xref: /freebsd/sys/kern/kern_alq.c (revision 7750ad47a9a7dbc83f87158464170c8640723293)
1 /*-
2  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
3  * Copyright (c) 2008-2009, Lawrence Stewart <lstewart@freebsd.org>
4  * Copyright (c) 2009-2010, The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed at the Centre for Advanced
8  * Internet Architectures, Swinburne University of Technology, Melbourne,
9  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice unmodified, this list of conditions, and the following
16  *    disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_mac.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/lock.h>
43 #include <sys/mount.h>
44 #include <sys/mutex.h>
45 #include <sys/namei.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/alq.h>
49 #include <sys/malloc.h>
50 #include <sys/unistd.h>
51 #include <sys/fcntl.h>
52 #include <sys/eventhandler.h>
53 
54 #include <security/mac/mac_framework.h>
55 
56 /* Async. Logging Queue */
57 struct alq {
58 	char	*aq_entbuf;		/* Buffer for stored entries */
59 	int	aq_entmax;		/* Max entries */
60 	int	aq_entlen;		/* Entry length */
61 	int	aq_freebytes;		/* Bytes available in buffer */
62 	int	aq_buflen;		/* Total length of our buffer */
63 	int	aq_writehead;		/* Location for next write */
64 	int	aq_writetail;		/* Flush starts at this location */
65 	int	aq_wrapearly;		/* # bytes left blank at end of buf */
66 	int	aq_flags;		/* Queue flags */
67 	int	aq_waiters;		/* Num threads waiting for resources
68 					 * NB: Used as a wait channel so must
69 					 * not be first field in the alq struct
70 					 */
71 	struct	ale	aq_getpost;	/* ALE for use by get/post */
72 	struct mtx	aq_mtx;		/* Queue lock */
73 	struct vnode	*aq_vp;		/* Open vnode handle */
74 	struct ucred	*aq_cred;	/* Credentials of the opening thread */
75 	LIST_ENTRY(alq)	aq_act;		/* List of active queues */
76 	LIST_ENTRY(alq)	aq_link;	/* List of all queues */
77 };
78 
79 #define	AQ_WANTED	0x0001		/* Wakeup sleeper when io is done */
80 #define	AQ_ACTIVE	0x0002		/* on the active list */
81 #define	AQ_FLUSHING	0x0004		/* doing IO */
82 #define	AQ_SHUTDOWN	0x0008		/* Queue no longer valid */
83 #define	AQ_ORDERED	0x0010		/* Queue enforces ordered writes */
84 #define	AQ_LEGACY	0x0020		/* Legacy queue (fixed length writes) */
85 
86 #define	ALQ_LOCK(alq)	mtx_lock_spin(&(alq)->aq_mtx)
87 #define	ALQ_UNLOCK(alq)	mtx_unlock_spin(&(alq)->aq_mtx)
88 
89 #define HAS_PENDING_DATA(alq) ((alq)->aq_freebytes != (alq)->aq_buflen)
90 
91 static MALLOC_DEFINE(M_ALD, "ALD", "ALD");
92 
93 /*
94  * The ald_mtx protects the ald_queues list and the ald_active list.
95  */
96 static struct mtx ald_mtx;
97 static LIST_HEAD(, alq) ald_queues;
98 static LIST_HEAD(, alq) ald_active;
99 static int ald_shutingdown = 0;
100 struct thread *ald_thread;
101 static struct proc *ald_proc;
102 
103 #define	ALD_LOCK()	mtx_lock(&ald_mtx)
104 #define	ALD_UNLOCK()	mtx_unlock(&ald_mtx)
105 
106 /* Daemon functions */
107 static int ald_add(struct alq *);
108 static int ald_rem(struct alq *);
109 static void ald_startup(void *);
110 static void ald_daemon(void);
111 static void ald_shutdown(void *, int);
112 static void ald_activate(struct alq *);
113 static void ald_deactivate(struct alq *);
114 
115 /* Internal queue functions */
116 static void alq_shutdown(struct alq *);
117 static void alq_destroy(struct alq *);
118 static int alq_doio(struct alq *);
119 
120 
121 /*
122  * Add a new queue to the global list.  Fail if we're shutting down.
