1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 106 ""); 107 108 #define CORE_BUF_SIZE (16 * 1024) 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0, 139 ""); 140 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 141 142 static int __elfN(aslr_enabled) = 0; 143 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 144 &__elfN(aslr_enabled), 0, 145 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 146 ": enable address map randomization"); 147 148 static int __elfN(pie_aslr_enabled) = 0; 149 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 150 &__elfN(pie_aslr_enabled), 0, 151 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 152 ": enable address map randomization for PIE binaries"); 153 154 static int __elfN(aslr_honor_sbrk) = 1; 155 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 156 &__elfN(aslr_honor_sbrk), 0, 157 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 158 159 static int __elfN(aslr_stack_gap) = 3; 160 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 161 &__elfN(aslr_stack_gap), 0, 162 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 163 ": maximum percentage of main stack to waste on a random gap"); 164 165 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 166 167 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 168 169 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 170 171 Elf_Brandnote __elfN(freebsd_brandnote) = { 172 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 173 .hdr.n_descsz = sizeof(int32_t), 174 .hdr.n_type = NT_FREEBSD_ABI_TAG, 175 .vendor = FREEBSD_ABI_VENDOR, 176 .flags = BN_TRANSLATE_OSREL, 177 .trans_osrel = __elfN(freebsd_trans_osrel) 178 }; 179 180 static bool 181 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 182 { 183 uintptr_t p; 184 185 p = (uintptr_t)(note + 1); 186 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 187 *osrel = *(const int32_t *)(p); 188 189 return (true); 190 } 191 192 static const char GNU_ABI_VENDOR[] = "GNU"; 193 static int GNU_KFREEBSD_ABI_DESC = 3; 194 195 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 196 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 197 .hdr.n_descsz = 16, /* XXX at least 16 */ 198 .hdr.n_type = 1, 199 .vendor = GNU_ABI_VENDOR, 200 .flags = BN_TRANSLATE_OSREL, 201 .trans_osrel = kfreebsd_trans_osrel 202 }; 203 204 static bool 205 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 206 { 207 const Elf32_Word *desc; 208 uintptr_t p; 209 210 p = (uintptr_t)(note + 1); 211 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 212 213 desc = (const Elf32_Word *)p; 214 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 215 return (false); 216 217 /* 218 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 219 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 220 */ 221 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 222 223 return (true); 224 } 225 226 int 227 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 228 { 229 int i; 230 231 for (i = 0; i < MAX_BRANDS; i++) { 232 if (elf_brand_list[i] == NULL) { 233 elf_brand_list[i] = entry; 234 break; 235 } 236 } 237 if (i == MAX_BRANDS) { 238 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 239 __func__, entry); 240 return (-1); 241 } 242 return (0); 243 } 244 245 int 246 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 247 { 248 int i; 249 250 for (i = 0; i < MAX_BRANDS; i++) { 251 if (elf_brand_list[i] == entry) { 252 elf_brand_list[i] = NULL; 253 break; 254 } 255 } 256 if (i == MAX_BRANDS) 257 return (-1); 258 return (0); 259 } 260 261 int 262 __elfN(brand_inuse)(Elf_Brandinfo *entry) 263 { 264 struct proc *p; 265 int rval = FALSE; 266 267 sx_slock(&allproc_lock); 268 FOREACH_PROC_IN_SYSTEM(p) { 269 if (p->p_sysent == entry->sysvec) { 270 rval = TRUE; 271 break; 272 } 273 } 274 sx_sunlock(&allproc_lock); 275 276 return (rval); 277 } 278 279 static Elf_Brandinfo * 280 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 281 int32_t *osrel, uint32_t *fctl0) 282 { 283 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 284 Elf_Brandinfo *bi, *bi_m; 285 boolean_t ret; 286 int i, interp_name_len; 287 288 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 289 290 /* 291 * We support four types of branding -- (1) the ELF EI_OSABI field 292 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 293 * branding w/in the ELF header, (3) path of the `interp_path' 294 * field, and (4) the ".note.ABI-tag" ELF section. 295 */ 296 297 /* Look for an ".note.ABI-tag" ELF section */ 298 bi_m = NULL; 299 for (i = 0; i < MAX_BRANDS; i++) { 300 bi = elf_brand_list[i]; 301 if (bi == NULL) 302 continue; 303 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 304 continue; 305 if (hdr->e_machine == bi->machine && (bi->flags & 306 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 307 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 308 fctl0); 309 /* Give brand a chance to veto check_note's guess */ 310 if (ret && bi->header_supported) 311 ret = bi->header_supported(imgp); 312 /* 313 * If note checker claimed the binary, but the 314 * interpreter path in the image does not 315 * match default one for the brand, try to 316 * search for other brands with the same 317 * interpreter. Either there is better brand 318 * with the right interpreter, or, failing 319 * this, we return first brand which accepted 320 * our note and, optionally, header. 321 */ 322 if (ret && bi_m == NULL && interp != NULL && 323 (bi->interp_path == NULL || 324 (strlen(bi->interp_path) + 1 != interp_name_len || 325 strncmp(interp, bi->interp_path, interp_name_len) 326 != 0))) { 327 bi_m = bi; 328 ret = 0; 329 } 330 if (ret) 331 return (bi); 332 } 333 } 334 if (bi_m != NULL) 335 return (bi_m); 336 337 /* If the executable has a brand, search for it in the brand list. */ 338 for (i = 0; i < MAX_BRANDS; i++) { 339 bi = elf_brand_list[i]; 340 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 341 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 342 continue; 343 if (hdr->e_machine == bi->machine && 344 (hdr->e_ident[EI_OSABI] == bi->brand || 345 (bi->compat_3_brand != NULL && 346 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 347 bi->compat_3_brand) == 0))) { 348 /* Looks good, but give brand a chance to veto */ 349 if (bi->header_supported == NULL || 350 bi->header_supported(imgp)) { 351 /* 352 * Again, prefer strictly matching 353 * interpreter path. 354 */ 355 if (interp_name_len == 0 && 356 bi->interp_path == NULL) 357 return (bi); 358 if (bi->interp_path != NULL && 359 strlen(bi->interp_path) + 1 == 360 interp_name_len && strncmp(interp, 361 bi->interp_path, interp_name_len) == 0) 362 return (bi); 363 if (bi_m == NULL) 364 bi_m = bi; 365 } 366 } 367 } 368 if (bi_m != NULL) 369 return (bi_m); 370 371 /* No known brand, see if the header is recognized by any brand */ 372 for (i = 0; i < MAX_BRANDS; i++) { 373 bi = elf_brand_list[i]; 374 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 375 bi->header_supported == NULL) 376 continue; 377 if (hdr->e_machine == bi->machine) { 378 ret = bi->header_supported(imgp); 379 if (ret) 380 return (bi); 381 } 382 } 383 384 /* Lacking a known brand, search for a recognized interpreter. */ 385 if (interp != NULL) { 386 for (i = 0; i < MAX_BRANDS; i++) { 387 bi = elf_brand_list[i]; 388 if (bi == NULL || (bi->flags & 389 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 390 != 0) 391 continue; 392 if (hdr->e_machine == bi->machine && 393 bi->interp_path != NULL && 394 /* ELF image p_filesz includes terminating zero */ 395 strlen(bi->interp_path) + 1 == interp_name_len && 396 strncmp(interp, bi->interp_path, interp_name_len) 397 == 0 && (bi->header_supported == NULL || 398 bi->header_supported(imgp))) 399 return (bi); 400 } 401 } 402 403 /* Lacking a recognized interpreter, try the default brand */ 404 for (i = 0; i < MAX_BRANDS; i++) { 405 bi = elf_brand_list[i]; 406 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 407 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 408 continue; 409 if (hdr->e_machine == bi->machine && 410 __elfN(fallback_brand) == bi->brand && 411 (bi->header_supported == NULL || 412 bi->header_supported(imgp))) 413 return (bi); 414 } 415 return (NULL); 416 } 417 418 static int 419 __elfN(check_header)(const Elf_Ehdr *hdr) 420 { 421 Elf_Brandinfo *bi; 422 int i; 423 424 if (!IS_ELF(*hdr) || 425 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 426 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 427 hdr->e_ident[EI_VERSION] != EV_CURRENT || 428 hdr->e_phentsize != sizeof(Elf_Phdr) || 429 hdr->e_version != ELF_TARG_VER) 430 return (ENOEXEC); 431 432 /* 433 * Make sure we have at least one brand for this machine. 434 */ 435 436 for (i = 0; i < MAX_BRANDS; i++) { 437 bi = elf_brand_list[i]; 438 if (bi != NULL && bi->machine == hdr->e_machine) 439 break; 440 } 441 if (i == MAX_BRANDS) 442 return (ENOEXEC); 443 444 return (0); 445 } 446 447 static int 448 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 449 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 450 { 451 struct sf_buf *sf; 452 int error; 453 vm_offset_t off; 454 455 /* 456 * Create the page if it doesn't exist yet. Ignore errors. 457 */ 458 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 459 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 460 461 /* 462 * Find the page from the underlying object. 