xref: /freebsd/sys/kern/kern_alq.c (revision f6a3b357e9be4c6423c85eff9a847163a0d307c8)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
5  * Copyright (c) 2008-2009, Lawrence Stewart <lstewart@freebsd.org>
6  * Copyright (c) 2009-2010, The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed at the Centre for Advanced
10  * Internet Architectures, Swinburne University of Technology, Melbourne,
11  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice unmodified, this list of conditions, and the following
18  *    disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_mac.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/mount.h>
46 #include <sys/mutex.h>
47 #include <sys/namei.h>
48 #include <sys/proc.h>
49 #include <sys/vnode.h>
50 #include <sys/alq.h>
51 #include <sys/malloc.h>
52 #include <sys/unistd.h>
53 #include <sys/fcntl.h>
54 #include <sys/eventhandler.h>
55 
56 #include <security/mac/mac_framework.h>
57 
58 /* Async. Logging Queue */
59 struct alq {
60 	char	*aq_entbuf;		/* Buffer for stored entries */
61 	int	aq_entmax;		/* Max entries */
62 	int	aq_entlen;		/* Entry length */
63 	int	aq_freebytes;		/* Bytes available in buffer */
64 	int	aq_buflen;		/* Total length of our buffer */
65 	int	aq_writehead;		/* Location for next write */
66 	int	aq_writetail;		/* Flush starts at this location */
67 	int	aq_wrapearly;		/* # bytes left blank at end of buf */
68 	int	aq_flags;		/* Queue flags */
69 	int	aq_waiters;		/* Num threads waiting for resources
70 					 * NB: Used as a wait channel so must
71 					 * not be first field in the alq struct
72 					 */
73 	struct	ale	aq_getpost;	/* ALE for use by get/post */
74 	struct mtx	aq_mtx;		/* Queue lock */
75 	struct vnode	*aq_vp;		/* Open vnode handle */
76 	struct ucred	*aq_cred;	/* Credentials of the opening thread */
77 	LIST_ENTRY(alq)	aq_act;		/* List of active queues */
78 	LIST_ENTRY(alq)	aq_link;	/* List of all queues */
79 };
80 
81 #define	AQ_WANTED	0x0001		/* Wakeup sleeper when io is done */
82 #define	AQ_ACTIVE	0x0002		/* on the active list */
83 #define	AQ_FLUSHING	0x0004		/* doing IO */
84 #define	AQ_SHUTDOWN	0x0008		/* Queue no longer valid */
85 #define	AQ_ORDERED	0x0010		/* Queue enforces ordered writes */
86 #define	AQ_LEGACY	0x0020		/* Legacy queue (fixed length writes) */
87 
88 #define	ALQ_LOCK(alq)	mtx_lock_spin(&(alq)->aq_mtx)
89 #define	ALQ_UNLOCK(alq)	mtx_unlock_spin(&(alq)->aq_mtx)
90 
91 #define HAS_PENDING_DATA(alq) ((alq)->aq_freebytes != (alq)->aq_buflen)
92 
93 static MALLOC_DEFINE(M_ALD, "ALD", "ALD");
94 
95 /*
96  * The ald_mtx protects the ald_queues list and the ald_active list.
97  */
98 static struct mtx ald_mtx;
99 static LIST_HEAD(, alq) ald_queues;
100 static LIST_HEAD(, alq) ald_active;
101 static int ald_shutingdown = 0;
102 struct thread *ald_thread;
103 static struct proc *ald_proc;
104 static eventhandler_tag alq_eventhandler_tag = NULL;
105 
106 #define	ALD_LOCK()	mtx_lock(&ald_mtx)
107 #define	ALD_UNLOCK()	mtx_unlock(&ald_mtx)
108 
109 /* Daemon functions */
110 static int ald_add(struct alq *);
111 static int ald_rem(struct alq *);
112 static void ald_startup(void *);
113 static void ald_daemon(void);
114 static void ald_shutdown(void *, int);
115 static void ald_activate(struct alq *);
116 static void ald_deactivate(struct alq *);
117 
118 /* Internal queue functions */
119 static void alq_shutdown(struct alq *);
120 static void alq_destroy(struct alq *);
121 static int alq_doio(struct alq *);
122 
123 
124 /*
125  * Add a new queue to the global list.  Fail if we're shutting down.