123  */
124 static int
125 ald_add(struct alq *alq)
126 {
127 	int error;
128 
129 	error = 0;
130 
131 	ALD_LOCK();
132 	if (ald_shutingdown) {
133 		error = EBUSY;
134 		goto done;
135 	}
136 	LIST_INSERT_HEAD(&ald_queues, alq, aq_link);
137 done:
138 	ALD_UNLOCK();
139 	return (error);
140 }
141 
142 /*
143  * Remove a queue from the global list unless we're shutting down.  If so,
144  * the ald will take care of cleaning up it's resources.
145  */
146 static int
147 ald_rem(struct alq *alq)
148 {
149 	int error;
150 
151 	error = 0;
152 
153 	ALD_LOCK();
154 	if (ald_shutingdown) {
155 		error = EBUSY;
156 		goto done;
157 	}
158 	LIST_REMOVE(alq, aq_link);
159 done:
160 	ALD_UNLOCK();
161 	return (error);
162 }
163 
164 /*
165  * Put a queue on the active list.  This will schedule it for writing.
166  */
167 static void
168 ald_activate(struct alq *alq)
169 {
170 	LIST_INSERT_HEAD(&ald_active, alq, aq_act);
171 	wakeup(&ald_active);
172 }
173 
174 static void
175 ald_deactivate(struct alq *alq)
176 {
177 	LIST_REMOVE(alq, aq_act);
178 	alq->aq_flags &= ~AQ_ACTIVE;
179 }
180 
181 static void
182 ald_startup(void *unused)
183 {
184 	mtx_init(&ald_mtx, "ALDmtx", NULL, MTX_DEF|MTX_QUIET);
185 	LIST_INIT(&ald_queues);
186 	LIST_INIT(&ald_active);
187 }
188 
189 static void
190 ald_daemon(void)
191 {
192 	int needwakeup;
193 	struct alq *alq;
194 
195 	ald_thread = FIRST_THREAD_IN_PROC(ald_proc);
196 
197 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ald_shutdown, NULL,
198 	    SHUTDOWN_PRI_FIRST);
199 
200 	ALD_LOCK();
201 
202 	for (;;) {
203 		while ((alq = LIST_FIRST(&ald_active)) == NULL &&
204 		    !ald_shutingdown)
205 			mtx_sleep(&ald_active, &ald_mtx, PWAIT, "aldslp", 0);
206 
207 		/* Don't shutdown until all active ALQs are flushed. */
208 		if (ald_shutingdown && alq == NULL) {
209 			ALD_UNLOCK();
210 			break;
211 		}
212 
213 		ALQ_LOCK(alq);
214 		ald_deactivate(alq);
215 		ALD_UNLOCK();
216 		needwakeup = alq_doio(alq);
217 		ALQ_UNLOCK(alq);
218 		if (needwakeup)
219 			wakeup_one(alq);
220 		ALD_LOCK();
221 	}
222 
223 	kproc_exit(0);
224 }
225 
226 static void
227 ald_shutdown(void *arg, int howto)
228 {
229 	struct alq *alq;
230 
231 	ALD_LOCK();
232 
233 	/* Ensure no new queues can be created. */
234 	ald_shutingdown = 1;
235 
236 	/* Shutdown all ALQs prior to terminating the ald_daemon. */
237 	while ((alq = LIST_FIRST(&ald_queues)) != NULL) {
238 		LIST_REMOVE(alq, aq_link);
239 		ALD_UNLOCK();
240 		alq_shutdown(alq);
241 		ALD_LOCK();
242 	}
243 
244 	/* At this point, all ALQs are flushed and shutdown. */
245 
246 	/*
247 	 * Wake ald_daemon so that it exits. It won't be able to do
248 	 * anything until we mtx_sleep because we hold the ald_mtx.
249 	 */
250 	wakeup(&ald_active);
251 
252 	/* Wait for ald_daemon to exit. */
253 	mtx_sleep(ald_proc, &ald_mtx, PWAIT, "aldslp", 0);
254 
255 	ALD_UNLOCK();
256 }
257 
258 static void
259 alq_shutdown(struct alq *alq)
260 {
261 	ALQ_LOCK(alq);
262 
263 	/* Stop any new writers. */
264 	alq->aq_flags |= AQ_SHUTDOWN;
265 
266 	/*
267 	 * If the ALQ isn't active but has unwritten data (possible if
268 	 * the ALQ_NOACTIVATE flag has been used), explicitly activate the
269 	 * ALQ here so that the pending data gets flushed by the ald_daemon.
