xref: /freebsd/sys/kern/kern_alq.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
5  * Copyright (c) 2008-2009, Lawrence Stewart <lstewart@freebsd.org>
6  * Copyright (c) 2009-2010, The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed at the Centre for Advanced
10  * Internet Architectures, Swinburne University of Technology, Melbourne,
11  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice unmodified, this list of conditions, and the following
18  *    disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #include "opt_mac.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/lock.h>
43 #include <sys/mount.h>
44 #include <sys/mutex.h>
45 #include <sys/namei.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/alq.h>
49 #include <sys/malloc.h>
50 #include <sys/unistd.h>
51 #include <sys/fcntl.h>
52 #include <sys/eventhandler.h>
53 
54 #include <security/mac/mac_framework.h>
55 
56 /* Async. Logging Queue */
57 struct alq {
58 	char	*aq_entbuf;		/* Buffer for stored entries */
59 	int	aq_entmax;		/* Max entries */
60 	int	aq_entlen;		/* Entry length */
61 	int	aq_freebytes;		/* Bytes available in buffer */
62 	int	aq_buflen;		/* Total length of our buffer */
63 	int	aq_writehead;		/* Location for next write */
64 	int	aq_writetail;		/* Flush starts at this location */
65 	int	aq_wrapearly;		/* # bytes left blank at end of buf */
66 	int	aq_flags;		/* Queue flags */
67 	int	aq_waiters;		/* Num threads waiting for resources
68 					 * NB: Used as a wait channel so must
69 					 * not be first field in the alq struct
70 					 */
71 	struct	ale	aq_getpost;	/* ALE for use by get/post */
72 	struct mtx	aq_mtx;		/* Queue lock */
73 	struct vnode	*aq_vp;		/* Open vnode handle */
74 	struct ucred	*aq_cred;	/* Credentials of the opening thread */
75 	LIST_ENTRY(alq)	aq_act;		/* List of active queues */
76 	LIST_ENTRY(alq)	aq_link;	/* List of all queues */
77 };
78 
79 #define	AQ_WANTED	0x0001		/* Wakeup sleeper when io is done */
80 #define	AQ_ACTIVE	0x0002		/* on the active list */
81 #define	AQ_FLUSHING	0x0004		/* doing IO */
82 #define	AQ_SHUTDOWN	0x0008		/* Queue no longer valid */
83 #define	AQ_ORDERED	0x0010		/* Queue enforces ordered writes */
84 #define	AQ_LEGACY	0x0020		/* Legacy queue (fixed length writes) */
85 
86 #define	ALQ_LOCK(alq)	mtx_lock_spin(&(alq)->aq_mtx)
87 #define	ALQ_UNLOCK(alq)	mtx_unlock_spin(&(alq)->aq_mtx)
88 
89 #define HAS_PENDING_DATA(alq) ((alq)->aq_freebytes != (alq)->aq_buflen)
90 
91 static MALLOC_DEFINE(M_ALD, "ALD", "ALD");
92 
93 /*
94  * The ald_mtx protects the ald_queues list and the ald_active list.
95  */
96 static struct mtx ald_mtx;
97 static LIST_HEAD(, alq) ald_queues;
98 static LIST_HEAD(, alq) ald_active;
99 static int ald_shutingdown = 0;
100 struct thread *ald_thread;
101 static struct proc *ald_proc;
102 static eventhandler_tag alq_eventhandler_tag = NULL;
103 
104 #define	ALD_LOCK()	mtx_lock(&ald_mtx)
105 #define	ALD_UNLOCK()	mtx_unlock(&ald_mtx)
106 
107 /* Daemon functions */
108 static int ald_add(struct alq *);
109 static int ald_rem(struct alq *);
110 static void ald_startup(void *);
111 static void ald_daemon(void);
112 static void ald_shutdown(void *, int);
113 static void ald_activate(struct alq *);
114 static void ald_deactivate(struct alq *);
115 
116 /* Internal queue functions */
117 static void alq_shutdown(struct alq *);
118 static void alq_destroy(struct alq *);
119 static int alq_doio(struct alq *);
120 
121 /*
122  * Add a new queue to the global list.  Fail if we're shutting down.