126  */
127 static int
128 ald_add(struct alq *alq)
129 {
130 	int error;
131 
132 	error = 0;
133 
134 	ALD_LOCK();
135 	if (ald_shutingdown) {
136 		error = EBUSY;
137 		goto done;
138 	}
139 	LIST_INSERT_HEAD(&ald_queues, alq, aq_link);
140 done:
141 	ALD_UNLOCK();
142 	return (error);
143 }
144 
145 /*
146  * Remove a queue from the global list unless we're shutting down.  If so,
147  * the ald will take care of cleaning up it's resources.
148  */
149 static int
150 ald_rem(struct alq *alq)
151 {
152 	int error;
153 
154 	error = 0;
155 
156 	ALD_LOCK();
157 	if (ald_shutingdown) {
158 		error = EBUSY;
159 		goto done;
160 	}
161 	LIST_REMOVE(alq, aq_link);
162 done:
163 	ALD_UNLOCK();
164 	return (error);
165 }
166 
167 /*
168  * Put a queue on the active list.  This will schedule it for writing.
169  */
170 static void
171 ald_activate(struct alq *alq)
172 {
173 	LIST_INSERT_HEAD(&ald_active, alq, aq_act);
174 	wakeup(&ald_active);
175 }
176 
177 static void
178 ald_deactivate(struct alq *alq)
179 {
180 	LIST_REMOVE(alq, aq_act);
181 	alq->aq_flags &= ~AQ_ACTIVE;
182 }
183 
184 static void
185 ald_startup(void *unused)
186 {
187 	mtx_init(&ald_mtx, "ALDmtx", NULL, MTX_DEF|MTX_QUIET);
188 	LIST_INIT(&ald_queues);
189 	LIST_INIT(&ald_active);
190 }
191 
192 static void
193 ald_daemon(void)
194 {
195 	int needwakeup;
196 	struct alq *alq;
197 
198 	ald_thread = FIRST_THREAD_IN_PROC(ald_proc);
199 
200 	alq_eventhandler_tag = EVENTHANDLER_REGISTER(shutdown_pre_sync,
201 	    ald_shutdown, NULL, SHUTDOWN_PRI_FIRST);
202 
203 	ALD_LOCK();
204 
205 	for (;;) {
206 		while ((alq = LIST_FIRST(&ald_active)) == NULL &&
207 		    !ald_shutingdown)
208 			mtx_sleep(&ald_active, &ald_mtx, PWAIT, "aldslp", 0);
209 
210 		/* Don't shutdown until all active ALQs are flushed. */
211 		if (ald_shutingdown && alq == NULL) {
212 			ALD_UNLOCK();
213 			break;
214 		}
215 
216 		ALQ_LOCK(alq);
217 		ald_deactivate(alq);
218 		ALD_UNLOCK();
219 		needwakeup = alq_doio(alq);
220 		ALQ_UNLOCK(alq);
221 		if (needwakeup)
222 			wakeup_one(alq);
223 		ALD_LOCK();
224 	}
225 
226 	kproc_exit(0);
227 }
228 
229 static void
230 ald_shutdown(void *arg, int howto)
231 {
232 	struct alq *alq;
233 
234 	ALD_LOCK();
235 
236 	/* Ensure no new queues can be created. */
237 	ald_shutingdown = 1;
238 
239 	/* Shutdown all ALQs prior to terminating the ald_daemon. */
240 	while ((alq = LIST_FIRST(&ald_queues)) != NULL) {
241 		LIST_REMOVE(alq, aq_link);
242 		ALD_UNLOCK();
243 		alq_shutdown(alq);
244 		ALD_LOCK();
245 	}
246 
247 	/* At this point, all ALQs are flushed and shutdown. */
248 
249 	/*
250 	 * Wake ald_daemon so that it exits. It won't be able to do
251 	 * anything until we mtx_sleep because we hold the ald_mtx.
252 	 */
253 	wakeup(&ald_active);
254 
255 	/* Wait for ald_daemon to exit. */
256 	mtx_sleep(ald_proc, &ald_mtx, PWAIT, "aldslp", 0);
257 
258 	ALD_UNLOCK();
259 }
260 
261 static void
262 alq_shutdown(struct alq *alq)
263 {
264 	ALQ_LOCK(alq);
265 
266 	/* Stop any new writers. */
267 	alq->aq_flags |= AQ_SHUTDOWN;
268 
269 	/*
270 	 * If the ALQ isn't active but has unwritten data (possible if
271 	 * the ALQ_NOACTIVATE flag has been used), explicitly activate the
272 	 * ALQ here so that the pending data gets flushed by the ald_daemon.
