1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org> 5 * Copyright (c) 2008-2009, Lawrence Stewart <lstewart@freebsd.org> 6 * Copyright (c) 2009-2010, The FreeBSD Foundation 7 * All rights reserved. 8 * 9 * Portions of this software were developed at the Centre for Advanced 10 * Internet Architectures, Swinburne University of Technology, Melbourne, 11 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice unmodified, this list of conditions, and the following 18 * disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include "opt_mac.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/mount.h> 46 #include <sys/mutex.h> 47 #include <sys/namei.h> 48 #include <sys/proc.h> 49 #include <sys/vnode.h> 50 #include <sys/alq.h> 51 #include <sys/malloc.h> 52 #include <sys/unistd.h> 53 #include <sys/fcntl.h> 54 #include <sys/eventhandler.h> 55 56 #include <security/mac/mac_framework.h> 57 58 /* Async. Logging Queue */ 59 struct alq { 60 char *aq_entbuf; /* Buffer for stored entries */ 61 int aq_entmax; /* Max entries */ 62 int aq_entlen; /* Entry length */ 63 int aq_freebytes; /* Bytes available in buffer */ 64 int aq_buflen; /* Total length of our buffer */ 65 int aq_writehead; /* Location for next write */ 66 int aq_writetail; /* Flush starts at this location */ 67 int aq_wrapearly; /* # bytes left blank at end of buf */ 68 int aq_flags; /* Queue flags */ 69 int aq_waiters; /* Num threads waiting for resources 70 * NB: Used as a wait channel so must 71 * not be first field in the alq struct 72 */ 73 struct ale aq_getpost; /* ALE for use by get/post */ 74 struct mtx aq_mtx; /* Queue lock */ 75 struct vnode *aq_vp; /* Open vnode handle */ 76 struct ucred *aq_cred; /* Credentials of the opening thread */ 77 LIST_ENTRY(alq) aq_act; /* List of active queues */ 78 LIST_ENTRY(alq) aq_link; /* List of all queues */ 79 }; 80 81 #define AQ_WANTED 0x0001 /* Wakeup sleeper when io is done */ 82 #define AQ_ACTIVE 0x0002 /* on the active list */ 83 #define AQ_FLUSHING 0x0004 /* doing IO */ 84 #define AQ_SHUTDOWN 0x0008 /* Queue no longer valid */ 85 #define AQ_ORDERED 0x0010 /* Queue enforces ordered writes */ 86 #define AQ_LEGACY 0x0020 /* Legacy queue (fixed length writes) */ 87 88 #define ALQ_LOCK(alq) mtx_lock_spin(&(alq)->aq_mtx) 89 #define ALQ_UNLOCK(alq) mtx_unlock_spin(&(alq)->aq_mtx) 90 91 #define HAS_PENDING_DATA(alq) ((alq)->aq_freebytes != (alq)->aq_buflen) 92 93 static MALLOC_DEFINE(M_ALD, "ALD", "ALD"); 94 95 /* 96 * The ald_mtx protects the ald_queues list and the ald_active list. 97 */ 98 static struct mtx ald_mtx; 99 static LIST_HEAD(, alq) ald_queues; 100 static LIST_HEAD(, alq) ald_active; 101 static int ald_shutingdown = 0; 102 struct thread *ald_thread; 103 static struct proc *ald_proc; 104 static eventhandler_tag alq_eventhandler_tag = NULL; 105 106 #define ALD_LOCK() mtx_lock(&ald_mtx) 107 #define ALD_UNLOCK() mtx_unlock(&ald_mtx) 108 109 /* Daemon functions */ 110 static int ald_add(struct alq *); 111 static int ald_rem(struct alq *); 112 static void ald_startup(void *); 113 static void ald_daemon(void); 114 static void ald_shutdown(void *, int); 115 static void ald_activate(struct alq *); 116 static void ald_deactivate(struct alq *); 117 118 /* Internal queue functions */ 119 static void alq_shutdown(struct alq *); 120 static void