123  */
124 static int
125 ald_add(struct alq *alq)
126 {
127 	int error;
128 
129 	error = 0;
130 
131 	ALD_LOCK();
132 	if (ald_shutingdown) {
133 		error = EBUSY;
134 		goto done;
135 	}
136 	LIST_INSERT_HEAD(&ald_queues, alq, aq_link);
137 done:
138 	ALD_UNLOCK();
139 	return (error);
140 }
141 
142 /*
143  * Remove a queue from the global list unless we're shutting down.  If so,
144  * the ald will take care of cleaning up it's resources.
145  */
146 static int
147 ald_rem(struct alq *alq)
148 {
149 	int error;
150 
151 	error = 0;
152 
153 	ALD_LOCK();
154 	if (ald_shutingdown) {
155 		error = EBUSY;
156 		goto done;
157 	}
158 	LIST_REMOVE(alq, aq_link);
159 done:
160 	ALD_UNLOCK();
161 	return (error);
162 }
163 
164 /*
165  * Put a queue on the active list.  This will schedule it for writing.
166  */
167 static void
168 ald_activate(struct alq *alq)
169 {
170 	LIST_INSERT_HEAD(&ald_active, alq, aq_act);
171 	wakeup(&ald_active);
172 }
173 
174 static void
175 ald_deactivate(struct alq *alq)
176 {
177 	LIST_REMOVE(alq, aq_act);
178 	alq->aq_flags &= ~AQ_ACTIVE;
179 }
180 
181 static void
182 ald_startup(void *unused)
183 {
184 	mtx_init(&ald_mtx, "ALDmtx", NULL, MTX_DEF|MTX_QUIET);
185 	LIST_INIT(&ald_queues);
186 	LIST_INIT(&ald_active);
187 }
188 
189 static void
190 ald_daemon(void)
191 {
192 	int needwakeup;
193 	struct alq *alq;
194 
195 	ald_thread = FIRST_THREAD_IN_PROC(ald_proc);
196 
197 	alq_eventhandler_tag = EVENTHANDLER_REGISTER(shutdown_pre_sync,
198 	    ald_shutdown, NULL, SHUTDOWN_PRI_FIRST);
199 
200 	ALD_LOCK();
201 
202 	for (;;) {
203 		while ((alq = LIST_FIRST(&ald_active)) == NULL &&
204 		    !ald_shutingdown)
205 			mtx_sleep(&ald_active, &ald_mtx, PWAIT, "aldslp", 0);
206 
207 		/* Don't shutdown until all active ALQs are flushed. */
208 		if (ald_shutingdown && alq == NULL) {
209 			ALD_UNLOCK();
210 			break;
211 		}
212 
213 		ALQ_LOCK(alq);
214 		ald_deactivate(alq);
215 		ALD_UNLOCK();
216 		needwakeup = alq_doio(alq);
217 		ALQ_UNLOCK(alq);
218 		if (needwakeup)
219 			wakeup_one(alq);
220 		ALD_LOCK();
221 	}
222 
223 	kproc_exit(0);
224 }
225 
226 static void
227 ald_shutdown(void *arg, int howto)
228 {
229 	struct alq *alq;
230 
231 	ALD_LOCK();
232 
233 	/* Ensure no new queues can be created. */
234 	ald_shutingdown = 1;
235 
236 	/* Shutdown all ALQs prior to terminating the ald_daemon. */
237 	while ((alq = LIST_FIRST(&ald_queues)) != NULL) {
238 		LIST_REMOVE(alq, aq_link);
239 		ALD_UNLOCK();
240 		alq_shutdown(alq);
241 		ALD_LOCK();
242 	}
243 
244 	/* At this point, all ALQs are flushed and shutdown. */
245 
246 	/*
247 	 * Wake ald_daemon so that it exits. It won't be able to do
248 	 * anything until we mtx_sleep because we hold the ald_mtx.
249 	 */
250 	wakeup(&ald_active);
251 
252 	/* Wait for ald_daemon to exit. */
253 	mtx_sleep(ald_proc, &ald_mtx, PWAIT, "aldslp", 0);
254 
255 	ALD_UNLOCK();
256 }
257 
258 static void
259 alq_shutdown(struct alq *alq)
260 {
261 	ALQ_LOCK(alq);
262 
263 	/* Stop any new writers. */
264 	alq->aq_flags |= AQ_SHUTDOWN;
265 
266 	/*
267 	 * If the ALQ isn't active but has unwritten data (possible if
268 	 * the ALQ_NOACTIVATE flag has been used), explicitly activate the
269 	 * ALQ here so that the pending data gets flushed by the ald_daemon.