463 */ 464 if (object != NULL) { 465 sf = vm_imgact_map_page(object, offset); 466 if (sf == NULL) 467 return (KERN_FAILURE); 468 off = offset - trunc_page(offset); 469 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 470 end - start); 471 vm_imgact_unmap_page(sf); 472 if (error != 0) 473 return (KERN_FAILURE); 474 } 475 476 return (KERN_SUCCESS); 477 } 478 479 static int 480 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 481 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 482 int cow) 483 { 484 struct sf_buf *sf; 485 vm_offset_t off; 486 vm_size_t sz; 487 int error, locked, rv; 488 489 if (start != trunc_page(start)) { 490 rv = __elfN(map_partial)(map, object, offset, start, 491 round_page(start), prot); 492 if (rv != KERN_SUCCESS) 493 return (rv); 494 offset += round_page(start) - start; 495 start = round_page(start); 496 } 497 if (end != round_page(end)) { 498 rv = __elfN(map_partial)(map, object, offset + 499 trunc_page(end) - start, trunc_page(end), end, prot); 500 if (rv != KERN_SUCCESS) 501 return (rv); 502 end = trunc_page(end); 503 } 504 if (start >= end) 505 return (KERN_SUCCESS); 506 if ((offset & PAGE_MASK) != 0) { 507 /* 508 * The mapping is not page aligned. This means that we have 509 * to copy the data. 510 */ 511 rv = vm_map_fixed(map, NULL, 0, start, end - start, 512 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 513 if (rv != KERN_SUCCESS) 514 return (rv); 515 if (object == NULL) 516 return (KERN_SUCCESS); 517 for (; start < end; start += sz) { 518 sf = vm_imgact_map_page(object, offset); 519 if (sf == NULL) 520 return (KERN_FAILURE); 521 off = offset - trunc_page(offset); 522 sz = end - start; 523 if (sz > PAGE_SIZE - off) 524 sz = PAGE_SIZE - off; 525 error = copyout((caddr_t)sf_buf_kva(sf) + off, 526 (caddr_t)start, sz); 527 vm_imgact_unmap_page(sf); 528 if (error != 0) 529 return (KERN_FAILURE); 530 offset += sz; 531 } 532 } else { 533 vm_object_reference(object); 534 rv = vm_map_fixed(map, object, offset, start, end - start, 535 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 536 (object != NULL ? MAP_VN_EXEC : 0)); 537 if (rv != KERN_SUCCESS) { 538 locked = VOP_ISLOCKED(imgp->vp); 539 VOP_UNLOCK(imgp->vp, 0); 540 vm_object_deallocate(object); 541 vn_lock(imgp->vp, locked | LK_RETRY); 542 return (rv); 543 } else if (object != NULL) { 544 MPASS(imgp->vp->v_object == object); 545 VOP_SET_TEXT_CHECKED(imgp->vp); 546 } 547 } 548 return (KERN_SUCCESS); 549 } 550 551 static int 552 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 553 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 554 { 555 struct sf_buf *sf; 556 size_t map_len; 557 vm_map_t map; 558 vm_object_t object; 559 vm_offset_t map_addr; 560 int error, rv, cow; 561 size_t copy_len; 562 vm_ooffset_t file_addr; 563 564 /* 565 * It's necessary to fail if the filsz + offset taken from the 566 * header is greater than the actual file pager object's size. 567 * If we were to allow this, then the vm_map_find() below would 568 * walk right off the end of the file object and into the ether. 569 * 570 * While I'm here, might as well check for something else that 571 * is invalid: filsz cannot be greater than memsz. 572 */ 573 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 574 filsz > memsz) { 575 uprintf("elf_load_section: truncated ELF file\n"); 576 return (ENOEXEC); 577 } 578 579 object = imgp->object; 580 map = &imgp->proc->p_vmspace->vm_map; 581 map_addr = trunc_page((vm_offset_t)vmaddr); 582 file_addr = trunc_page(offset); 583 584 /* 585 * We have two choices. We can either clear the data in the last page 586 * of an oversized mapping, or we can start the anon mapping a page 587 * early and copy the initialized data into that first page. We 588 * choose the second. 589 */ 590 if (filsz == 0) 591 map_len = 0; 592 else if (memsz > filsz) 593 map_len = trunc_page(offset + filsz) - file_addr; 594 else 595 map_len = round_page(offset + filsz) - file_addr; 596 597 if (map_len != 0) { 598 /* cow flags: don't dump readonly sections in core */ 599 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 600 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 601 602 rv = __elfN(map_insert)(imgp, map, object, file_addr, 603 map_addr, map_addr + map_len, prot, cow); 604 if (rv != KERN_SUCCESS) 605 return (EINVAL); 606 607 /* we can stop now if we've covered it all */ 608 if (memsz == filsz) 609 return (0); 610 } 611 612 613 /* 614 * We have to get the remaining bit of the file into the first part 615 * of the oversized map segment. This is normally because the .data 616 * segment in the file is extended to provide bss. It's a neat idea 617 * to try and save a page, but it's a pain in the behind to implement. 618 */ 619 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 620 filsz); 621 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 622 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 623 624 /* This had damn well better be true! */ 625 if (map_len != 0) { 626 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 627 map_addr + map_len, prot, 0); 628 if (rv != KERN_SUCCESS) 629 return (EINVAL); 630 } 631 632 if (copy_len != 0) { 633 sf = vm_imgact_map_page(object, offset + filsz); 634 if (sf == NULL) 635 return (EIO); 636 637 /* send the page fragment to user space */ 638 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 639 copy_len); 640 vm_imgact_unmap_page(sf); 641 if (error != 0) 642 return (error); 643 } 644 645 /* 646 * Remove write access to the page if it was only granted by map_insert 647 * to allow copyout. 648 */ 649 if ((prot & VM_PROT_WRITE) == 0) 650 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 651 map_len), prot, FALSE); 652 653 return (0); 654 } 655 656 static int 657 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 658 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 659 { 660 vm_prot_t prot; 661 u_long base_addr; 662 bool first; 663 int error, i; 664 665 ASSERT_VOP_LOCKED(imgp->vp, __func__); 666 667 base_addr = 0; 668 first = true; 669 670 for (i = 0; i < hdr->e_phnum; i++) { 671 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 672 continue; 673 674 /* Loadable segment */ 675 prot = __elfN(trans_prot)(phdr[i].p_flags); 676 error = __elfN(load_section)(imgp, phdr[i].p_offset, 677 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 678 phdr[i].p_memsz, phdr[i].p_filesz, prot); 679 if (error != 0) 680 return (error); 681 682 /* 683 * Establish the base address if this is the first segment. 684 */ 685 if (first) { 686 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 687 first = false; 688 } 689 } 690 691 if (base_addrp != NULL) 692 *base_addrp = base_addr; 693 694 return (0); 695 } 696 697 /* 698 * Load the file "file" into memory. It may be either a shared object 699 * or an executable. 700 * 701 * The "addr" reference parameter is in/out. On entry, it specifies 702 * the address where a shared object should be loaded. If the file is 703 * an executable, this value is ignored. On exit, "addr" specifies 704 * where the file was actually loaded. 705 * 706 * The "entry" reference parameter is out only. On exit, it specifies 707 * the entry point for the loaded file. 708 */ 709 static int 710 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 711 u_long *entry) 712 { 713 struct { 714 struct nameidata nd; 715 struct vattr attr; 716 struct image_params image_params; 717 } *tempdata; 718 const Elf_Ehdr *hdr = NULL; 719 const Elf_Phdr *phdr = NULL; 720 struct nameidata *nd; 721 struct vattr *attr; 722 struct image_params *imgp; 723 u_long rbase; 724 u_long base_addr = 0; 725 int error; 726 727 #ifdef CAPABILITY_MODE 728 /* 729 * XXXJA: This check can go away once we are sufficiently confident 730 * that the checks in namei() are correct. 731 */ 732 if (IN_CAPABILITY_MODE(curthread)) 733 return (ECAPMODE); 734 #endif 735 736 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 737 nd = &tempdata->nd; 738 attr = &tempdata->attr; 739 imgp = &tempdata->image_params; 740 741 /* 742 * Initialize part of the common data 743 */ 744 imgp->proc = p; 745 imgp->attr = attr; 746 imgp->firstpage = NULL; 747 imgp->image_header = NULL; 748 imgp->object = NULL; 749 imgp->execlabel = NULL; 750 751 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 752 UIO_SYSSPACE, file, curthread); 753 if ((error = namei(nd)) != 0) { 754 nd->ni_vp = NULL; 755 goto fail; 756 } 757 NDFREE(nd, NDF_ONLY_PNBUF); 758 imgp->vp = nd->ni_vp; 759 760 /* 761 * Check permissions, modes, uid, etc on the file, and "open" it. 762 */ 763 error = exec_check_permissions(imgp); 764 if (error) 765 goto fail; 766 767 error = exec_map_first_page(imgp); 768 if (error) 769 goto fail; 770 771 imgp->object = nd->ni_vp->v_object; 772 773 hdr = (const Elf_Ehdr *)imgp->image_header; 774 if ((error = __elfN(check_header)(hdr)) != 0) 775 goto fail; 776 if (hdr->e_type == ET_DYN) 777 rbase = *addr; 778 else if (hdr->e_type == ET_EXEC) 779 rbase = 0; 780 else { 781 error = ENOEXEC; 782 goto fail; 783 } 784 785 /* Only support headers that fit within first page for now */ 786 if ((hdr->e_phoff > PAGE_SIZE) || 787 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 788 error = ENOEXEC; 789 goto fail; 790 } 791 792 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 793 if (!aligned(phdr, Elf_Addr)) { 794 error = ENOEXEC; 795 goto fail; 796 } 797 798 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 799 if (error != 0) 800 goto fail; 801 802 *addr = base_addr; 803 *entry = (unsigned long)hdr->e_entry + rbase; 804 805 fail: 806 if (imgp->firstpage) 807 exec_unmap_first_page(imgp); 808 809 if (nd->ni_vp) { 810 if (imgp->textset) 811 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 812 vput(nd->ni_vp); 813 } 814 free(tempdata, M_TEMP); 815 816 return (error); 817 } 818 819 static u_long 820 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 821 u_int align) 822 { 823 u_long rbase, res; 824 825 MPASS(vm_map_min(map) <= minv); 826 MPASS(maxv <= vm_map_max(map)); 827 MPASS(minv < maxv); 828 MPASS(minv + align < maxv); 829 arc4rand(&rbase, sizeof(rbase), 0); 830 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 831 res &= ~((u_long)align - 1); 832 if (res >= maxv) 833 res -= align; 834 KASSERT(res >= minv, 835 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 836 res, minv, maxv, rbase)); 837 KASSERT(res < maxv, 838 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 839 res, maxv, minv, rbase)); 840 return (res); 841 } 842 843 static int 844 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 845 const Elf_Phdr *phdr, u_long et_dyn_addr) 846 { 847 struct vmspace *vmspace; 848 const char *err_str; 849 u_long text_size, data_size, total_size, text_addr, data_addr; 850 u_long seg_size, seg_addr; 851 int i; 852 853 err_str = NULL; 854 text_size = data_size = total_size = text_addr = data_addr = 0; 855 856 for (i = 0; i < hdr->e_phnum; i++) { 857 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 858 continue; 859 860 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 861 seg_size = round_page(phdr[i].p_memsz + 862 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 863 864 /* 865 * Make the largest executable segment the official 866 * text segment and all others data. 867 * 868 * Note that obreak() assumes that data_addr + data_size == end 869 * of data load area, and the ELF file format expects segments 870 * to be sorted by address. If multiple data segments exist, 871 * the last one will be used. 872 */ 873 874 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 875 text_size = seg_size; 876 text_addr = seg_addr; 877 } else { 878 data_size = seg_size; 879 data_addr = seg_addr; 880 } 881 total_size += seg_size; 882 } 883 884 if (data_addr == 0 && data_size == 0) { 885 data_addr = text_addr; 886 data_size = text_size; 887 } 888 889 /* 890 * Check limits. It should be safe to check the 891 * limits after loading the segments since we do 892 * not actually fault in all the segments pages. 893 */ 894 PROC_LOCK(imgp->proc); 895 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 896 err_str = "Data segment size exceeds process limit"; 897 else if (text_size > maxtsiz) 898 err_str = "Text segment size exceeds system limit"; 899 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 900 err_str = "Total segment size exceeds process limit"; 901 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 902 err_str = "Data segment size exceeds resource limit"; 903 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 904 err_str = "Total segment size exceeds resource limit"; 905 PROC_UNLOCK(imgp->proc); 906 if (err_str != NULL) { 907 uprintf("%s\n", err_str); 908 return (ENOMEM); 909 } 910 911 vmspace = imgp->proc->p_vmspace; 912 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 913 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 914 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 915 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 916 917 return (0); 918 } 919 920 static int 921 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 922 char **interpp, bool *free_interpp) 923 { 924 struct thread *td; 925 char *interp; 926 int error, interp_name_len; 927 928 KASSERT(phdr->p_type == PT_INTERP, 929 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 930 ASSERT_VOP_LOCKED(imgp->vp, __func__); 931 932 td = curthread; 933 934 /* Path to interpreter */ 935 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 936 uprintf("Invalid PT_INTERP\n"); 937 return (ENOEXEC); 938 } 939 940 interp_name_len = phdr->p_filesz; 941 if (phdr->p_offset > PAGE_SIZE || 942 interp_name_len > PAGE_SIZE - phdr->p_offset) { 943 /* 944 * The vnode lock might be needed by the pagedaemon to 945 * clean pages owned by the vnode. Do not allow sleep 946 * waiting for memory with the vnode locked, instead 947 * try non-sleepable allocation first, and if it 948 * fails, go to the slow path were we drop the lock 949 * and do M_WAITOK. A text reference prevents 950 * modifications to the vnode content. 951 */ 952 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 953 if (interp == NULL) { 954 VOP_UNLOCK(imgp->vp, 0); 955 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 956 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 957 } 958 959 error = vn_rdwr(UIO_READ, imgp->vp, interp, 960 interp_name_len, phdr->p_offset, 961 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 962 NOCRED, NULL, td); 963 if (error != 0) { 964 free(interp, M_TEMP); 965 uprintf("i/o error PT_INTERP %d\n", error); 966 return (error); 967 } 968 interp[interp_name_len] = '\0'; 969 970 *interpp = interp; 971 *free_interpp = true; 972 return (0); 973 } 974 975 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 976 if (interp[interp_name_len - 1] != '\0') { 977 uprintf("Invalid PT_INTERP\n"); 978 return (ENOEXEC); 979 } 980 981 *interpp = interp; 982 *free_interpp = false; 983 return (0); 984 } 985 986 static int 987 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 988 const char *interp, u_long *addr, u_long *entry) 989 { 990 char *path; 991 int error; 992 993 if (brand_info->emul_path != NULL && 994 brand_info->emul_path[0] != '\0') { 995 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 996 snprintf(path, MAXPATHLEN, "%s%s", 997 brand_info->emul_path, interp); 998 error = __elfN(load_file)(imgp->proc, path, addr, entry); 999 free(path, M_TEMP); 1000 if (error == 0) 1001 return (0); 1002 } 1003 1004 if (brand_info->interp_newpath != NULL && 1005 (brand_info->interp_path == NULL || 1006 strcmp(interp, brand_info->interp_path) == 0)) { 1007 error = __elfN(load_file)(imgp->proc, 1008 brand_info->interp_newpath, addr, entry); 1009 if (error == 0) 1010 return (0); 1011 } 1012 1013 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1014 if (error == 0) 1015 return (0); 1016 1017 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1018 return (error); 1019 } 1020 1021 /* 1022 * Impossible et_dyn_addr initial value indicating that the real base 1023 * must be calculated later with some randomization applied. 1024 */ 1025 #define ET_DYN_ADDR_RAND 1 1026 1027 static int 1028 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1029 { 1030 struct thread *td; 1031 const Elf_Ehdr *hdr; 1032 const Elf_Phdr *phdr; 1033 Elf_Auxargs *elf_auxargs; 1034 struct vmspace *vmspace; 1035 vm_map_t map; 1036 char *interp; 1037 Elf_Brandinfo *brand_info; 1038 struct sysentvec *sv; 1039 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1040 u_long maxalign, mapsz, maxv, maxv1; 1041 uint32_t fctl0; 1042 int32_t osrel; 1043 bool free_interp; 1044 int error, i, n; 1045 1046 hdr = (const Elf_Ehdr *)imgp->image_header; 1047 1048 /* 1049 * Do we have a valid ELF header ? 1050 * 1051 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1052 * if particular brand doesn't support it. 1053 */ 1054 if (__elfN(check_header)(hdr) != 0 || 1055 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1056 return (-1); 1057 1058 /* 1059 * From here on down, we return an errno, not -1, as we've 1060 * detected an ELF file. 1061 */ 1062 1063 if ((hdr->e_phoff > PAGE_SIZE) || 1064 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 1065 /* Only support headers in first page for now */ 1066 uprintf("Program headers not in the first page\n"); 1067 return (ENOEXEC); 1068 } 1069 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1070 if (!aligned(phdr, Elf_Addr)) { 1071 uprintf("Unaligned program headers\n"); 1072 return (ENOEXEC); 1073 } 1074 1075 n = error = 0; 1076 baddr = 0; 1077 osrel = 0; 1078 fctl0 = 0; 1079 entry = proghdr = 0; 1080 interp = NULL; 1081 free_interp = false; 1082 td = curthread; 1083 maxalign = PAGE_SIZE; 1084 mapsz = 0; 1085 1086 for (i = 0; i < hdr->e_phnum; i++) { 1087 switch (phdr[i].p_type) { 1088 case PT_LOAD: 1089 if (n == 0) 1090 baddr = phdr[i].p_vaddr; 1091 if (phdr[i].p_align > maxalign) 1092 maxalign = phdr[i].p_align; 1093 mapsz += phdr[i].p_memsz; 1094 n++; 1095 1096 /* 1097 * If this segment contains the program headers, 1098 * remember their virtual address for the AT_PHDR 1099 * aux entry. Static binaries don't usually include 1100 * a PT_PHDR entry. 1101 */ 1102 if (phdr[i].p_offset == 0 && 1103 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1104 <= phdr[i].p_filesz) 1105 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1106 break; 1107 case PT_INTERP: 1108 /* Path to interpreter */ 1109 if (interp != NULL) { 1110 uprintf("Multiple PT_INTERP headers\n"); 1111 error = ENOEXEC; 1112 goto ret; 1113 } 1114 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1115 &free_interp); 1116 if (error != 0) 1117 goto ret; 1118 break; 1119 case PT_GNU_STACK: 1120 if (__elfN(nxstack)) 1121 imgp->stack_prot = 1122 __elfN(trans_prot)(phdr[i].p_flags); 1123 imgp->stack_sz = phdr[i].p_memsz; 1124 break; 1125 case PT_PHDR: /* Program header table info */ 1126 proghdr = phdr[i].p_vaddr; 1127 break; 1128 } 1129 } 1130 1131 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1132 if (brand_info == NULL) { 1133 uprintf("ELF binary type \"%u\" not known.\n", 1134 hdr->e_ident[EI_OSABI]); 1135 error = ENOEXEC; 1136 goto ret; 1137 } 1138 sv = brand_info->sysvec; 1139 et_dyn_addr = 0; 1140 if (hdr->e_type == ET_DYN) { 1141 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1142 uprintf("Cannot execute shared object\n"); 1143 error = ENOEXEC; 1144 goto ret; 1145 } 1146 /* 1147 * Honour the base load address from the dso if it is 1148 * non-zero for some reason. 