1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/reg.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static bool __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 102 uint32_t *fctl0); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 107 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 ""); 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 139 static int 140 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 141 { 142 u_long val; 143 int error; 144 145 val = __elfN(pie_base); 146 error = sysctl_handle_long(oidp, &val, 0, req); 147 if (error != 0 || req->newptr == NULL) 148 return (error); 149 if ((val & PAGE_MASK) != 0) 150 return (EINVAL); 151 __elfN(pie_base) = val; 152 return (0); 153 } 154 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 155 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 156 sysctl_pie_base, "LU", 157 "PIE load base without randomization"); 158 159 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 160 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 161 ""); 162 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 163 164 /* 165 * While for 64-bit machines ASLR works properly, there are 166 * still some problems when using 32-bit architectures. For this 167 * reason ASLR is only enabled by default when running native 168 * 64-bit non-PIE executables. 169 */ 170 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 171 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 172 &__elfN(aslr_enabled), 0, 173 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 174 ": enable address map randomization"); 175 176 /* 177 * Enable ASLR only for 64-bit PIE binaries by default. 178 */ 179 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 180 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 181 &__elfN(pie_aslr_enabled), 0, 182 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 183 ": enable address map randomization for PIE binaries"); 184 185 /* 186 * Sbrk is now deprecated and it can be assumed, that in most 187 * cases it will not be used anyway. This setting is valid only 188 * for the ASLR enabled and allows for utilizing the bss grow region. 189 */ 190 static int __elfN(aslr_honor_sbrk) = 0; 191 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 192 &__elfN(aslr_honor_sbrk), 0, 193 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 194 195 static int __elfN(aslr_stack_gap) = 3; 196 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 197 &__elfN(aslr_stack_gap), 0, 198 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 199 ": maximum percentage of main stack to waste on a random gap"); 200 201 static int __elfN(sigfastblock) = 1; 202 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 203 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 204 "enable sigfastblock for new processes"); 205 206 static bool __elfN(allow_wx) = true; 207 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 208 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 209 "Allow pages to be mapped simultaneously writable and executable"); 210 211 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 212 213 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 214 215 Elf_Brandnote __elfN(freebsd_brandnote) = { 216 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 217 .hdr.n_descsz = sizeof(int32_t), 218 .hdr.n_type = NT_FREEBSD_ABI_TAG, 219 .vendor = FREEBSD_ABI_VENDOR, 220 .flags = BN_TRANSLATE_OSREL, 221 .trans_osrel = __elfN(freebsd_trans_osrel) 222 }; 223 224 static bool 225 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 226 { 227 uintptr_t p; 228 229 p = (uintptr_t)(note + 1); 230 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 231 *osrel = *(const int32_t *)(p); 232 233 return (true); 234 } 235 236 static const char GNU_ABI_VENDOR[] = "GNU"; 237 static int GNU_KFREEBSD_ABI_DESC = 3; 238 239 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 240 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 241 .hdr.n_descsz = 16, /* XXX at least 16 */ 242 .hdr.n_type = 1, 243 .vendor = GNU_ABI_VENDOR, 244 .flags = BN_TRANSLATE_OSREL, 245 .trans_osrel = kfreebsd_trans_osrel 246 }; 247 248 static bool 249 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 250 { 251 const Elf32_Word *desc; 252 uintptr_t p; 253 254 p = (uintptr_t)(note + 1); 255 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 256 257 desc = (const Elf32_Word *)p; 258 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 259 return (false); 260 261 /* 262 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 263 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 264 */ 265 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 266 267 return (true); 268 } 269 270 int 271 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 272 { 273 int i; 274 275 for (i = 0; i < MAX_BRANDS; i++) { 276 if (elf_brand_list[i] == NULL) { 277 elf_brand_list[i] = entry; 278 break; 279 } 280 } 281 if (i == MAX_BRANDS) { 282 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 283 __func__, entry); 284 return (-1); 285 } 286 return (0); 287 } 288 289 int 290 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 291 { 292 int i; 293 294 for (i = 0; i < MAX_BRANDS; i++) { 295 if (elf_brand_list[i] == entry) { 296 elf_brand_list[i] = NULL; 297 break; 298 } 299 } 300 if (i == MAX_BRANDS) 301 return (-1); 302 return (0); 303 } 304 305 bool 306 __elfN(brand_inuse)(Elf_Brandinfo *entry) 307 { 308 struct proc *p; 309 bool rval = false; 310 311 sx_slock(&allproc_lock); 312 FOREACH_PROC_IN_SYSTEM(p) { 313 if (p->p_sysent == entry->sysvec) { 314 rval = true; 315 break; 316 } 317 } 318 sx_sunlock(&allproc_lock); 319 320 return (rval); 321 } 322 323 static Elf_Brandinfo * 324 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 325 int32_t *osrel, uint32_t *fctl0) 326 { 327 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 328 Elf_Brandinfo *bi, *bi_m; 329 bool ret, has_fctl0; 330 int i, interp_name_len; 331 332 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 333 334 /* 335 * We support four types of branding -- (1) the ELF EI_OSABI field 336 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 337 * branding w/in the ELF header, (3) path of the `interp_path' 338 * field, and (4) the ".note.ABI-tag" ELF section. 339 */ 340 341 /* Look for an ".note.ABI-tag" ELF section */ 342 bi_m = NULL; 343 for (i = 0; i < MAX_BRANDS; i++) { 344 bi = elf_brand_list[i]; 345 if (bi == NULL) 346 continue; 347 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 348 continue; 349 if (hdr->e_machine == bi->machine && (bi->flags & 350 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 351 has_fctl0 = false; 352 *fctl0 = 0; 353 *osrel = 0; 354 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 355 &has_fctl0, fctl0); 356 /* Give brand a chance to veto check_note's guess */ 357 if (ret && bi->header_supported) { 358 ret = bi->header_supported(imgp, osrel, 359 has_fctl0 ? fctl0 : NULL); 360 } 361 /* 362 * If note checker claimed the binary, but the 363 * interpreter path in the image does not 364 * match default one for the brand, try to 365 * search for other brands with the same 366 * interpreter. Either there is better brand 367 * with the right interpreter, or, failing 368 * this, we return first brand which accepted 369 * our note and, optionally, header. 370 */ 371 if (ret && bi_m == NULL && interp != NULL && 372 (bi->interp_path == NULL || 373 (strlen(bi->interp_path) + 1 != interp_name_len || 374 strncmp(interp, bi->interp_path, interp_name_len) 375 != 0))) { 376 bi_m = bi; 377 ret = 0; 378 } 379 if (ret) 380 return (bi); 381 } 382 } 383 if (bi_m != NULL) 384 return (bi_m); 385 386 /* If the executable has a brand, search for it in the brand list. */ 387 for (i = 0; i < MAX_BRANDS; i++) { 388 bi = elf_brand_list[i]; 389 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 390 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 391 continue; 392 if (hdr->e_machine == bi->machine && 393 (hdr->e_ident[EI_OSABI] == bi->brand || 394 (bi->compat_3_brand != NULL && 395 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 396 bi->compat_3_brand) == 0))) { 397 /* Looks good, but give brand a chance to veto */ 398 if (bi->header_supported == NULL || 399 bi->header_supported(imgp, NULL, NULL)) { 400 /* 401 * Again, prefer strictly matching 402 * interpreter path. 403 */ 404 if (interp_name_len == 0 && 405 bi->interp_path == NULL) 406 return (bi); 407 if (bi->interp_path != NULL && 408 strlen(bi->interp_path) + 1 == 409 interp_name_len && strncmp(interp, 410 bi->interp_path, interp_name_len) == 0) 411 return (bi); 412 if (bi_m == NULL) 413 bi_m = bi; 414 } 415 } 416 } 417 if (bi_m != NULL) 418 return (bi_m); 419 420 /* No known brand, see if the header is recognized by any brand */ 421 for (i = 0; i < MAX_BRANDS; i++) { 422 bi = elf_brand_list[i]; 423 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 424 bi->header_supported == NULL) 425 continue; 426 if (hdr->e_machine == bi->machine) { 427 ret = bi->header_supported(imgp, NULL, NULL); 428 if (ret) 429 return (bi); 430 } 431 } 432 433 /* Lacking a known brand, search for a recognized interpreter. */ 434 if (interp != NULL) { 435 for (i = 0; i < MAX_BRANDS; i++) { 436 bi = elf_brand_list[i]; 437 if (bi == NULL || (bi->flags & 438 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 439 != 0) 440 continue; 441 if (hdr->e_machine == bi->machine && 442 bi->interp_path != NULL && 443 /* ELF image p_filesz includes terminating zero */ 444 strlen(bi->interp_path) + 1 == interp_name_len && 445 strncmp(interp, bi->interp_path, interp_name_len) 446 == 0 && (bi->header_supported == NULL || 447 bi->header_supported(imgp, NULL, NULL))) 448 return (bi); 449 } 450 } 451 452 /* Lacking a recognized interpreter, try the default brand */ 453 for (i = 0; i < MAX_BRANDS; i++) { 454 bi = elf_brand_list[i]; 455 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 456 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 457 continue; 458 if (hdr->e_machine == bi->machine && 459 __elfN(fallback_brand) == bi->brand && 460 (bi->header_supported == NULL || 461 bi->header_supported(imgp, NULL, NULL))) 462 return (bi); 463 } 464 return (NULL); 465 } 466 467 static bool 468 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 469 { 470 return (hdr->e_phoff <= PAGE_SIZE && 471 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 472 } 473 474 static int 475 __elfN(check_header)(const Elf_Ehdr *hdr) 476 { 477 Elf_Brandinfo *bi; 478 int i; 479 480 if (!IS_ELF(*hdr) || 481 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 482 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 483 hdr->e_ident[EI_VERSION] != EV_CURRENT || 484 hdr->e_phentsize != sizeof(Elf_Phdr) || 485 hdr->e_version != ELF_TARG_VER) 486 return (ENOEXEC); 487 488 /* 489 * Make sure we have at least one brand for this machine. 