270 	 */
271 	if (!(alq->aq_flags & AQ_ACTIVE) && HAS_PENDING_DATA(alq)) {
272 		alq->aq_flags |= AQ_ACTIVE;
273 		ALQ_UNLOCK(alq);
274 		ALD_LOCK();
275 		ald_activate(alq);
276 		ALD_UNLOCK();
277 		ALQ_LOCK(alq);
278 	}
279 
280 	/* Drain IO */
281 	while (alq->aq_flags & AQ_ACTIVE) {
282 		alq->aq_flags |= AQ_WANTED;
283 		msleep_spin(alq, &alq->aq_mtx, "aldclose", 0);
284 	}
285 	ALQ_UNLOCK(alq);
286 
287 	vn_close(alq->aq_vp, FWRITE, alq->aq_cred,
288 	    curthread);
289 	crfree(alq->aq_cred);
290 }
291 
292 void
293 alq_destroy(struct alq *alq)
294 {
295 	/* Drain all pending IO. */
296 	alq_shutdown(alq);
297 
298 	mtx_destroy(&alq->aq_mtx);
299 	free(alq->aq_entbuf, M_ALD);
300 	free(alq, M_ALD);
301 }
302 
303 /*
304  * Flush all pending data to disk.  This operation will block.
305  */
306 static int
307 alq_doio(struct alq *alq)
308 {
309 	struct thread *td;
310 	struct mount *mp;
311 	struct vnode *vp;
312 	struct uio auio;
313 	struct iovec aiov[2];
314 	int totlen;
315 	int iov;
316 	int wrapearly;
317 
318 	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
319 
320 	vp = alq->aq_vp;
321 	td = curthread;
322 	totlen = 0;
323 	iov = 1;
324 	wrapearly = alq->aq_wrapearly;
325 
326 	bzero(&aiov, sizeof(aiov));
327 	bzero(&auio, sizeof(auio));
328 
329 	/* Start the write from the location of our buffer tail pointer. */
330 	aiov[0].iov_base = alq->aq_entbuf + alq->aq_writetail;
331 
332 	if (alq->aq_writetail < alq->aq_writehead) {
333 		/* Buffer not wrapped. */
334 		totlen = aiov[0].iov_len = alq->aq_writehead - alq->aq_writetail;
335 	} else if (alq->aq_writehead == 0) {
336 		/* Buffer not wrapped (special case to avoid an empty iov). */
337 		totlen = aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
338 		    wrapearly;
339 	} else {
340 		/*
341 		 * Buffer wrapped, requires 2 aiov entries:
342 		 * - first is from writetail to end of buffer
343 		 * - second is from start of buffer to writehead
344 		 */
345 		aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
346 		    wrapearly;
347 		iov++;
348 		aiov[1].iov_base = alq->aq_entbuf;
349 		aiov[1].iov_len =  alq->aq_writehead;
350 		totlen = aiov[0].iov_len + aiov[1].iov_len;
351 	}
352 
353 	alq->aq_flags |= AQ_FLUSHING;
354 	ALQ_UNLOCK(alq);
355 
356 	auio.uio_iov = &aiov[0];
357 	auio.uio_offset = 0;
358 	auio.uio_segflg = UIO_SYSSPACE;
359 	auio.uio_rw = UIO_WRITE;
360 	auio.uio_iovcnt = iov;
361 	auio.uio_resid = totlen;
362 	auio.uio_td = td;
363 
364 	/*
365 	 * Do all of the junk required to write now.
366 	 */
367 	vn_start_write(vp, &mp, V_WAIT);
368 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
369 	/*
370 	 * XXX: VOP_WRITE error checks are ignored.