alq_destroy(struct alq *); 121 static int alq_doio(struct alq *); 122 123 /* 124 * Add a new queue to the global list. Fail if we're shutting down. 125 */ 126 static int 127 ald_add(struct alq *alq) 128 { 129 int error; 130 131 error = 0; 132 133 ALD_LOCK(); 134 if (ald_shutingdown) { 135 error = EBUSY; 136 goto done; 137 } 138 LIST_INSERT_HEAD(&ald_queues, alq, aq_link); 139 done: 140 ALD_UNLOCK(); 141 return (error); 142 } 143 144 /* 145 * Remove a queue from the global list unless we're shutting down. If so, 146 * the ald will take care of cleaning up it's resources. 147 */ 148 static int 149 ald_rem(struct alq *alq) 150 { 151 int error; 152 153 error = 0; 154 155 ALD_LOCK(); 156 if (ald_shutingdown) { 157 error = EBUSY; 158 goto done; 159 } 160 LIST_REMOVE(alq, aq_link); 161 done: 162 ALD_UNLOCK(); 163 return (error); 164 } 165 166 /* 167 * Put a queue on the active list. This will schedule it for writing. 168 */ 169 static void 170 ald_activate(struct alq *alq) 171 { 172 LIST_INSERT_HEAD(&ald_active, alq, aq_act); 173 wakeup(&ald_active); 174 } 175 176 static void 177 ald_deactivate(struct alq *alq) 178 { 179 LIST_REMOVE(alq, aq_act); 180 alq->aq_flags &= ~AQ_ACTIVE; 181 } 182 183 static void 184 ald_startup(void *unused) 185 { 186 mtx_init(&ald_mtx, "ALDmtx", NULL, MTX_DEF|MTX_QUIET); 187 LIST_INIT(&ald_queues); 188 LIST_INIT(&ald_active); 189 } 190 191 static void 192 ald_daemon(void) 193 { 194 int needwakeup; 195 struct alq *alq; 196 197 ald_thread = FIRST_THREAD_IN_PROC(ald_proc); 198 199 alq_eventhandler_tag = EVENTHANDLER_REGISTER(shutdown_pre_sync, 200 ald_shutdown, NULL, SHUTDOWN_PRI_FIRST); 201 202 ALD_LOCK(); 203 204 for (;;) { 205 while ((alq = LIST_FIRST(&ald_active)) == NULL && 206 !ald_shutingdown) 207 mtx_sleep(&ald_active, &ald_mtx, PWAIT, "aldslp", 0); 208 209 /* Don't shutdown until all active ALQs are flushed. */ 210 if (ald_shutingdown && alq == NULL) { 211 ALD_UNLOCK(); 212 break; 213 } 214 215 ALQ_LOCK(alq); 216 ald_deactivate(alq); 217 ALD_UNLOCK(); 218 needwakeup = alq_doio(alq); 219 ALQ_UNLOCK(alq); 220 if (needwakeup) 221 wakeup_one(alq); 222 ALD_LOCK(); 223 } 224 225 kproc_exit(0); 226 } 227 228 static void 229 ald_shutdown(void *arg, int howto) 230 { 231 struct alq *alq; 232 233 ALD_LOCK(); 234 235 /* Ensure no new queues can be created. */ 236 ald_shutingdown = 1; 237 238 /* Shutdown all ALQs prior to terminating the ald_daemon. */ 239 while ((alq = LIST_FIRST(&ald_queues)) != NULL) { 240 LIST_REMOVE(alq, aq_link); 241 ALD_UNLOCK(); 242 alq_shutdown(alq); 243 ALD_LOCK(); 244 } 245 246 /* At this point, all ALQs are flushed and shutdown. */ 247 248 /* 249 * Wake ald_daemon so that it exits. It won't be able to do 250 * anything until we mtx_sleep because we hold the ald_mtx. 251 */ 252 wakeup(&ald_active); 253 254 /* Wait for ald_daemon to exit. */ 255 mtx_sleep(ald_proc, &ald_mtx, PWAIT, "aldslp", 0); 256 257 ALD_UNLOCK(); 258 } 259 260 static void 261 alq_shutdown(struct alq *alq) 262 { 263 ALQ_LOCK(alq); 264 265 /* Stop any new writers. */ 266 alq->aq_flags |= AQ_SHUTDOWN; 267 268 /* 269 * If the ALQ isn't active but has unwritten data (possible if 270 * the ALQ_NOACTIVATE flag has been used), explicitly activate the 271 * ALQ here so that the pending data gets flushed by the ald_daemon. 272 */ 273 if (!