490 */ 491 492 for (i = 0; i < MAX_BRANDS; i++) { 493 bi = elf_brand_list[i]; 494 if (bi != NULL && bi->machine == hdr->e_machine) 495 break; 496 } 497 if (i == MAX_BRANDS) 498 return (ENOEXEC); 499 500 return (0); 501 } 502 503 static int 504 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 505 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 506 { 507 struct sf_buf *sf; 508 int error; 509 vm_offset_t off; 510 511 /* 512 * Create the page if it doesn't exist yet. Ignore errors. 513 */ 514 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 515 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 516 517 /* 518 * Find the page from the underlying object. 519 */ 520 if (object != NULL) { 521 sf = vm_imgact_map_page(object, offset); 522 if (sf == NULL) 523 return (KERN_FAILURE); 524 off = offset - trunc_page(offset); 525 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 526 end - start); 527 vm_imgact_unmap_page(sf); 528 if (error != 0) 529 return (KERN_FAILURE); 530 } 531 532 return (KERN_SUCCESS); 533 } 534 535 static int 536 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 537 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 538 int cow) 539 { 540 struct sf_buf *sf; 541 vm_offset_t off; 542 vm_size_t sz; 543 int error, locked, rv; 544 545 if (start != trunc_page(start)) { 546 rv = __elfN(map_partial)(map, object, offset, start, 547 round_page(start), prot); 548 if (rv != KERN_SUCCESS) 549 return (rv); 550 offset += round_page(start) - start; 551 start = round_page(start); 552 } 553 if (end != round_page(end)) { 554 rv = __elfN(map_partial)(map, object, offset + 555 trunc_page(end) - start, trunc_page(end), end, prot); 556 if (rv != KERN_SUCCESS) 557 return (rv); 558 end = trunc_page(end); 559 } 560 if (start >= end) 561 return (KERN_SUCCESS); 562 if ((offset & PAGE_MASK) != 0) { 563 /* 564 * The mapping is not page aligned. This means that we have 565 * to copy the data. 566 */ 567 rv = vm_map_fixed(map, NULL, 0, start, end - start, 568 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 569 if (rv != KERN_SUCCESS) 570 return (rv); 571 if (object == NULL) 572 return (KERN_SUCCESS); 573 for (; start < end; start += sz) { 574 sf = vm_imgact_map_page(object, offset); 575 if (sf == NULL) 576 return (KERN_FAILURE); 577 off = offset - trunc_page(offset); 578 sz = end - start; 579 if (sz > PAGE_SIZE - off) 580 sz = PAGE_SIZE - off; 581 error = copyout((caddr_t)sf_buf_kva(sf) + off, 582 (caddr_t)start, sz); 583 vm_imgact_unmap_page(sf); 584 if (error != 0) 585 return (KERN_FAILURE); 586 offset += sz; 587 } 588 } else { 589 vm_object_reference(object); 590 rv = vm_map_fixed(map, object, offset, start, end - start, 591 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 592 (object != NULL ? MAP_VN_EXEC : 0)); 593 if (rv != KERN_SUCCESS) { 594 locked = VOP_ISLOCKED(imgp->vp); 595 VOP_UNLOCK(imgp->vp); 596 vm_object_deallocate(object); 597 vn_lock(imgp->vp, locked | LK_RETRY); 598 return (rv); 599 } else if (object != NULL) { 600 MPASS(imgp->vp->v_object == object); 601 VOP_SET_TEXT_CHECKED(imgp->vp); 602 } 603 } 604 return (KERN_SUCCESS); 605 } 606 607 static int 608 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 609 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 610 { 611 struct sf_buf *sf; 612 size_t map_len; 613 vm_map_t map; 614 vm_object_t object; 615 vm_offset_t map_addr; 616 int error, rv, cow; 617 size_t copy_len; 618 vm_ooffset_t file_addr; 619 620 /* 621 * It's necessary to fail if the filsz + offset taken from the 622 * header is greater than the actual file pager object's size. 623 * If we were to allow this, then the vm_map_find() below would 624 * walk right off the end of the file object and into the ether. 625 * 626 * While I'm here, might as well check for something else that 627 * is invalid: filsz cannot be greater than memsz. 628 */ 629 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 630 filsz > memsz) { 631 uprintf("elf_load_section: truncated ELF file\n"); 632 return (ENOEXEC); 633 } 634 635 object = imgp->object; 636 map = &imgp->proc->p_vmspace->vm_map; 637 map_addr = trunc_page((vm_offset_t)vmaddr); 638 file_addr = trunc_page(offset); 639 640 /* 641 * We have two choices. We can either clear the data in the last page 642 * of an oversized mapping, or we can start the anon mapping a page 643 * early and copy the initialized data into that first page. We 644 * choose the second. 645 */ 646 if (filsz == 0) 647 map_len = 0; 648 else if (memsz > filsz) 649 map_len = trunc_page(offset + filsz) - file_addr; 650 else 651 map_len = round_page(offset + filsz) - file_addr; 652 653 if (map_len != 0) { 654 /* cow flags: don't dump readonly sections in core */ 655 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 656 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 657 658 rv = __elfN(map_insert)(imgp, map, object, file_addr, 659 map_addr, map_addr + map_len, prot, cow); 660 if (rv != KERN_SUCCESS) 661 return (EINVAL); 662 663 /* we can stop now if we've covered it all */ 664 if (memsz == filsz) 665 return (0); 666 } 667 668 /* 669 * We have to get the remaining bit of the file into the first part 670 * of the oversized map segment. This is normally because the .data 671 * segment in the file is extended to provide bss. It's a neat idea 672 * to try and save a page, but it's a pain in the behind to implement. 673 */ 674 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 675 filsz); 676 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 677 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 678 679 /* This had damn well better be true! */ 680 if (map_len != 0) { 681 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 682 map_addr + map_len, prot, 0); 683 if (rv != KERN_SUCCESS) 684 return (EINVAL); 685 } 686 687 if (copy_len != 0) { 688 sf = vm_imgact_map_page(object, offset + filsz); 689 if (sf == NULL) 690 return (EIO); 691 692 /* send the page fragment to user space */ 693 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 694 copy_len); 695 vm_imgact_unmap_page(sf); 696 if (error != 0) 697 return (error); 698 } 699 700 /* 701 * Remove write access to the page if it was only granted by map_insert 702 * to allow copyout. 703 */ 704 if ((prot & VM_PROT_WRITE) == 0) 705 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 706 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 707 708 return (0); 709 } 710 711 static int 712 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 713 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 714 { 715 vm_prot_t prot; 716 u_long base_addr; 717 bool first; 718 int error, i; 719 720 ASSERT_VOP_LOCKED(imgp->vp, __func__); 721 722 base_addr = 0; 723 first = true; 724 725 for (i = 0; i < hdr->e_phnum; i++) { 726 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 727 continue; 728 729 /* Loadable segment */ 730 prot = __elfN(trans_prot)(phdr[i].p_flags); 731 error = __elfN(load_section)(imgp, phdr[i].p_offset, 732 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 733 phdr[i].p_memsz, phdr[i].p_filesz, prot); 734 if (error != 0) 735 return (error); 736 737 /* 738 * Establish the base address if this is the first segment. 739 */ 740 if (first) { 741 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 742 first = false; 743 } 744 } 745 746 if (base_addrp != NULL) 747 *base_addrp = base_addr; 748 749 return (0); 750 } 751 752 /* 753 * Load the file "file" into memory. It may be either a shared object 754 * or an executable. 755 * 756 * The "addr" reference parameter is in/out. On entry, it specifies 757 * the address where a shared object should be loaded. If the file is 758 * an executable, this value is ignored. On exit, "addr" specifies 759 * where the file was actually loaded. 760 * 761 * The "entry" reference parameter is out only. On exit, it specifies 762 * the entry point for the loaded file. 763 */ 764 static int 765 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 766 u_long *entry) 767 { 768 struct { 769 struct nameidata nd; 770 struct vattr attr; 771 struct image_params image_params; 772 } *tempdata; 773 const Elf_Ehdr *hdr = NULL; 774 const Elf_Phdr *phdr = NULL; 775 struct nameidata *nd; 776 struct vattr *attr; 777 struct image_params *imgp; 778 u_long rbase; 779 u_long base_addr = 0; 780 int error; 781 782 #ifdef CAPABILITY_MODE 783 /* 784 * XXXJA: This check can go away once we are sufficiently confident 785 * that the checks in namei() are correct. 