371 	 */
372 #ifdef MAC
373 	if (mac_vnode_check_write(alq->aq_cred, NOCRED, vp) == 0)
374 #endif
375 		VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, alq->aq_cred);
376 	VOP_UNLOCK(vp);
377 	vn_finished_write(mp);
378 
379 	ALQ_LOCK(alq);
380 	alq->aq_flags &= ~AQ_FLUSHING;
381 
382 	/* Adjust writetail as required, taking into account wrapping. */
383 	alq->aq_writetail = (alq->aq_writetail + totlen + wrapearly) %
384 	    alq->aq_buflen;
385 	alq->aq_freebytes += totlen + wrapearly;
386 
387 	/*
388 	 * If we just flushed part of the buffer which wrapped, reset the
389 	 * wrapearly indicator.
390 	 */
391 	if (wrapearly)
392 		alq->aq_wrapearly = 0;
393 
394 	/*
395 	 * If we just flushed the buffer completely, reset indexes to 0 to
396 	 * minimise buffer wraps.
397 	 * This is also required to ensure alq_getn() can't wedge itself.
398 	 */
399 	if (!HAS_PENDING_DATA(alq))
400 		alq->aq_writehead = alq->aq_writetail = 0;
401 
402 	KASSERT((alq->aq_writetail >= 0 && alq->aq_writetail < alq->aq_buflen),
403 	    ("%s: aq_writetail < 0 || aq_writetail >= aq_buflen", __func__));
404 
405 	if (alq->aq_flags & AQ_WANTED) {
406 		alq->aq_flags &= ~AQ_WANTED;
407 		return (1);
408 	}
409 
410 	return(0);
411 }
412 
413 static struct kproc_desc ald_kp = {
414         "ALQ Daemon",
415         ald_daemon,
416         &ald_proc
417 };
418 
419 SYSINIT(aldthread, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &ald_kp);
420 SYSINIT(ald, SI_SUB_LOCK, SI_ORDER_ANY, ald_startup, NULL);
421 
422 /* User visible queue functions */
423 
424 /*
425  * Create the queue data structure, allocate the buffer, and open the file.
426  */
427 
428 int
429 alq_open_flags(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
430     int size, int flags)
431 {
432 	struct nameidata nd;
433 	struct alq *alq;
434 	int oflags;
435 	int error;
436 
437 	KASSERT((size > 0), ("%s: size <= 0", __func__));
438 
439 	*alqp = NULL;
440 
441 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, file);
442 	oflags = FWRITE | O_NOFOLLOW | O_CREAT;
443 
444 	error = vn_open_cred(&nd, &oflags, cmode, 0, cred, NULL);
445 	if (error)
446 		return (error);
447 
448 	NDFREE_PNBUF(&nd);
449 	/* We just unlock so we hold a reference */
450 	VOP_UNLOCK(nd.ni_vp);
451 
452 	alq = malloc(sizeof(*alq), M_ALD, M_WAITOK|M_ZERO);
453 	alq->aq_vp = nd.ni_vp;
454 	alq->aq_cred = crhold(cred);
455 
456 	mtx_init(&alq->aq_mtx, "ALD Queue", NULL, MTX_SPIN|MTX_QUIET);
457 
458 	alq->aq_buflen = size;
459 	alq->aq_entmax = 0;
460 	alq->aq_entlen = 0;
461 
462 	alq->aq_freebytes = alq->aq_buflen;
463 	alq->aq_entbuf = malloc(alq->aq_buflen, M_ALD, M_WAITOK|M_ZERO);
464 	alq->aq_writehead = alq->aq_writetail = 0;
465 	if (flags & ALQ_ORDERED)
466 		alq->aq_flags |= AQ_ORDERED;
467 
468 	if ((error = ald_add(alq)) != 0) {
469 		alq_destroy(alq);
470 		return (error);
471 	}
472 
473 	*alqp = alq;
474 
475 	return (0);
476 }
477 
478 int
479 alq_open(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
480     int size, int count)
481 {
482 	int ret;
483 
484 	KASSERT((count >= 0), ("%s: count < 0", __func__));
485 
486 	if (count > 0) {
487 		if ((ret = alq_open_flags(alqp, file, cred, cmode,
488 		    size*count, 0)) == 0) {
489 			(*alqp)->aq_flags |= AQ_LEGACY;
490 			(*alqp)->aq_entmax = count;
491 			(*alqp)->aq_entlen = size;
492 		}
493 	} else
494 		ret = alq_open_flags(alqp, file, cred, cmode, size, 0);
495 
496 	return (ret);
497 }
498 
499 /*
500  * Copy a new entry into the queue.  If the operation would block either
501  * wait or return an error depending on the value of waitok.