(alq->aq_flags & AQ_ACTIVE) && HAS_PENDING_DATA(alq)) { 274 alq->aq_flags |= AQ_ACTIVE; 275 ALQ_UNLOCK(alq); 276 ALD_LOCK(); 277 ald_activate(alq); 278 ALD_UNLOCK(); 279 ALQ_LOCK(alq); 280 } 281 282 /* Drain IO */ 283 while (alq->aq_flags & AQ_ACTIVE) { 284 alq->aq_flags |= AQ_WANTED; 285 msleep_spin(alq, &alq->aq_mtx, "aldclose", 0); 286 } 287 ALQ_UNLOCK(alq); 288 289 vn_close(alq->aq_vp, FWRITE, alq->aq_cred, 290 curthread); 291 crfree(alq->aq_cred); 292 } 293 294 void 295 alq_destroy(struct alq *alq) 296 { 297 /* Drain all pending IO. */ 298 alq_shutdown(alq); 299 300 mtx_destroy(&alq->aq_mtx); 301 free(alq->aq_entbuf, M_ALD); 302 free(alq, M_ALD); 303 } 304 305 /* 306 * Flush all pending data to disk. This operation will block. 307 */ 308 static int 309 alq_doio(struct alq *alq) 310 { 311 struct thread *td; 312 struct mount *mp; 313 struct vnode *vp; 314 struct uio auio; 315 struct iovec aiov[2]; 316 int totlen; 317 int iov; 318 int wrapearly; 319 320 KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__)); 321 322 vp = alq->aq_vp; 323 td = curthread; 324 totlen = 0; 325 iov = 1; 326 wrapearly = alq->aq_wrapearly; 327 328 bzero(&aiov, sizeof(aiov)); 329 bzero(&auio, sizeof(auio)); 330 331 /* Start the write from the location of our buffer tail pointer. */ 332 aiov[0].iov_base = alq->aq_entbuf + alq->aq_writetail; 333 334 if (alq->aq_writetail < alq->aq_writehead) { 335 /* Buffer not wrapped. */ 336 totlen = aiov[0].iov_len = alq->aq_writehead - alq->aq_writetail; 337 } else if (alq->aq_writehead == 0) { 338 /* Buffer not wrapped (special case to avoid an empty iov). */ 339 totlen = aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail - 340 wrapearly; 341 } else { 342 /* 343 * Buffer wrapped, requires 2 aiov entries: 344 * - first is from writetail to end of buffer 345 * - second is from start of buffer to writehead 346 */ 347 aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail - 348 wrapearly; 349 iov++; 350 aiov[1].iov_base = alq->aq_entbuf; 351 aiov[1].iov_len = alq->aq_writehead; 352 totlen = aiov[0].iov_len + aiov[1].iov_len; 353 } 354 355 alq->aq_flags |= AQ_FLUSHING; 356 ALQ_UNLOCK(alq); 357 358 auio.uio_iov = &aiov[0]; 359 auio.uio_offset = 0; 360 auio.uio_segflg = UIO_SYSSPACE; 361 auio.uio_rw = UIO_WRITE; 362 auio.uio_iovcnt = iov; 363 auio.uio_resid = totlen; 364 auio.uio_td = td; 365 366 /* 367 * Do all of the junk required to write now. 368 */ 369 vn_start_write(vp, &mp, V_WAIT); 370 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 371 /* 372 * XXX: VOP_WRITE error checks are ignored. 373 */ 374 #ifdef MAC 375 if (mac_vnode_check_write(alq->aq_cred, NOCRED, vp) == 0) 376 #endif 377 VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, alq->aq_cred); 378 VOP_UNLOCK(vp); 379 vn_finished_write(mp); 380 381 ALQ_LOCK(alq); 382 alq->aq_flags &= ~AQ_FLUSHING; 383 384 /* Adjust writetail as required, taking into account wrapping. */ 385 alq->aq_writetail = (alq->aq_writetail + totlen + wrapearly) % 386 alq->aq_buflen; 387 alq->aq_freebytes += totlen + wrapearly; 388 389 /* 390 * If we just flushed part of the buffer which wrapped, reset the 391 * wrapearly indicator. 392 */ 393 if (wrapearly) 394 alq->aq_wrapearly = 0; 395 396 /* 397 * If we just flushed the buffer completely, reset indexes to 0 to 398 * minimise buffer wraps. 