786 */ 787 if (IN_CAPABILITY_MODE(curthread)) 788 return (ECAPMODE); 789 #endif 790 791 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 792 nd = &tempdata->nd; 793 attr = &tempdata->attr; 794 imgp = &tempdata->image_params; 795 796 /* 797 * Initialize part of the common data 798 */ 799 imgp->proc = p; 800 imgp->attr = attr; 801 802 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 803 UIO_SYSSPACE, file, curthread); 804 if ((error = namei(nd)) != 0) { 805 nd->ni_vp = NULL; 806 goto fail; 807 } 808 NDFREE(nd, NDF_ONLY_PNBUF); 809 imgp->vp = nd->ni_vp; 810 811 /* 812 * Check permissions, modes, uid, etc on the file, and "open" it. 813 */ 814 error = exec_check_permissions(imgp); 815 if (error) 816 goto fail; 817 818 error = exec_map_first_page(imgp); 819 if (error) 820 goto fail; 821 822 imgp->object = nd->ni_vp->v_object; 823 824 hdr = (const Elf_Ehdr *)imgp->image_header; 825 if ((error = __elfN(check_header)(hdr)) != 0) 826 goto fail; 827 if (hdr->e_type == ET_DYN) 828 rbase = *addr; 829 else if (hdr->e_type == ET_EXEC) 830 rbase = 0; 831 else { 832 error = ENOEXEC; 833 goto fail; 834 } 835 836 /* Only support headers that fit within first page for now */ 837 if (!__elfN(phdr_in_zero_page)(hdr)) { 838 error = ENOEXEC; 839 goto fail; 840 } 841 842 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 843 if (!aligned(phdr, Elf_Addr)) { 844 error = ENOEXEC; 845 goto fail; 846 } 847 848 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 849 if (error != 0) 850 goto fail; 851 852 *addr = base_addr; 853 *entry = (unsigned long)hdr->e_entry + rbase; 854 855 fail: 856 if (imgp->firstpage) 857 exec_unmap_first_page(imgp); 858 859 if (nd->ni_vp) { 860 if (imgp->textset) 861 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 862 vput(nd->ni_vp); 863 } 864 free(tempdata, M_TEMP); 865 866 return (error); 867 } 868 869 static u_long 870 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 871 u_int align) 872 { 873 u_long rbase, res; 874 875 MPASS(vm_map_min(map) <= minv); 876 MPASS(maxv <= vm_map_max(map)); 877 MPASS(minv < maxv); 878 MPASS(minv + align < maxv); 879 arc4rand(&rbase, sizeof(rbase), 0); 880 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 881 res &= ~((u_long)align - 1); 882 if (res >= maxv) 883 res -= align; 884 KASSERT(res >= minv, 885 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 886 res, minv, maxv, rbase)); 887 KASSERT(res < maxv, 888 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 889 res, maxv, minv, rbase)); 890 return (res); 891 } 892 893 static int 894 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 895 const Elf_Phdr *phdr, u_long et_dyn_addr) 896 { 897 struct vmspace *vmspace; 898 const char *err_str; 899 u_long text_size, data_size, total_size, text_addr, data_addr; 900 u_long seg_size, seg_addr; 901 int i; 902 903 err_str = NULL; 904 text_size = data_size = total_size = text_addr = data_addr = 0; 905 906 for (i = 0; i < hdr->e_phnum; i++) { 907 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 908 continue; 909 910 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 911 seg_size = round_page(phdr[i].p_memsz + 912 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 913 914 /* 915 * Make the largest executable segment the official 916 * text segment and all others data. 917 * 918 * Note that obreak() assumes that data_addr + data_size == end 919 * of data load area, and the ELF file format expects segments 920 * to be sorted by address. If multiple data segments exist, 921 * the last one will be used. 922 */ 923 924 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 925 text_size = seg_size; 926 text_addr = seg_addr; 927 } else { 928 data_size = seg_size; 929 data_addr = seg_addr; 930 } 931 total_size += seg_size; 932 } 933 934 if (data_addr == 0 && data_size == 0) { 935 data_addr = text_addr; 936 data_size = text_size; 937 } 938 939 /* 940 * Check limits. It should be safe to check the 941 * limits after loading the segments since we do 942 * not actually fault in all the segments pages. 943 */ 944 PROC_LOCK(imgp->proc); 945 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 946 err_str = "Data segment size exceeds process limit"; 947 else if (text_size > maxtsiz) 948 err_str = "Text segment size exceeds system limit"; 949 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 950 err_str = "Total segment size exceeds process limit"; 951 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 952 err_str = "Data segment size exceeds resource limit"; 953 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 954 err_str = "Total segment size exceeds resource limit"; 955 PROC_UNLOCK(imgp->proc); 956 if (err_str != NULL) { 957 uprintf("%s\n", err_str); 958 return (ENOMEM); 959 } 960 961 vmspace = imgp->proc->p_vmspace; 962 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 963 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 964 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 965 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 966 967 return (0); 968 } 969 970 static int 971 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 972 char **interpp, bool *free_interpp) 973 { 974 struct thread *td; 975 char *interp; 976 int error, interp_name_len; 977 978 KASSERT(phdr->p_type == PT_INTERP, 979 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 980 ASSERT_VOP_LOCKED(imgp->vp, __func__); 981 982 td = curthread; 983 984 /* Path to interpreter */ 985 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 986 uprintf("Invalid PT_INTERP\n"); 987 return (ENOEXEC); 988 } 989 990 interp_name_len = phdr->p_filesz; 991 if (phdr->p_offset > PAGE_SIZE || 992 interp_name_len > PAGE_SIZE - phdr->p_offset) { 993 /* 994 * The vnode lock might be needed by the pagedaemon to 995 * clean pages owned by the vnode. Do not allow sleep 996 * waiting for memory with the vnode locked, instead 997 * try non-sleepable allocation first, and if it 998 * fails, go to the slow path were we drop the lock 999 * and do M_WAITOK. A text reference prevents 1000 * modifications to the vnode content. 1001 */ 1002 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1003 if (interp == NULL) { 1004 VOP_UNLOCK(imgp->vp); 1005 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1006 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1007 } 1008 1009 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1010 interp_name_len, phdr->p_offset, 1011 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1012 NOCRED, NULL, td); 1013 if (error != 0) { 1014 free(interp, M_TEMP); 1015 uprintf("i/o error PT_INTERP %d\n", error); 1016 return (error); 1017 } 1018 interp[interp_name_len] = '\0'; 1019 1020 *interpp = interp; 1021 *free_interpp = true; 1022 return (0); 1023 } 1024 1025 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1026 if (interp[interp_name_len - 1] != '\0') { 1027 uprintf("Invalid PT_INTERP\n"); 1028 return (ENOEXEC); 1029 } 1030 1031 *interpp = interp; 1032 *free_interpp = false; 1033 return (0); 1034 } 1035 1036 static int 1037 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1038 const char *interp, u_long *addr, u_long *entry) 1039 { 1040 char *path; 1041 int error; 1042 1043 if (brand_info->emul_path != NULL && 1044 brand_info->emul_path[0] != '\0') { 1045 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1046 snprintf(path, MAXPATHLEN, "%s%s", 1047 brand_info->emul_path, interp); 1048 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1049 free(path, M_TEMP); 1050 if (error == 0) 1051 return (0); 1052 } 1053 1054 if (brand_info->interp_newpath != NULL && 1055 (brand_info->interp_path == NULL || 1056 strcmp(interp, brand_info->interp_path) == 0)) { 1057 error = __elfN(load_file)(imgp->proc, 1058 brand_info->interp_newpath, addr, entry); 1059 if (error == 0) 1060 return (0); 1061 } 1062 1063 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1064 if (error == 0) 1065 return (0); 1066 1067 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1068 return (error); 1069 } 1070 1071 /* 1072 * Impossible et_dyn_addr initial value indicating that the real base 1073 * must be calculated later with some randomization applied. 1074 */ 1075 #define ET_DYN_ADDR_RAND 1 1076 1077 static int 1078 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1079 { 1080 struct thread *td; 1081 const Elf_Ehdr *hdr; 1082 const Elf_Phdr *phdr; 1083 Elf_Auxargs *elf_auxargs; 1084 struct vmspace *vmspace; 1085 vm_map_t map; 1086 char *interp; 1087 Elf_Brandinfo *brand_info; 1088 struct sysentvec *sv; 1089 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1090 u_long maxalign, mapsz, maxv, maxv1; 1091 uint32_t fctl0; 1092 int32_t osrel; 1093 bool free_interp; 1094 int error, i, n; 1095 1096 hdr = (const Elf_Ehdr *)imgp->image_header; 1097 1098 /* 1099 * Do we have a valid ELF header ? 1100 * 1101 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1102 * if particular brand doesn't support it. 1103 */ 1104 if (__elfN(check_header)(hdr) != 0 || 1105 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1106 return (-1); 1107 1108 /* 1109 * From here on down, we return an errno, not -1, as we've 1110 * detected an ELF file. 1111 */ 1112 1113 if (!