1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 106 ""); 107 108 #define CORE_BUF_SIZE (16 * 1024) 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 139 static int 140 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 141 { 142 u_long val; 143 int error; 144 145 val = __elfN(pie_base); 146 error = sysctl_handle_long(oidp, &val, 0, req); 147 if (error != 0 || req->newptr == NULL) 148 return (error); 149 if ((val & PAGE_MASK) != 0) 150 return (EINVAL); 151 __elfN(pie_base) = val; 152 return (0); 153 } 154 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 155 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 156 sysctl_pie_base, "LU", 157 "PIE load base without randomization"); 158 159 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0, 160 ""); 161 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 162 163 static int __elfN(aslr_enabled) = 0; 164 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 165 &__elfN(aslr_enabled), 0, 166 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 167 ": enable address map randomization"); 168 169 static int __elfN(pie_aslr_enabled) = 0; 170 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 171 &__elfN(pie_aslr_enabled), 0, 172 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 173 ": enable address map randomization for PIE binaries"); 174 175 static int __elfN(aslr_honor_sbrk) = 1; 176 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 177 &__elfN(aslr_honor_sbrk), 0, 178 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 179 180 static int __elfN(aslr_stack_gap) = 3; 181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 182 &__elfN(aslr_stack_gap), 0, 183 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 184 ": maximum percentage of main stack to waste on a random gap"); 185 186 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 187 188 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 189 190 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 191 192 Elf_Brandnote __elfN(freebsd_brandnote) = { 193 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 194 .hdr.n_descsz = sizeof(int32_t), 195 .hdr.n_type = NT_FREEBSD_ABI_TAG, 196 .vendor = FREEBSD_ABI_VENDOR, 197 .flags = BN_TRANSLATE_OSREL, 198 .trans_osrel = __elfN(freebsd_trans_osrel) 199 }; 200 201 static bool 202 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 203 { 204 uintptr_t p; 205 206 p = (uintptr_t)(note + 1); 207 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 208 *osrel = *(const int32_t *)(p); 209 210 return (true); 211 } 212 213 static const char GNU_ABI_VENDOR[] = "GNU"; 214 static int GNU_KFREEBSD_ABI_DESC = 3; 215 216 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 217 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 218 .hdr.n_descsz = 16, /* XXX at least 16 */ 219 .hdr.n_type = 1, 220 .vendor = GNU_ABI_VENDOR, 221 .flags = BN_TRANSLATE_OSREL, 222 .trans_osrel = kfreebsd_trans_osrel 223 }; 224 225 static bool 226 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 227 { 228 const Elf32_Word *desc; 229 uintptr_t p; 230 231 p = (uintptr_t)(note + 1); 232 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 233 234 desc = (const Elf32_Word *)p; 235 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 236 return (false); 237 238 /* 239 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 240 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 241 */ 242 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 243 244 return (true); 245 } 246 247 int 248 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 249 { 250 int i; 251 252 for (i = 0; i < MAX_BRANDS; i++) { 253 if (elf_brand_list[i] == NULL) { 254 elf_brand_list[i] = entry; 255 break; 256 } 257 } 258 if (i == MAX_BRANDS) { 259 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 260 __func__, entry); 261 return (-1); 262 } 263 return (0); 264 } 265 266 int 267 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 268 { 269 int i; 270 271 for (i = 0; i < MAX_BRANDS; i++) { 272 if (elf_brand_list[i] == entry) { 273 elf_brand_list[i] = NULL; 274 break; 275 } 276 } 277 if (i == MAX_BRANDS) 278 return (-1); 279 return (0); 280 } 281 282 int 283 __elfN(brand_inuse)(Elf_Brandinfo *entry) 284 { 285 struct proc *p; 286 int rval = FALSE; 287 288 sx_slock(&allproc_lock); 289 FOREACH_PROC_IN_SYSTEM(p) { 290 if (p->p_sysent == entry->sysvec) { 291 rval = TRUE; 292 break; 293 } 294 } 295 sx_sunlock(&allproc_lock); 296 297 return (rval); 298 } 299 300 static Elf_Brandinfo * 301 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 302 int32_t *osrel, uint32_t *fctl0) 303 { 304 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 305 Elf_Brandinfo *bi, *bi_m; 306 boolean_t ret; 307 int i, interp_name_len; 308 309 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 310 311 /* 312 * We support four types of branding -- (1) the ELF EI_OSABI field 313 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 314 * branding w/in the ELF header, (3) path of the `interp_path' 315 * field, and (4) the ".note.ABI-tag" ELF section. 316 */ 317 318 /* Look for an ".note.ABI-tag" ELF section */ 319 bi_m = NULL; 320 for (i = 0; i < MAX_BRANDS; i++) { 321 bi = elf_brand_list[i]; 322 if (bi == NULL) 323 continue; 324 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 325 continue; 326 if (hdr->e_machine == bi->machine && (bi->flags & 327 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 328 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 329 fctl0); 330 /* Give brand a chance to veto check_note's guess */ 331 if (ret && bi->header_supported) 332 ret = bi->header_supported(imgp); 333 /* 334 * If note checker claimed the binary, but the 335 * interpreter path in the image does not 336 * match default one for the brand, try to 337 * search for other brands with the same 338 * interpreter. Either there is better brand 339 * with the right interpreter, or, failing 340 * this, we return first brand which accepted 341 * our note and, optionally, header. 342 */ 343 if (ret && bi_m == NULL && interp != NULL && 344 (bi->interp_path == NULL || 345 (strlen(bi->interp_path) + 1 != interp_name_len || 346 strncmp(interp, bi->interp_path, interp_name_len) 347 != 0))) { 348 bi_m = bi; 349 ret = 0; 350 } 351 if (ret) 352 return (bi); 353 } 354 } 355 if (bi_m != NULL) 356 return (bi_m); 357 358 /* If the executable has a brand, search for it in the brand list. */ 359 for (i = 0; i < MAX_BRANDS; i++) { 360 bi = elf_brand_list[i]; 361 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 362 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 363 continue; 364 if (hdr->e_machine == bi->machine && 365 (hdr->e_ident[EI_OSABI] == bi->brand || 366 (bi->compat_3_brand != NULL && 367 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 368 bi->compat_3_brand) == 0))) { 369 /* Looks good, but give brand a chance to veto */ 370 if (bi->header_supported == NULL || 371 bi->header_supported(imgp)) { 372 /* 373 * Again, prefer strictly matching 374 * interpreter path. 375 */ 376 if (interp_name_len == 0 && 377 bi->interp_path == NULL) 378 return (bi); 379 if (bi->interp_path != NULL && 380 strlen(bi->interp_path) + 1 == 381 interp_name_len && strncmp(interp, 382 bi->interp_path, interp_name_len) == 0) 383 return (bi); 384 if (bi_m == NULL) 385 bi_m = bi; 386 } 387 } 388 } 389 if (bi_m != NULL) 390 return (bi_m); 391 392 /* No known brand, see if the header is recognized by any brand */ 393 for (i = 0; i < MAX_BRANDS; i++) { 394 bi = elf_brand_list[i]; 395 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 396 bi->header_supported == NULL) 397 continue; 398 if (hdr->e_machine == bi->machine) { 399 ret = bi->header_supported(imgp); 400 if (ret) 401 return (bi); 402 } 403 } 404 405 /* Lacking a known brand, search for a recognized interpreter. */ 406 if (interp != NULL) { 407 for (i = 0; i < MAX_BRANDS; i++) { 408 bi = elf_brand_list[i]; 409 if (bi == NULL || (bi->flags & 410 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 411 != 0) 412 continue; 413 if (hdr->e_machine == bi->machine && 414 bi->interp_path != NULL && 415 /* ELF image p_filesz includes terminating zero */ 416 strlen(bi->interp_path) + 1 == interp_name_len && 417 strncmp(interp, bi->interp_path, interp_name_len) 418 == 0 && (bi->header_supported == NULL || 419 bi->header_supported(imgp))) 420 return (bi); 421 } 422 } 423 424 /* Lacking a recognized interpreter, try the default brand */ 425 for (i = 0; i < MAX_BRANDS; i++) { 426 bi = elf_brand_list[i]; 427 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 428 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 429 continue; 430 if (hdr->e_machine == bi->machine && 431 __elfN(fallback_brand) == bi->brand && 432 (bi->header_supported == NULL || 433 bi->header_supported(imgp))) 434 return (bi); 435 } 436 return (NULL); 437 } 438 439 static int 440 __elfN(check_header)(const Elf_Ehdr *hdr) 441 { 442 Elf_Brandinfo *bi; 443 int i; 444 445 if (!IS_ELF(*hdr) || 446 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 447 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 448 hdr->e_ident[EI_VERSION] != EV_CURRENT || 449 hdr->e_phentsize != sizeof(Elf_Phdr) || 450 hdr->e_version != ELF_TARG_VER) 451 return (ENOEXEC); 452 453 /* 454 * Make sure we have at least one brand for this machine. 