502  */
503 int
504 alq_writen(struct alq *alq, void *data, int len, int flags)
505 {
506 	int activate, copy, ret;
507 	void *waitchan;
508 
509 	KASSERT((len > 0 && len <= alq->aq_buflen),
510 	    ("%s: len <= 0 || len > aq_buflen", __func__));
511 
512 	activate = ret = 0;
513 	copy = len;
514 	waitchan = NULL;
515 
516 	ALQ_LOCK(alq);
517 
518 	/*
519 	 * Fail to perform the write and return EWOULDBLOCK if:
520 	 * - The message is larger than our underlying buffer.
521 	 * - The ALQ is being shutdown.
522 	 * - There is insufficient free space in our underlying buffer
523 	 *   to accept the message and the user can't wait for space.
524 	 * - There is insufficient free space in our underlying buffer
525 	 *   to accept the message and the alq is inactive due to prior
526 	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
527 	 */
528 	if (len > alq->aq_buflen ||
529 	    alq->aq_flags & AQ_SHUTDOWN ||
530 	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
531 	    HAS_PENDING_DATA(alq))) && alq->aq_freebytes < len)) {
532 		ALQ_UNLOCK(alq);
533 		return (EWOULDBLOCK);
534 	}
535 
536 	/*
537 	 * If we want ordered writes and there is already at least one thread
538 	 * waiting for resources to become available, sleep until we're woken.
539 	 */
540 	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
541 		KASSERT(!(flags & ALQ_NOWAIT),
542 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
543 		alq->aq_waiters++;
544 		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqwnord", 0);
545 		alq->aq_waiters--;
546 	}
547 
548 	/*
549 	 * (ALQ_WAITOK && aq_freebytes < len) or aq_freebytes >= len, either
550 	 * enter while loop and sleep until we have enough free bytes (former)
551 	 * or skip (latter). If AQ_ORDERED is set, only 1 thread at a time will
552 	 * be in this loop. Otherwise, multiple threads may be sleeping here
553 	 * competing for ALQ resources.
554 	 */
555 	while (alq->aq_freebytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
556 		KASSERT(!(flags & ALQ_NOWAIT),
557 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
558 		alq->aq_flags |= AQ_WANTED;
559 		alq->aq_waiters++;
560 		if (waitchan)
561 			wakeup(waitchan);
562 		msleep_spin(alq, &alq->aq_mtx, "alqwnres", 0);
563 		alq->aq_waiters--;
564 
565 		/*
566 		 * If we're the first thread to wake after an AQ_WANTED wakeup
567 		 * but there isn't enough free space for us, we're going to loop
568 		 * and sleep again. If there are other threads waiting in this
569 		 * loop, schedule a wakeup so that they can see if the space
570 		 * they require is available.
571 		 */
572 		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
573 		    alq->aq_freebytes < len && !(alq->aq_flags & AQ_WANTED))
574 			waitchan = alq;
575 		else
576 			waitchan = NULL;
577 	}
578 
579 	/*
580 	 * If there are waiters, we need to signal the waiting threads after we
581 	 * complete our work. The alq ptr is used as a wait channel for threads
582 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
583 	 * are not allowed to concurrently compete for resources in the above
584 	 * while loop, so we use a different wait channel in this case.
585 	 */
586 	if (alq->aq_waiters > 0) {
587 		if (alq->aq_flags & AQ_ORDERED)
588 			waitchan = &alq->aq_waiters;
589 		else
590 			waitchan = alq;
591 	} else
592 		waitchan = NULL;
593 
594 	/* Bail if we're shutting down. */
595 	if (alq->aq_flags & AQ_SHUTDOWN) {
596 		ret = EWOULDBLOCK;
597 		goto unlock;
598 	}
599 
600 	/*
601 	 * If we need to wrap the buffer to accommodate the write,
602 	 * we'll need 2 calls to bcopy.