399 * This is also required to ensure alq_getn() can't wedge itself. 400 */ 401 if (!HAS_PENDING_DATA(alq)) 402 alq->aq_writehead = alq->aq_writetail = 0; 403 404 KASSERT((alq->aq_writetail >= 0 && alq->aq_writetail < alq->aq_buflen), 405 ("%s: aq_writetail < 0 || aq_writetail >= aq_buflen", __func__)); 406 407 if (alq->aq_flags & AQ_WANTED) { 408 alq->aq_flags &= ~AQ_WANTED; 409 return (1); 410 } 411 412 return(0); 413 } 414 415 static struct kproc_desc ald_kp = { 416 "ALQ Daemon", 417 ald_daemon, 418 &ald_proc 419 }; 420 421 SYSINIT(aldthread, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &ald_kp); 422 SYSINIT(ald, SI_SUB_LOCK, SI_ORDER_ANY, ald_startup, NULL); 423 424 /* User visible queue functions */ 425 426 /* 427 * Create the queue data structure, allocate the buffer, and open the file. 428 */ 429 430 int 431 alq_open_flags(struct alq **alqp, const char *file, struct ucred *cred, int cmode, 432 int size, int flags) 433 { 434 struct nameidata nd; 435 struct alq *alq; 436 int oflags; 437 int error; 438 439 KASSERT((size > 0), ("%s: size <= 0", __func__)); 440 441 *alqp = NULL; 442 443 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, file); 444 oflags = FWRITE | O_NOFOLLOW | O_CREAT; 445 446 error = vn_open_cred(&nd, &oflags, cmode, 0, cred, NULL); 447 if (error) 448 return (error); 449 450 NDFREE_PNBUF(&nd); 451 /* We just unlock so we hold a reference */ 452 VOP_UNLOCK(nd.ni_vp); 453 454 alq = malloc(sizeof(*alq), M_ALD, M_WAITOK|M_ZERO); 455 alq->aq_vp = nd.ni_vp; 456 alq->aq_cred = crhold(cred); 457 458 mtx_init(&alq->aq_mtx, "ALD Queue", NULL, MTX_SPIN|MTX_QUIET); 459 460 alq->aq_buflen = size; 461 alq->aq_entmax = 0; 462 alq->aq_entlen = 0; 463 464 alq->aq_freebytes = alq->aq_buflen; 465 alq->aq_entbuf = malloc(alq->aq_buflen, M_ALD, M_WAITOK|M_ZERO); 466 alq->aq_writehead = alq->aq_writetail = 0; 467 if (flags & ALQ_ORDERED) 468 alq->aq_flags |= AQ_ORDERED; 469 470 if ((error = ald_add(alq)) != 0) { 471 alq_destroy(alq); 472 return (error); 473 } 474 475 *alqp = alq; 476 477 return (0); 478 } 479 480 int 481 alq_open(struct alq **alqp, const char *file, struct ucred *cred, int cmode, 482 int size, int count) 483 { 484 int ret; 485 486 KASSERT((count >= 0), ("%s: count < 0", __func__)); 487 488 if (count > 0) { 489 if ((ret = alq_open_flags(alqp, file, cred, cmode, 490 size*count, 0)) == 0) { 491 (*alqp)->aq_flags |= AQ_LEGACY; 492 (*alqp)->aq_entmax = count; 493 (*alqp)->aq_entlen = size; 494 } 495 } else 496 ret = alq_open_flags(alqp, file, cred, cmode, size, 0); 497 498 return (ret); 499 } 500 501 /* 502 * Copy a new entry into the queue. If the operation would block either 503 * wait or return an error depending on the value of waitok. 504 */ 505 int 506 alq_writen(struct alq *alq, void *data, int len, int flags) 507 { 508 int activate, copy, ret; 509 void *waitchan; 510 511 KASSERT((len > 0 && len <= alq->aq_buflen), 512 ("%s: len <= 0 || len > aq_buflen", __func__)); 513 514 activate = ret = 0; 515 copy = len; 516 waitchan = NULL; 517 518 ALQ_LOCK(alq); 519 520 /* 521 * Fail to perform the write and return EWOULDBLOCK if: 522 * - The message is larger than our underlying buffer. 523 * - The ALQ is being shutdown. 524 * - There is insufficient free space in our underlying buffer 525 * to accept the message and the user can't wait for space. 