273 	 */
274 	if (!(alq->aq_flags & AQ_ACTIVE) && HAS_PENDING_DATA(alq)) {
275 		alq->aq_flags |= AQ_ACTIVE;
276 		ALQ_UNLOCK(alq);
277 		ALD_LOCK();
278 		ald_activate(alq);
279 		ALD_UNLOCK();
280 		ALQ_LOCK(alq);
281 	}
282 
283 	/* Drain IO */
284 	while (alq->aq_flags & AQ_ACTIVE) {
285 		alq->aq_flags |= AQ_WANTED;
286 		msleep_spin(alq, &alq->aq_mtx, "aldclose", 0);
287 	}
288 	ALQ_UNLOCK(alq);
289 
290 	vn_close(alq->aq_vp, FWRITE, alq->aq_cred,
291 	    curthread);
292 	crfree(alq->aq_cred);
293 }
294 
295 void
296 alq_destroy(struct alq *alq)
297 {
298 	/* Drain all pending IO. */
299 	alq_shutdown(alq);
300 
301 	mtx_destroy(&alq->aq_mtx);
302 	free(alq->aq_entbuf, M_ALD);
303 	free(alq, M_ALD);
304 }
305 
306 /*
307  * Flush all pending data to disk.  This operation will block.
308  */
309 static int
310 alq_doio(struct alq *alq)
311 {
312 	struct thread *td;
313 	struct mount *mp;
314 	struct vnode *vp;
315 	struct uio auio;
316 	struct iovec aiov[2];
317 	int totlen;
318 	int iov;
319 	int wrapearly;
320 
321 	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
322 
323 	vp = alq->aq_vp;
324 	td = curthread;
325 	totlen = 0;
326 	iov = 1;
327 	wrapearly = alq->aq_wrapearly;
328 
329 	bzero(&aiov, sizeof(aiov));
330 	bzero(&auio, sizeof(auio));
331 
332 	/* Start the write from the location of our buffer tail pointer. */
333 	aiov[0].iov_base = alq->aq_entbuf + alq->aq_writetail;
334 
335 	if (alq->aq_writetail < alq->aq_writehead) {
336 		/* Buffer not wrapped. */
337 		totlen = aiov[0].iov_len = alq->aq_writehead - alq->aq_writetail;
338 	} else if (alq->aq_writehead == 0) {
339 		/* Buffer not wrapped (special case to avoid an empty iov). */
340 		totlen = aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
341 		    wrapearly;
342 	} else {
343 		/*
344 		 * Buffer wrapped, requires 2 aiov entries:
345 		 * - first is from writetail to end of buffer
346 		 * - second is from start of buffer to writehead
347 		 */
348 		aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
349 		    wrapearly;
350 		iov++;
351 		aiov[1].iov_base = alq->aq_entbuf;
352 		aiov[1].iov_len =  alq->aq_writehead;
353 		totlen = aiov[0].iov_len + aiov[1].iov_len;
354 	}
355 
356 	alq->aq_flags |= AQ_FLUSHING;
357 	ALQ_UNLOCK(alq);
358 
359 	auio.uio_iov = &aiov[0];
360 	auio.uio_offset = 0;
361 	auio.uio_segflg = UIO_SYSSPACE;
362 	auio.uio_rw = UIO_WRITE;
363 	auio.uio_iovcnt = iov;
364 	auio.uio_resid = totlen;
365 	auio.uio_td = td;
366 
367 	/*
368 	 * Do all of the junk required to write now.
369 	 */
370 	vn_start_write(vp, &mp, V_WAIT);
371 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
372 	/*
373 	 * XXX: VOP_WRITE error checks are ignored.