1149 */ 1150 if (baddr == 0) { 1151 if ((sv->sv_flags & SV_ASLR) == 0 || 1152 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1153 et_dyn_addr = ET_DYN_LOAD_ADDR; 1154 else if ((__elfN(pie_aslr_enabled) && 1155 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1156 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1157 et_dyn_addr = ET_DYN_ADDR_RAND; 1158 else 1159 et_dyn_addr = ET_DYN_LOAD_ADDR; 1160 } 1161 } 1162 1163 /* 1164 * Avoid a possible deadlock if the current address space is destroyed 1165 * and that address space maps the locked vnode. In the common case, 1166 * the locked vnode's v_usecount is decremented but remains greater 1167 * than zero. Consequently, the vnode lock is not needed by vrele(). 1168 * However, in cases where the vnode lock is external, such as nullfs, 1169 * v_usecount may become zero. 1170 * 1171 * The VV_TEXT flag prevents modifications to the executable while 1172 * the vnode is unlocked. 1173 */ 1174 VOP_UNLOCK(imgp->vp, 0); 1175 1176 /* 1177 * Decide whether to enable randomization of user mappings. 1178 * First, reset user preferences for the setid binaries. 1179 * Then, account for the support of the randomization by the 1180 * ABI, by user preferences, and make special treatment for 1181 * PIE binaries. 1182 */ 1183 if (imgp->credential_setid) { 1184 PROC_LOCK(imgp->proc); 1185 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1186 PROC_UNLOCK(imgp->proc); 1187 } 1188 if ((sv->sv_flags & SV_ASLR) == 0 || 1189 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1190 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1191 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1192 ("et_dyn_addr == RAND and !ASLR")); 1193 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1194 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1195 et_dyn_addr == ET_DYN_ADDR_RAND) { 1196 imgp->map_flags |= MAP_ASLR; 1197 /* 1198 * If user does not care about sbrk, utilize the bss 1199 * grow region for mappings as well. We can select 1200 * the base for the image anywere and still not suffer 1201 * from the fragmentation. 1202 */ 1203 if (!__elfN(aslr_honor_sbrk) || 1204 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1205 imgp->map_flags |= MAP_ASLR_IGNSTART; 1206 } 1207 1208 error = exec_new_vmspace(imgp, sv); 1209 vmspace = imgp->proc->p_vmspace; 1210 map = &vmspace->vm_map; 1211 1212 imgp->proc->p_sysent = sv; 1213 1214 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1215 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1216 KASSERT((map->flags & MAP_ASLR) != 0, 1217 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1218 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1219 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1220 /* reserve half of the address space to interpreter */ 1221 maxv / 2, 1UL << flsl(maxalign)); 1222 } 1223 1224 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1225 if (error != 0) 1226 goto ret; 1227 1228 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1229 if (error != 0) 1230 goto ret; 1231 1232 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1233 if (error != 0) 1234 goto ret; 1235 1236 entry = (u_long)hdr->e_entry + et_dyn_addr; 1237 1238 /* 1239 * We load the dynamic linker where a userland call 1240 * to mmap(0, ...) would put it. The rationale behind this 1241 * calculation is that it leaves room for the heap to grow to 1242 * its maximum allowed size. 1243 */ 1244 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1245 RLIMIT_DATA)); 1246 if ((map->flags & MAP_ASLR) != 0) { 1247 maxv1 = maxv / 2 + addr / 2; 1248 MPASS(maxv1 >= addr); /* No overflow */ 1249 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1250 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1251 } else { 1252 map->anon_loc = addr; 1253 } 1254 1255 imgp->entry_addr = entry; 1256 1257 if (interp != NULL) { 1258 VOP_UNLOCK(imgp->vp, 0); 1259 if ((map->flags & MAP_ASLR) != 0) { 1260 /* Assume that interpeter fits into 1/4 of AS */ 1261 maxv1 = maxv / 2 + addr / 2; 1262 MPASS(maxv1 >= addr); /* No overflow */ 1263 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1264 maxv1, PAGE_SIZE); 1265 } 1266 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1267 &imgp->entry_addr); 1268 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1269 if (error != 0) 1270 goto ret; 1271 } else 1272 addr = et_dyn_addr; 1273 1274 /* 1275 * Construct auxargs table (used by the fixup routine) 1276 */ 1277 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1278 if (elf_auxargs == NULL) { 1279 VOP_UNLOCK(imgp->vp, 0); 1280 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1281 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1282 } 1283 elf_auxargs->execfd = -1; 1284 elf_auxargs->phdr = proghdr + et_dyn_addr; 1285 elf_auxargs->phent = hdr->e_phentsize; 1286 elf_auxargs->phnum = hdr->e_phnum; 1287 elf_auxargs->pagesz = PAGE_SIZE; 1288 elf_auxargs->base = addr; 1289 elf_auxargs->flags = 0; 1290 elf_auxargs->entry = entry; 1291 elf_auxargs->hdr_eflags = hdr->e_flags; 1292 1293 imgp->auxargs = elf_auxargs; 1294 imgp->interpreted = 0; 1295 imgp->reloc_base = addr; 1296 imgp->proc->p_osrel = osrel; 1297 imgp->proc->p_fctl0 = fctl0; 1298 imgp->proc->p_elf_machine = hdr->e_machine; 1299 imgp->proc->p_elf_flags = hdr->e_flags; 1300 1301 ret: 1302 if (free_interp) 1303 free(interp, M_TEMP); 1304 return (error); 1305 } 1306 1307 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1308 1309 int 1310 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1311 { 1312 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1313 Elf_Auxinfo *argarray, *pos; 1314 Elf_Addr *base, *auxbase; 1315 int error; 1316 1317 base = (Elf_Addr *)*stack_base; 1318 auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1; 1319 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1320 M_WAITOK | M_ZERO); 1321 1322 if (args->execfd != -1) 1323 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1324 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1325 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1326 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1327 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1328 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1329 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1330 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1331 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1332 if (imgp->execpathp != 0) 1333 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1334 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1335 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1336 if (imgp->canary != 0) { 1337 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1338 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1339 } 1340 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1341 if (imgp->pagesizes != 0) { 1342 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1343 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1344 } 1345 if (imgp->sysent->sv_timekeep_base != 0) { 1346 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1347 imgp->sysent->sv_timekeep_base); 1348 } 1349 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1350 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1351 imgp->sysent->sv_stackprot); 1352 if (imgp->sysent->sv_hwcap != NULL) 1353 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1354 if (imgp->sysent->sv_hwcap2 != NULL) 1355 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1356 AUXARGS_ENTRY(pos, AT_NULL, 0); 1357 1358 free(imgp->auxargs, M_TEMP); 1359 imgp->auxargs = NULL; 1360 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1361 1362 error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT); 1363 free(argarray, M_TEMP); 1364 if (error != 0) 1365 return (error); 1366 1367 base--; 1368 if (suword(base, imgp->args->argc) == -1) 1369 return (EFAULT); 1370 *stack_base = (register_t *)base; 1371 return (0); 1372 } 1373 1374 /* 1375 * Code for generating ELF core dumps. 1376 */ 1377 1378 typedef void (*segment_callback)(vm_map_entry_t, void *); 1379 1380 /* Closure for cb_put_phdr(). */ 1381 struct phdr_closure { 1382 Elf_Phdr *phdr; /* Program header to fill in */ 1383 Elf_Off offset; /* Offset of segment in core file */ 1384 }; 1385 1386 /* Closure for cb_size_segment(). */ 1387 struct sseg_closure { 1388 int count; /* Count of writable segments. */ 1389 size_t size; /* Total size of all writable segments. */ 1390 }; 1391 1392 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1393 1394 struct note_info { 1395 int type; /* Note type. */ 1396 outfunc_t outfunc; /* Output function. */ 1397 void *outarg; /* Argument for the output function. */ 1398 size_t outsize; /* Output size. */ 1399 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1400 }; 1401 1402 TAILQ_HEAD(note_info_list, note_info); 1403 1404 /* Coredump output parameters. */ 1405 struct coredump_params { 1406 off_t offset; 1407 struct ucred *active_cred; 1408 struct ucred *file_cred; 1409 struct thread *td; 1410 struct vnode *vp; 1411 struct compressor *comp; 1412 }; 1413 1414 extern int compress_user_cores; 1415 extern int compress_user_cores_level; 1416 1417 static void cb_put_phdr(vm_map_entry_t, void *); 1418 static void cb_size_segment(vm_map_entry_t, void *); 1419 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1420 enum uio_seg); 1421 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1422 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1423 struct note_info_list *, size_t); 1424 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1425 size_t *); 1426 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1427 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1428 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1429 static int sbuf_drain_core_output(void *, const char *, int); 1430 1431 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1432 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1433 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1434 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1435 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1436 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1437 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1438 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1439 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1440 static void note_procstat_files(void *, struct sbuf *, size_t *); 1441 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1442 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1443 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1444 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1445 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1446 1447 /* 1448 * Write out a core segment to the compression stream. 