526 * - There is insufficient free space in our underlying buffer 527 * to accept the message and the alq is inactive due to prior 528 * use of the ALQ_NOACTIVATE flag (which would lead to deadlock). 529 */ 530 if (len > alq->aq_buflen || 531 alq->aq_flags & AQ_SHUTDOWN || 532 (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) && 533 HAS_PENDING_DATA(alq))) && alq->aq_freebytes < len)) { 534 ALQ_UNLOCK(alq); 535 return (EWOULDBLOCK); 536 } 537 538 /* 539 * If we want ordered writes and there is already at least one thread 540 * waiting for resources to become available, sleep until we're woken. 541 */ 542 if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) { 543 KASSERT(!(flags & ALQ_NOWAIT), 544 ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__)); 545 alq->aq_waiters++; 546 msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqwnord", 0); 547 alq->aq_waiters--; 548 } 549 550 /* 551 * (ALQ_WAITOK && aq_freebytes < len) or aq_freebytes >= len, either 552 * enter while loop and sleep until we have enough free bytes (former) 553 * or skip (latter). If AQ_ORDERED is set, only 1 thread at a time will 554 * be in this loop. Otherwise, multiple threads may be sleeping here 555 * competing for ALQ resources. 556 */ 557 while (alq->aq_freebytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) { 558 KASSERT(!(flags & ALQ_NOWAIT), 559 ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__)); 560 alq->aq_flags |= AQ_WANTED; 561 alq->aq_waiters++; 562 if (waitchan) 563 wakeup(waitchan); 564 msleep_spin(alq, &alq->aq_mtx, "alqwnres", 0); 565 alq->aq_waiters--; 566 567 /* 568 * If we're the first thread to wake after an AQ_WANTED wakeup 569 * but there isn't enough free space for us, we're going to loop 570 * and sleep again. If there are other threads waiting in this 571 * loop, schedule a wakeup so that they can see if the space 572 * they require is available. 573 */ 574 if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) && 575 alq->aq_freebytes < len && !(alq->aq_flags & AQ_WANTED)) 576 waitchan = alq; 577 else 578 waitchan = NULL; 579 } 580 581 /* 582 * If there are waiters, we need to signal the waiting threads after we 583 * complete our work. The alq ptr is used as a wait channel for threads 584 * requiring resources to be freed up. In the AQ_ORDERED case, threads 585 * are not allowed to concurrently compete for resources in the above 586 * while loop, so we use a different wait channel in this case. 587 */ 588 if (alq->aq_waiters > 0) { 589 if (alq->aq_flags & AQ_ORDERED) 590 waitchan = &alq->aq_waiters; 591 else 592 waitchan = alq; 593 } else 594 waitchan = NULL; 595 596 /* Bail if we're shutting down. */ 597 if (alq->aq_flags & AQ_SHUTDOWN) { 598 ret = EWOULDBLOCK; 599 goto unlock; 600 } 601 602 /* 603 * If we need to wrap the buffer to accommodate the write, 604 * we'll need 2 calls to bcopy. 605 */ 606 if ((alq->aq_buflen - alq->aq_writehead) < len) 607 copy = alq->aq_buflen - alq->aq_writehead; 608 609 /* Copy message (or part thereof if wrap required) to the buffer. */ 610 bcopy(data, alq->aq_entbuf + alq->aq_writehead, copy); 611 alq->aq_writehead += copy; 612 613 if (alq->aq_writehead >= alq->aq_buflen) { 614 KASSERT((alq->aq_writehead == alq->aq_buflen), 615 ("%s: alq->aq_writehead (%d) > alq->aq_buflen (%d)", 616 __func__, 617 alq->aq_writehead, 618 alq->aq_buflen)); 619 alq->aq_writehead = 0; 620 } 621 622 if (copy != len) { 623 /* 624 * Wrap the buffer by copying the remainder of our message 625 * to the start of the buffer and resetting aq_writehead. 