270 	 */
271 	if (!(alq->aq_flags & AQ_ACTIVE) && HAS_PENDING_DATA(alq)) {
272 		alq->aq_flags |= AQ_ACTIVE;
273 		ALQ_UNLOCK(alq);
274 		ALD_LOCK();
275 		ald_activate(alq);
276 		ALD_UNLOCK();
277 		ALQ_LOCK(alq);
278 	}
279 
280 	/* Drain IO */
281 	while (alq->aq_flags & AQ_ACTIVE) {
282 		alq->aq_flags |= AQ_WANTED;
283 		msleep_spin(alq, &alq->aq_mtx, "aldclose", 0);
284 	}
285 	ALQ_UNLOCK(alq);
286 
287 	vn_close(alq->aq_vp, FWRITE, alq->aq_cred,
288 	    curthread);
289 	crfree(alq->aq_cred);
290 }
291 
292 void
293 alq_destroy(struct alq *alq)
294 {
295 	/* Drain all pending IO. */
296 	alq_shutdown(alq);
297 
298 	mtx_destroy(&alq->aq_mtx);
299 	free(alq->aq_entbuf, M_ALD);
300 	free(alq, M_ALD);
301 }
302 
303 /*
304  * Flush all pending data to disk.  This operation will block.
305  */
306 static int
307 alq_doio(struct alq *alq)
308 {
309 	struct thread *td;
310 	struct mount *mp;
311 	struct vnode *vp;
312 	struct uio auio;
313 	struct iovec aiov[2];
314 	int totlen;
315 	int iov;
316 	int vfslocked;
317 	int wrapearly;
318 
319 	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
320 
321 	vp = alq->aq_vp;
322 	td = curthread;
323 	totlen = 0;
324 	iov = 1;
325 	wrapearly = alq->aq_wrapearly;
326 
327 	bzero(&aiov, sizeof(aiov));
328 	bzero(&auio, sizeof(auio));
329 
330 	/* Start the write from the location of our buffer tail pointer. */
331 	aiov[0].iov_base = alq->aq_entbuf + alq->aq_writetail;
332 
333 	if (alq->aq_writetail < alq->aq_writehead) {
334 		/* Buffer not wrapped. */
335 		totlen = aiov[0].iov_len = alq->aq_writehead - alq->aq_writetail;
336 	} else if (alq->aq_writehead == 0) {
337 		/* Buffer not wrapped (special case to avoid an empty iov). */
338 		totlen = aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
339 		    wrapearly;
340 	} else {
341 		/*
342 		 * Buffer wrapped, requires 2 aiov entries:
343 		 * - first is from writetail to end of buffer
344 		 * - second is from start of buffer to writehead
345 		 */
346 		aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
347 		    wrapearly;
348 		iov++;
349 		aiov[1].iov_base = alq->aq_entbuf;
350 		aiov[1].iov_len =  alq->aq_writehead;
351 		totlen = aiov[0].iov_len + aiov[1].iov_len;
352 	}
353 
354 	alq->aq_flags |= AQ_FLUSHING;
355 	ALQ_UNLOCK(alq);
356 
357 	auio.uio_iov = &aiov[0];
358 	auio.uio_offset = 0;
359 	auio.uio_segflg = UIO_SYSSPACE;
360 	auio.uio_rw = UIO_WRITE;
361 	auio.uio_iovcnt = iov;
362 	auio.uio_resid = totlen;
363 	auio.uio_td = td;
364 
365 	/*
366 	 * Do all of the junk required to write now.
367 	 */
368 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
369 	vn_start_write(vp, &mp, V_WAIT);
370 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
371 	/*
372 	 * XXX: VOP_WRITE error checks are ignored.