374 	 */
375 #ifdef MAC
376 	if (mac_vnode_check_write(alq->aq_cred, NOCRED, vp) == 0)
377 #endif
378 		VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, alq->aq_cred);
379 	VOP_UNLOCK(vp, 0);
380 	vn_finished_write(mp);
381 
382 	ALQ_LOCK(alq);
383 	alq->aq_flags &= ~AQ_FLUSHING;
384 
385 	/* Adjust writetail as required, taking into account wrapping. */
386 	alq->aq_writetail = (alq->aq_writetail + totlen + wrapearly) %
387 	    alq->aq_buflen;
388 	alq->aq_freebytes += totlen + wrapearly;
389 
390 	/*
391 	 * If we just flushed part of the buffer which wrapped, reset the
392 	 * wrapearly indicator.
393 	 */
394 	if (wrapearly)
395 		alq->aq_wrapearly = 0;
396 
397 	/*
398 	 * If we just flushed the buffer completely, reset indexes to 0 to
399 	 * minimise buffer wraps.
400 	 * This is also required to ensure alq_getn() can't wedge itself.
401 	 */
402 	if (!HAS_PENDING_DATA(alq))
403 		alq->aq_writehead = alq->aq_writetail = 0;
404 
405 	KASSERT((alq->aq_writetail >= 0 && alq->aq_writetail < alq->aq_buflen),
406 	    ("%s: aq_writetail < 0 || aq_writetail >= aq_buflen", __func__));
407 
408 	if (alq->aq_flags & AQ_WANTED) {
409 		alq->aq_flags &= ~AQ_WANTED;
410 		return (1);
411 	}
412 
413 	return(0);
414 }
415 
416 static struct kproc_desc ald_kp = {
417         "ALQ Daemon",
418         ald_daemon,
419         &ald_proc
420 };
421 
422 SYSINIT(aldthread, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &ald_kp);
423 SYSINIT(ald, SI_SUB_LOCK, SI_ORDER_ANY, ald_startup, NULL);
424 
425 
426 /* User visible queue functions */
427 
428 /*
429  * Create the queue data structure, allocate the buffer, and open the file.
430  */
431 
432 int
433 alq_open_flags(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
434     int size, int flags)
435 {
436 	struct thread *td;
437 	struct nameidata nd;
438 	struct alq *alq;
439 	int oflags;
440 	int error;
441 
442 	KASSERT((size > 0), ("%s: size <= 0", __func__));
443 
444 	*alqp = NULL;
445 	td = curthread;
446 
447 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, file, td);
448 	oflags = FWRITE | O_NOFOLLOW | O_CREAT;
449 
450 	error = vn_open_cred(&nd, &oflags, cmode, 0, cred, NULL);
451 	if (error)
452 		return (error);
453 
454 	NDFREE(&nd, NDF_ONLY_PNBUF);
455 	/* We just unlock so we hold a reference */
456 	VOP_UNLOCK(nd.ni_vp, 0);
457 
458 	alq = malloc(sizeof(*alq), M_ALD, M_WAITOK|M_ZERO);
459 	alq->aq_vp = nd.ni_vp;
460 	alq->aq_cred = crhold(cred);
461 
462 	mtx_init(&alq->aq_mtx, "ALD Queue", NULL, MTX_SPIN|MTX_QUIET);
463 
464 	alq->aq_buflen = size;
465 	alq->aq_entmax = 0;
466 	alq->aq_entlen = 0;
467 
468 	alq->aq_freebytes = alq->aq_buflen;
469 	alq->aq_entbuf = malloc(alq->aq_buflen, M_ALD, M_WAITOK|M_ZERO);
470 	alq->aq_writehead = alq->aq_writetail = 0;
471 	if (flags & ALQ_ORDERED)
472 		alq->aq_flags |= AQ_ORDERED;
473 
474 	if ((error = ald_add(alq)) != 0) {
475 		alq_destroy(alq);
476 		return (error);
477 	}
478 
479 	*alqp = alq;
480 
481 	return (0);
482 }
483 
484 int
485 alq_open(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
486     int size, int count)
487 {
488 	int ret;
489 
490 	KASSERT((count >= 0), ("%s: count < 0", __func__));
491 
492 	if (count > 0) {
493 		if ((ret = alq_open_flags(alqp, file, cred, cmode,
494 		    size*count, 0)) == 0) {
495 			(*alqp)->aq_flags |= AQ_LEGACY;
496 			(*alqp)->aq_entmax = count;
497 			(*alqp)->aq_entlen = size;
498 		}
499 	} else
500 		ret = alq_open_flags(alqp, file, cred, cmode, size, 0);
501 
502 	return (ret);
503 }
504 
505 
506 /*
507  * Copy a new entry into the queue.  If the operation would block either
508  * wait or return an error depending on the value of waitok.