__elfN(phdr_in_zero_page)(hdr)) { 1114 uprintf("Program headers not in the first page\n"); 1115 return (ENOEXEC); 1116 } 1117 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1118 if (!aligned(phdr, Elf_Addr)) { 1119 uprintf("Unaligned program headers\n"); 1120 return (ENOEXEC); 1121 } 1122 1123 n = error = 0; 1124 baddr = 0; 1125 osrel = 0; 1126 fctl0 = 0; 1127 entry = proghdr = 0; 1128 interp = NULL; 1129 free_interp = false; 1130 td = curthread; 1131 maxalign = PAGE_SIZE; 1132 mapsz = 0; 1133 1134 for (i = 0; i < hdr->e_phnum; i++) { 1135 switch (phdr[i].p_type) { 1136 case PT_LOAD: 1137 if (n == 0) 1138 baddr = phdr[i].p_vaddr; 1139 if (phdr[i].p_align > maxalign) 1140 maxalign = phdr[i].p_align; 1141 mapsz += phdr[i].p_memsz; 1142 n++; 1143 1144 /* 1145 * If this segment contains the program headers, 1146 * remember their virtual address for the AT_PHDR 1147 * aux entry. Static binaries don't usually include 1148 * a PT_PHDR entry. 1149 */ 1150 if (phdr[i].p_offset == 0 && 1151 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1152 <= phdr[i].p_filesz) 1153 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1154 break; 1155 case PT_INTERP: 1156 /* Path to interpreter */ 1157 if (interp != NULL) { 1158 uprintf("Multiple PT_INTERP headers\n"); 1159 error = ENOEXEC; 1160 goto ret; 1161 } 1162 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1163 &free_interp); 1164 if (error != 0) 1165 goto ret; 1166 break; 1167 case PT_GNU_STACK: 1168 if (__elfN(nxstack)) 1169 imgp->stack_prot = 1170 __elfN(trans_prot)(phdr[i].p_flags); 1171 imgp->stack_sz = phdr[i].p_memsz; 1172 break; 1173 case PT_PHDR: /* Program header table info */ 1174 proghdr = phdr[i].p_vaddr; 1175 break; 1176 } 1177 } 1178 1179 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1180 if (brand_info == NULL) { 1181 uprintf("ELF binary type \"%u\" not known.\n", 1182 hdr->e_ident[EI_OSABI]); 1183 error = ENOEXEC; 1184 goto ret; 1185 } 1186 sv = brand_info->sysvec; 1187 et_dyn_addr = 0; 1188 if (hdr->e_type == ET_DYN) { 1189 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1190 uprintf("Cannot execute shared object\n"); 1191 error = ENOEXEC; 1192 goto ret; 1193 } 1194 /* 1195 * Honour the base load address from the dso if it is 1196 * non-zero for some reason. 1197 */ 1198 if (baddr == 0) { 1199 if ((sv->sv_flags & SV_ASLR) == 0 || 1200 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1201 et_dyn_addr = __elfN(pie_base); 1202 else if ((__elfN(pie_aslr_enabled) && 1203 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1204 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1205 et_dyn_addr = ET_DYN_ADDR_RAND; 1206 else 1207 et_dyn_addr = __elfN(pie_base); 1208 } 1209 } 1210 1211 /* 1212 * Avoid a possible deadlock if the current address space is destroyed 1213 * and that address space maps the locked vnode. In the common case, 1214 * the locked vnode's v_usecount is decremented but remains greater 1215 * than zero. Consequently, the vnode lock is not needed by vrele(). 1216 * However, in cases where the vnode lock is external, such as nullfs, 1217 * v_usecount may become zero. 1218 * 1219 * The VV_TEXT flag prevents modifications to the executable while 1220 * the vnode is unlocked. 1221 */ 1222 VOP_UNLOCK(imgp->vp); 1223 1224 /* 1225 * Decide whether to enable randomization of user mappings. 1226 * First, reset user preferences for the setid binaries. 1227 * Then, account for the support of the randomization by the 1228 * ABI, by user preferences, and make special treatment for 1229 * PIE binaries. 1230 */ 1231 if (imgp->credential_setid) { 1232 PROC_LOCK(imgp->proc); 1233 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1234 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1235 PROC_UNLOCK(imgp->proc); 1236 } 1237 if ((sv->sv_flags & SV_ASLR) == 0 || 1238 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1239 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1240 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1241 ("et_dyn_addr == RAND and !ASLR")); 1242 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1243 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1244 et_dyn_addr == ET_DYN_ADDR_RAND) { 1245 imgp->map_flags |= MAP_ASLR; 1246 /* 1247 * If user does not care about sbrk, utilize the bss 1248 * grow region for mappings as well. We can select 1249 * the base for the image anywere and still not suffer 1250 * from the fragmentation. 1251 */ 1252 if (!__elfN(aslr_honor_sbrk) || 1253 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1254 imgp->map_flags |= MAP_ASLR_IGNSTART; 1255 } 1256 1257 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1258 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1259 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1260 imgp->map_flags |= MAP_WXORX; 1261 1262 error = exec_new_vmspace(imgp, sv); 1263 vmspace = imgp->proc->p_vmspace; 1264 map = &vmspace->vm_map; 1265 1266 imgp->proc->p_sysent = sv; 1267 imgp->proc->p_elf_brandinfo = brand_info; 1268 1269 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1270 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1271 KASSERT((map->flags & MAP_ASLR) != 0, 1272 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1273 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1274 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1275 /* reserve half of the address space to interpreter */ 1276 maxv / 2, 1UL << flsl(maxalign)); 1277 } 1278 1279 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1280 if (error != 0) 1281 goto ret; 1282 1283 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1284 if (error != 0) 1285 goto ret; 1286 1287 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1288 if (error != 0) 1289 goto ret; 1290 1291 entry = (u_long)hdr->e_entry + et_dyn_addr; 1292 1293 /* 1294 * We load the dynamic linker where a userland call 1295 * to mmap(0, ...) would put it. The rationale behind this 1296 * calculation is that it leaves room for the heap to grow to 1297 * its maximum allowed size. 1298 */ 1299 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1300 RLIMIT_DATA)); 1301 if ((map->flags & MAP_ASLR) != 0) { 1302 maxv1 = maxv / 2 + addr / 2; 1303 MPASS(maxv1 >= addr); /* No overflow */ 1304 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1305 (MAXPAGESIZES > 1 && pagesizes[1] != 0) ? 1306 pagesizes[1] : pagesizes[0]); 1307 } else { 1308 map->anon_loc = addr; 1309 } 1310 1311 imgp->entry_addr = entry; 1312 1313 if (interp != NULL) { 1314 VOP_UNLOCK(imgp->vp); 1315 if ((map->flags & MAP_ASLR) != 0) { 1316 /* Assume that interpreter fits into 1/4 of AS */ 1317 maxv1 = maxv / 2 + addr / 2; 1318 MPASS(maxv1 >= addr); /* No overflow */ 1319 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1320 maxv1, PAGE_SIZE); 1321 } 1322 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1323 &imgp->entry_addr); 1324 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1325 if (error != 0) 1326 goto ret; 1327 } else 1328 addr = et_dyn_addr; 1329 1330 /* 1331 * Construct auxargs table (used by the copyout_auxargs routine) 1332 */ 1333 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1334 if (elf_auxargs == NULL) { 1335 VOP_UNLOCK(imgp->vp); 1336 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1337 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1338 } 1339 elf_auxargs->execfd = -1; 1340 elf_auxargs->phdr = proghdr + et_dyn_addr; 1341 elf_auxargs->phent = hdr->e_phentsize; 1342 elf_auxargs->phnum = hdr->e_phnum; 1343 elf_auxargs->pagesz = PAGE_SIZE; 1344 elf_auxargs->base = addr; 1345 elf_auxargs->flags = 0; 1346 elf_auxargs->entry = entry; 1347 elf_auxargs->hdr_eflags = hdr->e_flags; 1348 1349 imgp->auxargs = elf_auxargs; 1350 imgp->interpreted = 0; 1351 imgp->reloc_base = addr; 1352 imgp->proc->p_osrel = osrel; 1353 imgp->proc->p_fctl0 = fctl0; 1354 imgp->proc->p_elf_flags = hdr->e_flags; 1355 1356 ret: 1357 if (free_interp) 1358 free(interp, M_TEMP); 1359 return (error); 1360 } 1361 1362 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1363 1364 int 1365 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1366 { 1367 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1368 Elf_Auxinfo *argarray, *pos; 1369 int error; 1370 1371 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1372 M_WAITOK | M_ZERO); 1373 1374 if (args->execfd != -1) 1375 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1376 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1377 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1378 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1379 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1380 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1381 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1382 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1383 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1384 if (imgp->execpathp != 0) 1385 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1386 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1387 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1388 if (imgp->canary != 0) { 1389 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1390 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1391 } 1392 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1393 if (imgp->pagesizes != 0) { 1394 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1395 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1396 } 1397 if (imgp->sysent->sv_timekeep_base != 0) { 1398 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1399 imgp->sysent->sv_timekeep_base); 1400 } 1401 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1402 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1403 imgp->sysent->sv_stackprot); 1404 if (imgp->sysent->sv_hwcap != NULL) 1405 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1406 if (imgp->sysent->sv_hwcap2 != NULL) 1407 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1408 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1409 ELF_BSDF_SIGFASTBLK : 0); 1410 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1411 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1412 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1413 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1414 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1415 if (imgp->sysent->sv_fxrng_gen_base != 0) 1416 AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base); 1417 AUXARGS_ENTRY(pos, AT_NULL, 0); 1418 1419 free(imgp->auxargs, M_TEMP); 1420 imgp->auxargs = NULL; 1421 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1422 1423 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1424 free(argarray, M_TEMP); 1425 return (error); 1426 } 1427 1428 int 1429 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1430 { 1431 Elf_Addr *base; 1432 1433 base = (Elf_Addr *)*stack_base; 1434 base--; 1435 if (elf_suword(base, imgp->args->argc) == -1) 1436 return (EFAULT); 1437 *stack_base = (uintptr_t)base; 1438 return (0); 1439 } 1440 1441 /* 1442 * Code for generating ELF core dumps. 