373 	 */
374 #ifdef MAC
375 	if (mac_vnode_check_write(alq->aq_cred, NOCRED, vp) == 0)
376 #endif
377 		VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, alq->aq_cred);
378 	VOP_UNLOCK(vp, 0);
379 	vn_finished_write(mp);
380 	VFS_UNLOCK_GIANT(vfslocked);
381 
382 	ALQ_LOCK(alq);
383 	alq->aq_flags &= ~AQ_FLUSHING;
384 
385 	/* Adjust writetail as required, taking into account wrapping. */
386 	alq->aq_writetail = (alq->aq_writetail + totlen + wrapearly) %
387 	    alq->aq_buflen;
388 	alq->aq_freebytes += totlen + wrapearly;
389 
390 	/*
391 	 * If we just flushed part of the buffer which wrapped, reset the
392 	 * wrapearly indicator.
393 	 */
394 	if (wrapearly)
395 		alq->aq_wrapearly = 0;
396 
397 	/*
398 	 * If we just flushed the buffer completely, reset indexes to 0 to
399 	 * minimise buffer wraps.
400 	 * This is also required to ensure alq_getn() can't wedge itself.
401 	 */
402 	if (!HAS_PENDING_DATA(alq))
403 		alq->aq_writehead = alq->aq_writetail = 0;
404 
405 	KASSERT((alq->aq_writetail >= 0 && alq->aq_writetail < alq->aq_buflen),
406 	    ("%s: aq_writetail < 0 || aq_writetail >= aq_buflen", __func__));
407 
408 	if (alq->aq_flags & AQ_WANTED) {
409 		alq->aq_flags &= ~AQ_WANTED;
410 		return (1);
411 	}
412 
413 	return(0);
414 }
415 
416 static struct kproc_desc ald_kp = {
417         "ALQ Daemon",
418         ald_daemon,
419         &ald_proc
420 };
421 
422 SYSINIT(aldthread, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &ald_kp);
423 SYSINIT(ald, SI_SUB_LOCK, SI_ORDER_ANY, ald_startup, NULL);
424 
425 
426 /* User visible queue functions */
427 
428 /*
429  * Create the queue data structure, allocate the buffer, and open the file.
430  */
431 
432 int
433 alq_open_flags(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
434     int size, int flags)
435 {
436 	struct thread *td;
437 	struct nameidata nd;
438 	struct alq *alq;
439 	int oflags;
440 	int error;
441 	int vfslocked;
442 
443 	KASSERT((size > 0), ("%s: size <= 0", __func__));
444 
445 	*alqp = NULL;
446 	td = curthread;
447 
448 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, file, td);
449 	oflags = FWRITE | O_NOFOLLOW | O_CREAT;
450 
451 	error = vn_open_cred(&nd, &oflags, cmode, 0, cred, NULL);
452 	if (error)
453 		return (error);
454 
455 	vfslocked = NDHASGIANT(&nd);
456 	NDFREE(&nd, NDF_ONLY_PNBUF);
457 	/* We just unlock so we hold a reference */
458 	VOP_UNLOCK(nd.ni_vp, 0);
459 	VFS_UNLOCK_GIANT(vfslocked);
460 
461 	alq = malloc(sizeof(*alq), M_ALD, M_WAITOK|M_ZERO);
462 	alq->aq_vp = nd.ni_vp;
463 	alq->aq_cred = crhold(cred);
464 
465 	mtx_init(&alq->aq_mtx, "ALD Queue", NULL, MTX_SPIN|MTX_QUIET);
466 
467 	alq->aq_buflen = size;
468 	alq->aq_entmax = 0;
469 	alq->aq_entlen = 0;
470 
471 	alq->aq_freebytes = alq->aq_buflen;
472 	alq->aq_entbuf = malloc(alq->aq_buflen, M_ALD, M_WAITOK|M_ZERO);
473 	alq->aq_writehead = alq->aq_writetail = 0;
474 	if (flags & ALQ_ORDERED)
475 		alq->aq_flags |= AQ_ORDERED;
476 
477 	if ((error = ald_add(alq)) != 0) {
478 		alq_destroy(alq);
479 		return (error);
480 	}
481 
482 	*alqp = alq;
483 
484 	return (0);
485 }
486 
487 int
488 alq_open(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
489     int size, int count)
490 {
491 	int ret;
492 
493 	KASSERT((count >= 0), ("%s: count < 0", __func__));
494 
495 	if (count > 0) {
496 		ret = alq_open_flags(alqp, file, cred, cmode, size*count, 0);
497 		(*alqp)->aq_flags |= AQ_LEGACY;
498 		(*alqp)->aq_entmax = count;
499 		(*alqp)->aq_entlen = size;
500 	} else
501 		ret = alq_open_flags(alqp, file, cred, cmode, size, 0);
502 
503 	return (ret);
504 }
505 
506 
507 /*
508  * Copy a new entry into the queue.  If the operation would block either
509  * wait or return an error depending on the value of waitok.