509  */
510 int
511 alq_writen(struct alq *alq, void *data, int len, int flags)
512 {
513 	int activate, copy, ret;
514 	void *waitchan;
515 
516 	KASSERT((len > 0 && len <= alq->aq_buflen),
517 	    ("%s: len <= 0 || len > aq_buflen", __func__));
518 
519 	activate = ret = 0;
520 	copy = len;
521 	waitchan = NULL;
522 
523 	ALQ_LOCK(alq);
524 
525 	/*
526 	 * Fail to perform the write and return EWOULDBLOCK if:
527 	 * - The message is larger than our underlying buffer.
528 	 * - The ALQ is being shutdown.
529 	 * - There is insufficient free space in our underlying buffer
530 	 *   to accept the message and the user can't wait for space.
531 	 * - There is insufficient free space in our underlying buffer
532 	 *   to accept the message and the alq is inactive due to prior
533 	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
534 	 */
535 	if (len > alq->aq_buflen ||
536 	    alq->aq_flags & AQ_SHUTDOWN ||
537 	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
538 	    HAS_PENDING_DATA(alq))) && alq->aq_freebytes < len)) {
539 		ALQ_UNLOCK(alq);
540 		return (EWOULDBLOCK);
541 	}
542 
543 	/*
544 	 * If we want ordered writes and there is already at least one thread
545 	 * waiting for resources to become available, sleep until we're woken.
546 	 */
547 	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
548 		KASSERT(!(flags & ALQ_NOWAIT),
549 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
550 		alq->aq_waiters++;
551 		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqwnord", 0);
552 		alq->aq_waiters--;
553 	}
554 
555 	/*
556 	 * (ALQ_WAITOK && aq_freebytes < len) or aq_freebytes >= len, either
557 	 * enter while loop and sleep until we have enough free bytes (former)
558 	 * or skip (latter). If AQ_ORDERED is set, only 1 thread at a time will
559 	 * be in this loop. Otherwise, multiple threads may be sleeping here
560 	 * competing for ALQ resources.
561 	 */
562 	while (alq->aq_freebytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
563 		KASSERT(!(flags & ALQ_NOWAIT),
564 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
565 		alq->aq_flags |= AQ_WANTED;
566 		alq->aq_waiters++;
567 		if (waitchan)
568 			wakeup(waitchan);
569 		msleep_spin(alq, &alq->aq_mtx, "alqwnres", 0);
570 		alq->aq_waiters--;
571 
572 		/*
573 		 * If we're the first thread to wake after an AQ_WANTED wakeup
574 		 * but there isn't enough free space for us, we're going to loop
575 		 * and sleep again. If there are other threads waiting in this
576 		 * loop, schedule a wakeup so that they can see if the space
577 		 * they require is available.
578 		 */
579 		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
580 		    alq->aq_freebytes < len && !(alq->aq_flags & AQ_WANTED))
581 			waitchan = alq;
582 		else
583 			waitchan = NULL;
584 	}
585 
586 	/*
587 	 * If there are waiters, we need to signal the waiting threads after we
588 	 * complete our work. The alq ptr is used as a wait channel for threads
589 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
590 	 * are not allowed to concurrently compete for resources in the above
591 	 * while loop, so we use a different wait channel in this case.
592 	 */
593 	if (alq->aq_waiters > 0) {
594 		if (alq->aq_flags & AQ_ORDERED)
595 			waitchan = &alq->aq_waiters;
596 		else
597 			waitchan = alq;
598 	} else
599 		waitchan = NULL;
600 
601 	/* Bail if we're shutting down. */
602 	if (alq->aq_flags & AQ_SHUTDOWN) {
603 		ret = EWOULDBLOCK;
604 		goto unlock;
605 	}
606 
607 	/*
608 	 * If we need to wrap the buffer to accommodate the write,
609 	 * we'll need 2 calls to bcopy.