455 */ 456 457 for (i = 0; i < MAX_BRANDS; i++) { 458 bi = elf_brand_list[i]; 459 if (bi != NULL && bi->machine == hdr->e_machine) 460 break; 461 } 462 if (i == MAX_BRANDS) 463 return (ENOEXEC); 464 465 return (0); 466 } 467 468 static int 469 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 470 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 471 { 472 struct sf_buf *sf; 473 int error; 474 vm_offset_t off; 475 476 /* 477 * Create the page if it doesn't exist yet. Ignore errors. 478 */ 479 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 480 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 481 482 /* 483 * Find the page from the underlying object. 484 */ 485 if (object != NULL) { 486 sf = vm_imgact_map_page(object, offset); 487 if (sf == NULL) 488 return (KERN_FAILURE); 489 off = offset - trunc_page(offset); 490 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 491 end - start); 492 vm_imgact_unmap_page(sf); 493 if (error != 0) 494 return (KERN_FAILURE); 495 } 496 497 return (KERN_SUCCESS); 498 } 499 500 static int 501 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 502 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 503 int cow) 504 { 505 struct sf_buf *sf; 506 vm_offset_t off; 507 vm_size_t sz; 508 int error, locked, rv; 509 510 if (start != trunc_page(start)) { 511 rv = __elfN(map_partial)(map, object, offset, start, 512 round_page(start), prot); 513 if (rv != KERN_SUCCESS) 514 return (rv); 515 offset += round_page(start) - start; 516 start = round_page(start); 517 } 518 if (end != round_page(end)) { 519 rv = __elfN(map_partial)(map, object, offset + 520 trunc_page(end) - start, trunc_page(end), end, prot); 521 if (rv != KERN_SUCCESS) 522 return (rv); 523 end = trunc_page(end); 524 } 525 if (start >= end) 526 return (KERN_SUCCESS); 527 if ((offset & PAGE_MASK) != 0) { 528 /* 529 * The mapping is not page aligned. This means that we have 530 * to copy the data. 531 */ 532 rv = vm_map_fixed(map, NULL, 0, start, end - start, 533 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 534 if (rv != KERN_SUCCESS) 535 return (rv); 536 if (object == NULL) 537 return (KERN_SUCCESS); 538 for (; start < end; start += sz) { 539 sf = vm_imgact_map_page(object, offset); 540 if (sf == NULL) 541 return (KERN_FAILURE); 542 off = offset - trunc_page(offset); 543 sz = end - start; 544 if (sz > PAGE_SIZE - off) 545 sz = PAGE_SIZE - off; 546 error = copyout((caddr_t)sf_buf_kva(sf) + off, 547 (caddr_t)start, sz); 548 vm_imgact_unmap_page(sf); 549 if (error != 0) 550 return (KERN_FAILURE); 551 offset += sz; 552 } 553 } else { 554 vm_object_reference(object); 555 rv = vm_map_fixed(map, object, offset, start, end - start, 556 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 557 (object != NULL ? MAP_VN_EXEC : 0)); 558 if (rv != KERN_SUCCESS) { 559 locked = VOP_ISLOCKED(imgp->vp); 560 VOP_UNLOCK(imgp->vp); 561 vm_object_deallocate(object); 562 vn_lock(imgp->vp, locked | LK_RETRY); 563 return (rv); 564 } else if (object != NULL) { 565 MPASS(imgp->vp->v_object == object); 566 VOP_SET_TEXT_CHECKED(imgp->vp); 567 } 568 } 569 return (KERN_SUCCESS); 570 } 571 572 static int 573 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 574 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 575 { 576 struct sf_buf *sf; 577 size_t map_len; 578 vm_map_t map; 579 vm_object_t object; 580 vm_offset_t map_addr; 581 int error, rv, cow; 582 size_t copy_len; 583 vm_ooffset_t file_addr; 584 585 /* 586 * It's necessary to fail if the filsz + offset taken from the 587 * header is greater than the actual file pager object's size. 588 * If we were to allow this, then the vm_map_find() below would 589 * walk right off the end of the file object and into the ether. 590 * 591 * While I'm here, might as well check for something else that 592 * is invalid: filsz cannot be greater than memsz. 593 */ 594 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 595 filsz > memsz) { 596 uprintf("elf_load_section: truncated ELF file\n"); 597 return (ENOEXEC); 598 } 599 600 object = imgp->object; 601 map = &imgp->proc->p_vmspace->vm_map; 602 map_addr = trunc_page((vm_offset_t)vmaddr); 603 file_addr = trunc_page(offset); 604 605 /* 606 * We have two choices. We can either clear the data in the last page 607 * of an oversized mapping, or we can start the anon mapping a page 608 * early and copy the initialized data into that first page. We 609 * choose the second. 610 */ 611 if (filsz == 0) 612 map_len = 0; 613 else if (memsz > filsz) 614 map_len = trunc_page(offset + filsz) - file_addr; 615 else 616 map_len = round_page(offset + filsz) - file_addr; 617 618 if (map_len != 0) { 619 /* cow flags: don't dump readonly sections in core */ 620 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 621 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 622 623 rv = __elfN(map_insert)(imgp, map, object, file_addr, 624 map_addr, map_addr + map_len, prot, cow); 625 if (rv != KERN_SUCCESS) 626 return (EINVAL); 627 628 /* we can stop now if we've covered it all */ 629 if (memsz == filsz) 630 return (0); 631 } 632 633 /* 634 * We have to get the remaining bit of the file into the first part 635 * of the oversized map segment. This is normally because the .data 636 * segment in the file is extended to provide bss. It's a neat idea 637 * to try and save a page, but it's a pain in the behind to implement. 638 */ 639 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 640 filsz); 641 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 642 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 643 644 /* This had damn well better be true! */ 645 if (map_len != 0) { 646 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 647 map_addr + map_len, prot, 0); 648 if (rv != KERN_SUCCESS) 649 return (EINVAL); 650 } 651 652 if (copy_len != 0) { 653 sf = vm_imgact_map_page(object, offset + filsz); 654 if (sf == NULL) 655 return (EIO); 656 657 /* send the page fragment to user space */ 658 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 659 copy_len); 660 vm_imgact_unmap_page(sf); 661 if (error != 0) 662 return (error); 663 } 664 665 /* 666 * Remove write access to the page if it was only granted by map_insert 667 * to allow copyout. 668 */ 669 if ((prot & VM_PROT_WRITE) == 0) 670 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 671 map_len), prot, FALSE); 672 673 return (0); 674 } 675 676 static int 677 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 678 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 679 { 680 vm_prot_t prot; 681 u_long base_addr; 682 bool first; 683 int error, i; 684 685 ASSERT_VOP_LOCKED(imgp->vp, __func__); 686 687 base_addr = 0; 688 first = true; 689 690 for (i = 0; i < hdr->e_phnum; i++) { 691 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 692 continue; 693 694 /* Loadable segment */ 695 prot = __elfN(trans_prot)(phdr[i].p_flags); 696 error = __elfN(load_section)(imgp, phdr[i].p_offset, 697 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 698 phdr[i].p_memsz, phdr[i].p_filesz, prot); 699 if (error != 0) 700 return (error); 701 702 /* 703 * Establish the base address if this is the first segment. 704 */ 705 if (first) { 706 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 707 first = false; 708 } 709 } 710 711 if (base_addrp != NULL) 712 *base_addrp = base_addr; 713 714 return (0); 715 } 716 717 /* 718 * Load the file "file" into memory. It may be either a shared object 719 * or an executable. 720 * 721 * The "addr" reference parameter is in/out. On entry, it specifies 722 * the address where a shared object should be loaded. If the file is 723 * an executable, this value is ignored. On exit, "addr" specifies 724 * where the file was actually loaded. 725 * 726 * The "entry" reference parameter is out only. On exit, it specifies 727 * the entry point for the loaded file. 728 */ 729 static int 730 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 731 u_long *entry) 732 { 733 struct { 734 struct nameidata nd; 735 struct vattr attr; 736 struct image_params image_params; 737 } *tempdata; 738 const Elf_Ehdr *hdr = NULL; 739 const Elf_Phdr *phdr = NULL; 740 struct nameidata *nd; 741 struct vattr *attr; 742 struct image_params *imgp; 743 u_long rbase; 744 u_long base_addr = 0; 745 int error; 746 747 #ifdef CAPABILITY_MODE 748 /* 749 * XXXJA: This check can go away once we are sufficiently confident 750 * that the checks in namei() are correct. 