510  */
511 int
512 alq_writen(struct alq *alq, void *data, int len, int flags)
513 {
514 	int activate, copy, ret;
515 	void *waitchan;
516 
517 	KASSERT((len > 0 && len <= alq->aq_buflen),
518 	    ("%s: len <= 0 || len > aq_buflen", __func__));
519 
520 	activate = ret = 0;
521 	copy = len;
522 	waitchan = NULL;
523 
524 	ALQ_LOCK(alq);
525 
526 	/*
527 	 * Fail to perform the write and return EWOULDBLOCK if:
528 	 * - The message is larger than our underlying buffer.
529 	 * - The ALQ is being shutdown.
530 	 * - There is insufficient free space in our underlying buffer
531 	 *   to accept the message and the user can't wait for space.
532 	 * - There is insufficient free space in our underlying buffer
533 	 *   to accept the message and the alq is inactive due to prior
534 	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
535 	 */
536 	if (len > alq->aq_buflen ||
537 	    alq->aq_flags & AQ_SHUTDOWN ||
538 	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
539 	    HAS_PENDING_DATA(alq))) && alq->aq_freebytes < len)) {
540 		ALQ_UNLOCK(alq);
541 		return (EWOULDBLOCK);
542 	}
543 
544 	/*
545 	 * If we want ordered writes and there is already at least one thread
546 	 * waiting for resources to become available, sleep until we're woken.
547 	 */
548 	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
549 		KASSERT(!(flags & ALQ_NOWAIT),
550 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
551 		alq->aq_waiters++;
552 		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqwnord", 0);
553 		alq->aq_waiters--;
554 	}
555 
556 	/*
557 	 * (ALQ_WAITOK && aq_freebytes < len) or aq_freebytes >= len, either
558 	 * enter while loop and sleep until we have enough free bytes (former)
559 	 * or skip (latter). If AQ_ORDERED is set, only 1 thread at a time will
560 	 * be in this loop. Otherwise, multiple threads may be sleeping here
561 	 * competing for ALQ resources.
562 	 */
563 	while (alq->aq_freebytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
564 		KASSERT(!(flags & ALQ_NOWAIT),
565 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
566 		alq->aq_flags |= AQ_WANTED;
567 		alq->aq_waiters++;
568 		if (waitchan)
569 			wakeup(waitchan);
570 		msleep_spin(alq, &alq->aq_mtx, "alqwnres", 0);
571 		alq->aq_waiters--;
572 
573 		/*
574 		 * If we're the first thread to wake after an AQ_WANTED wakeup
575 		 * but there isn't enough free space for us, we're going to loop
576 		 * and sleep again. If there are other threads waiting in this
577 		 * loop, schedule a wakeup so that they can see if the space
578 		 * they require is available.
579 		 */
580 		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
581 		    alq->aq_freebytes < len && !(alq->aq_flags & AQ_WANTED))
582 			waitchan = alq;
583 		else
584 			waitchan = NULL;
585 	}
586 
587 	/*
588 	 * If there are waiters, we need to signal the waiting threads after we
589 	 * complete our work. The alq ptr is used as a wait channel for threads
590 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
591 	 * are not allowed to concurrently compete for resources in the above
592 	 * while loop, so we use a different wait channel in this case.
593 	 */
594 	if (alq->aq_waiters > 0) {
595 		if (alq->aq_flags & AQ_ORDERED)
596 			waitchan = &alq->aq_waiters;
597 		else
598 			waitchan = alq;
599 	} else
600 		waitchan = NULL;
601 
602 	/* Bail if we're shutting down. */
603 	if (alq->aq_flags & AQ_SHUTDOWN) {
604 		ret = EWOULDBLOCK;
605 		goto unlock;
606 	}
607 
608 	/*
609 	 * If we need to wrap the buffer to accommodate the write,
610 	 * we'll need 2 calls to bcopy.