610 	 */
611 	if ((alq->aq_buflen - alq->aq_writehead) < len)
612 		copy = alq->aq_buflen - alq->aq_writehead;
613 
614 	/* Copy message (or part thereof if wrap required) to the buffer. */
615 	bcopy(data, alq->aq_entbuf + alq->aq_writehead, copy);
616 	alq->aq_writehead += copy;
617 
618 	if (alq->aq_writehead >= alq->aq_buflen) {
619 		KASSERT((alq->aq_writehead == alq->aq_buflen),
620 		    ("%s: alq->aq_writehead (%d) > alq->aq_buflen (%d)",
621 		    __func__,
622 		    alq->aq_writehead,
623 		    alq->aq_buflen));
624 		alq->aq_writehead = 0;
625 	}
626 
627 	if (copy != len) {
628 		/*
629 		 * Wrap the buffer by copying the remainder of our message
630 		 * to the start of the buffer and resetting aq_writehead.
631 		 */
632 		bcopy(((uint8_t *)data)+copy, alq->aq_entbuf, len - copy);
633 		alq->aq_writehead = len - copy;
634 	}
635 
636 	KASSERT((alq->aq_writehead >= 0 && alq->aq_writehead < alq->aq_buflen),
637 	    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", __func__));
638 
639 	alq->aq_freebytes -= len;
640 
641 	if (!(alq->aq_flags & AQ_ACTIVE) && !(flags & ALQ_NOACTIVATE)) {
642 		alq->aq_flags |= AQ_ACTIVE;
643 		activate = 1;
644 	}
645 
646 	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
647 
648 unlock:
649 	ALQ_UNLOCK(alq);
650 
651 	if (activate) {
652 		ALD_LOCK();
653 		ald_activate(alq);
654 		ALD_UNLOCK();
655 	}
656 
657 	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
658 	if (waitchan != NULL)
659 		wakeup_one(waitchan);
660 
661 	return (ret);
662 }
663 
664 int
665 alq_write(struct alq *alq, void *data, int flags)
666 {
667 	/* Should only be called in fixed length message (legacy) mode. */
668 	KASSERT((alq->aq_flags & AQ_LEGACY),
669 	    ("%s: fixed length write on variable length queue", __func__));
670 	return (alq_writen(alq, data, alq->aq_entlen, flags));
671 }
672 
673 /*
674  * Retrieve a pointer for the ALQ to write directly into, avoiding bcopy.
675  */
676 struct ale *
677 alq_getn(struct alq *alq, int len, int flags)
678 {
679 	int contigbytes;
680 	void *waitchan;
681 
682 	KASSERT((len > 0 && len <= alq->aq_buflen),
683 	    ("%s: len <= 0 || len > alq->aq_buflen", __func__));
684 
685 	waitchan = NULL;
686 
687 	ALQ_LOCK(alq);
688 
689 	/*
690 	 * Determine the number of free contiguous bytes.
691 	 * We ensure elsewhere that if aq_writehead == aq_writetail because
692 	 * the buffer is empty, they will both be set to 0 and therefore
693 	 * aq_freebytes == aq_buflen and is fully contiguous.
694 	 * If they are equal and the buffer is not empty, aq_freebytes will
695 	 * be 0 indicating the buffer is full.
696 	 */
697 	if (alq->aq_writehead <= alq->aq_writetail)
698 		contigbytes = alq->aq_freebytes;
699 	else {
700 		contigbytes = alq->aq_buflen - alq->aq_writehead;
701 
702 		if (contigbytes < len) {
703 			/*
704 			 * Insufficient space at end of buffer to handle a
705 			 * contiguous write. Wrap early if there's space at
706 			 * the beginning. This will leave a hole at the end
707 			 * of the buffer which we will have to skip over when
708 			 * flushing the buffer to disk.
709 			 */
710 			if (alq->aq_writetail >= len || flags & ALQ_WAITOK) {
711 				/* Keep track of # bytes left blank. */
712 				alq->aq_wrapearly = contigbytes;
713 				/* Do the wrap and adjust counters. */
714 				contigbytes = alq->aq_freebytes =
715 				    alq->aq_writetail;
716 				alq->aq_writehead = 0;
717 			}
718 		}
719 	}
720 
721 	/*
722 	 * Return a NULL ALE if:
723 	 * - The message is larger than our underlying buffer.
724 	 * - The ALQ is being shutdown.
725 	 * - There is insufficient free space in our underlying buffer
726 	 *   to accept the message and the user can't wait for space.