751 */ 752 if (IN_CAPABILITY_MODE(curthread)) 753 return (ECAPMODE); 754 #endif 755 756 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 757 nd = &tempdata->nd; 758 attr = &tempdata->attr; 759 imgp = &tempdata->image_params; 760 761 /* 762 * Initialize part of the common data 763 */ 764 imgp->proc = p; 765 imgp->attr = attr; 766 767 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 768 UIO_SYSSPACE, file, curthread); 769 if ((error = namei(nd)) != 0) { 770 nd->ni_vp = NULL; 771 goto fail; 772 } 773 NDFREE(nd, NDF_ONLY_PNBUF); 774 imgp->vp = nd->ni_vp; 775 776 /* 777 * Check permissions, modes, uid, etc on the file, and "open" it. 778 */ 779 error = exec_check_permissions(imgp); 780 if (error) 781 goto fail; 782 783 error = exec_map_first_page(imgp); 784 if (error) 785 goto fail; 786 787 imgp->object = nd->ni_vp->v_object; 788 789 hdr = (const Elf_Ehdr *)imgp->image_header; 790 if ((error = __elfN(check_header)(hdr)) != 0) 791 goto fail; 792 if (hdr->e_type == ET_DYN) 793 rbase = *addr; 794 else if (hdr->e_type == ET_EXEC) 795 rbase = 0; 796 else { 797 error = ENOEXEC; 798 goto fail; 799 } 800 801 /* Only support headers that fit within first page for now */ 802 if ((hdr->e_phoff > PAGE_SIZE) || 803 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 804 error = ENOEXEC; 805 goto fail; 806 } 807 808 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 809 if (!aligned(phdr, Elf_Addr)) { 810 error = ENOEXEC; 811 goto fail; 812 } 813 814 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 815 if (error != 0) 816 goto fail; 817 818 *addr = base_addr; 819 *entry = (unsigned long)hdr->e_entry + rbase; 820 821 fail: 822 if (imgp->firstpage) 823 exec_unmap_first_page(imgp); 824 825 if (nd->ni_vp) { 826 if (imgp->textset) 827 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 828 vput(nd->ni_vp); 829 } 830 free(tempdata, M_TEMP); 831 832 return (error); 833 } 834 835 static u_long 836 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 837 u_int align) 838 { 839 u_long rbase, res; 840 841 MPASS(vm_map_min(map) <= minv); 842 MPASS(maxv <= vm_map_max(map)); 843 MPASS(minv < maxv); 844 MPASS(minv + align < maxv); 845 arc4rand(&rbase, sizeof(rbase), 0); 846 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 847 res &= ~((u_long)align - 1); 848 if (res >= maxv) 849 res -= align; 850 KASSERT(res >= minv, 851 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 852 res, minv, maxv, rbase)); 853 KASSERT(res < maxv, 854 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 855 res, maxv, minv, rbase)); 856 return (res); 857 } 858 859 static int 860 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 861 const Elf_Phdr *phdr, u_long et_dyn_addr) 862 { 863 struct vmspace *vmspace; 864 const char *err_str; 865 u_long text_size, data_size, total_size, text_addr, data_addr; 866 u_long seg_size, seg_addr; 867 int i; 868 869 err_str = NULL; 870 text_size = data_size = total_size = text_addr = data_addr = 0; 871 872 for (i = 0; i < hdr->e_phnum; i++) { 873 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 874 continue; 875 876 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 877 seg_size = round_page(phdr[i].p_memsz + 878 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 879 880 /* 881 * Make the largest executable segment the official 882 * text segment and all others data. 883 * 884 * Note that obreak() assumes that data_addr + data_size == end 885 * of data load area, and the ELF file format expects segments 886 * to be sorted by address. If multiple data segments exist, 887 * the last one will be used. 888 */ 889 890 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 891 text_size = seg_size; 892 text_addr = seg_addr; 893 } else { 894 data_size = seg_size; 895 data_addr = seg_addr; 896 } 897 total_size += seg_size; 898 } 899 900 if (data_addr == 0 && data_size == 0) { 901 data_addr = text_addr; 902 data_size = text_size; 903 } 904 905 /* 906 * Check limits. It should be safe to check the 907 * limits after loading the segments since we do 908 * not actually fault in all the segments pages. 909 */ 910 PROC_LOCK(imgp->proc); 911 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 912 err_str = "Data segment size exceeds process limit"; 913 else if (text_size > maxtsiz) 914 err_str = "Text segment size exceeds system limit"; 915 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 916 err_str = "Total segment size exceeds process limit"; 917 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 918 err_str = "Data segment size exceeds resource limit"; 919 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 920 err_str = "Total segment size exceeds resource limit"; 921 PROC_UNLOCK(imgp->proc); 922 if (err_str != NULL) { 923 uprintf("%s\n", err_str); 924 return (ENOMEM); 925 } 926 927 vmspace = imgp->proc->p_vmspace; 928 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 929 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 930 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 931 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 932 933 return (0); 934 } 935 936 static int 937 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 938 char **interpp, bool *free_interpp) 939 { 940 struct thread *td; 941 char *interp; 942 int error, interp_name_len; 943 944 KASSERT(phdr->p_type == PT_INTERP, 945 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 946 ASSERT_VOP_LOCKED(imgp->vp, __func__); 947 948 td = curthread; 949 950 /* Path to interpreter */ 951 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 952 uprintf("Invalid PT_INTERP\n"); 953 return (ENOEXEC); 954 } 955 956 interp_name_len = phdr->p_filesz; 957 if (phdr->p_offset > PAGE_SIZE || 958 interp_name_len > PAGE_SIZE - phdr->p_offset) { 959 /* 960 * The vnode lock might be needed by the pagedaemon to 961 * clean pages owned by the vnode. Do not allow sleep 962 * waiting for memory with the vnode locked, instead 963 * try non-sleepable allocation first, and if it 964 * fails, go to the slow path were we drop the lock 965 * and do M_WAITOK. A text reference prevents 966 * modifications to the vnode content. 967 */ 968 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 969 if (interp == NULL) { 970 VOP_UNLOCK(imgp->vp); 971 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 972 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 973 } 974 975 error = vn_rdwr(UIO_READ, imgp->vp, interp, 976 interp_name_len, phdr->p_offset, 977 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 978 NOCRED, NULL, td); 979 if (error != 0) { 980 free(interp, M_TEMP); 981 uprintf("i/o error PT_INTERP %d\n", error); 982 return (error); 983 } 984 interp[interp_name_len] = '\0'; 985 986 *interpp = interp; 987 *free_interpp = true; 988 return (0); 989 } 990 991 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 992 if (interp[interp_name_len - 1] != '\0') { 993 uprintf("Invalid PT_INTERP\n"); 994 return (ENOEXEC); 995 } 996 997 *interpp = interp; 998 *free_interpp = false; 999 return (0); 1000 } 1001 1002 static int 1003 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1004 const char *interp, u_long *addr, u_long *entry) 1005 { 1006 char *path; 1007 int error; 1008 1009 if (brand_info->emul_path != NULL && 1010 brand_info->emul_path[0] != '\0') { 1011 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1012 snprintf(path, MAXPATHLEN, "%s%s", 1013 brand_info->emul_path, interp); 1014 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1015 free(path, M_TEMP); 1016 if (error == 0) 1017 return (0); 1018 } 1019 1020 if (brand_info->interp_newpath != NULL && 1021 (brand_info->interp_path == NULL || 1022 strcmp(interp, brand_info->interp_path) == 0)) { 1023 error = __elfN(load_file)(imgp->proc, 1024 brand_info->interp_newpath, addr, entry); 1025 if (error == 0) 1026 return (0); 1027 } 1028 1029 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1030 if (error == 0) 1031 return (0); 1032 1033 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1034 return (error); 1035 } 1036 1037 /* 1038 * Impossible et_dyn_addr initial value indicating that the real base 1039 * must be calculated later with some randomization applied. 1040 */ 1041 #define ET_DYN_ADDR_RAND 1 1042 1043 static int 1044 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1045 { 1046 struct thread *td; 1047 const Elf_Ehdr *hdr; 1048 const Elf_Phdr *phdr; 1049 Elf_Auxargs *elf_auxargs; 1050 struct vmspace *vmspace; 1051 vm_map_t map; 1052 char *interp; 1053 Elf_Brandinfo *brand_info; 1054 struct sysentvec *sv; 1055 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1056 u_long maxalign, mapsz, maxv, maxv1; 1057 uint32_t fctl0; 1058 int32_t osrel; 1059 bool free_interp; 1060 int error, i, n; 1061 1062 hdr = (const Elf_Ehdr *)imgp->image_header; 1063 1064 /* 1065 * Do we have a valid ELF header ? 