1449 */ 1450 static int 1451 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1452 { 1453 u_int chunk_len; 1454 int error; 1455 1456 while (len > 0) { 1457 chunk_len = MIN(len, CORE_BUF_SIZE); 1458 1459 /* 1460 * We can get EFAULT error here. 1461 * In that case zero out the current chunk of the segment. 1462 */ 1463 error = copyin(base, buf, chunk_len); 1464 if (error != 0) 1465 bzero(buf, chunk_len); 1466 error = compressor_write(p->comp, buf, chunk_len); 1467 if (error != 0) 1468 break; 1469 base += chunk_len; 1470 len -= chunk_len; 1471 } 1472 return (error); 1473 } 1474 1475 static int 1476 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1477 { 1478 1479 return (core_write((struct coredump_params *)arg, base, len, offset, 1480 UIO_SYSSPACE)); 1481 } 1482 1483 static int 1484 core_write(struct coredump_params *p, const void *base, size_t len, 1485 off_t offset, enum uio_seg seg) 1486 { 1487 1488 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1489 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1490 p->active_cred, p->file_cred, NULL, p->td)); 1491 } 1492 1493 static int 1494 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1495 void *tmpbuf) 1496 { 1497 int error; 1498 1499 if (p->comp != NULL) 1500 return (compress_chunk(p, base, tmpbuf, len)); 1501 1502 /* 1503 * EFAULT is a non-fatal error that we can get, for example, 1504 * if the segment is backed by a file but extends beyond its 1505 * end. 1506 */ 1507 error = core_write(p, base, len, offset, UIO_USERSPACE); 1508 if (error == EFAULT) { 1509 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1510 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1511 "for process %s\n", base, len, offset, curproc->p_comm); 1512 1513 /* 1514 * Write a "real" zero byte at the end of the target region 1515 * in the case this is the last segment. 1516 * The intermediate space will be implicitly zero-filled. 1517 */ 1518 error = core_write(p, zero_region, 1, offset + len - 1, 1519 UIO_SYSSPACE); 1520 } 1521 return (error); 1522 } 1523 1524 /* 1525 * Drain into a core file. 1526 */ 1527 static int 1528 sbuf_drain_core_output(void *arg, const char *data, int len) 1529 { 1530 struct coredump_params *p; 1531 int error, locked; 1532 1533 p = (struct coredump_params *)arg; 1534 1535 /* 1536 * Some kern_proc out routines that print to this sbuf may 1537 * call us with the process lock held. Draining with the 1538 * non-sleepable lock held is unsafe. The lock is needed for 1539 * those routines when dumping a live process. In our case we 1540 * can safely release the lock before draining and acquire 1541 * again after. 1542 */ 1543 locked = PROC_LOCKED(p->td->td_proc); 1544 if (locked) 1545 PROC_UNLOCK(p->td->td_proc); 1546 if (p->comp != NULL) 1547 error = compressor_write(p->comp, __DECONST(char *, data), len); 1548 else 1549 error = core_write(p, __DECONST(void *, data), len, p->offset, 1550 UIO_SYSSPACE); 1551 if (locked) 1552 PROC_LOCK(p->td->td_proc); 1553 if (error != 0) 1554 return (-error); 1555 p->offset += len; 1556 return (len); 1557 } 1558 1559 int 1560 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1561 { 1562 struct ucred *cred = td->td_ucred; 1563 int error = 0; 1564 struct sseg_closure seginfo; 1565 struct note_info_list notelst; 1566 struct coredump_params params; 1567 struct note_info *ninfo; 1568 void *hdr, *tmpbuf; 1569 size_t hdrsize, notesz, coresize; 1570 1571 hdr = NULL; 1572 tmpbuf = NULL; 1573 TAILQ_INIT(¬elst); 1574 1575 /* Size the program segments. */ 1576 seginfo.count = 0; 1577 seginfo.size = 0; 1578 each_dumpable_segment(td, cb_size_segment, &seginfo); 1579 1580 /* 1581 * Collect info about the core file header area. 1582 */ 1583 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1584 if (seginfo.count + 1 >= PN_XNUM) 1585 hdrsize += sizeof(Elf_Shdr); 1586 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1587 coresize = round_page(hdrsize + notesz) + seginfo.size; 1588 1589 /* Set up core dump parameters. */ 1590 params.offset = 0; 1591 params.active_cred = cred; 1592 params.file_cred = NOCRED; 1593 params.td = td; 1594 params.vp = vp; 1595 params.comp = NULL; 1596 1597 #ifdef RACCT 1598 if (racct_enable) { 1599 PROC_LOCK(td->td_proc); 1600 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1601 PROC_UNLOCK(td->td_proc); 1602 if (error != 0) { 1603 error = EFAULT; 1604 goto done; 1605 } 1606 } 1607 #endif 1608 if (coresize >= limit) { 1609 error = EFAULT; 1610 goto done; 1611 } 1612 1613 /* Create a compression stream if necessary. */ 1614 if (compress_user_cores != 0) { 1615 params.comp = compressor_init(core_compressed_write, 1616 compress_user_cores, CORE_BUF_SIZE, 1617 compress_user_cores_level, ¶ms); 1618 if (params.comp == NULL) { 1619 error = EFAULT; 1620 goto done; 1621 } 1622 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1623 } 1624 1625 /* 1626 * Allocate memory for building the header, fill it up, 1627 * and write it out following the notes. 1628 */ 1629 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1630 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1631 notesz); 1632 1633 /* Write the contents of all of the writable segments. */ 1634 if (error == 0) { 1635 Elf_Phdr *php; 1636 off_t offset; 1637 int i; 1638 1639 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1640 offset = round_page(hdrsize + notesz); 1641 for (i = 0; i < seginfo.count; i++) { 1642 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1643 php->p_filesz, offset, ¶ms, tmpbuf); 1644 if (error != 0) 1645 break; 1646 offset += php->p_filesz; 1647 php++; 1648 } 1649 if (error == 0 && params.comp != NULL) 1650 error = compressor_flush(params.comp); 1651 } 1652 if (error) { 1653 log(LOG_WARNING, 1654 "Failed to write core file for process %s (error %d)\n", 1655 curproc->p_comm, error); 1656 } 1657 1658 done: 1659 free(tmpbuf, M_TEMP); 1660 if (params.comp != NULL) 1661 compressor_fini(params.comp); 1662 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1663 TAILQ_REMOVE(¬elst, ninfo, link); 1664 free(ninfo, M_TEMP); 1665 } 1666 if (hdr != NULL) 1667 free(hdr, M_TEMP); 1668 1669 return (error); 1670 } 1671 1672 /* 1673 * A callback for each_dumpable_segment() to write out the segment's 1674 * program header entry. 1675 */ 1676 static void 1677 cb_put_phdr(vm_map_entry_t entry, void *closure) 1678 { 1679 struct phdr_closure *phc = (struct phdr_closure *)closure; 1680 Elf_Phdr *phdr = phc->phdr; 1681 1682 phc->offset = round_page(phc->offset); 1683 1684 phdr->p_type = PT_LOAD; 1685 phdr->p_offset = phc->offset; 1686 phdr->p_vaddr = entry->start; 1687 phdr->p_paddr = 0; 1688 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1689 phdr->p_align = PAGE_SIZE; 1690 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1691 1692 phc->offset += phdr->p_filesz; 1693 phc->phdr++; 1694 } 1695 1696 /* 1697 * A callback for each_dumpable_segment() to gather information about 1698 * the number of segments and their total size. 1699 */ 1700 static void 1701 cb_size_segment(vm_map_entry_t entry, void *closure) 1702 { 1703 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1704 1705 ssc->count++; 1706 ssc->size += entry->end - entry->start; 1707 } 1708 1709 /* 1710 * For each writable segment in the process's memory map, call the given 1711 * function with a pointer to the map entry and some arbitrary 1712 * caller-supplied data. 1713 */ 1714 static void 1715 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1716 { 1717 struct proc *p = td->td_proc; 1718 vm_map_t map = &p->p_vmspace->vm_map; 1719 vm_map_entry_t entry; 1720 vm_object_t backing_object, object; 1721 boolean_t ignore_entry; 1722 1723 vm_map_lock_read(map); 1724 for (entry = map->header.next; entry != &map->header; 1725 entry = entry->next) { 1726 /* 1727 * Don't dump inaccessible mappings, deal with legacy 1728 * coredump mode. 1729 * 1730 * Note that read-only segments related to the elf binary 1731 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1732 * need to arbitrarily ignore such segments. 1733 */ 1734 if (elf_legacy_coredump) { 1735 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1736 continue; 1737 } else { 1738 if ((entry->protection & VM_PROT_ALL) == 0) 1739 continue; 1740 } 1741 1742 /* 1743 * Dont include memory segment in the coredump if 1744 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1745 * madvise(2). Do not dump submaps (i.e. parts of the 1746 * kernel map). 1747 */ 1748 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1749 continue; 1750 1751 if ((object = entry->object.vm_object) == NULL) 1752 continue; 1753 1754 /* Ignore memory-mapped devices and such things. */ 1755 VM_OBJECT_RLOCK(object); 1756 while ((backing_object = object->backing_object) != NULL) { 1757 VM_OBJECT_RLOCK(backing_object); 1758 VM_OBJECT_RUNLOCK(object); 1759 object = backing_object; 1760 } 1761 ignore_entry = object->type != OBJT_DEFAULT && 1762 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1763 object->type != OBJT_PHYS; 1764 VM_OBJECT_RUNLOCK(object); 1765 if (ignore_entry) 1766 continue; 1767 1768 (*func)(entry, closure); 1769 } 1770 vm_map_unlock_read(map); 1771 } 1772 1773 /* 1774 * Write the core file header to the file, including padding up to 1775 * the page boundary. 