727 	 * - There is insufficient free space in our underlying buffer
728 	 *   to accept the message and the alq is inactive due to prior
729 	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
730 	 */
731 	if (len > alq->aq_buflen ||
732 	    alq->aq_flags & AQ_SHUTDOWN ||
733 	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
734 	    HAS_PENDING_DATA(alq))) && contigbytes < len)) {
735 		ALQ_UNLOCK(alq);
736 		return (NULL);
737 	}
738 
739 	/*
740 	 * If we want ordered writes and there is already at least one thread
741 	 * waiting for resources to become available, sleep until we're woken.
742 	 */
743 	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
744 		KASSERT(!(flags & ALQ_NOWAIT),
745 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
746 		alq->aq_waiters++;
747 		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqgnord", 0);
748 		alq->aq_waiters--;
749 	}
750 
751 	/*
752 	 * (ALQ_WAITOK && contigbytes < len) or contigbytes >= len, either enter
753 	 * while loop and sleep until we have enough contiguous free bytes
754 	 * (former) or skip (latter). If AQ_ORDERED is set, only 1 thread at a
755 	 * time will be in this loop. Otherwise, multiple threads may be
756 	 * sleeping here competing for ALQ resources.
757 	 */
758 	while (contigbytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
759 		KASSERT(!(flags & ALQ_NOWAIT),
760 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
761 		alq->aq_flags |= AQ_WANTED;
762 		alq->aq_waiters++;
763 		if (waitchan)
764 			wakeup(waitchan);
765 		msleep_spin(alq, &alq->aq_mtx, "alqgnres", 0);
766 		alq->aq_waiters--;
767 
768 		if (alq->aq_writehead <= alq->aq_writetail)
769 			contigbytes = alq->aq_freebytes;
770 		else
771 			contigbytes = alq->aq_buflen - alq->aq_writehead;
772 
773 		/*
774 		 * If we're the first thread to wake after an AQ_WANTED wakeup
775 		 * but there isn't enough free space for us, we're going to loop
776 		 * and sleep again. If there are other threads waiting in this
777 		 * loop, schedule a wakeup so that they can see if the space
778 		 * they require is available.
779 		 */
780 		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
781 		    contigbytes < len && !(alq->aq_flags & AQ_WANTED))
782 			waitchan = alq;
783 		else
784 			waitchan = NULL;
785 	}
786 
787 	/*
788 	 * If there are waiters, we need to signal the waiting threads after we
789 	 * complete our work. The alq ptr is used as a wait channel for threads
790 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
791 	 * are not allowed to concurrently compete for resources in the above
792 	 * while loop, so we use a different wait channel in this case.
793 	 */
794 	if (alq->aq_waiters > 0) {
795 		if (alq->aq_flags & AQ_ORDERED)
796 			waitchan = &alq->aq_waiters;
797 		else
798 			waitchan = alq;
799 	} else
800 		waitchan = NULL;
801 
802 	/* Bail if we're shutting down. */
803 	if (alq->aq_flags & AQ_SHUTDOWN) {
804 		ALQ_UNLOCK(alq);
805 		if (waitchan != NULL)
806 			wakeup_one(waitchan);
807 		return (NULL);
808 	}
809 
810 	/*
811 	 * If we are here, we have a contiguous number of bytes >= len
812 	 * available in our buffer starting at aq_writehead.