603 	 */
604 	if ((alq->aq_buflen - alq->aq_writehead) < len)
605 		copy = alq->aq_buflen - alq->aq_writehead;
606 
607 	/* Copy message (or part thereof if wrap required) to the buffer. */
608 	bcopy(data, alq->aq_entbuf + alq->aq_writehead, copy);
609 	alq->aq_writehead += copy;
610 
611 	if (alq->aq_writehead >= alq->aq_buflen) {
612 		KASSERT((alq->aq_writehead == alq->aq_buflen),
613 		    ("%s: alq->aq_writehead (%d) > alq->aq_buflen (%d)",
614 		    __func__,
615 		    alq->aq_writehead,
616 		    alq->aq_buflen));
617 		alq->aq_writehead = 0;
618 	}
619 
620 	if (copy != len) {
621 		/*
622 		 * Wrap the buffer by copying the remainder of our message
623 		 * to the start of the buffer and resetting aq_writehead.
624 		 */
625 		bcopy(((uint8_t *)data)+copy, alq->aq_entbuf, len - copy);
626 		alq->aq_writehead = len - copy;
627 	}
628 
629 	KASSERT((alq->aq_writehead >= 0 && alq->aq_writehead < alq->aq_buflen),
630 	    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", __func__));
631 
632 	alq->aq_freebytes -= len;
633 
634 	if (!(alq->aq_flags & AQ_ACTIVE) && !(flags & ALQ_NOACTIVATE)) {
635 		alq->aq_flags |= AQ_ACTIVE;
636 		activate = 1;
637 	}
638 
639 	KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
640 
641 unlock:
642 	ALQ_UNLOCK(alq);
643 
644 	if (activate) {
645 		ALD_LOCK();
646 		ald_activate(alq);
647 		ALD_UNLOCK();
648 	}
649 
650 	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
651 	if (waitchan != NULL)
652 		wakeup_one(waitchan);
653 
654 	return (ret);
655 }
656 
657 int
658 alq_write(struct alq *alq, void *data, int flags)
659 {
660 	/* Should only be called in fixed length message (legacy) mode. */
661 	KASSERT((alq->aq_flags & AQ_LEGACY),
662 	    ("%s: fixed length write on variable length queue", __func__));
663 	return (alq_writen(alq, data, alq->aq_entlen, flags));
664 }
665 
666 /*
667  * Retrieve a pointer for the ALQ to write directly into, avoiding bcopy.
668  */
669 struct ale *
670 alq_getn(struct alq *alq, int len, int flags)
671 {
672 	int contigbytes;
673 	void *waitchan;
674 
675 	KASSERT((len > 0 && len <= alq->aq_buflen),
676 	    ("%s: len <= 0 || len > alq->aq_buflen", __func__));
677 
678 	waitchan = NULL;
679 
680 	ALQ_LOCK(alq);
681 
682 	/*
683 	 * Determine the number of free contiguous bytes.
684 	 * We ensure elsewhere that if aq_writehead == aq_writetail because
685 	 * the buffer is empty, they will both be set to 0 and therefore
686 	 * aq_freebytes == aq_buflen and is fully contiguous.
687 	 * If they are equal and the buffer is not empty, aq_freebytes will
688 	 * be 0 indicating the buffer is full.
689 	 */
690 	if (alq->aq_writehead <= alq->aq_writetail)
691 		contigbytes = alq->aq_freebytes;
692 	else {
693 		contigbytes = alq->aq_buflen - alq->aq_writehead;
694 
695 		if (contigbytes < len) {
696 			/*
697 			 * Insufficient space at end of buffer to handle a
698 			 * contiguous write. Wrap early if there's space at
699 			 * the beginning. This will leave a hole at the end
700 			 * of the buffer which we will have to skip over when
701 			 * flushing the buffer to disk.
702 			 */
703 			if (alq->aq_writetail >= len || flags & ALQ_WAITOK) {
704 				/* Keep track of # bytes left blank. */
705 				alq->aq_wrapearly = contigbytes;
706 				/* Do the wrap and adjust counters. */
707 				contigbytes = alq->aq_freebytes =
708 				    alq->aq_writetail;
709 				alq->aq_writehead = 0;
710 			}
711 		}
712 	}
713 
714 	/*
715 	 * Return a NULL ALE if:
716 	 * - The message is larger than our underlying buffer.
717 	 * - The ALQ is being shutdown.
718 	 * - There is insufficient free space in our underlying buffer
719 	 *   to accept the message and the user can't wait for space.