626 */ 627 bcopy(((uint8_t *)data)+copy, alq->aq_entbuf, len - copy); 628 alq->aq_writehead = len - copy; 629 } 630 631 KASSERT((alq->aq_writehead >= 0 && alq->aq_writehead < alq->aq_buflen), 632 ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", __func__)); 633 634 alq->aq_freebytes -= len; 635 636 if (!(alq->aq_flags & AQ_ACTIVE) && !(flags & ALQ_NOACTIVATE)) { 637 alq->aq_flags |= AQ_ACTIVE; 638 activate = 1; 639 } 640 641 KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__)); 642 643 unlock: 644 ALQ_UNLOCK(alq); 645 646 if (activate) { 647 ALD_LOCK(); 648 ald_activate(alq); 649 ALD_UNLOCK(); 650 } 651 652 /* NB: We rely on wakeup_one waking threads in a FIFO manner. */ 653 if (waitchan != NULL) 654 wakeup_one(waitchan); 655 656 return (ret); 657 } 658 659 int 660 alq_write(struct alq *alq, void *data, int flags) 661 { 662 /* Should only be called in fixed length message (legacy) mode. */ 663 KASSERT((alq->aq_flags & AQ_LEGACY), 664 ("%s: fixed length write on variable length queue", __func__)); 665 return (alq_writen(alq, data, alq->aq_entlen, flags)); 666 } 667 668 /* 669 * Retrieve a pointer for the ALQ to write directly into, avoiding bcopy. 670 */ 671 struct ale * 672 alq_getn(struct alq *alq, int len, int flags) 673 { 674 int contigbytes; 675 void *waitchan; 676 677 KASSERT((len > 0 && len <= alq->aq_buflen), 678 ("%s: len <= 0 || len > alq->aq_buflen", __func__)); 679 680 waitchan = NULL; 681 682 ALQ_LOCK(alq); 683 684 /* 685 * Determine the number of free contiguous bytes. 686 * We ensure elsewhere that if aq_writehead == aq_writetail because 687 * the buffer is empty, they will both be set to 0 and therefore 688 * aq_freebytes == aq_buflen and is fully contiguous. 689 * If they are equal and the buffer is not empty, aq_freebytes will 690 * be 0 indicating the buffer is full. 691 */ 692 if (alq->aq_writehead <= alq->aq_writetail) 693 contigbytes = alq->aq_freebytes; 694 else { 695 contigbytes = alq->aq_buflen - alq->aq_writehead; 696 697 if (contigbytes < len) { 698 /* 699 * Insufficient space at end of buffer to handle a 700 * contiguous write. Wrap early if there's space at 701 * the beginning. This will leave a hole at the end 702 * of the buffer which we will have to skip over when 703 * flushing the buffer to disk. 704 */ 705 if (alq->aq_writetail >= len || flags & ALQ_WAITOK) { 706 /* Keep track of # bytes left blank. */ 707 alq->aq_wrapearly = contigbytes; 708 /* Do the wrap and adjust counters. */ 709 contigbytes = alq->aq_freebytes = 710 alq->aq_writetail; 711 alq->aq_writehead = 0; 712 } 713 } 714 } 715 716 /* 717 * Return a NULL ALE if: 718 * - The message is larger than our underlying buffer. 719 * - The ALQ is being shutdown. 720 * - There is insufficient free space in our underlying buffer 721 * to accept the message and the user can't wait for space. 722 * - There is insufficient free space in our underlying buffer 723 * to accept the message and the alq is inactive due to prior 724 * use of the ALQ_NOACTIVATE flag (which would lead to deadlock). 