1066 * 1067 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1068 * if particular brand doesn't support it. 1069 */ 1070 if (__elfN(check_header)(hdr) != 0 || 1071 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1072 return (-1); 1073 1074 /* 1075 * From here on down, we return an errno, not -1, as we've 1076 * detected an ELF file. 1077 */ 1078 1079 if ((hdr->e_phoff > PAGE_SIZE) || 1080 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 1081 /* Only support headers in first page for now */ 1082 uprintf("Program headers not in the first page\n"); 1083 return (ENOEXEC); 1084 } 1085 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1086 if (!aligned(phdr, Elf_Addr)) { 1087 uprintf("Unaligned program headers\n"); 1088 return (ENOEXEC); 1089 } 1090 1091 n = error = 0; 1092 baddr = 0; 1093 osrel = 0; 1094 fctl0 = 0; 1095 entry = proghdr = 0; 1096 interp = NULL; 1097 free_interp = false; 1098 td = curthread; 1099 maxalign = PAGE_SIZE; 1100 mapsz = 0; 1101 1102 for (i = 0; i < hdr->e_phnum; i++) { 1103 switch (phdr[i].p_type) { 1104 case PT_LOAD: 1105 if (n == 0) 1106 baddr = phdr[i].p_vaddr; 1107 if (phdr[i].p_align > maxalign) 1108 maxalign = phdr[i].p_align; 1109 mapsz += phdr[i].p_memsz; 1110 n++; 1111 1112 /* 1113 * If this segment contains the program headers, 1114 * remember their virtual address for the AT_PHDR 1115 * aux entry. Static binaries don't usually include 1116 * a PT_PHDR entry. 1117 */ 1118 if (phdr[i].p_offset == 0 && 1119 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1120 <= phdr[i].p_filesz) 1121 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1122 break; 1123 case PT_INTERP: 1124 /* Path to interpreter */ 1125 if (interp != NULL) { 1126 uprintf("Multiple PT_INTERP headers\n"); 1127 error = ENOEXEC; 1128 goto ret; 1129 } 1130 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1131 &free_interp); 1132 if (error != 0) 1133 goto ret; 1134 break; 1135 case PT_GNU_STACK: 1136 if (__elfN(nxstack)) 1137 imgp->stack_prot = 1138 __elfN(trans_prot)(phdr[i].p_flags); 1139 imgp->stack_sz = phdr[i].p_memsz; 1140 break; 1141 case PT_PHDR: /* Program header table info */ 1142 proghdr = phdr[i].p_vaddr; 1143 break; 1144 } 1145 } 1146 1147 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1148 if (brand_info == NULL) { 1149 uprintf("ELF binary type \"%u\" not known.\n", 1150 hdr->e_ident[EI_OSABI]); 1151 error = ENOEXEC; 1152 goto ret; 1153 } 1154 sv = brand_info->sysvec; 1155 et_dyn_addr = 0; 1156 if (hdr->e_type == ET_DYN) { 1157 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1158 uprintf("Cannot execute shared object\n"); 1159 error = ENOEXEC; 1160 goto ret; 1161 } 1162 /* 1163 * Honour the base load address from the dso if it is 1164 * non-zero for some reason. 1165 */ 1166 if (baddr == 0) { 1167 if ((sv->sv_flags & SV_ASLR) == 0 || 1168 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1169 et_dyn_addr = __elfN(pie_base); 1170 else if ((__elfN(pie_aslr_enabled) && 1171 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1172 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1173 et_dyn_addr = ET_DYN_ADDR_RAND; 1174 else 1175 et_dyn_addr = __elfN(pie_base); 1176 } 1177 } 1178 1179 /* 1180 * Avoid a possible deadlock if the current address space is destroyed 1181 * and that address space maps the locked vnode. In the common case, 1182 * the locked vnode's v_usecount is decremented but remains greater 1183 * than zero. Consequently, the vnode lock is not needed by vrele(). 1184 * However, in cases where the vnode lock is external, such as nullfs, 1185 * v_usecount may become zero. 1186 * 1187 * The VV_TEXT flag prevents modifications to the executable while 1188 * the vnode is unlocked. 1189 */ 1190 VOP_UNLOCK(imgp->vp); 1191 1192 /* 1193 * Decide whether to enable randomization of user mappings. 1194 * First, reset user preferences for the setid binaries. 1195 * Then, account for the support of the randomization by the 1196 * ABI, by user preferences, and make special treatment for 1197 * PIE binaries. 1198 */ 1199 if (imgp->credential_setid) { 1200 PROC_LOCK(imgp->proc); 1201 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1202 PROC_UNLOCK(imgp->proc); 1203 } 1204 if ((sv->sv_flags & SV_ASLR) == 0 || 1205 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1206 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1207 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1208 ("et_dyn_addr == RAND and !ASLR")); 1209 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1210 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1211 et_dyn_addr == ET_DYN_ADDR_RAND) { 1212 imgp->map_flags |= MAP_ASLR; 1213 /* 1214 * If user does not care about sbrk, utilize the bss 1215 * grow region for mappings as well. We can select 1216 * the base for the image anywere and still not suffer 1217 * from the fragmentation. 1218 */ 1219 if (!__elfN(aslr_honor_sbrk) || 1220 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1221 imgp->map_flags |= MAP_ASLR_IGNSTART; 1222 } 1223 1224 error = exec_new_vmspace(imgp, sv); 1225 vmspace = imgp->proc->p_vmspace; 1226 map = &vmspace->vm_map; 1227 1228 imgp->proc->p_sysent = sv; 1229 1230 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1231 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1232 KASSERT((map->flags & MAP_ASLR) != 0, 1233 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1234 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1235 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1236 /* reserve half of the address space to interpreter */ 1237 maxv / 2, 1UL << flsl(maxalign)); 1238 } 1239 1240 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1241 if (error != 0) 1242 goto ret; 1243 1244 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1245 if (error != 0) 1246 goto ret; 1247 1248 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1249 if (error != 0) 1250 goto ret; 1251 1252 entry = (u_long)hdr->e_entry + et_dyn_addr; 1253 1254 /* 1255 * We load the dynamic linker where a userland call 1256 * to mmap(0, ...) would put it. The rationale behind this 1257 * calculation is that it leaves room for the heap to grow to 1258 * its maximum allowed size. 1259 */ 1260 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1261 RLIMIT_DATA)); 1262 if ((map->flags & MAP_ASLR) != 0) { 1263 maxv1 = maxv / 2 + addr / 2; 1264 MPASS(maxv1 >= addr); /* No overflow */ 1265 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1266 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1267 } else { 1268 map->anon_loc = addr; 1269 } 1270 1271 imgp->entry_addr = entry; 1272 1273 if (interp != NULL) { 1274 VOP_UNLOCK(imgp->vp); 1275 if ((map->flags & MAP_ASLR) != 0) { 1276 /* Assume that interpeter fits into 1/4 of AS */ 1277 maxv1 = maxv / 2 + addr / 2; 1278 MPASS(maxv1 >= addr); /* No overflow */ 1279 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1280 maxv1, PAGE_SIZE); 1281 } 1282 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1283 &imgp->entry_addr); 1284 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1285 if (error != 0) 1286 goto ret; 1287 } else 1288 addr = et_dyn_addr; 1289 1290 /* 1291 * Construct auxargs table (used by the copyout_auxargs routine) 1292 */ 1293 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1294 if (elf_auxargs == NULL) { 1295 VOP_UNLOCK(imgp->vp); 1296 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1297 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1298 } 1299 elf_auxargs->execfd = -1; 1300 elf_auxargs->phdr = proghdr + et_dyn_addr; 1301 elf_auxargs->phent = hdr->e_phentsize; 1302 elf_auxargs->phnum = hdr->e_phnum; 1303 elf_auxargs->pagesz = PAGE_SIZE; 1304 elf_auxargs->base = addr; 1305 elf_auxargs->flags = 0; 1306 elf_auxargs->entry = entry; 1307 elf_auxargs->hdr_eflags = hdr->e_flags; 1308 1309 imgp->auxargs = elf_auxargs; 1310 imgp->interpreted = 0; 1311 imgp->reloc_base = addr; 1312 imgp->proc->p_osrel = osrel; 1313 imgp->proc->p_fctl0 = fctl0; 1314 imgp->proc->p_elf_machine = hdr->e_machine; 1315 imgp->proc->p_elf_flags = hdr->e_flags; 1316 1317 ret: 1318 if (free_interp) 1319 free(interp, M_TEMP); 1320 return (error); 1321 } 1322 1323 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1324 1325 int 1326 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1327 { 1328 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1329 Elf_Auxinfo *argarray, *pos; 1330 int error; 1331 1332 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1333 M_WAITOK | M_ZERO); 1334 1335 if (args->execfd != -1) 1336 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1337 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1338 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1339 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1340 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1341 