720 	 * - There is insufficient free space in our underlying buffer
721 	 *   to accept the message and the alq is inactive due to prior
722 	 *   use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
723 	 */
724 	if (len > alq->aq_buflen ||
725 	    alq->aq_flags & AQ_SHUTDOWN ||
726 	    (((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
727 	    HAS_PENDING_DATA(alq))) && contigbytes < len)) {
728 		ALQ_UNLOCK(alq);
729 		return (NULL);
730 	}
731 
732 	/*
733 	 * If we want ordered writes and there is already at least one thread
734 	 * waiting for resources to become available, sleep until we're woken.
735 	 */
736 	if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
737 		KASSERT(!(flags & ALQ_NOWAIT),
738 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
739 		alq->aq_waiters++;
740 		msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqgnord", 0);
741 		alq->aq_waiters--;
742 	}
743 
744 	/*
745 	 * (ALQ_WAITOK && contigbytes < len) or contigbytes >= len, either enter
746 	 * while loop and sleep until we have enough contiguous free bytes
747 	 * (former) or skip (latter). If AQ_ORDERED is set, only 1 thread at a
748 	 * time will be in this loop. Otherwise, multiple threads may be
749 	 * sleeping here competing for ALQ resources.
750 	 */
751 	while (contigbytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
752 		KASSERT(!(flags & ALQ_NOWAIT),
753 		    ("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
754 		alq->aq_flags |= AQ_WANTED;
755 		alq->aq_waiters++;
756 		if (waitchan)
757 			wakeup(waitchan);
758 		msleep_spin(alq, &alq->aq_mtx, "alqgnres", 0);
759 		alq->aq_waiters--;
760 
761 		if (alq->aq_writehead <= alq->aq_writetail)
762 			contigbytes = alq->aq_freebytes;
763 		else
764 			contigbytes = alq->aq_buflen - alq->aq_writehead;
765 
766 		/*
767 		 * If we're the first thread to wake after an AQ_WANTED wakeup
768 		 * but there isn't enough free space for us, we're going to loop
769 		 * and sleep again. If there are other threads waiting in this
770 		 * loop, schedule a wakeup so that they can see if the space
771 		 * they require is available.
772 		 */
773 		if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
774 		    contigbytes < len && !(alq->aq_flags & AQ_WANTED))
775 			waitchan = alq;
776 		else
777 			waitchan = NULL;
778 	}
779 
780 	/*
781 	 * If there are waiters, we need to signal the waiting threads after we
782 	 * complete our work. The alq ptr is used as a wait channel for threads
783 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
784 	 * are not allowed to concurrently compete for resources in the above
785 	 * while loop, so we use a different wait channel in this case.
786 	 */
787 	if (alq->aq_waiters > 0) {
788 		if (alq->aq_flags & AQ_ORDERED)
789 			waitchan = &alq->aq_waiters;
790 		else
791 			waitchan = alq;
792 	} else
793 		waitchan = NULL;
794 
795 	/* Bail if we're shutting down. */
796 	if (alq->aq_flags & AQ_SHUTDOWN) {
797 		ALQ_UNLOCK(alq);
798 		if (waitchan != NULL)
799 			wakeup_one(waitchan);
800 		return (NULL);
801 	}
802 
803 	/*
804 	 * If we are here, we have a contiguous number of bytes >= len
805 	 * available in our buffer starting at aq_writehead.
806 	 */
807 	alq->aq_getpost.ae_data = alq->aq_entbuf + alq->aq_writehead;
808 	alq->aq_getpost.ae_bytesused = len;
809 
810 	return (&alq->aq_getpost);
811 }
812 
813 struct ale *
814 alq_get(struct alq *alq, int flags)
815 {
816 	/* Should only be called in fixed length message (legacy) mode. */
817 	KASSERT((alq->aq_flags & AQ_LEGACY),
818 	    ("%s: fixed length get on variable length queue", __func__));
819 	return (alq_getn(alq, alq->aq_entlen, flags));
820 }
821 
822 void
823 alq_post_flags(struct alq *alq, struct ale *ale, int flags)
824 {
825 	int activate;
826 	void *waitchan;
827 
828 	activate = 0;
829 
830 	if (ale->ae_bytesused > 0) {
831 		if (!(alq->aq_flags & AQ_ACTIVE) &&
832 		    !(flags & ALQ_NOACTIVATE)) {
833 			alq->aq_flags |= AQ_ACTIVE;
834 			activate = 1;
835 		}
836 
837 		alq->aq_writehead += ale->ae_bytesused;
838 		alq->aq_freebytes -= ale->ae_bytesused;
839 
840 		/* Wrap aq_writehead if we filled to the end of the buffer. */
841 		if (alq->aq_writehead == alq->aq_buflen)
842 			alq->aq_writehead = 0;
843 
844 		KASSERT((alq->aq_writehead >= 0 &&
845 		    alq->aq_writehead < alq->aq_buflen),
846 		    ("%s: aq_writehead < 0 || aq_writehead >= aq_buflen",
847 		    __func__));
848 
849 		KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
850 	}
851 
852 	/*
853 	 * If there are waiters, we need to signal the waiting threads after we
854 	 * complete our work. The alq ptr is used as a wait channel for threads
855 	 * requiring resources to be freed up. In the AQ_ORDERED case, threads
856 	 * are not allowed to concurrently compete for resources in the
857 	 * alq_getn() while loop, so we use a different wait channel in this case.