1776 */ 1777 static int 1778 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1779 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1780 { 1781 struct note_info *ninfo; 1782 struct sbuf *sb; 1783 int error; 1784 1785 /* Fill in the header. */ 1786 bzero(hdr, hdrsize); 1787 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1788 1789 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1790 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1791 sbuf_start_section(sb, NULL); 1792 sbuf_bcat(sb, hdr, hdrsize); 1793 TAILQ_FOREACH(ninfo, notelst, link) 1794 __elfN(putnote)(ninfo, sb); 1795 /* Align up to a page boundary for the program segments. */ 1796 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1797 error = sbuf_finish(sb); 1798 sbuf_delete(sb); 1799 1800 return (error); 1801 } 1802 1803 static void 1804 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1805 size_t *sizep) 1806 { 1807 struct proc *p; 1808 struct thread *thr; 1809 size_t size; 1810 1811 p = td->td_proc; 1812 size = 0; 1813 1814 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1815 1816 /* 1817 * To have the debugger select the right thread (LWP) as the initial 1818 * thread, we dump the state of the thread passed to us in td first. 1819 * This is the thread that causes the core dump and thus likely to 1820 * be the right thread one wants to have selected in the debugger. 1821 */ 1822 thr = td; 1823 while (thr != NULL) { 1824 size += register_note(list, NT_PRSTATUS, 1825 __elfN(note_prstatus), thr); 1826 size += register_note(list, NT_FPREGSET, 1827 __elfN(note_fpregset), thr); 1828 size += register_note(list, NT_THRMISC, 1829 __elfN(note_thrmisc), thr); 1830 size += register_note(list, NT_PTLWPINFO, 1831 __elfN(note_ptlwpinfo), thr); 1832 size += register_note(list, -1, 1833 __elfN(note_threadmd), thr); 1834 1835 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1836 TAILQ_NEXT(thr, td_plist); 1837 if (thr == td) 1838 thr = TAILQ_NEXT(thr, td_plist); 1839 } 1840 1841 size += register_note(list, NT_PROCSTAT_PROC, 1842 __elfN(note_procstat_proc), p); 1843 size += register_note(list, NT_PROCSTAT_FILES, 1844 note_procstat_files, p); 1845 size += register_note(list, NT_PROCSTAT_VMMAP, 1846 note_procstat_vmmap, p); 1847 size += register_note(list, NT_PROCSTAT_GROUPS, 1848 note_procstat_groups, p); 1849 size += register_note(list, NT_PROCSTAT_UMASK, 1850 note_procstat_umask, p); 1851 size += register_note(list, NT_PROCSTAT_RLIMIT, 1852 note_procstat_rlimit, p); 1853 size += register_note(list, NT_PROCSTAT_OSREL, 1854 note_procstat_osrel, p); 1855 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1856 __elfN(note_procstat_psstrings), p); 1857 size += register_note(list, NT_PROCSTAT_AUXV, 1858 __elfN(note_procstat_auxv), p); 1859 1860 *sizep = size; 1861 } 1862 1863 static void 1864 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1865 size_t notesz) 1866 { 1867 Elf_Ehdr *ehdr; 1868 Elf_Phdr *phdr; 1869 Elf_Shdr *shdr; 1870 struct phdr_closure phc; 1871 1872 ehdr = (Elf_Ehdr *)hdr; 1873 1874 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1875 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1876 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1877 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1878 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1879 ehdr->e_ident[EI_DATA] = ELF_DATA; 1880 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1881 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1882 ehdr->e_ident[EI_ABIVERSION] = 0; 1883 ehdr->e_ident[EI_PAD] = 0; 1884 ehdr->e_type = ET_CORE; 1885 ehdr->e_machine = td->td_proc->p_elf_machine; 1886 ehdr->e_version = EV_CURRENT; 1887 ehdr->e_entry = 0; 1888 ehdr->e_phoff = sizeof(Elf_Ehdr); 1889 ehdr->e_flags = td->td_proc->p_elf_flags; 1890 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1891 ehdr->e_phentsize = sizeof(Elf_Phdr); 1892 ehdr->e_shentsize = sizeof(Elf_Shdr); 1893 ehdr->e_shstrndx = SHN_UNDEF; 1894 if (numsegs + 1 < PN_XNUM) { 1895 ehdr->e_phnum = numsegs + 1; 1896 ehdr->e_shnum = 0; 1897 } else { 1898 ehdr->e_phnum = PN_XNUM; 1899 ehdr->e_shnum = 1; 1900 1901 ehdr->e_shoff = ehdr->e_phoff + 1902 (numsegs + 1) * ehdr->e_phentsize; 1903 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1904 ("e_shoff: %zu, hdrsize - shdr: %zu", 1905 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1906 1907 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1908 memset(shdr, 0, sizeof(*shdr)); 1909 /* 1910 * A special first section is used to hold large segment and 1911 * section counts. This was proposed by Sun Microsystems in 1912 * Solaris and has been adopted by Linux; the standard ELF 1913 * tools are already familiar with the technique. 1914 * 1915 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1916 * (or 12-7 depending on the version of the document) for more 1917 * details. 1918 */ 1919 shdr->sh_type = SHT_NULL; 1920 shdr->sh_size = ehdr->e_shnum; 1921 shdr->sh_link = ehdr->e_shstrndx; 1922 shdr->sh_info = numsegs + 1; 1923 } 1924 1925 /* 1926 * Fill in the program header entries. 1927 */ 1928 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1929 1930 /* The note segement. */ 1931 phdr->p_type = PT_NOTE; 1932 phdr->p_offset = hdrsize; 1933 phdr->p_vaddr = 0; 1934 phdr->p_paddr = 0; 1935 phdr->p_filesz = notesz; 1936 phdr->p_memsz = 0; 1937 phdr->p_flags = PF_R; 1938 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1939 phdr++; 1940 1941 /* All the writable segments from the program. */ 1942 phc.phdr = phdr; 1943 phc.offset = round_page(hdrsize + notesz); 1944 each_dumpable_segment(td, cb_put_phdr, &phc); 1945 } 1946 1947 static size_t 1948 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1949 { 1950 struct note_info *ninfo; 1951 size_t size, notesize; 1952 1953 size = 0; 1954 out(arg, NULL, &size); 1955 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1956 ninfo->type = type; 1957 ninfo->outfunc = out; 1958 ninfo->outarg = arg; 1959 ninfo->outsize = size; 1960 TAILQ_INSERT_TAIL(list, ninfo, link); 1961 1962 if (type == -1) 1963 return (size); 1964 1965 notesize = sizeof(Elf_Note) + /* note header */ 1966 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1967 /* note name */ 1968 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1969 1970 return (notesize); 1971 } 1972 1973 static size_t 1974 append_note_data(const void *src, void *dst, size_t len) 1975 { 1976 size_t padded_len; 1977 1978 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1979 if (dst != NULL) { 1980 bcopy(src, dst, len); 1981 bzero((char *)dst + len, padded_len - len); 1982 } 1983 return (padded_len); 1984 } 1985 1986 size_t 1987 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1988 { 1989 Elf_Note *note; 1990 char *buf; 1991 size_t notesize; 1992 1993 buf = dst; 1994 if (buf != NULL) { 1995 note = (Elf_Note *)buf; 1996 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1997 note->n_descsz = size; 1998 note->n_type = type; 1999 buf += sizeof(*note); 2000 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2001 sizeof(FREEBSD_ABI_VENDOR)); 2002 append_note_data(src, buf, size); 2003 if (descp != NULL) 2004 *descp = buf; 2005 } 2006 2007 notesize = sizeof(Elf_Note) + /* note header */ 2008 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2009 /* note name */ 2010 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2011 2012 return (notesize); 2013 } 2014 2015 static void 2016 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2017 { 2018 Elf_Note note; 2019 ssize_t old_len, sect_len; 2020 size_t new_len, descsz, i; 2021 2022 if (ninfo->type == -1) { 2023 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2024 return; 2025 } 2026 2027 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2028 note.n_descsz = ninfo->outsize; 2029 note.n_type = ninfo->type; 2030 2031 sbuf_bcat(sb, ¬e, sizeof(note)); 2032 sbuf_start_section(sb, &old_len); 2033 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2034 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2035 if (note.n_descsz == 0) 2036 return; 2037 sbuf_start_section(sb, &old_len); 2038 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2039 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2040 if (sect_len < 0) 2041 return; 2042 2043 new_len = (size_t)sect_len; 2044 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2045 if (new_len < descsz) { 2046 /* 2047 * It is expected that individual note emitters will correctly 2048 * predict their expected output size and fill up to that size 2049 * themselves, padding in a format-specific way if needed. 2050 * However, in case they don't, just do it here with zeros. 2051 */ 2052 for (i = 0; i < descsz - new_len; i++) 2053 sbuf_putc(sb, 0); 2054 } else if (new_len > descsz) { 2055 /* 2056 * We can't always truncate sb -- we may have drained some 2057 * of it already. 2058 */ 2059 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2060 "read it (%zu > %zu). Since it is longer than " 2061 "expected, this coredump's notes are corrupt. THIS " 2062 "IS A BUG in the note_procstat routine for type %u.\n", 2063 __func__, (unsigned)note.n_type, new_len, descsz, 2064 (unsigned)note.n_type)); 2065 } 2066 } 2067 2068 /* 2069 * Miscellaneous note out functions. 