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1342 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1343 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1344 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1345 if (imgp->execpathp != 0) 1346 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1347 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1348 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1349 if (imgp->canary != 0) { 1350 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1351 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1352 } 1353 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1354 if (imgp->pagesizes != 0) { 1355 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1356 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1357 } 1358 if (imgp->sysent->sv_timekeep_base != 0) { 1359 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1360 imgp->sysent->sv_timekeep_base); 1361 } 1362 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1363 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1364 imgp->sysent->sv_stackprot); 1365 if (imgp->sysent->sv_hwcap != NULL) 1366 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1367 if (imgp->sysent->sv_hwcap2 != NULL) 1368 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1369 AUXARGS_ENTRY(pos, AT_NULL, 0); 1370 1371 free(imgp->auxargs, M_TEMP); 1372 imgp->auxargs = NULL; 1373 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1374 1375 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1376 free(argarray, M_TEMP); 1377 return (error); 1378 } 1379 1380 int 1381 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1382 { 1383 Elf_Addr *base; 1384 1385 base = (Elf_Addr *)*stack_base; 1386 base--; 1387 if (suword(base, imgp->args->argc) == -1) 1388 return (EFAULT); 1389 *stack_base = (uintptr_t)base; 1390 return (0); 1391 } 1392 1393 /* 1394 * Code for generating ELF core dumps. 1395 */ 1396 1397 typedef void (*segment_callback)(vm_map_entry_t, void *); 1398 1399 /* Closure for cb_put_phdr(). */ 1400 struct phdr_closure { 1401 Elf_Phdr *phdr; /* Program header to fill in */ 1402 Elf_Off offset; /* Offset of segment in core file */ 1403 }; 1404 1405 /* Closure for cb_size_segment(). */ 1406 struct sseg_closure { 1407 int count; /* Count of writable segments. */ 1408 size_t size; /* Total size of all writable segments. */ 1409 }; 1410 1411 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1412 1413 struct note_info { 1414 int type; /* Note type. */ 1415 outfunc_t outfunc; /* Output function. */ 1416 void *outarg; /* Argument for the output function. */ 1417 size_t outsize; /* Output size. */ 1418 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1419 }; 1420 1421 TAILQ_HEAD(note_info_list, note_info); 1422 1423 /* Coredump output parameters. */ 1424 struct coredump_params { 1425 off_t offset; 1426 struct ucred *active_cred; 1427 struct ucred *file_cred; 1428 struct thread *td; 1429 struct vnode *vp; 1430 struct compressor *comp; 1431 }; 1432 1433 extern int compress_user_cores; 1434 extern int compress_user_cores_level; 1435 1436 static void cb_put_phdr(vm_map_entry_t, void *); 1437 static void cb_size_segment(vm_map_entry_t, void *); 1438 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1439 enum uio_seg); 1440 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1441 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1442 struct note_info_list *, size_t); 1443 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1444 size_t *); 1445 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1446 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1447 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1448 static int sbuf_drain_core_output(void *, const char *, int); 1449 1450 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1451 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1452 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1453 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1454 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1455 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1456 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1457 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1458 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1459 static void note_procstat_files(void *, struct sbuf *, size_t *); 1460 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1461 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1462 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1463 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1464 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1465 1466 /* 1467 * Write out a core segment to the compression stream. 1468 */ 1469 static int 1470 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1471 { 1472 u_int chunk_len; 1473 int error; 1474 1475 while (len > 0) { 1476 chunk_len = MIN(len, CORE_BUF_SIZE); 1477 1478 /* 1479 * We can get EFAULT error here. 1480 * In that case zero out the current chunk of the segment. 1481 */ 1482 error = copyin(base, buf, chunk_len); 1483 if (error != 0) 1484 bzero(buf, chunk_len); 1485 error = compressor_write(p->comp, buf, chunk_len); 1486 if (error != 0) 1487 break; 1488 base += chunk_len; 1489 len -= chunk_len; 1490 } 1491 return (error); 1492 } 1493 1494 static int 1495 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1496 { 1497 1498 return (core_write((struct coredump_params *)arg, base, len, offset, 1499 UIO_SYSSPACE)); 1500 } 1501 1502 static int 1503 core_write(struct coredump_params *p, const void *base, size_t len, 1504 off_t offset, enum uio_seg seg) 1505 { 1506 1507 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1508 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1509 p->active_cred, p->file_cred, NULL, p->td)); 1510 } 1511 1512 static int 1513 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1514 void *tmpbuf) 1515 { 1516 int error; 1517 1518 if (p->comp != NULL) 1519 return (compress_chunk(p, base, tmpbuf, len)); 1520 1521 /* 1522 * EFAULT is a non-fatal error that we can get, for example, 1523 * if the segment is backed by a file but extends beyond its 1524 * end. 1525 */ 1526 error = core_write(p, base, len, offset, UIO_USERSPACE); 1527 if (error == EFAULT) { 1528 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1529 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1530 "for process %s\n", base, len, offset, curproc->p_comm); 1531 1532 /* 1533 * Write a "real" zero byte at the end of the target region 1534 * in the case this is the last segment. 1535 * The intermediate space will be implicitly zero-filled. 1536 */ 1537 error = core_write(p, zero_region, 1, offset + len - 1, 1538 UIO_SYSSPACE); 1539 } 1540 return (error); 1541 } 1542 1543 /* 1544 * Drain into a core file. 1545 */ 1546 static int 1547 sbuf_drain_core_output(void *arg, const char *data, int len) 1548 { 1549 struct coredump_params *p; 1550 int error, locked; 1551 1552 p = (struct coredump_params *)arg; 1553 1554 /* 1555 * Some kern_proc out routines that print to this sbuf may 1556 * call us with the process lock held. Draining with the 1557 * non-sleepable lock held is unsafe. The lock is needed for 1558 * those routines when dumping a live process. In our case we 1559 * can safely release the lock before draining and acquire 1560 * again after. 1561 */ 1562 locked = PROC_LOCKED(p->td->td_proc); 1563 if (locked) 1564 PROC_UNLOCK(p->td->td_proc); 1565 if (p->comp != NULL) 1566 error = compressor_write(p->comp, __DECONST(char *, data), len); 1567 else 1568 error = core_write(p, __DECONST(void *, data), len, p->offset, 1569 UIO_SYSSPACE); 1570 if (locked) 1571 PROC_LOCK(p->td->td_proc); 1572 if (error != 0) 1573 return (-error); 1574 p->offset += len; 1575 return (len); 1576 } 1577 1578 int 1579 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1580 { 1581 struct ucred *cred = td->td_ucred; 1582 int error = 0; 1583 struct sseg_closure seginfo; 1584 struct note_info_list notelst; 1585 struct coredump_params params; 1586 struct note_info *ninfo; 1587 void *hdr, *tmpbuf; 1588 size_t hdrsize, notesz, coresize; 1589 1590 hdr = NULL; 1591 tmpbuf = NULL; 1592 TAILQ_INIT(¬elst); 1593 1594 /* Size the program segments. */ 1595 seginfo.count = 0; 1596 seginfo.size = 0; 1597 each_dumpable_segment(td, cb_size_segment, &seginfo); 1598 1599 /* 1600 * Collect info about the core file header area. 1601 */ 1602 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1603 if (seginfo.count + 1 >= PN_XNUM) 1604 hdrsize += sizeof(Elf_Shdr); 1605 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1606 coresize = round_page(hdrsize + notesz) + seginfo.size; 1607 1608 /* Set up core dump parameters. */ 1609 params.offset = 0; 1610 params.active_cred = cred; 1611 params.file_cred = NOCRED; 1612 params.td = td; 1613 params.vp = vp; 1614 params.comp = NULL; 1615 1616 #ifdef RACCT 1617 if (racct_enable) { 1618 PROC_LOCK(td->td_proc); 1619 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1620 PROC_UNLOCK(td->td_proc); 1621 if (error != 0) { 1622 error = EFAULT; 1623 goto done; 1624 } 1625 } 1626 #endif 1627 if (coresize >= limit) { 1628 error = EFAULT; 1629 goto done; 1630 } 1631 1632 /* Create a compression stream if necessary. */ 1633 if (compress_user_cores != 0) { 1634 params.comp = compressor_init(core_compressed_write, 1635 compress_user_cores, CORE_BUF_SIZE, 1636 compress_user_cores_level, ¶ms); 1637 if (params.comp == NULL) { 1638 error = EFAULT; 1639 goto done; 1640 } 1641 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1642 } 1643 1644 /* 1645 * Allocate memory for building the header, fill it up, 1646 * and write it out following the notes. 