611 	 */
612 	if ((alq->aq_buflen - alq->aq_writehead) < len)
613 		copy = alq->aq_buflen - alq->aq_writehead;
614 
615 	/* Copy message (or part thereof if wrap required) to the buffer. */
616 	bcopy(data, alq->aq_entbuf + alq->aq_writehead, copy);
617 	alq->aq_writehead += copy;
618 
619 	if (alq->aq_writehead >= alq->aq_buflen) {
620 		KASSERT((alq->aq_writehead == alq->aq_buflen),
621 		    ("%s: alq->aq_writehead (%d) > alq->aq_buflen (%d)",
622 		    __func__,
623 		    alq->aq_writehead,
624 		    alq->aq_buflen));
625 		alq->aq_writehead = 0;
626 	}
627 
628 	if (copy != len) {
629 		/*
630 		 * Wrap the buffer by copying the remainder of our message
631 		 * to the start of the buffer and resetting aq_writehead.
632 		 */
633 		bcopy(((uint8_t *)data)+copy, alq->aq_entbuf, len - copy);
634 		alq->aq_writehead = len - copy;
635 	}
636 
637 	KASSERT((alq->aq_writehead >= 0 && alq->aq_writehead < alq->aq_buflen),
638 	    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", __func__));
639 
640 	alq->aq_freebytes -= len;
641 
642 	if (!(alq->aq_flags & AQ_ACTIVE) && !(flags & ALQ_NOACTIVATE)) {
643 		alq->aq_flags |= AQ_ACTIVE;
644 		activate = 1;
645 	}
646 
647 	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
648 
649 unlock:
650 	ALQ_UNLOCK(alq);
651 
652 	if (activate) {
653 		ALD_LOCK();
654 		ald_activate(alq);
655 		ALD_UNLOCK();
656 	}
657 
658 	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
659 	if (waitchan != NULL)
660 		wakeup_one(waitchan);
661 
662 	return (ret);
663 }
664 
665 int
666 alq_write(struct alq *alq, void *data, int flags)
667 {
668 	/* Should only be called in fixed length message (legacy) mode. */
669 	KASSERT((alq->aq_flags & AQ_LEGACY),
670 	    ("%s: fixed length write on variable length queue", __func__));
671 	return (alq_writen(alq, data, alq->aq_entlen, flags));
672 }
673 
674 /*
675  * Retrieve a pointer for the ALQ to write directly into, avoiding bcopy.
676  */
677 struct ale *
678 alq_getn(struct alq *alq, int len, int flags)
679 {
680 	int contigbytes;
681 	void *waitchan;
682 
683 	KASSERT((len > 0 && len <= alq->aq_buflen),
684 	    ("%s: len <= 0 || len > alq->aq_buflen", __func__));
685 
686 	waitchan = NULL;
687 
688 	ALQ_LOCK(alq);
689 
690 	/*
691 	 * Determine the number of free contiguous bytes.
692 	 * We ensure elsewhere that if aq_writehead == aq_writetail because
693 	 * the buffer is empty, they will both be set to 0 and therefore
694 	 * aq_freebytes == aq_buflen and is fully contiguous.
695 	 * If they are equal and the buffer is not empty, aq_freebytes will
696 	 * be 0 indicating the buffer is full.
697 	 */
698 	if (alq->aq_writehead <= alq->aq_writetail)
699 		contigbytes = alq->aq_freebytes;
700 	else {
701 		contigbytes = alq->aq_buflen - alq->aq_writehead;
702 
703 		if (contigbytes < len) {
704 			/*
705 			 * Insufficient space at end of buffer to handle a
706 			 * contiguous write. Wrap early if there's space at
707 			 * the beginning. This will leave a hole at the end
708 			 * of the buffer which we will have to skip over when
709 			 * flushing the buffer to disk.
710 			 */
711 			if (alq->aq_writetail >= len || flags & ALQ_WAITOK) {
712 				/* Keep track of # bytes left blank. */
713 				alq->aq_wrapearly = contigbytes;
714 				/* Do the wrap and adjust counters. */
715 				contigbytes = alq->aq_freebytes =
716 				    alq->aq_writetail;
717 				alq->aq_writehead = 0;
718 			}
719 		}
720 	}
721 
722 	/*
723 	 * Return a NULL ALE if:
724 	 * - The message is larger than our underlying buffer.
725 	 * - The ALQ is being shutdown.
