reduce the interval 11093f31c649SGarrett Wollman * by half. If this is not the case for four consecutive 11103f31c649SGarrett Wollman * intervals, double the interval. 11113f31c649SGarrett Wollman */ 11123f31c649SGarrett Wollman if (u_usec << ntp_pll.shift > bigtick >> 2) { 11133f31c649SGarrett Wollman ntp_pll.intcnt = 0; 11143f31c649SGarrett Wollman if (ntp_pll.shift > NTP_PLL.SHIFT) { 11153f31c649SGarrett Wollman ntp_pll.shift--; 11163f31c649SGarrett Wollman pps_dispinc <<= 1; 11173f31c649SGarrett Wollman } 11183f31c649SGarrett Wollman } else if (ntp_pll.intcnt >= 4) { 11193f31c649SGarrett Wollman ntp_pll.intcnt = 0; 11203f31c649SGarrett Wollman if (ntp_pll.shift < NTP_PLL.SHIFTMAX) { 11213f31c649SGarrett Wollman ntp_pll.shift++; 11223f31c649SGarrett Wollman pps_dispinc >>= 1; 11233f31c649SGarrett Wollman } 11243f31c649SGarrett Wollman } else 11253f31c649SGarrett Wollman ntp_pll.intcnt++; 11263f31c649SGarrett Wollman } 11273f31c649SGarrett Wollman #endif /* PPS_SYNC */ 1128