1647 */ 1648 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1649 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1650 notesz); 1651 1652 /* Write the contents of all of the writable segments. */ 1653 if (error == 0) { 1654 Elf_Phdr *php; 1655 off_t offset; 1656 int i; 1657 1658 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1659 offset = round_page(hdrsize + notesz); 1660 for (i = 0; i < seginfo.count; i++) { 1661 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1662 php->p_filesz, offset, ¶ms, tmpbuf); 1663 if (error != 0) 1664 break; 1665 offset += php->p_filesz; 1666 php++; 1667 } 1668 if (error == 0 && params.comp != NULL) 1669 error = compressor_flush(params.comp); 1670 } 1671 if (error) { 1672 log(LOG_WARNING, 1673 "Failed to write core file for process %s (error %d)\n", 1674 curproc->p_comm, error); 1675 } 1676 1677 done: 1678 free(tmpbuf, M_TEMP); 1679 if (params.comp != NULL) 1680 compressor_fini(params.comp); 1681 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1682 TAILQ_REMOVE(¬elst, ninfo, link); 1683 free(ninfo, M_TEMP); 1684 } 1685 if (hdr != NULL) 1686 free(hdr, M_TEMP); 1687 1688 return (error); 1689 } 1690 1691 /* 1692 * A callback for each_dumpable_segment() to write out the segment's 1693 * program header entry. 1694 */ 1695 static void 1696 cb_put_phdr(vm_map_entry_t entry, void *closure) 1697 { 1698 struct phdr_closure *phc = (struct phdr_closure *)closure; 1699 Elf_Phdr *phdr = phc->phdr; 1700 1701 phc->offset = round_page(phc->offset); 1702 1703 phdr->p_type = PT_LOAD; 1704 phdr->p_offset = phc->offset; 1705 phdr->p_vaddr = entry->start; 1706 phdr->p_paddr = 0; 1707 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1708 phdr->p_align = PAGE_SIZE; 1709 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1710 1711 phc->offset += phdr->p_filesz; 1712 phc->phdr++; 1713 } 1714 1715 /* 1716 * A callback for each_dumpable_segment() to gather information about 1717 * the number of segments and their total size. 1718 */ 1719 static void 1720 cb_size_segment(vm_map_entry_t entry, void *closure) 1721 { 1722 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1723 1724 ssc->count++; 1725 ssc->size += entry->end - entry->start; 1726 } 1727 1728 /* 1729 * For each writable segment in the process's memory map, call the given 1730 * function with a pointer to the map entry and some arbitrary 1731 * caller-supplied data. 1732 */ 1733 static void 1734 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1735 { 1736 struct proc *p = td->td_proc; 1737 vm_map_t map = &p->p_vmspace->vm_map; 1738 vm_map_entry_t entry; 1739 vm_object_t backing_object, object; 1740 boolean_t ignore_entry; 1741 1742 vm_map_lock_read(map); 1743 VM_MAP_ENTRY_FOREACH(entry, map) { 1744 /* 1745 * Don't dump inaccessible mappings, deal with legacy 1746 * coredump mode. 1747 * 1748 * Note that read-only segments related to the elf binary 1749 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1750 * need to arbitrarily ignore such segments. 1751 */ 1752 if (elf_legacy_coredump) { 1753 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1754 continue; 1755 } else { 1756 if ((entry->protection & VM_PROT_ALL) == 0) 1757 continue; 1758 } 1759 1760 /* 1761 * Dont include memory segment in the coredump if 1762 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1763 * madvise(2). Do not dump submaps (i.e. parts of the 1764 * kernel map). 1765 */ 1766 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1767 continue; 1768 1769 if ((object = entry->object.vm_object) == NULL) 1770 continue; 1771 1772 /* Ignore memory-mapped devices and such things. */ 1773 VM_OBJECT_RLOCK(object); 1774 while ((backing_object = object->backing_object) != NULL) { 1775 VM_OBJECT_RLOCK(backing_object); 1776 VM_OBJECT_RUNLOCK(object); 1777 object = backing_object; 1778 } 1779 ignore_entry = object->type != OBJT_DEFAULT && 1780 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1781 object->type != OBJT_PHYS; 1782 VM_OBJECT_RUNLOCK(object); 1783 if (ignore_entry) 1784 continue; 1785 1786 (*func)(entry, closure); 1787 } 1788 vm_map_unlock_read(map); 1789 } 1790 1791 /* 1792 * Write the core file header to the file, including padding up to 1793 * the page boundary. 1794 */ 1795 static int 1796 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1797 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1798 { 1799 struct note_info *ninfo; 1800 struct sbuf *sb; 1801 int error; 1802 1803 /* Fill in the header. */ 1804 bzero(hdr, hdrsize); 1805 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1806 1807 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1808 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1809 sbuf_start_section(sb, NULL); 1810 sbuf_bcat(sb, hdr, hdrsize); 1811 TAILQ_FOREACH(ninfo, notelst, link) 1812 __elfN(putnote)(ninfo, sb); 1813 /* Align up to a page boundary for the program segments. */ 1814 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1815 error = sbuf_finish(sb); 1816 sbuf_delete(sb); 1817 1818 return (error); 1819 } 1820 1821 static void 1822 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1823 size_t *sizep) 1824 { 1825 struct proc *p; 1826 struct thread *thr; 1827 size_t size; 1828 1829 p = td->td_proc; 1830 size = 0; 1831 1832 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1833 1834 /* 1835 * To have the debugger select the right thread (LWP) as the initial 1836 * thread, we dump the state of the thread passed to us in td first. 1837 * This is the thread that causes the core dump and thus likely to 1838 * be the right thread one wants to have selected in the debugger. 1839 */ 1840 thr = td; 1841 while (thr != NULL) { 1842 size += register_note(list, NT_PRSTATUS, 1843 __elfN(note_prstatus), thr); 1844 size += register_note(list, NT_FPREGSET, 1845 __elfN(note_fpregset), thr); 1846 size += register_note(list, NT_THRMISC, 1847 __elfN(note_thrmisc), thr); 1848 size += register_note(list, NT_PTLWPINFO, 1849 __elfN(note_ptlwpinfo), thr); 1850 size += register_note(list, -1, 1851 __elfN(note_threadmd), thr); 1852 1853 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1854 TAILQ_NEXT(thr, td_plist); 1855 if (thr == td) 1856 thr = TAILQ_NEXT(thr, td_plist); 1857 } 1858 1859 size += register_note(list, NT_PROCSTAT_PROC, 1860 __elfN(note_procstat_proc), p); 1861 size += register_note(list, NT_PROCSTAT_FILES, 1862 note_procstat_files, p); 1863 size += register_note(list, NT_PROCSTAT_VMMAP, 1864 note_procstat_vmmap, p); 1865 size += register_note(list, NT_PROCSTAT_GROUPS, 1866 note_procstat_groups, p); 1867 size += register_note(list, NT_PROCSTAT_UMASK, 1868 note_procstat_umask, p); 1869 size += register_note(list, NT_PROCSTAT_RLIMIT, 1870 note_procstat_rlimit, p); 1871 size += register_note(list, NT_PROCSTAT_OSREL, 1872 note_procstat_osrel, p); 1873 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1874 __elfN(note_procstat_psstrings), p); 1875 size += register_note(list, NT_PROCSTAT_AUXV, 1876 __elfN(note_procstat_auxv), p); 1877 1878 *sizep = size; 1879 } 1880 1881 static void 1882 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1883 size_t notesz) 1884 { 1885 Elf_Ehdr *ehdr; 1886 Elf_Phdr *phdr; 1887 Elf_Shdr *shdr; 1888 struct phdr_closure phc; 1889 1890 ehdr = (Elf_Ehdr *)hdr; 1891 1892 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1893 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1894 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1895 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1896 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1897 ehdr->e_ident[EI_DATA] = ELF_DATA; 1898 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1899 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1900 ehdr->e_ident[EI_ABIVERSION] = 0; 1901 ehdr->e_ident[EI_PAD] = 0; 1902 ehdr->e_type = ET_CORE; 1903 ehdr->e_machine = td->td_proc->p_elf_machine; 1904 ehdr->e_version = EV_CURRENT; 1905 ehdr->e_entry = 0; 1906 ehdr->e_phoff = sizeof(Elf_Ehdr); 1907 ehdr->e_flags = td->td_proc->p_elf_flags; 1908 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1909 ehdr->e_phentsize = sizeof(Elf_Phdr); 1910 ehdr->e_shentsize = sizeof(Elf_Shdr); 1911 ehdr->e_shstrndx = SHN_UNDEF; 1912 if (numsegs + 1 < PN_XNUM) { 1913 ehdr->e_phnum = numsegs + 1; 1914 ehdr->e_shnum = 0; 1915 } else { 1916 ehdr->e_phnum = PN_XNUM; 1917 ehdr->e_shnum = 1; 1918 1919 ehdr->e_shoff = ehdr->e_phoff + 1920 (numsegs + 1) * ehdr->e_phentsize; 1921 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1922 ("e_shoff: %zu, hdrsize - shdr: %zu", 1923 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1924 1925 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1926 memset(shdr, 0, sizeof(*shdr)); 1927 /* 1928 * A special first section is used to hold large segment and 1929 * section counts. This was proposed by Sun Microsystems in 1930 * Solaris and has been adopted by Linux; the standard ELF 1931 * tools are already familiar with the technique. 