2070 */ 2071 2072 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2073 #include <compat/freebsd32/freebsd32.h> 2074 #include <compat/freebsd32/freebsd32_signal.h> 2075 2076 typedef struct prstatus32 elf_prstatus_t; 2077 typedef struct prpsinfo32 elf_prpsinfo_t; 2078 typedef struct fpreg32 elf_prfpregset_t; 2079 typedef struct fpreg32 elf_fpregset_t; 2080 typedef struct reg32 elf_gregset_t; 2081 typedef struct thrmisc32 elf_thrmisc_t; 2082 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2083 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2084 typedef uint32_t elf_ps_strings_t; 2085 #else 2086 typedef prstatus_t elf_prstatus_t; 2087 typedef prpsinfo_t elf_prpsinfo_t; 2088 typedef prfpregset_t elf_prfpregset_t; 2089 typedef prfpregset_t elf_fpregset_t; 2090 typedef gregset_t elf_gregset_t; 2091 typedef thrmisc_t elf_thrmisc_t; 2092 #define ELF_KERN_PROC_MASK 0 2093 typedef struct kinfo_proc elf_kinfo_proc_t; 2094 typedef vm_offset_t elf_ps_strings_t; 2095 #endif 2096 2097 static void 2098 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2099 { 2100 struct sbuf sbarg; 2101 size_t len; 2102 char *cp, *end; 2103 struct proc *p; 2104 elf_prpsinfo_t *psinfo; 2105 int error; 2106 2107 p = (struct proc *)arg; 2108 if (sb != NULL) { 2109 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2110 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2111 psinfo->pr_version = PRPSINFO_VERSION; 2112 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2113 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2114 PROC_LOCK(p); 2115 if (p->p_args != NULL) { 2116 len = sizeof(psinfo->pr_psargs) - 1; 2117 if (len > p->p_args->ar_length) 2118 len = p->p_args->ar_length; 2119 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2120 PROC_UNLOCK(p); 2121 error = 0; 2122 } else { 2123 _PHOLD(p); 2124 PROC_UNLOCK(p); 2125 sbuf_new(&sbarg, psinfo->pr_psargs, 2126 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2127 error = proc_getargv(curthread, p, &sbarg); 2128 PRELE(p); 2129 if (sbuf_finish(&sbarg) == 0) 2130 len = sbuf_len(&sbarg) - 1; 2131 else 2132 len = sizeof(psinfo->pr_psargs) - 1; 2133 sbuf_delete(&sbarg); 2134 } 2135 if (error || len == 0) 2136 strlcpy(psinfo->pr_psargs, p->p_comm, 2137 sizeof(psinfo->pr_psargs)); 2138 else { 2139 KASSERT(len < sizeof(psinfo->pr_psargs), 2140 ("len is too long: %zu vs %zu", len, 2141 sizeof(psinfo->pr_psargs))); 2142 cp = psinfo->pr_psargs; 2143 end = cp + len - 1; 2144 for (;;) { 2145 cp = memchr(cp, '\0', end - cp); 2146 if (cp == NULL) 2147 break; 2148 *cp = ' '; 2149 } 2150 } 2151 psinfo->pr_pid = p->p_pid; 2152 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2153 free(psinfo, M_TEMP); 2154 } 2155 *sizep = sizeof(*psinfo); 2156 } 2157 2158 static void 2159 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2160 { 2161 struct thread *td; 2162 elf_prstatus_t *status; 2163 2164 td = (struct thread *)arg; 2165 if (sb != NULL) { 2166 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2167 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2168 status->pr_version = PRSTATUS_VERSION; 2169 status->pr_statussz = sizeof(elf_prstatus_t); 2170 status->pr_gregsetsz = sizeof(elf_gregset_t); 2171 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2172 status->pr_osreldate = osreldate; 2173 status->pr_cursig = td->td_proc->p_sig; 2174 status->pr_pid = td->td_tid; 2175 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2176 fill_regs32(td, &status->pr_reg); 2177 #else 2178 fill_regs(td, &status->pr_reg); 2179 #endif 2180 sbuf_bcat(sb, status, sizeof(*status)); 2181 free(status, M_TEMP); 2182 } 2183 *sizep = sizeof(*status); 2184 } 2185 2186 static void 2187 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2188 { 2189 struct thread *td; 2190 elf_prfpregset_t *fpregset; 2191 2192 td = (struct thread *)arg; 2193 if (sb != NULL) { 2194 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2195 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2196 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2197 fill_fpregs32(td, fpregset); 2198 #else 2199 fill_fpregs(td, fpregset); 2200 #endif 2201 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2202 free(fpregset, M_TEMP); 2203 } 2204 *sizep = sizeof(*fpregset); 2205 } 2206 2207 static void 2208 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2209 { 2210 struct thread *td; 2211 elf_thrmisc_t thrmisc; 2212 2213 td = (struct thread *)arg; 2214 if (sb != NULL) { 2215 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2216 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2217 strcpy(thrmisc.pr_tname, td->td_name); 2218 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2219 } 2220 *sizep = sizeof(thrmisc); 2221 } 2222 2223 static void 2224 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2225 { 2226 struct thread *td; 2227 size_t size; 2228 int structsize; 2229 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2230 struct ptrace_lwpinfo32 pl; 2231 #else 2232 struct ptrace_lwpinfo pl; 2233 #endif 2234 2235 td = (struct thread *)arg; 2236 size = sizeof(structsize) + sizeof(pl); 2237 if (sb != NULL) { 2238 KASSERT(*sizep == size, ("invalid size")); 2239 structsize = sizeof(pl); 2240 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2241 bzero(&pl, sizeof(pl)); 2242 pl.pl_lwpid = td->td_tid; 2243 pl.pl_event = PL_EVENT_NONE; 2244 pl.pl_sigmask = td->td_sigmask; 2245 pl.pl_siglist = td->td_siglist; 2246 if (td->td_si.si_signo != 0) { 2247 pl.pl_event = PL_EVENT_SIGNAL; 2248 pl.pl_flags |= PL_FLAG_SI; 2249 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2250 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2251 #else 2252 pl.pl_siginfo = td->td_si; 2253 #endif 2254 } 2255 strcpy(pl.pl_tdname, td->td_name); 2256 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2257 sbuf_bcat(sb, &pl, sizeof(pl)); 2258 } 2259 *sizep = size; 2260 } 2261 2262 /* 2263 * Allow for MD specific notes, as well as any MD 2264 * specific preparations for writing MI notes. 2265 */ 2266 static void 2267 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2268 { 2269 struct thread *td; 2270 void *buf; 2271 size_t size; 2272 2273 td = (struct thread *)arg; 2274 size = *sizep; 2275 if (size != 0 && sb != NULL) 2276 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2277 else 2278 buf = NULL; 2279 size = 0; 2280 __elfN(dump_thread)(td, buf, &size); 2281 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2282 if (size != 0 && sb != NULL) 2283 sbuf_bcat(sb, buf, size); 2284 free(buf, M_TEMP); 2285 *sizep = size; 2286 } 2287 2288 #ifdef KINFO_PROC_SIZE 2289 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2290 #endif 2291 2292 static void 2293 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2294 { 2295 struct proc *p; 2296 size_t size; 2297 int structsize; 2298 2299 p = (struct proc *)arg; 2300 size = sizeof(structsize) + p->p_numthreads * 2301 sizeof(elf_kinfo_proc_t); 2302 2303 if (sb != NULL) { 2304 KASSERT(*sizep == size, ("invalid size")); 2305 structsize = sizeof(elf_kinfo_proc_t); 2306 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2307 PROC_LOCK(p); 2308 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2309 } 2310 *sizep = size; 2311 } 2312 2313 #ifdef KINFO_FILE_SIZE 2314 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2315 #endif 2316 2317 static void 2318 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2319 { 2320 struct proc *p; 2321 size_t size, sect_sz, i; 2322 ssize_t start_len, sect_len; 2323 int structsize, filedesc_flags; 2324 2325 if (coredump_pack_fileinfo) 2326 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2327 else 2328 filedesc_flags = 0; 2329 2330 p = (struct proc *)arg; 2331 structsize = sizeof(struct kinfo_file); 2332 if (sb == NULL) { 2333 size = 0; 2334 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2335 sbuf_set_drain(sb, sbuf_count_drain, &size); 2336 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2337 PROC_LOCK(p); 2338 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2339 sbuf_finish(sb); 2340 sbuf_delete(sb); 2341 *sizep = size; 2342 } else { 2343 sbuf_start_section(sb, &start_len); 2344 2345 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2346 PROC_LOCK(p); 2347 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2348 filedesc_flags); 2349 2350 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2351 if (sect_len < 0) 2352 return; 2353 sect_sz = sect_len; 2354 2355 KASSERT(sect_sz <= *sizep, 2356 ("kern_proc_filedesc_out did not respect maxlen; " 2357 "requested %zu, got %zu", *sizep - sizeof(structsize), 2358 sect_sz - sizeof(structsize))); 2359 2360 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2361 sbuf_putc(sb, 0); 2362 } 2363 } 2364 2365 #ifdef KINFO_VMENTRY_SIZE 2366 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2367 #endif 2368 2369 static void 2370 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2371 { 2372 struct proc *p; 2373 size_t size; 2374 int structsize, vmmap_flags; 2375 2376 if (coredump_pack_vmmapinfo) 2377 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2378 else 2379 vmmap_flags = 0; 2380 2381 p = (struct proc *)arg; 2382 structsize = sizeof(struct kinfo_vmentry); 2383 if (sb == NULL) { 2384 size = 0; 2385 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2386 sbuf_set_drain(sb, sbuf_count_drain, &size); 2387 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2388 PROC_LOCK(p); 2389 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2390 sbuf_finish(sb); 2391 sbuf_delete(sb); 2392 *sizep = size; 2393 } else { 2394 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2395 PROC_LOCK(p); 2396 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2397 vmmap_flags); 2398 } 2399 } 2400 2401 static void 2402 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2403 { 2404 struct proc *p; 2405 size_t size; 2406 int structsize; 2407 2408 p = (struct proc *)arg; 2409 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2410 if (sb != NULL) { 2411 KASSERT(*sizep == size, ("invalid size")); 2412 structsize = sizeof(gid_t); 2413 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2414 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2415 sizeof(gid_t)); 2416 } 2417 *sizep = size; 2418 } 2419 2420 static void 2421 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2422 { 2423 struct proc *p; 2424 size_t size; 2425 int structsize; 2426 2427 p = (struct proc *)arg; 2428 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2429 if (sb != NULL) { 2430 KASSERT(*sizep == size, ("invalid size")); 2431 structsize = sizeof(p->p_fd->fd_cmask); 2432 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2433 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2434 } 2435 *sizep = size; 2436 } 2437 2438 static void 2439 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2440 { 2441 struct proc *p; 2442 struct rlimit rlim[RLIM_NLIMITS]; 2443 size_t size; 2444 int structsize, i; 2445 2446 p = (struct proc *)arg; 2447 size = sizeof(structsize) + sizeof(rlim); 2448 if (sb != NULL) { 2449 KASSERT(*sizep == size, ("invalid size")); 2450 structsize = sizeof(rlim); 2451 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2452 PROC_LOCK(p); 2453 for (i = 0; i < RLIM_NLIMITS; i++) 2454 lim_rlimit_proc(p, i, &rlim[i]); 2455 PROC_UNLOCK(p); 2456 sbuf_bcat(sb, rlim, sizeof(rlim)); 2457 } 2458 *sizep = size; 2459 } 2460 2461 static void 2462 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2463 { 2464 struct proc *p; 2465 size_t size; 2466 int structsize; 2467 2468 p = (struct proc *)arg; 2469 size = sizeof(structsize) + sizeof(p->p_osrel); 2470 if (sb != NULL) { 2471 KASSERT(*sizep == size, ("invalid size")); 2472 structsize = sizeof(p->p_osrel); 2473 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2474 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2475 } 2476 *sizep = size; 2477 } 2478 2479 static void 2480 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2481 { 2482 struct proc *p; 2483 elf_ps_strings_t ps_strings; 2484 size_t size; 2485 int structsize; 2486 2487 p = (struct proc *)arg; 2488 size = sizeof(structsize) + sizeof(ps_strings); 2489 if (sb != NULL) { 2490 KASSERT(*sizep == size, ("invalid size")); 2491 structsize = sizeof(ps_strings); 2492 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2493 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2494 #else 2495 ps_strings = p->p_sysent->sv_psstrings; 2496 #endif 2497 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2498 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2499 } 2500 *sizep = size; 2501 } 2502 2503 static void 2504 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2505 { 2506 struct proc *p; 2507 size_t size; 2508 int structsize; 2509 2510 p = (struct proc *)arg; 2511 if (sb == NULL) { 2512 size = 0; 2513 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2514 sbuf_set_drain(sb, sbuf_count_drain, &size); 2515 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2516 PHOLD(p); 2517 proc_getauxv(curthread, p, sb); 2518 PRELE(p); 2519 sbuf_finish(sb); 2520 sbuf_delete(sb); 2521 *sizep = size; 2522 } else { 2523 structsize = sizeof(Elf_Auxinfo); 2524 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2525 PHOLD(p); 2526 proc_getauxv(curthread, p, sb); 2527 PRELE(p); 2528 } 2529 } 2530 2531 static boolean_t 2532 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2533 const char *note_vendor, const Elf_Phdr *pnote, 2534 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2535 { 2536 const Elf_Note *note, *note0, *note_end; 2537 const char *note_name; 2538 char *buf; 2539 int i, error; 2540 boolean_t res; 2541 2542 /* We need some limit, might as well use PAGE_SIZE. */ 2543 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2544 return (FALSE); 2545 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2546 if (pnote->p_offset > PAGE_SIZE || 2547 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2548 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2549 if (buf == NULL) { 2550 VOP_UNLOCK(imgp->vp, 0); 2551 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2552 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2553 } 2554 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2555 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2556 curthread->td_ucred, NOCRED, NULL, curthread); 2557 if (error != 0) { 2558 uprintf("i/o error PT_NOTE\n"); 2559 goto retf; 2560 } 2561 note = note0 = (const Elf_Note *)buf; 2562 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2563 } else { 2564 note = note0 = (const Elf_Note *)(imgp->image_header + 2565 pnote->p_offset); 2566 note_end = (const Elf_Note *)(imgp->image_header + 2567 pnote->p_offset + pnote->p_filesz); 2568 buf = NULL; 2569 } 2570 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2571 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2572 (const char *)note < sizeof(Elf_Note)) { 2573 goto retf; 2574 } 2575 if (note->n_namesz != checknote->n_namesz || 2576 note->n_descsz != checknote->n_descsz || 2577 note->n_type != checknote->n_type) 2578 goto nextnote; 2579 note_name = (const char *)(note + 1); 2580 if (note_name + checknote->n_namesz >= 2581 (const char *)note_end || strncmp(note_vendor, 2582 note_name, checknote->n_namesz) != 0) 2583 goto nextnote; 2584 2585 if (cb(note, cb_arg, &res)) 2586 goto ret; 2587 nextnote: 2588 note = (const Elf_Note *)((const char *)(note + 1) + 2589 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2590 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2591 } 2592 retf: 2593 res = FALSE; 2594 ret: 2595 free(buf, M_TEMP); 2596 return (res); 2597 } 2598 2599 struct brandnote_cb_arg { 2600 Elf_Brandnote *brandnote; 2601 int32_t *osrel; 2602 }; 2603 2604 static boolean_t 2605 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2606 { 2607 struct brandnote_cb_arg *arg; 2608 2609 arg = arg0; 2610 2611 /* 2612 * Fetch the osreldate for binary from the ELF OSABI-note if 2613 * necessary. 2614 */ 2615 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2616 arg->brandnote->trans_osrel != NULL ? 2617 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2618 2619 return (TRUE); 2620 } 2621 2622 static Elf_Note fctl_note = { 2623 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2624 .n_descsz = sizeof(uint32_t), 2625 .n_type = NT_FREEBSD_FEATURE_CTL, 2626 }; 2627 2628 struct fctl_cb_arg { 2629 uint32_t *fctl0; 2630 }; 2631 2632 static boolean_t 2633 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2634 { 2635 struct fctl_cb_arg *arg; 2636 const Elf32_Word *desc; 2637 uintptr_t p; 2638 2639 arg = arg0; 2640 p = (uintptr_t)(note + 1); 2641 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2642 desc = (const Elf32_Word *)p; 2643 *arg->fctl0 = desc[0]; 2644 return (TRUE); 2645 } 2646 2647 /* 2648 * Try to find the appropriate ABI-note section for checknote, fetch 2649 * the osreldate and feature control flags for binary from the ELF 2650 * OSABI-note. Only the first page of the image is searched, the same 2651 * as for headers. 2652 */ 2653 static boolean_t 2654 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2655 int32_t *osrel, uint32_t *fctl0) 2656 { 2657 const Elf_Phdr *phdr; 2658 const Elf_Ehdr *hdr; 2659 struct brandnote_cb_arg b_arg; 2660 struct fctl_cb_arg f_arg; 2661 int i, j; 2662 2663 hdr = (const Elf_Ehdr *)imgp->image_header; 2664 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2665 b_arg.brandnote = brandnote; 2666 b_arg.osrel = osrel; 2667 f_arg.fctl0 = fctl0; 2668 2669 for (i = 0; i < hdr->e_phnum; i++) { 2670 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2671 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2672 &b_arg)) { 2673 for (j = 0; j < hdr->e_phnum; j++) { 2674 if (phdr[j].p_type == PT_NOTE && 2675 __elfN(parse_notes)(imgp, &fctl_note, 2676 FREEBSD_ABI_VENDOR, &phdr[j], 2677 note_fctl_cb, &f_arg)) 2678 break; 2679 } 2680 return (TRUE); 2681 } 2682 } 2683 return (FALSE); 2684 2685 } 2686 2687 /* 2688 * Tell kern_execve.c about it, with a little help from the linker. 2689 */ 2690 static struct execsw __elfN(execsw) = { 2691 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2692 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2693 }; 2694 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2695 2696 static vm_prot_t 2697 __elfN(trans_prot)(Elf_Word flags) 2698 { 2699 vm_prot_t prot; 2700 2701 prot = 0; 2702 if (flags & PF_X) 2703 prot |= VM_PROT_EXECUTE; 2704 if (flags & PF_W) 2705 prot |= VM_PROT_WRITE; 2706 if (flags & PF_R) 2707 prot |= VM_PROT_READ; 2708 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2709 if (i386_read_exec && (flags & PF_R)) 2710 prot |= VM_PROT_EXECUTE; 2711 #endif 2712 return (prot); 2713 } 2714 2715 static Elf_Word 2716 __elfN(untrans_prot)(vm_prot_t prot) 2717 { 2718 Elf_Word flags; 2719 2720 flags = 0; 2721 if (prot & VM_PROT_EXECUTE) 2722 flags |= PF_X; 2723 if (prot & VM_PROT_READ) 2724 flags |= PF_R; 2725 if (prot & VM_PROT_WRITE) 2726 flags |= PF_W; 2727 return (flags); 2728 } 2729 2730 void 2731 __elfN(stackgap)(struct image_params *imgp, u_long *stack_base) 2732 { 2733 u_long range, rbase, gap; 2734 int pct; 2735 2736 if ((imgp->map_flags & MAP_ASLR) == 0) 2737 return; 2738 pct = __elfN(aslr_stack_gap); 2739 if (pct == 0) 2740 return; 2741 if (pct > 50) 2742 pct = 50; 2743 range = imgp->eff_stack_sz * pct / 100; 2744 arc4rand(&rbase, sizeof(rbase), 0); 2745 gap = rbase % range; 2746 gap &= ~(sizeof(u_long) - 1); 2747 *stack_base -= gap; 2748 } 2749