1443 */ 1444 1445 typedef void (*segment_callback)(vm_map_entry_t, void *); 1446 1447 /* Closure for cb_put_phdr(). */ 1448 struct phdr_closure { 1449 Elf_Phdr *phdr; /* Program header to fill in */ 1450 Elf_Off offset; /* Offset of segment in core file */ 1451 }; 1452 1453 struct note_info { 1454 int type; /* Note type. */ 1455 outfunc_t outfunc; /* Output function. */ 1456 void *outarg; /* Argument for the output function. */ 1457 size_t outsize; /* Output size. */ 1458 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1459 }; 1460 1461 TAILQ_HEAD(note_info_list, note_info); 1462 1463 extern int compress_user_cores; 1464 extern int compress_user_cores_level; 1465 1466 static void cb_put_phdr(vm_map_entry_t, void *); 1467 static void cb_size_segment(vm_map_entry_t, void *); 1468 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1469 int); 1470 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1471 struct note_info_list *, size_t, int); 1472 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1473 1474 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1475 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1476 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1477 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1478 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1479 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1480 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1481 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1482 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1483 static void note_procstat_files(void *, struct sbuf *, size_t *); 1484 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1485 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1486 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1487 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1488 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1489 1490 static int 1491 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1492 { 1493 1494 return (core_write((struct coredump_params *)arg, base, len, offset, 1495 UIO_SYSSPACE, NULL)); 1496 } 1497 1498 int 1499 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1500 { 1501 struct ucred *cred = td->td_ucred; 1502 int compm, error = 0; 1503 struct sseg_closure seginfo; 1504 struct note_info_list notelst; 1505 struct coredump_params params; 1506 struct note_info *ninfo; 1507 void *hdr, *tmpbuf; 1508 size_t hdrsize, notesz, coresize; 1509 1510 hdr = NULL; 1511 tmpbuf = NULL; 1512 TAILQ_INIT(¬elst); 1513 1514 /* Size the program segments. */ 1515 __elfN(size_segments)(td, &seginfo, flags); 1516 1517 /* 1518 * Collect info about the core file header area. 1519 */ 1520 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1521 if (seginfo.count + 1 >= PN_XNUM) 1522 hdrsize += sizeof(Elf_Shdr); 1523 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1524 coresize = round_page(hdrsize + notesz) + seginfo.size; 1525 1526 /* Set up core dump parameters. */ 1527 params.offset = 0; 1528 params.active_cred = cred; 1529 params.file_cred = NOCRED; 1530 params.td = td; 1531 params.vp = vp; 1532 params.comp = NULL; 1533 1534 #ifdef RACCT 1535 if (racct_enable) { 1536 PROC_LOCK(td->td_proc); 1537 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1538 PROC_UNLOCK(td->td_proc); 1539 if (error != 0) { 1540 error = EFAULT; 1541 goto done; 1542 } 1543 } 1544 #endif 1545 if (coresize >= limit) { 1546 error = EFAULT; 1547 goto done; 1548 } 1549 1550 /* Create a compression stream if necessary. */ 1551 compm = compress_user_cores; 1552 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1553 compm == 0) 1554 compm = COMPRESS_GZIP; 1555 if (compm != 0) { 1556 params.comp = compressor_init(core_compressed_write, 1557 compm, CORE_BUF_SIZE, 1558 compress_user_cores_level, ¶ms); 1559 if (params.comp == NULL) { 1560 error = EFAULT; 1561 goto done; 1562 } 1563 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1564 } 1565 1566 /* 1567 * Allocate memory for building the header, fill it up, 1568 * and write it out following the notes. 1569 */ 1570 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1571 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1572 notesz, flags); 1573 1574 /* Write the contents of all of the writable segments. */ 1575 if (error == 0) { 1576 Elf_Phdr *php; 1577 off_t offset; 1578 int i; 1579 1580 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1581 offset = round_page(hdrsize + notesz); 1582 for (i = 0; i < seginfo.count; i++) { 1583 error = core_output((char *)(uintptr_t)php->p_vaddr, 1584 php->p_filesz, offset, ¶ms, tmpbuf); 1585 if (error != 0) 1586 break; 1587 offset += php->p_filesz; 1588 php++; 1589 } 1590 if (error == 0 && params.comp != NULL) 1591 error = compressor_flush(params.comp); 1592 } 1593 if (error) { 1594 log(LOG_WARNING, 1595 "Failed to write core file for process %s (error %d)\n", 1596 curproc->p_comm, error); 1597 } 1598 1599 done: 1600 free(tmpbuf, M_TEMP); 1601 if (params.comp != NULL) 1602 compressor_fini(params.comp); 1603 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1604 TAILQ_REMOVE(¬elst, ninfo, link); 1605 free(ninfo, M_TEMP); 1606 } 1607 if (hdr != NULL) 1608 free(hdr, M_TEMP); 1609 1610 return (error); 1611 } 1612 1613 /* 1614 * A callback for each_dumpable_segment() to write out the segment's 1615 * program header entry. 1616 */ 1617 static void 1618 cb_put_phdr(vm_map_entry_t entry, void *closure) 1619 { 1620 struct phdr_closure *phc = (struct phdr_closure *)closure; 1621 Elf_Phdr *phdr = phc->phdr; 1622 1623 phc->offset = round_page(phc->offset); 1624 1625 phdr->p_type = PT_LOAD; 1626 phdr->p_offset = phc->offset; 1627 phdr->p_vaddr = entry->start; 1628 phdr->p_paddr = 0; 1629 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1630 phdr->p_align = PAGE_SIZE; 1631 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1632 1633 phc->offset += phdr->p_filesz; 1634 phc->phdr++; 1635 } 1636 1637 /* 1638 * A callback for each_dumpable_segment() to gather information about 1639 * the number of segments and their total size. 1640 */ 1641 static void 1642 cb_size_segment(vm_map_entry_t entry, void *closure) 1643 { 1644 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1645 1646 ssc->count++; 1647 ssc->size += entry->end - entry->start; 1648 } 1649 1650 void 1651 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1652 int flags) 1653 { 1654 seginfo->count = 0; 1655 seginfo->size = 0; 1656 1657 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1658 } 1659 1660 /* 1661 * For each writable segment in the process's memory map, call the given 1662 * function with a pointer to the map entry and some arbitrary 1663 * caller-supplied data. 1664 */ 1665 static void 1666 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1667 int flags) 1668 { 1669 struct proc *p = td->td_proc; 1670 vm_map_t map = &p->p_vmspace->vm_map; 1671 vm_map_entry_t entry; 1672 vm_object_t backing_object, object; 1673 bool ignore_entry; 1674 1675 vm_map_lock_read(map); 1676 VM_MAP_ENTRY_FOREACH(entry, map) { 1677 /* 1678 * Don't dump inaccessible mappings, deal with legacy 1679 * coredump mode. 1680 * 1681 * Note that read-only segments related to the elf binary 1682 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1683 * need to arbitrarily ignore such segments. 1684 */ 1685 if ((flags & SVC_ALL) == 0) { 1686 if (elf_legacy_coredump) { 1687 if ((entry->protection & VM_PROT_RW) != 1688 VM_PROT_RW) 1689 continue; 1690 } else { 1691 if ((entry->protection & VM_PROT_ALL) == 0) 1692 continue; 1693 } 1694 } 1695 1696 /* 1697 * Dont include memory segment in the coredump if 1698 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1699 * madvise(2). Do not dump submaps (i.e. parts of the 1700 * kernel map). 1701 */ 1702 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1703 continue; 1704 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1705 (flags & SVC_ALL) == 0) 1706 continue; 1707 if ((object = entry->object.vm_object) == NULL) 1708 continue; 1709 1710 /* Ignore memory-mapped devices and such things. */ 1711 VM_OBJECT_RLOCK(object); 1712 while ((backing_object = object->backing_object) != NULL) { 1713 VM_OBJECT_RLOCK(backing_object); 1714 VM_OBJECT_RUNLOCK(object); 1715 object = backing_object; 1716 } 1717 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1718 VM_OBJECT_RUNLOCK(object); 1719 if (ignore_entry) 1720 continue; 1721 1722 (*func)(entry, closure); 1723 } 1724 vm_map_unlock_read(map); 1725 } 1726 1727 /* 1728 * Write the core file header to the file, including padding up to 1729 * the page boundary. 