725 */ 726 if (len > alq->aq_buflen || 727 alq->aq_flags & AQ_SHUTDOWN || 728 (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) && 729 HAS_PENDING_DATA(alq))) && contigbytes < len)) { 730 ALQ_UNLOCK(alq); 731 return (NULL); 732 } 733 734 /* 735 * If we want ordered writes and there is already at least one thread 736 * waiting for resources to become available, sleep until we're woken. 737 */ 738 if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) { 739 KASSERT(!(flags & ALQ_NOWAIT), 740 ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__)); 741 alq->aq_waiters++; 742 msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqgnord", 0); 743 alq->aq_waiters--; 744 } 745 746 /* 747 * (ALQ_WAITOK && contigbytes < len) or contigbytes >= len, either enter 748 * while loop and sleep until we have enough contiguous free bytes 749 * (former) or skip (latter). If AQ_ORDERED is set, only 1 thread at a 750 * time will be in this loop. Otherwise, multiple threads may be 751 * sleeping here competing for ALQ resources. 752 */ 753 while (contigbytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) { 754 KASSERT(!(flags & ALQ_NOWAIT), 755 ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__)); 756 alq->aq_flags |= AQ_WANTED; 757 alq->aq_waiters++; 758 if (waitchan) 759 wakeup(waitchan); 760 msleep_spin(alq, &alq->aq_mtx, "alqgnres", 0); 761 alq->aq_waiters--; 762 763 if (alq->aq_writehead <= alq->aq_writetail) 764 contigbytes = alq->aq_freebytes; 765 else 766 contigbytes = alq->aq_buflen - alq->aq_writehead; 767 768 /* 769 * If we're the first thread to wake after an AQ_WANTED wakeup 770 * but there isn't enough free space for us, we're going to loop 771 * and sleep again. If there are other threads waiting in this 772 * loop, schedule a wakeup so that they can see if the space 773 * they require is available. 774 */ 775 if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) && 776 contigbytes < len && !(alq->aq_flags & AQ_WANTED)) 777 waitchan = alq; 778 else 779 waitchan = NULL; 780 } 781 782 /* 783 * If there are waiters, we need to signal the waiting threads after we 784 * complete our work. The alq ptr is used as a wait channel for threads 785 * requiring resources to be freed up. In the AQ_ORDERED case, threads 786 * are not allowed to concurrently compete for resources in the above 787 * while loop, so we use a different wait channel in this case. 788 */ 789 if (alq->aq_waiters > 0) { 790 if (alq->aq_flags & AQ_ORDERED) 791 waitchan = &alq->aq_waiters; 792 else 793 waitchan = alq; 794 } else 795 waitchan = NULL; 796 797 /* Bail if we're shutting down. */ 798 if (alq->aq_flags & AQ_SHUTDOWN) { 799 ALQ_UNLOCK(alq); 800 if (waitchan != NULL) 801 wakeup_one(waitchan); 802 return (NULL); 803 } 804 805 /* 806 * If we are here, we have a contiguous number of bytes >= len 807 * available in our buffer starting at aq_writehead. 808 */ 809 alq->aq_getpost.ae_data = alq->aq_entbuf + alq->aq_writehead; 810 alq->aq_getpost.ae_bytesused = len; 811 812 return (&alq->aq_getpost); 813 } 814 815 struct ale * 816 alq_get(struct alq *alq, int flags) 817 { 818 /* Should only be called in fixed length message (legacy) mode. */ 819 KASSERT((alq->aq_flags & AQ_LEGACY), 820 ("%s: fixed length get on variable length queue", __func__)); 821 return (alq_getn(alq, alq->aq_entlen, flags)); 822 } 823 824 void 825 alq_post_flags(struct alq *alq, struct ale *ale, int flags) 826 { 827 int activate; 828 void *waitchan; 829 830 activate = 0; 831 832 if (ale->ae_bytesused > 0) { 833 if (!