858 	 */
859 	if (alq->aq_waiters > 0) {
860 		if (alq->aq_flags & AQ_ORDERED)
861 			waitchan = &alq->aq_waiters;
862 		else
863 			waitchan = alq;
864 	} else
865 		waitchan = NULL;
866 
867 	ALQ_UNLOCK(alq);
868 
869 	if (activate) {
870 		ALD_LOCK();
871 		ald_activate(alq);
872 		ALD_UNLOCK();
873 	}
874 
875 	/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
876 	if (waitchan != NULL)
877 		wakeup_one(waitchan);
878 }
879 
880 void
881 alq_flush(struct alq *alq)
882 {
883 	int needwakeup = 0;
884 
885 	ALD_LOCK();
886 	ALQ_LOCK(alq);
887 
888 	/*
889 	 * Pull the lever iff there is data to flush and we're
890 	 * not already in the middle of a flush operation.
891 	 */
892 	if (HAS_PENDING_DATA(alq) && !(alq->aq_flags & AQ_FLUSHING)) {
893 		if (alq->aq_flags & AQ_ACTIVE)
894 			ald_deactivate(alq);
895 
896 		ALD_UNLOCK();
897 		needwakeup = alq_doio(alq);
898 	} else
899 		ALD_UNLOCK();
900 
901 	ALQ_UNLOCK(alq);
902 
903 	if (needwakeup)
904 		wakeup_one(alq);
905 }
906 
907 /*
908  * Flush remaining data, close the file and free all resources.
909  */
910 void
911 alq_close(struct alq *alq)
912 {
913 	/* Only flush and destroy alq if not already shutting down. */
914 	if (ald_rem(alq) == 0)
915 		alq_destroy(alq);
916 }
917 
918 static int
919 alq_load_handler(module_t mod, int what, void *arg)
920 {
921 	int ret;
922 
923 	ret = 0;
924 
925 	switch (what) {
926 	case MOD_LOAD:
927 	case MOD_SHUTDOWN:
928 		break;
929 
930 	case MOD_QUIESCE:
931 		ALD_LOCK();
932 		/* Only allow unload if there are no open queues. */
933 		if (LIST_FIRST(&ald_queues) == NULL) {
934 			ald_shutingdown = 1;
935 			ALD_UNLOCK();
936 			EVENTHANDLER_DEREGISTER(shutdown_pre_sync,
937 			    alq_eventhandler_tag);
938 			ald_shutdown(NULL, 0);
939 			mtx_destroy(&ald_mtx);
940 		} else {
941 			ALD_UNLOCK();
942 			ret = EBUSY;
943 		}
944 		break;
945 
946 	case MOD_UNLOAD:
947 		/* If MOD_QUIESCE failed we must fail here too. */
948 		if (ald_shutingdown == 0)
949 			ret = EBUSY;
950 		break;
951 
952 	default:
953 		ret = EINVAL;
954 		break;
955 	}
956 
957 	return (ret);
958 }
959 
960 static moduledata_t alq_mod =
961 {
962 	"alq",
963 	alq_load_handler,
964 	NULL
965 };
966 
967 DECLARE_MODULE(alq, alq_mod, SI_SUB_LAST, SI_ORDER_ANY);
968 MODULE_VERSION(alq, 1);
969