1730 */ 1731 static int 1732 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1733 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1734 int flags) 1735 { 1736 struct note_info *ninfo; 1737 struct sbuf *sb; 1738 int error; 1739 1740 /* Fill in the header. */ 1741 bzero(hdr, hdrsize); 1742 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1743 1744 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1745 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1746 sbuf_start_section(sb, NULL); 1747 sbuf_bcat(sb, hdr, hdrsize); 1748 TAILQ_FOREACH(ninfo, notelst, link) 1749 __elfN(putnote)(p->td, ninfo, sb); 1750 /* Align up to a page boundary for the program segments. */ 1751 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1752 error = sbuf_finish(sb); 1753 sbuf_delete(sb); 1754 1755 return (error); 1756 } 1757 1758 void 1759 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1760 size_t *sizep) 1761 { 1762 struct proc *p; 1763 struct thread *thr; 1764 size_t size; 1765 1766 p = td->td_proc; 1767 size = 0; 1768 1769 size += __elfN(register_note)(td, list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1770 1771 /* 1772 * To have the debugger select the right thread (LWP) as the initial 1773 * thread, we dump the state of the thread passed to us in td first. 1774 * This is the thread that causes the core dump and thus likely to 1775 * be the right thread one wants to have selected in the debugger. 1776 */ 1777 thr = td; 1778 while (thr != NULL) { 1779 size += __elfN(register_note)(td, list, NT_PRSTATUS, 1780 __elfN(note_prstatus), thr); 1781 size += __elfN(register_note)(td, list, NT_FPREGSET, 1782 __elfN(note_fpregset), thr); 1783 size += __elfN(register_note)(td, list, NT_THRMISC, 1784 __elfN(note_thrmisc), thr); 1785 size += __elfN(register_note)(td, list, NT_PTLWPINFO, 1786 __elfN(note_ptlwpinfo), thr); 1787 size += __elfN(register_note)(td, list, -1, 1788 __elfN(note_threadmd), thr); 1789 1790 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1791 TAILQ_NEXT(thr, td_plist); 1792 if (thr == td) 1793 thr = TAILQ_NEXT(thr, td_plist); 1794 } 1795 1796 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1797 __elfN(note_procstat_proc), p); 1798 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1799 note_procstat_files, p); 1800 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1801 note_procstat_vmmap, p); 1802 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1803 note_procstat_groups, p); 1804 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1805 note_procstat_umask, p); 1806 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1807 note_procstat_rlimit, p); 1808 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1809 note_procstat_osrel, p); 1810 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1811 __elfN(note_procstat_psstrings), p); 1812 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1813 __elfN(note_procstat_auxv), p); 1814 1815 *sizep = size; 1816 } 1817 1818 void 1819 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1820 size_t notesz, int flags) 1821 { 1822 Elf_Ehdr *ehdr; 1823 Elf_Phdr *phdr; 1824 Elf_Shdr *shdr; 1825 struct phdr_closure phc; 1826 Elf_Brandinfo *bi; 1827 1828 ehdr = (Elf_Ehdr *)hdr; 1829 bi = td->td_proc->p_elf_brandinfo; 1830 1831 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1832 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1833 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1834 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1835 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1836 ehdr->e_ident[EI_DATA] = ELF_DATA; 1837 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1838 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1839 ehdr->e_ident[EI_ABIVERSION] = 0; 1840 ehdr->e_ident[EI_PAD] = 0; 1841 ehdr->e_type = ET_CORE; 1842 ehdr->e_machine = bi->machine; 1843 ehdr->e_version = EV_CURRENT; 1844 ehdr->e_entry = 0; 1845 ehdr->e_phoff = sizeof(Elf_Ehdr); 1846 ehdr->e_flags = td->td_proc->p_elf_flags; 1847 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1848 ehdr->e_phentsize = sizeof(Elf_Phdr); 1849 ehdr->e_shentsize = sizeof(Elf_Shdr); 1850 ehdr->e_shstrndx = SHN_UNDEF; 1851 if (numsegs + 1 < PN_XNUM) { 1852 ehdr->e_phnum = numsegs + 1; 1853 ehdr->e_shnum = 0; 1854 } else { 1855 ehdr->e_phnum = PN_XNUM; 1856 ehdr->e_shnum = 1; 1857 1858 ehdr->e_shoff = ehdr->e_phoff + 1859 (numsegs + 1) * ehdr->e_phentsize; 1860 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1861 ("e_shoff: %zu, hdrsize - shdr: %zu", 1862 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1863 1864 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1865 memset(shdr, 0, sizeof(*shdr)); 1866 /* 1867 * A special first section is used to hold large segment and 1868 * section counts. This was proposed by Sun Microsystems in 1869 * Solaris and has been adopted by Linux; the standard ELF 1870 * tools are already familiar with the technique. 1871 * 1872 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1873 * (or 12-7 depending on the version of the document) for more 1874 * details. 1875 */ 1876 shdr->sh_type = SHT_NULL; 1877 shdr->sh_size = ehdr->e_shnum; 1878 shdr->sh_link = ehdr->e_shstrndx; 1879 shdr->sh_info = numsegs + 1; 1880 } 1881 1882 /* 1883 * Fill in the program header entries. 1884 */ 1885 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1886 1887 /* The note segement. */ 1888 phdr->p_type = PT_NOTE; 1889 phdr->p_offset = hdrsize; 1890 phdr->p_vaddr = 0; 1891 phdr->p_paddr = 0; 1892 phdr->p_filesz = notesz; 1893 phdr->p_memsz = 0; 1894 phdr->p_flags = PF_R; 1895 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1896 phdr++; 1897 1898 /* All the writable segments from the program. */ 1899 phc.phdr = phdr; 1900 phc.offset = round_page(hdrsize + notesz); 1901 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1902 } 1903 1904 size_t 1905 __elfN(register_note)(struct thread *td, struct note_info_list *list, 1906 int type, outfunc_t out, void *arg) 1907 { 1908 const struct sysentvec *sv; 1909 struct note_info *ninfo; 1910 size_t size, notesize; 1911 1912 sv = td->td_proc->p_sysent; 1913 size = 0; 1914 out(arg, NULL, &size); 1915 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1916 ninfo->type = type; 1917 ninfo->outfunc = out; 1918 ninfo->outarg = arg; 1919 ninfo->outsize = size; 1920 TAILQ_INSERT_TAIL(list, ninfo, link); 1921 1922 if (type == -1) 1923 return (size); 1924 1925 notesize = sizeof(Elf_Note) + /* note header */ 1926 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 1927 /* note name */ 1928 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1929 1930 return (notesize); 1931 } 1932 1933 static size_t 1934 append_note_data(const void *src, void *dst, size_t len) 1935 { 1936 size_t padded_len; 1937 1938 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1939 if (dst != NULL) { 1940 bcopy(src, dst, len); 1941 bzero((char *)dst + len, padded_len - len); 1942 } 1943 return (padded_len); 1944 } 1945 1946 size_t 1947 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1948 { 1949 Elf_Note *note; 1950 char *buf; 1951 size_t notesize; 1952 1953 buf = dst; 1954 if (buf != NULL) { 1955 note = (Elf_Note *)buf; 1956 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1957 note->n_descsz = size; 1958 note->n_type = type; 1959 buf += sizeof(*note); 1960 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1961 sizeof(FREEBSD_ABI_VENDOR)); 1962 append_note_data(src, buf, size); 1963 if (descp != NULL) 1964 *descp = buf; 1965 } 1966 1967 notesize = sizeof(Elf_Note) + /* note header */ 1968 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1969 /* note name */ 1970 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1971 1972 return (notesize); 1973 } 1974 1975 static void 1976 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 1977 { 1978 Elf_Note note; 1979 const struct sysentvec *sv; 1980 ssize_t old_len, sect_len; 1981 size_t new_len, descsz, i; 1982 1983 if (ninfo->type == -1) { 1984 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1985 return; 1986 } 1987 1988 sv = td->td_proc->p_sysent; 1989 1990 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 1991 note.n_descsz = ninfo->outsize; 1992 note.n_type = ninfo->type; 1993 1994 sbuf_bcat(sb, ¬e, sizeof(note)); 1995 sbuf_start_section(sb, &old_len); 1996 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 1997 strlen(sv->sv_elf_core_abi_vendor) + 1); 1998 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1999 if (note.n_descsz == 0) 2000 return; 2001 sbuf_start_section(sb, &old_len); 2002 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2003 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2004 if (sect_len < 0) 2005 return; 2006 2007 new_len = (size_t)sect_len; 2008 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2009 if (new_len < descsz) { 2010 /* 2011 * It is expected that individual note emitters will correctly 2012 * predict their expected output size and fill up to that size 2013 * themselves, padding in a format-specific way if needed. 2014 * However, in case they don't, just do it here with zeros. 2015 */ 2016 for (i = 0; i < descsz - new_len; i++) 2017 sbuf_putc(sb, 0); 2018 } else if (new_len > descsz) { 2019 /* 2020 * We can't always truncate sb -- we may have drained some 2021 * of it already. 2022 */ 2023 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2024 "read it (%zu > %zu). Since it is longer than " 2025 "expected, this coredump's notes are corrupt. THIS " 2026 "IS A BUG in the note_procstat routine for type %u.\n", 2027 __func__, (unsigned)note.n_type, new_len, descsz, 2028 (unsigned)note.n_type)); 2029 } 2030 } 2031 2032 /* 2033 * Miscellaneous note out functions. 