813 	 */
814 	alq->aq_getpost.ae_data = alq->aq_entbuf + alq->aq_writehead;
815 	alq->aq_getpost.ae_bytesused = len;
816 
817 	return (&alq->aq_getpost);
818 }
819 
820 struct ale *
821 alq_get(struct alq *alq, int flags)
822 {
823 	/* Should only be called in fixed length message (legacy) mode. */
824 	KASSERT((alq->aq_flags & AQ_LEGACY),
825 	    ("%s: fixed length get on variable length queue", __func__));
826 	return (alq_getn(alq, alq->aq_entlen, flags));
827 }
828 
829 void
830 alq_post_flags(struct alq *alq, struct ale *ale, int flags)
831 {
832 	int activate;
833 	void *waitchan;
834 
835 	activate = 0;
836 
837 	if (ale->ae_bytesused > 0) {
838 		if (!(alq->aq_flags & AQ_ACTIVE) &&
839 		    !(flags & ALQ_NOACTIVATE)) {
840 			alq->aq_flags |= AQ_ACTIVE;
841 			activate = 1;
842 		}
843 
844 		alq->aq_writehead += ale->ae_bytesused;
845 		alq->aq_freebytes -= ale->ae_bytesused;
846 
847 		/* Wrap aq_writehead if we filled to the end of the buffer. */
848 		if (alq->aq_writehead == alq->aq_buflen)
849 			alq->aq_writehead = 0;
850 
851 		KASSERT((alq->aq_writehead >= 0 &&
852 		    alq->aq_writehead < alq->aq_buflen),
853 		    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen",
854 		    __func__));
855 
856 		KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
857 	}
858 
859 	/*
860 	 * If there are waiters, we need to signal the waiting threads after we
861 	 * complete our work. The alq ptr is used as a wait channel for threads
862 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
863 	 * are not allowed to concurrently compete for resources in the
864 	 * alq_getn() while loop, so we use a different wait channel in this case.
865 	 */
866 	if (alq->aq_waiters > 0) {
867 		if (alq->aq_flags & AQ_ORDERED)
868 			waitchan = &alq->aq_waiters;
869 		else
870 			waitchan = alq;
871 	} else
872 		waitchan = NULL;
873 
874 	ALQ_UNLOCK(alq);
875 
876 	if (activate) {
877 		ALD_LOCK();
878 		ald_activate(alq);
879 		ALD_UNLOCK();
880 	}
881 
882 	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
883 	if (waitchan != NULL)
884 		wakeup_one(waitchan);
885 }
886 
887 void
888 alq_flush(struct alq *alq)
889 {
890 	int needwakeup = 0;
891 
892 	ALD_LOCK();
893 	ALQ_LOCK(alq);
894 
895 	/*
896 	 * Pull the lever iff there is data to flush and we're
897 	 * not already in the middle of a flush operation.
898 	 */
899 	if (HAS_PENDING_DATA(alq) && !(alq->aq_flags & AQ_FLUSHING)) {
900 		if (alq->aq_flags & AQ_ACTIVE)
901 			ald_deactivate(alq);
902 
903 		ALD_UNLOCK();
904 		needwakeup = alq_doio(alq);
905 	} else
906 		ALD_UNLOCK();
907 
908 	ALQ_UNLOCK(alq);
909 
910 	if (needwakeup)
911 		wakeup_one(alq);
912 }
913 
914 /*
915  * Flush remaining data, close the file and free all resources.
916  */
917 void
918 alq_close(struct alq *alq)
919 {
920 	/* Only flush and destroy alq if not already shutting down. */
921 	if (ald_rem(alq) == 0)
922 		alq_destroy(alq);
923 }
924 
925 static int
926 alq_load_handler(module_t mod, int what, void *arg)
927 {
928 	int ret;
929 
930 	ret = 0;
931 
932 	switch (what) {
933 	case MOD_LOAD:
934 	case MOD_SHUTDOWN:
935 		break;
936 
937 	case MOD_QUIESCE:
938 		ALD_LOCK();
939 		/* Only allow unload if there are no open queues. */
940 		if (LIST_FIRST(&ald_queues) == NULL) {
941 			ald_shutingdown = 1;
942 			ALD_UNLOCK();
943 			EVENTHANDLER_DEREGISTER(shutdown_pre_sync,
944 			    alq_eventhandler_tag);
945 			ald_shutdown(NULL, 0);
946 			mtx_destroy(&ald_mtx);
947 		} else {
948 			ALD_UNLOCK();
949 			ret = EBUSY;
950 		}
951 		break;
952 
953 	case MOD_UNLOAD:
954 		/* If MOD_QUIESCE failed we must fail here too. */
955 		if (ald_shutingdown == 0)
956 			ret = EBUSY;
957 		break;
958 
959 	default:
960 		ret = EINVAL;
961 		break;
962 	}
963 
964 	return (ret);
965 }
966 
967 static moduledata_t alq_mod =
968 {
969 	"alq",
970 	alq_load_handler,
971 	NULL
972 };
973 
974 DECLARE_MODULE(alq, alq_mod, SI_SUB_LAST, SI_ORDER_ANY);
975 MODULE_VERSION(alq, 1);
976