(alq->aq_flags & AQ_ACTIVE) && 834 !(flags & ALQ_NOACTIVATE)) { 835 alq->aq_flags |= AQ_ACTIVE; 836 activate = 1; 837 } 838 839 alq->aq_writehead += ale->ae_bytesused; 840 alq->aq_freebytes -= ale->ae_bytesused; 841 842 /* Wrap aq_writehead if we filled to the end of the buffer. */ 843 if (alq->aq_writehead == alq->aq_buflen) 844 alq->aq_writehead = 0; 845 846 KASSERT((alq->aq_writehead >= 0 && 847 alq->aq_writehead < alq->aq_buflen), 848 ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", 849 __func__)); 850 851 KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__)); 852 } 853 854 /* 855 * If there are waiters, we need to signal the waiting threads after we 856 * complete our work. The alq ptr is used as a wait channel for threads 857 * requiring resources to be freed up. In the AQ_ORDERED case, threads 858 * are not allowed to concurrently compete for resources in the 859 * alq_getn() while loop, so we use a different wait channel in this case. 860 */ 861 if (alq->aq_waiters > 0) { 862 if (alq->aq_flags & AQ_ORDERED) 863 waitchan = &alq->aq_waiters; 864 else 865 waitchan = alq; 866 } else 867 waitchan = NULL; 868 869 ALQ_UNLOCK(alq); 870 871 if (activate) { 872 ALD_LOCK(); 873 ald_activate(alq); 874 ALD_UNLOCK(); 875 } 876 877 /* NB: We rely on wakeup_one waking threads in a FIFO manner. */ 878 if (waitchan != NULL) 879 wakeup_one(waitchan); 880 } 881 882 void 883 alq_flush(struct alq *alq) 884 { 885 int needwakeup = 0; 886 887 ALD_LOCK(); 888 ALQ_LOCK(alq); 889 890 /* 891 * Pull the lever iff there is data to flush and we're 892 * not already in the middle of a flush operation. 893 */ 894 if (HAS_PENDING_DATA(alq) && !(alq->aq_flags & AQ_FLUSHING)) { 895 if (alq->aq_flags & AQ_ACTIVE) 896 ald_deactivate(alq); 897 898 ALD_UNLOCK(); 899 needwakeup = alq_doio(alq); 900 } else 901 ALD_UNLOCK(); 902 903 ALQ_UNLOCK(alq); 904 905 if (needwakeup) 906 wakeup_one(alq); 907 } 908 909 /* 910 * Flush remaining data, close the file and free all resources. 911 */ 912 void 913 alq_close(struct alq *alq) 914 { 915 /* Only flush and destroy alq if not already shutting down. */ 916 if (ald_rem(alq) == 0) 917 alq_destroy(alq); 918 } 919 920 static int 921 alq_load_handler(module_t mod, int what, void *arg) 922 { 923 int ret; 924 925 ret = 0; 926 927 switch (what) { 928 case MOD_LOAD: 929 case MOD_SHUTDOWN: 930 break; 931 932 case MOD_QUIESCE: 933 ALD_LOCK(); 934 /* Only allow unload if there are no open queues. */ 935 if (LIST_FIRST(&ald_queues) == NULL) { 936 ald_shutingdown = 1; 937 ALD_UNLOCK(); 938 EVENTHANDLER_DEREGISTER(shutdown_pre_sync, 939 alq_eventhandler_tag); 940 ald_shutdown(NULL, 0); 941 mtx_destroy(&ald_mtx); 942 } else { 943 ALD_UNLOCK(); 944 ret = EBUSY; 945 } 946 break; 947 948 case MOD_UNLOAD: 949 /* If MOD_QUIESCE failed we must fail here too. */ 950 if (ald_shutingdown == 0) 951 ret = EBUSY; 952 break; 953 954 default: 955 ret = EINVAL; 956 break; 957 } 958 959 return (ret); 960 } 961 962 static moduledata_t alq_mod = 963 { 964 "alq", 965 alq_load_handler, 966 NULL 967 }; 968 969 DECLARE_MODULE(alq, alq_mod, SI_SUB_LAST, SI_ORDER_ANY); 970 MODULE_VERSION(alq, 1); 971