2034 */ 2035 2036 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2037 #include <compat/freebsd32/freebsd32.h> 2038 #include <compat/freebsd32/freebsd32_signal.h> 2039 2040 typedef struct prstatus32 elf_prstatus_t; 2041 typedef struct prpsinfo32 elf_prpsinfo_t; 2042 typedef struct fpreg32 elf_prfpregset_t; 2043 typedef struct fpreg32 elf_fpregset_t; 2044 typedef struct reg32 elf_gregset_t; 2045 typedef struct thrmisc32 elf_thrmisc_t; 2046 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2047 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2048 typedef uint32_t elf_ps_strings_t; 2049 #else 2050 typedef prstatus_t elf_prstatus_t; 2051 typedef prpsinfo_t elf_prpsinfo_t; 2052 typedef prfpregset_t elf_prfpregset_t; 2053 typedef prfpregset_t elf_fpregset_t; 2054 typedef gregset_t elf_gregset_t; 2055 typedef thrmisc_t elf_thrmisc_t; 2056 #define ELF_KERN_PROC_MASK 0 2057 typedef struct kinfo_proc elf_kinfo_proc_t; 2058 typedef vm_offset_t elf_ps_strings_t; 2059 #endif 2060 2061 static void 2062 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2063 { 2064 struct sbuf sbarg; 2065 size_t len; 2066 char *cp, *end; 2067 struct proc *p; 2068 elf_prpsinfo_t *psinfo; 2069 int error; 2070 2071 p = arg; 2072 if (sb != NULL) { 2073 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2074 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2075 psinfo->pr_version = PRPSINFO_VERSION; 2076 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2077 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2078 PROC_LOCK(p); 2079 if (p->p_args != NULL) { 2080 len = sizeof(psinfo->pr_psargs) - 1; 2081 if (len > p->p_args->ar_length) 2082 len = p->p_args->ar_length; 2083 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2084 PROC_UNLOCK(p); 2085 error = 0; 2086 } else { 2087 _PHOLD(p); 2088 PROC_UNLOCK(p); 2089 sbuf_new(&sbarg, psinfo->pr_psargs, 2090 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2091 error = proc_getargv(curthread, p, &sbarg); 2092 PRELE(p); 2093 if (sbuf_finish(&sbarg) == 0) 2094 len = sbuf_len(&sbarg) - 1; 2095 else 2096 len = sizeof(psinfo->pr_psargs) - 1; 2097 sbuf_delete(&sbarg); 2098 } 2099 if (error || len == 0) 2100 strlcpy(psinfo->pr_psargs, p->p_comm, 2101 sizeof(psinfo->pr_psargs)); 2102 else { 2103 KASSERT(len < sizeof(psinfo->pr_psargs), 2104 ("len is too long: %zu vs %zu", len, 2105 sizeof(psinfo->pr_psargs))); 2106 cp = psinfo->pr_psargs; 2107 end = cp + len - 1; 2108 for (;;) { 2109 cp = memchr(cp, '\0', end - cp); 2110 if (cp == NULL) 2111 break; 2112 *cp = ' '; 2113 } 2114 } 2115 psinfo->pr_pid = p->p_pid; 2116 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2117 free(psinfo, M_TEMP); 2118 } 2119 *sizep = sizeof(*psinfo); 2120 } 2121 2122 static void 2123 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2124 { 2125 struct thread *td; 2126 elf_prstatus_t *status; 2127 2128 td = arg; 2129 if (sb != NULL) { 2130 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2131 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2132 status->pr_version = PRSTATUS_VERSION; 2133 status->pr_statussz = sizeof(elf_prstatus_t); 2134 status->pr_gregsetsz = sizeof(elf_gregset_t); 2135 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2136 status->pr_osreldate = osreldate; 2137 status->pr_cursig = td->td_proc->p_sig; 2138 status->pr_pid = td->td_tid; 2139 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2140 fill_regs32(td, &status->pr_reg); 2141 #else 2142 fill_regs(td, &status->pr_reg); 2143 #endif 2144 sbuf_bcat(sb, status, sizeof(*status)); 2145 free(status, M_TEMP); 2146 } 2147 *sizep = sizeof(*status); 2148 } 2149 2150 static void 2151 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2152 { 2153 struct thread *td; 2154 elf_prfpregset_t *fpregset; 2155 2156 td = arg; 2157 if (sb != NULL) { 2158 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2159 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2160 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2161 fill_fpregs32(td, fpregset); 2162 #else 2163 fill_fpregs(td, fpregset); 2164 #endif 2165 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2166 free(fpregset, M_TEMP); 2167 } 2168 *sizep = sizeof(*fpregset); 2169 } 2170 2171 static void 2172 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2173 { 2174 struct thread *td; 2175 elf_thrmisc_t thrmisc; 2176 2177 td = arg; 2178 if (sb != NULL) { 2179 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2180 bzero(&thrmisc, sizeof(thrmisc)); 2181 strcpy(thrmisc.pr_tname, td->td_name); 2182 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2183 } 2184 *sizep = sizeof(thrmisc); 2185 } 2186 2187 static void 2188 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2189 { 2190 struct thread *td; 2191 size_t size; 2192 int structsize; 2193 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2194 struct ptrace_lwpinfo32 pl; 2195 #else 2196 struct ptrace_lwpinfo pl; 2197 #endif 2198 2199 td = arg; 2200 size = sizeof(structsize) + sizeof(pl); 2201 if (sb != NULL) { 2202 KASSERT(*sizep == size, ("invalid size")); 2203 structsize = sizeof(pl); 2204 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2205 bzero(&pl, sizeof(pl)); 2206 pl.pl_lwpid = td->td_tid; 2207 pl.pl_event = PL_EVENT_NONE; 2208 pl.pl_sigmask = td->td_sigmask; 2209 pl.pl_siglist = td->td_siglist; 2210 if (td->td_si.si_signo != 0) { 2211 pl.pl_event = PL_EVENT_SIGNAL; 2212 pl.pl_flags |= PL_FLAG_SI; 2213 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2214 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2215 #else 2216 pl.pl_siginfo = td->td_si; 2217 #endif 2218 } 2219 strcpy(pl.pl_tdname, td->td_name); 2220 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2221 sbuf_bcat(sb, &pl, sizeof(pl)); 2222 } 2223 *sizep = size; 2224 } 2225 2226 /* 2227 * Allow for MD specific notes, as well as any MD 2228 * specific preparations for writing MI notes. 2229 */ 2230 static void 2231 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2232 { 2233 struct thread *td; 2234 void *buf; 2235 size_t size; 2236 2237 td = (struct thread *)arg; 2238 size = *sizep; 2239 if (size != 0 && sb != NULL) 2240 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2241 else 2242 buf = NULL; 2243 size = 0; 2244 __elfN(dump_thread)(td, buf, &size); 2245 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2246 if (size != 0 && sb != NULL) 2247 sbuf_bcat(sb, buf, size); 2248 free(buf, M_TEMP); 2249 *sizep = size; 2250 } 2251 2252 #ifdef KINFO_PROC_SIZE 2253 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2254 #endif 2255 2256 static void 2257 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2258 { 2259 struct proc *p; 2260 size_t size; 2261 int structsize; 2262 2263 p = arg; 2264 size = sizeof(structsize) + p->p_numthreads * 2265 sizeof(elf_kinfo_proc_t); 2266 2267 if (sb != NULL) { 2268 KASSERT(*sizep == size, ("invalid size")); 2269 structsize = sizeof(elf_kinfo_proc_t); 2270 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2271 sx_slock(&proctree_lock); 2272 PROC_LOCK(p); 2273 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2274 sx_sunlock(&proctree_lock); 2275 } 2276 *sizep = size; 2277 } 2278 2279 #ifdef KINFO_FILE_SIZE 2280 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2281 #endif 2282 2283 static void 2284 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2285 { 2286 struct proc *p; 2287 size_t size, sect_sz, i; 2288 ssize_t start_len, sect_len; 2289 int structsize, filedesc_flags; 2290 2291 if (coredump_pack_fileinfo) 2292 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2293 else 2294 filedesc_flags = 0; 2295 2296 p = arg; 2297 structsize = sizeof(struct kinfo_file); 2298 if (sb == NULL) { 2299 size = 0; 2300 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2301 sbuf_set_drain(sb, sbuf_count_drain, &size); 2302 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2303 PROC_LOCK(p); 2304 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2305 sbuf_finish(sb); 2306 sbuf_delete(sb); 2307 *sizep = size; 2308 } else { 2309 sbuf_start_section(sb, &start_len); 2310 2311 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2312 PROC_LOCK(p); 2313 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2314 filedesc_flags); 2315 2316 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2317 if (sect_len < 0) 2318 return; 2319 sect_sz = sect_len; 2320 2321 KASSERT(sect_sz <= *sizep, 2322 ("kern_proc_filedesc_out did not respect maxlen; " 2323 "requested %zu, got %zu", *sizep - sizeof(structsize), 2324 sect_sz - sizeof(structsize))); 2325 2326 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2327 sbuf_putc(sb, 0); 2328 } 2329 } 2330 2331 #ifdef KINFO_VMENTRY_SIZE 2332 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2333 #endif 2334 2335 static void 2336 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2337 { 2338 struct proc *p; 2339 size_t size; 2340 int structsize, vmmap_flags; 2341 2342 if (coredump_pack_vmmapinfo) 2343 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2344 else 2345 vmmap_flags = 0; 2346 2347 p = arg; 2348 structsize = sizeof(struct kinfo_vmentry); 2349 if (sb == NULL) { 2350 size = 0; 2351 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2352 sbuf_set_drain(sb, sbuf_count_drain, &size); 2353 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2354 PROC_LOCK(p); 2355 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2356 sbuf_finish(sb); 2357 sbuf_delete(sb); 2358 *sizep = size; 2359 } else { 2360 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2361 PROC_LOCK(p); 2362 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2363 vmmap_flags); 2364 } 2365 } 2366 2367 static void 2368 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2369 { 2370 