726 	 * - There is insufficient free space in our underlying buffer
727 	 *   to accept the message and the user can't wait for space.
728 	 * - There is insufficient free space in our underlying buffer
729 	 *   to accept the message and the alq is inactive due to prior
730 	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
731 	 */
732 	if (len > alq->aq_buflen ||
733 	    alq->aq_flags & AQ_SHUTDOWN ||
734 	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
735 	    HAS_PENDING_DATA(alq))) && contigbytes < len)) {
736 		ALQ_UNLOCK(alq);
737 		return (NULL);
738 	}
739 
740 	/*
741 	 * If we want ordered writes and there is already at least one thread
742 	 * waiting for resources to become available, sleep until we're woken.
743 	 */
744 	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
745 		KASSERT(!(flags & ALQ_NOWAIT),
746 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
747 		alq->aq_waiters++;
748 		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqgnord", 0);
749 		alq->aq_waiters--;
750 	}
751 
752 	/*
753 	 * (ALQ_WAITOK && contigbytes < len) or contigbytes >= len, either enter
754 	 * while loop and sleep until we have enough contiguous free bytes
755 	 * (former) or skip (latter). If AQ_ORDERED is set, only 1 thread at a
756 	 * time will be in this loop. Otherwise, multiple threads may be
757 	 * sleeping here competing for ALQ resources.
758 	 */
759 	while (contigbytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
760 		KASSERT(!(flags & ALQ_NOWAIT),
761 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
762 		alq->aq_flags |= AQ_WANTED;
763 		alq->aq_waiters++;
764 		if (waitchan)
765 			wakeup(waitchan);
766 		msleep_spin(alq, &alq->aq_mtx, "alqgnres", 0);
767 		alq->aq_waiters--;
768 
769 		if (alq->aq_writehead <= alq->aq_writetail)
770 			contigbytes = alq->aq_freebytes;
771 		else
772 			contigbytes = alq->aq_buflen - alq->aq_writehead;
773 
774 		/*
775 		 * If we're the first thread to wake after an AQ_WANTED wakeup
776 		 * but there isn't enough free space for us, we're going to loop
777 		 * and sleep again. If there are other threads waiting in this
778 		 * loop, schedule a wakeup so that they can see if the space
779 		 * they require is available.
780 		 */
781 		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
782 		    contigbytes < len && !(alq->aq_flags & AQ_WANTED))
783 			waitchan = alq;
784 		else
785 			waitchan = NULL;
786 	}
787 
788 	/*
789 	 * If there are waiters, we need to signal the waiting threads after we
790 	 * complete our work. The alq ptr is used as a wait channel for threads
791 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
792 	 * are not allowed to concurrently compete for resources in the above
793 	 * while loop, so we use a different wait channel in this case.
794 	 */
795 	if (alq->aq_waiters > 0) {
796 		if (alq->aq_flags & AQ_ORDERED)
797 			waitchan = &alq->aq_waiters;
798 		else
799 			waitchan = alq;
800 	} else
801 		waitchan = NULL;
802 
803 	/* Bail if we're shutting down. */
804 	if (alq->aq_flags & AQ_SHUTDOWN) {
805 		ALQ_UNLOCK(alq);
806 		if (waitchan != NULL)
807 			wakeup_one(waitchan);
808 		return (NULL);
809 	}
810 
811 	/*
812 	 * If we are here, we have a contiguous number of bytes >= len
813 	 * available in our buffer starting at aq_writehead.