struct proc *p; 2371 size_t size; 2372 int structsize; 2373 2374 p = arg; 2375 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2376 if (sb != NULL) { 2377 KASSERT(*sizep == size, ("invalid size")); 2378 structsize = sizeof(gid_t); 2379 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2380 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2381 sizeof(gid_t)); 2382 } 2383 *sizep = size; 2384 } 2385 2386 static void 2387 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2388 { 2389 struct proc *p; 2390 size_t size; 2391 int structsize; 2392 2393 p = arg; 2394 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2395 if (sb != NULL) { 2396 KASSERT(*sizep == size, ("invalid size")); 2397 structsize = sizeof(p->p_pd->pd_cmask); 2398 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2399 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2400 } 2401 *sizep = size; 2402 } 2403 2404 static void 2405 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2406 { 2407 struct proc *p; 2408 struct rlimit rlim[RLIM_NLIMITS]; 2409 size_t size; 2410 int structsize, i; 2411 2412 p = arg; 2413 size = sizeof(structsize) + sizeof(rlim); 2414 if (sb != NULL) { 2415 KASSERT(*sizep == size, ("invalid size")); 2416 structsize = sizeof(rlim); 2417 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2418 PROC_LOCK(p); 2419 for (i = 0; i < RLIM_NLIMITS; i++) 2420 lim_rlimit_proc(p, i, &rlim[i]); 2421 PROC_UNLOCK(p); 2422 sbuf_bcat(sb, rlim, sizeof(rlim)); 2423 } 2424 *sizep = size; 2425 } 2426 2427 static void 2428 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2429 { 2430 struct proc *p; 2431 size_t size; 2432 int structsize; 2433 2434 p = arg; 2435 size = sizeof(structsize) + sizeof(p->p_osrel); 2436 if (sb != NULL) { 2437 KASSERT(*sizep == size, ("invalid size")); 2438 structsize = sizeof(p->p_osrel); 2439 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2440 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2441 } 2442 *sizep = size; 2443 } 2444 2445 static void 2446 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2447 { 2448 struct proc *p; 2449 elf_ps_strings_t ps_strings; 2450 size_t size; 2451 int structsize; 2452 2453 p = arg; 2454 size = sizeof(structsize) + sizeof(ps_strings); 2455 if (sb != NULL) { 2456 KASSERT(*sizep == size, ("invalid size")); 2457 structsize = sizeof(ps_strings); 2458 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2459 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2460 #else 2461 ps_strings = p->p_sysent->sv_psstrings; 2462 #endif 2463 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2464 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2465 } 2466 *sizep = size; 2467 } 2468 2469 static void 2470 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2471 { 2472 struct proc *p; 2473 size_t size; 2474 int structsize; 2475 2476 p = arg; 2477 if (sb == NULL) { 2478 size = 0; 2479 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2480 SBUF_FIXEDLEN); 2481 sbuf_set_drain(sb, sbuf_count_drain, &size); 2482 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2483 PHOLD(p); 2484 proc_getauxv(curthread, p, sb); 2485 PRELE(p); 2486 sbuf_finish(sb); 2487 sbuf_delete(sb); 2488 *sizep = size; 2489 } else { 2490 structsize = sizeof(Elf_Auxinfo); 2491 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2492 PHOLD(p); 2493 proc_getauxv(curthread, p, sb); 2494 PRELE(p); 2495 } 2496 } 2497 2498 static bool 2499 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2500 const char *note_vendor, const Elf_Phdr *pnote, 2501 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2502 { 2503 const Elf_Note *note, *note0, *note_end; 2504 const char *note_name; 2505 char *buf; 2506 int i, error; 2507 bool res; 2508 2509 /* We need some limit, might as well use PAGE_SIZE. */ 2510 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2511 return (false); 2512 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2513 if (pnote->p_offset > PAGE_SIZE || 2514 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2515 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2516 if (buf == NULL) { 2517 VOP_UNLOCK(imgp->vp); 2518 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2519 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2520 } 2521 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2522 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2523 curthread->td_ucred, NOCRED, NULL, curthread); 2524 if (error != 0) { 2525 uprintf("i/o error PT_NOTE\n"); 2526 goto retf; 2527 } 2528 note = note0 = (const Elf_Note *)buf; 2529 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2530 } else { 2531 note = note0 = (const Elf_Note *)(imgp->image_header + 2532 pnote->p_offset); 2533 note_end = (const Elf_Note *)(imgp->image_header + 2534 pnote->p_offset + pnote->p_filesz); 2535 buf = NULL; 2536 } 2537 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2538 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2539 (const char *)note < sizeof(Elf_Note)) { 2540 goto retf; 2541 } 2542 if (note->n_namesz != checknote->n_namesz || 2543 note->n_descsz != checknote->n_descsz || 2544 note->n_type != checknote->n_type) 2545 goto nextnote; 2546 note_name = (const char *)(note + 1); 2547 if (note_name + checknote->n_namesz >= 2548 (const char *)note_end || strncmp(note_vendor, 2549 note_name, checknote->n_namesz) != 0) 2550 goto nextnote; 2551 2552 if (cb(note, cb_arg, &res)) 2553 goto ret; 2554 nextnote: 2555 note = (const Elf_Note *)((const char *)(note + 1) + 2556 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2557 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2558 } 2559 retf: 2560 res = false; 2561 ret: 2562 free(buf, M_TEMP); 2563 return (res); 2564 } 2565 2566 struct brandnote_cb_arg { 2567 Elf_Brandnote *brandnote; 2568 int32_t *osrel; 2569 }; 2570 2571 static bool 2572 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2573 { 2574 struct brandnote_cb_arg *arg; 2575 2576 arg = arg0; 2577 2578 /* 2579 * Fetch the osreldate for binary from the ELF OSABI-note if 2580 * necessary. 2581 */ 2582 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2583 arg->brandnote->trans_osrel != NULL ? 2584 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2585 2586 return (true); 2587 } 2588 2589 static Elf_Note fctl_note = { 2590 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2591 .n_descsz = sizeof(uint32_t), 2592 .n_type = NT_FREEBSD_FEATURE_CTL, 2593 }; 2594 2595 struct fctl_cb_arg { 2596 bool *has_fctl0; 2597 uint32_t *fctl0; 2598 }; 2599 2600 static bool 2601 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2602 { 2603 struct fctl_cb_arg *arg; 2604 const Elf32_Word *desc; 2605 uintptr_t p; 2606 2607 arg = arg0; 2608 p = (uintptr_t)(note + 1); 2609 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2610 desc = (const Elf32_Word *)p; 2611 *arg->has_fctl0 = true; 2612 *arg->fctl0 = desc[0]; 2613 *res = true; 2614 return (true); 2615 } 2616 2617 /* 2618 * Try to find the appropriate ABI-note section for checknote, fetch 2619 * the osreldate and feature control flags for binary from the ELF 2620 * OSABI-note. Only the first page of the image is searched, the same 2621 * as for headers. 2622 */ 2623 static bool 2624 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2625 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2626 { 2627 const Elf_Phdr *phdr; 2628 const Elf_Ehdr *hdr; 2629 struct brandnote_cb_arg b_arg; 2630 struct fctl_cb_arg f_arg; 2631 int i, j; 2632 2633 hdr = (const Elf_Ehdr *)imgp->image_header; 2634 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2635 b_arg.brandnote = brandnote; 2636 b_arg.osrel = osrel; 2637 f_arg.has_fctl0 = has_fctl0; 2638 f_arg.fctl0 = fctl0; 2639 2640 for (i = 0; i < hdr->e_phnum; i++) { 2641 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2642 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2643 &b_arg)) { 2644 for (j = 0; j < hdr->e_phnum; j++) { 2645 if (phdr[j].p_type == PT_NOTE && 2646 __elfN(parse_notes)(imgp, &fctl_note, 2647 FREEBSD_ABI_VENDOR, &phdr[j], 2648 note_fctl_cb, &f_arg)) 2649 break; 2650 } 2651 return (true); 2652 } 2653 } 2654 return (false); 2655 2656 } 2657 2658 /* 2659 * Tell kern_execve.c about it, with a little help from the linker. 2660 */ 2661 static struct execsw __elfN(execsw) = { 2662 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2663 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2664 }; 2665 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2666 2667 static vm_prot_t 2668 __elfN(trans_prot)(Elf_Word flags) 2669 { 2670 vm_prot_t prot; 2671 2672 prot = 0; 2673 if (flags & PF_X) 2674 prot |= VM_PROT_EXECUTE; 2675 if (flags & PF_W) 2676 prot |= VM_PROT_WRITE; 2677 if (flags & PF_R) 2678 prot |= VM_PROT_READ; 2679 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2680 if (i386_read_exec && (flags & PF_R)) 2681 prot |= VM_PROT_EXECUTE; 2682 #endif 2683 return (prot); 2684 } 2685 2686 static Elf_Word 2687 __elfN(untrans_prot)(vm_prot_t prot) 2688 { 2689 Elf_Word flags; 2690 2691 flags = 0; 2692 if (prot & VM_PROT_EXECUTE) 2693 flags |= PF_X; 2694 if (prot & VM_PROT_READ) 2695 flags |= PF_R; 2696 if (prot & VM_PROT_WRITE) 2697 flags |= PF_W; 2698 return (flags); 2699 } 2700 2701 vm_size_t 2702 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) 2703 { 2704 uintptr_t range, rbase, gap; 2705 int pct; 2706 2707 pct = __elfN(aslr_stack_gap); 2708 if (pct == 0) 2709 return (0); 2710 if (pct > 50) 2711 pct = 50; 2712 range = imgp->eff_stack_sz * pct / 100; 2713 arc4rand(&rbase, sizeof(rbase), 0); 2714 gap = rbase % range; 2715 gap &= ~(sizeof(u_long) - 1); 2716 *stack_base -= gap; 2717 return (gap); 2718 } 2719