814 	 */
815 	alq->aq_getpost.ae_data = alq->aq_entbuf + alq->aq_writehead;
816 	alq->aq_getpost.ae_bytesused = len;
817 
818 	return (&alq->aq_getpost);
819 }
820 
821 struct ale *
822 alq_get(struct alq *alq, int flags)
823 {
824 	/* Should only be called in fixed length message (legacy) mode. */
825 	KASSERT((alq->aq_flags & AQ_LEGACY),
826 	    ("%s: fixed length get on variable length queue", __func__));
827 	return (alq_getn(alq, alq->aq_entlen, flags));
828 }
829 
830 void
831 alq_post_flags(struct alq *alq, struct ale *ale, int flags)
832 {
833 	int activate;
834 	void *waitchan;
835 
836 	activate = 0;
837 
838 	if (ale->ae_bytesused > 0) {
839 		if (!(alq->aq_flags & AQ_ACTIVE) &&
840 		    !(flags & ALQ_NOACTIVATE)) {
841 			alq->aq_flags |= AQ_ACTIVE;
842 			activate = 1;
843 		}
844 
845 		alq->aq_writehead += ale->ae_bytesused;
846 		alq->aq_freebytes -= ale->ae_bytesused;
847 
848 		/* Wrap aq_writehead if we filled to the end of the buffer. */
849 		if (alq->aq_writehead == alq->aq_buflen)
850 			alq->aq_writehead = 0;
851 
852 		KASSERT((alq->aq_writehead >= 0 &&
853 		    alq->aq_writehead < alq->aq_buflen),
854 		    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen",
855 		    __func__));
856 
857 		KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
858 	}
859 
860 	/*
861 	 * If there are waiters, we need to signal the waiting threads after we
862 	 * complete our work. The alq ptr is used as a wait channel for threads
863 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
864 	 * are not allowed to concurrently compete for resources in the
865 	 * alq_getn() while loop, so we use a different wait channel in this case.
866 	 */
867 	if (alq->aq_waiters > 0) {
868 		if (alq->aq_flags & AQ_ORDERED)
869 			waitchan = &alq->aq_waiters;
870 		else
871 			waitchan = alq;
872 	} else
873 		waitchan = NULL;
874 
875 	ALQ_UNLOCK(alq);
876 
877 	if (activate) {
878 		ALD_LOCK();
879 		ald_activate(alq);
880 		ALD_UNLOCK();
881 	}
882 
883 	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
884 	if (waitchan != NULL)
885 		wakeup_one(waitchan);
886 }
887 
888 void
889 alq_flush(struct alq *alq)
890 {
891 	int needwakeup = 0;
892 
893 	ALD_LOCK();
894 	ALQ_LOCK(alq);
895 
896 	/*
897 	 * Pull the lever iff there is data to flush and we're
898 	 * not already in the middle of a flush operation.
899 	 */
900 	if (HAS_PENDING_DATA(alq) && !(alq->aq_flags & AQ_FLUSHING)) {
901 		if (alq->aq_flags & AQ_ACTIVE)
902 			ald_deactivate(alq);
903 
904 		ALD_UNLOCK();
905 		needwakeup = alq_doio(alq);
906 	} else
907 		ALD_UNLOCK();
908 
909 	ALQ_UNLOCK(alq);
910 
911 	if (needwakeup)
912 		wakeup_one(alq);
913 }
914 
915 /*
916  * Flush remaining data, close the file and free all resources.
917  */
918 void
919 alq_close(struct alq *alq)
920 {
921 	/* Only flush and destroy alq if not already shutting down. */
922 	if (ald_rem(alq) == 0)
923 		alq_destroy(alq);
924 }
925 
926 static int
927 alq_load_handler(module_t mod, int what, void *arg)
928 {
929 	int ret;
930 
931 	ret = 0;
932 
933 	switch (what) {
934 	case MOD_LOAD:
935 	case MOD_SHUTDOWN:
936 		break;
937 
938 	case MOD_QUIESCE:
939 		ALD_LOCK();
940 		/* Only allow unload if there are no open queues. */
941 		if (LIST_FIRST(&ald_queues) == NULL) {
942 			ald_shutingdown = 1;
943 			ALD_UNLOCK();
944 			ald_shutdown(NULL, 0);
945 			mtx_destroy(&ald_mtx);
946 		} else {
947 			ALD_UNLOCK();
948 			ret = EBUSY;
949 		}
950 		break;
951 
952 	case MOD_UNLOAD:
953 		/* If MOD_QUIESCE failed we must fail here too. */
954 		if (ald_shutingdown == 0)
955 			ret = EBUSY;
956 		break;
957 
958 	default:
959 		ret = EINVAL;
960 		break;
961 	}
962 
963 	return (ret);
964 }
965 
966 static moduledata_t alq_mod =
967 {
968 	"alq",
969 	alq_load_handler,
970 	NULL
971 };
972 
973 DECLARE_MODULE(alq, alq_mod, SI_SUB_SMP, SI_ORDER_ANY);
974 MODULE_VERSION(alq, 1);
975