1932 * 1933 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1934 * (or 12-7 depending on the version of the document) for more 1935 * details. 1936 */ 1937 shdr->sh_type = SHT_NULL; 1938 shdr->sh_size = ehdr->e_shnum; 1939 shdr->sh_link = ehdr->e_shstrndx; 1940 shdr->sh_info = numsegs + 1; 1941 } 1942 1943 /* 1944 * Fill in the program header entries. 1945 */ 1946 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1947 1948 /* The note segement. */ 1949 phdr->p_type = PT_NOTE; 1950 phdr->p_offset = hdrsize; 1951 phdr->p_vaddr = 0; 1952 phdr->p_paddr = 0; 1953 phdr->p_filesz = notesz; 1954 phdr->p_memsz = 0; 1955 phdr->p_flags = PF_R; 1956 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1957 phdr++; 1958 1959 /* All the writable segments from the program. */ 1960 phc.phdr = phdr; 1961 phc.offset = round_page(hdrsize + notesz); 1962 each_dumpable_segment(td, cb_put_phdr, &phc); 1963 } 1964 1965 static size_t 1966 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1967 { 1968 struct note_info *ninfo; 1969 size_t size, notesize; 1970 1971 size = 0; 1972 out(arg, NULL, &size); 1973 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1974 ninfo->type = type; 1975 ninfo->outfunc = out; 1976 ninfo->outarg = arg; 1977 ninfo->outsize = size; 1978 TAILQ_INSERT_TAIL(list, ninfo, link); 1979 1980 if (type == -1) 1981 return (size); 1982 1983 notesize = sizeof(Elf_Note) + /* note header */ 1984 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1985 /* note name */ 1986 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1987 1988 return (notesize); 1989 } 1990 1991 static size_t 1992 append_note_data(const void *src, void *dst, size_t len) 1993 { 1994 size_t padded_len; 1995 1996 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1997 if (dst != NULL) { 1998 bcopy(src, dst, len); 1999 bzero((char *)dst + len, padded_len - len); 2000 } 2001 return (padded_len); 2002 } 2003 2004 size_t 2005 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2006 { 2007 Elf_Note *note; 2008 char *buf; 2009 size_t notesize; 2010 2011 buf = dst; 2012 if (buf != NULL) { 2013 note = (Elf_Note *)buf; 2014 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2015 note->n_descsz = size; 2016 note->n_type = type; 2017 buf += sizeof(*note); 2018 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2019 sizeof(FREEBSD_ABI_VENDOR)); 2020 append_note_data(src, buf, size); 2021 if (descp != NULL) 2022 *descp = buf; 2023 } 2024 2025 notesize = sizeof(Elf_Note) + /* note header */ 2026 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2027 /* note name */ 2028 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2029 2030 return (notesize); 2031 } 2032 2033 static void 2034 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2035 { 2036 Elf_Note note; 2037 ssize_t old_len, sect_len; 2038 size_t new_len, descsz, i; 2039 2040 if (ninfo->type == -1) { 2041 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2042 return; 2043 } 2044 2045 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2046 note.n_descsz = ninfo->outsize; 2047 note.n_type = ninfo->type; 2048 2049 sbuf_bcat(sb, ¬e, sizeof(note)); 2050 sbuf_start_section(sb, &old_len); 2051 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2052 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2053 if (note.n_descsz == 0) 2054 return; 2055 sbuf_start_section(sb, &old_len); 2056 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2057 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2058 if (sect_len < 0) 2059 return; 2060 2061 new_len = (size_t)sect_len; 2062 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2063 if (new_len < descsz) { 2064 /* 2065 * It is expected that individual note emitters will correctly 2066 * predict their expected output size and fill up to that size 2067 * themselves, padding in a format-specific way if needed. 2068 * However, in case they don't, just do it here with zeros. 2069 */ 2070 for (i = 0; i < descsz - new_len; i++) 2071 sbuf_putc(sb, 0); 2072 } else if (new_len > descsz) { 2073 /* 2074 * We can't always truncate sb -- we may have drained some 2075 * of it already. 2076 */ 2077 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2078 "read it (%zu > %zu). Since it is longer than " 2079 "expected, this coredump's notes are corrupt. THIS " 2080 "IS A BUG in the note_procstat routine for type %u.\n", 2081 __func__, (unsigned)note.n_type, new_len, descsz, 2082 (unsigned)note.n_type)); 2083 } 2084 } 2085 2086 /* 2087 * Miscellaneous note out functions. 2088 */ 2089 2090 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2091 #include <compat/freebsd32/freebsd32.h> 2092 #include <compat/freebsd32/freebsd32_signal.h> 2093 2094 typedef struct prstatus32 elf_prstatus_t; 2095 typedef struct prpsinfo32 elf_prpsinfo_t; 2096 typedef struct fpreg32 elf_prfpregset_t; 2097 typedef struct fpreg32 elf_fpregset_t; 2098 typedef struct reg32 elf_gregset_t; 2099 typedef struct thrmisc32 elf_thrmisc_t; 2100 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2101 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2102 typedef uint32_t elf_ps_strings_t; 2103 #else 2104 typedef prstatus_t elf_prstatus_t; 2105 typedef prpsinfo_t elf_prpsinfo_t; 2106 typedef prfpregset_t elf_prfpregset_t; 2107 typedef prfpregset_t elf_fpregset_t; 2108 typedef gregset_t elf_gregset_t; 2109 typedef thrmisc_t elf_thrmisc_t; 2110 #define ELF_KERN_PROC_MASK 0 2111 typedef struct kinfo_proc elf_kinfo_proc_t; 2112 typedef vm_offset_t elf_ps_strings_t; 2113 #endif 2114 2115 static void 2116 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2117 { 2118 struct sbuf sbarg; 2119 size_t len; 2120 char *cp, *end; 2121 struct proc *p; 2122 elf_prpsinfo_t *psinfo; 2123 int error; 2124 2125 p = (struct proc *)arg; 2126 if (sb != NULL) { 2127 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2128 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2129 psinfo->pr_version = PRPSINFO_VERSION; 2130 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2131 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2132 PROC_LOCK(p); 2133 if (p->p_args != NULL) { 2134 len = sizeof(psinfo->pr_psargs) - 1; 2135 if (len > p->p_args->ar_length) 2136 len = p->p_args->ar_length; 2137 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2138 PROC_UNLOCK(p); 2139 error = 0; 2140 } else { 2141 _PHOLD(p); 2142 PROC_UNLOCK(p); 2143 sbuf_new(&sbarg, psinfo->pr_psargs, 2144 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2145 error = proc_getargv(curthread, p, &sbarg); 2146 PRELE(p); 2147 if (sbuf_finish(&sbarg) == 0) 2148 len = sbuf_len(&sbarg) - 1; 2149 else 2150 len = sizeof(psinfo->pr_psargs) - 1; 2151 sbuf_delete(&sbarg); 2152 } 2153 if (error || len == 0) 2154 strlcpy(psinfo->pr_psargs, p->p_comm, 2155 sizeof(psinfo->pr_psargs)); 2156 else { 2157 KASSERT(len < sizeof(psinfo->pr_psargs), 2158 ("len is too long: %zu vs %zu", len, 2159 sizeof(psinfo->pr_psargs))); 2160 cp = psinfo->pr_psargs; 2161 end = cp + len - 1; 2162 for (;;) { 2163 cp = memchr(cp, '\0', end - cp); 2164 if (cp == NULL) 2165 break; 2166 *cp = ' '; 2167 } 2168 } 2169 psinfo->pr_pid = p->p_pid; 2170 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2171 free(psinfo, M_TEMP); 2172 } 2173 *sizep = sizeof(*psinfo); 2174 } 2175 2176 static void 2177 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2178 { 2179 struct thread *td; 2180 elf_prstatus_t *status; 2181 2182 td = (struct thread *)arg; 2183 if (sb != NULL) { 2184 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2185 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2186 status->pr_version = PRSTATUS_VERSION; 2187 status->pr_statussz = sizeof(elf_prstatus_t); 2188 status->pr_gregsetsz = sizeof(elf_gregset_t); 2189 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2190 status->pr_osreldate = osreldate; 2191 status->pr_cursig = td->td_proc->p_sig; 2192 status->pr_pid = td->td_tid; 2193 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2194 fill_regs32(td, &status->pr_reg); 2195 #else 2196 fill_regs(td, &status->pr_reg); 2197 #endif 2198 sbuf_bcat(sb, status, sizeof(*status)); 2199 free(status, M_TEMP); 2200 } 2201 *sizep = sizeof(*status); 2202 } 2203 2204 static void 2205 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2206 { 2207 struct thread *td; 2208 elf_prfpregset_t *fpregset; 2209 2210 td = (struct thread *)arg; 2211 if (sb != NULL) { 2212 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2213 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2214 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2215 fill_fpregs32(td, fpregset); 2216 #else 2217 fill_fpregs(td, fpregset); 2218 #endif 2219 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2220 free(fpregset, M_TEMP); 2221 } 2222 *sizep = sizeof(*fpregset); 2223 } 2224 2225 static void 2226 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2227 { 2228 struct thread *td; 2229 elf_thrmisc_t thrmisc; 2230 2231 td = (struct thread *)arg; 2232 if (sb != NULL) { 2233 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2234 bzero(&thrmisc, sizeof(thrmisc)); 2235 strcpy(thrmisc.pr_tname, td->td_name); 2236 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2237 } 2238 *sizep = sizeof(thrmisc); 2239 } 2240 2241 static void 2242 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2243 { 2244 struct thread *td; 2245 size_t size; 2246 int structsize; 2247 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2248 struct ptrace_lwpinfo32 pl; 2249 #else 2250 struct ptrace_lwpinfo pl; 2251 #endif 2252 2253 td = (struct thread *)arg; 2254 size = sizeof(structsize) + sizeof(pl); 2255 if (sb != NULL) { 2256 KASSERT(*sizep == size, ("invalid size")); 2257 structsize = sizeof(pl); 2258 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2259 bzero(&pl, sizeof(pl)); 2260 pl.pl_lwpid = td->td_tid; 2261 pl.pl_event = PL_EVENT_NONE; 2262 pl.pl_sigmask = td->td_sigmask; 2263 pl.pl_siglist = td->td_siglist; 2264 if (td->td_si.si_signo != 0) { 2265 pl.pl_event = PL_EVENT_SIGNAL; 2266 pl.pl_flags |= PL_FLAG_SI; 2267 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2268 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2269 #else 2270 pl.pl_siginfo = td->td_si; 2271 #endif 2272 } 2273 strcpy(pl.pl_tdname, td->td_name); 2274 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2275 sbuf_bcat(sb, &pl, sizeof(pl)); 2276 } 2277 *sizep = size; 2278 } 2279 2280 /* 2281 * Allow for MD specific notes, as well as any MD 2282 * specific preparations for writing MI notes. 2283 */ 2284 static void 2285 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2286 { 2287 struct thread *td; 2288 void *buf; 2289 size_t size; 2290 2291 td = (struct thread *)arg; 2292 size = *sizep; 2293 if (size != 0 && sb != NULL) 2294 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2295 else 2296 buf = NULL; 2297 size = 0; 2298 __elfN(dump_thread)(td, buf, &size); 2299 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2300 if (size != 0 && sb != NULL) 2301 sbuf_bcat(sb, buf, size); 2302 free(buf, M_TEMP); 2303 *sizep = size; 2304 } 2305 2306 #ifdef KINFO_PROC_SIZE 2307 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2308 #endif 2309 2310 static void 2311 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2312 { 2313 struct proc *p; 2314 size_t size; 2315 int structsize; 2316 2317 p = (struct proc *)arg; 2318 size = sizeof(structsize) + p->p_numthreads * 2319 sizeof(elf_kinfo_proc_t); 2320 2321 if (sb != NULL) { 2322 KASSERT(*sizep == size, ("invalid size")); 2323 structsize = sizeof(elf_kinfo_proc_t); 2324 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2325 PROC_LOCK(p); 2326 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2327 } 2328 *sizep = size; 2329 } 2330 2331 #ifdef KINFO_FILE_SIZE 2332 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2333 #endif 2334 2335 static void 2336 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2337 { 2338 struct proc *p; 2339 size_t size, sect_sz, i; 2340 ssize_t start_len, sect_len; 2341 int structsize, filedesc_flags; 2342 2343 if (coredump_pack_fileinfo) 2344 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2345 else 2346 filedesc_flags = 0; 2347 2348 p = (struct proc *)arg; 2349 structsize = sizeof(struct kinfo_file); 2350 if (sb == NULL) { 2351 size = 0; 2352 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2353 sbuf_set_drain(sb, sbuf_count_drain, &size); 2354 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2355 PROC_LOCK(p); 2356 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2357 sbuf_finish(sb); 2358 sbuf_delete(sb); 2359 *sizep = size; 2360 } else { 2361 sbuf_start_section(sb, &start_len); 2362 2363 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2364 PROC_LOCK(p); 2365 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2366 filedesc_flags); 2367 2368 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2369 if (sect_len < 0) 2370 return; 2371 sect_sz = sect_len; 2372 2373 KASSERT(sect_sz <= *sizep, 2374 ("kern_proc_filedesc_out did not respect maxlen; " 2375 "requested %zu, got %zu", *sizep - sizeof(structsize), 2376 sect_sz - sizeof(structsize))); 2377 2378 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2379 sbuf_putc(sb, 0); 2380 } 2381 } 2382 2383 #ifdef KINFO_VMENTRY_SIZE 2384 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2385 #endif 2386 2387 static void 2388 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2389 { 2390 struct proc *p; 2391 size_t size; 2392 int structsize, vmmap_flags; 2393 2394 if (coredump_pack_vmmapinfo) 2395 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2396 else 2397 vmmap_flags = 0; 2398 2399 p = (struct proc *)arg; 2400 structsize = sizeof(struct kinfo_vmentry); 2401 if (sb == NULL) { 2402 size = 0; 2403 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2404 sbuf_set_drain(sb, sbuf_count_drain, &size); 2405 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2406 PROC_LOCK(p); 2407 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2408 sbuf_finish(sb); 2409 sbuf_delete(sb); 2410 *sizep = size; 2411 } else { 2412 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2413 PROC_LOCK(p); 2414 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2415 vmmap_flags); 2416 } 2417 } 2418 2419 static void 2420 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2421 { 2422 struct proc *p; 2423 size_t size; 2424 int structsize; 2425 2426 p = (struct proc *)arg; 2427 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2428 if (sb != NULL) { 2429 KASSERT(*sizep == size, ("invalid size")); 2430 structsize = sizeof(gid_t); 2431 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2432 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2433 sizeof(gid_t)); 2434 } 2435 *sizep = size; 2436 } 2437 2438 static void 2439 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2440 { 2441 struct proc *p; 2442 size_t size; 2443 int structsize; 2444 2445 p = (struct proc *)arg; 2446 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2447 if (sb != NULL) { 2448 KASSERT(*sizep == size, ("invalid size")); 2449 structsize = sizeof(p->p_fd->fd_cmask); 2450 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2451 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2452 } 2453 *sizep = size; 2454 } 2455 2456 static void 2457 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2458 { 2459 struct proc *p; 2460 struct rlimit rlim[RLIM_NLIMITS]; 2461 size_t size; 2462 int structsize, i; 2463 2464 p = (struct proc *)arg; 2465 size = sizeof(structsize) + sizeof(rlim); 2466 if (sb != NULL) { 2467 KASSERT(*sizep == size, ("invalid size")); 2468 structsize = sizeof(rlim); 2469 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2470 PROC_LOCK(p); 2471 for (i = 0; i < RLIM_NLIMITS; i++) 2472 lim_rlimit_proc(p, i, &rlim[i]); 2473 PROC_UNLOCK(p); 2474 sbuf_bcat(sb, rlim, sizeof(rlim)); 2475 } 2476 *sizep = size; 2477 } 2478 2479 static void 2480 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2481 { 2482 struct proc *p; 2483 size_t size; 2484 int structsize; 2485 2486 p = (struct proc *)arg; 2487 size = sizeof(structsize) + sizeof(p->p_osrel); 2488 if (sb != NULL) { 2489 KASSERT(*sizep == size, ("invalid size")); 2490 structsize = sizeof(p->p_osrel); 2491 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2492 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2493 } 2494 *sizep = size; 2495 } 2496 2497 static void 2498 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2499 { 2500 struct proc *p; 2501 elf_ps_strings_t ps_strings; 2502 size_t size; 2503 int structsize; 2504 2505 p = (struct proc *)arg; 2506 size = sizeof(structsize) + sizeof(ps_strings); 2507 if (sb != NULL) { 2508 KASSERT(*sizep == size, ("invalid size")); 2509 structsize = sizeof(ps_strings); 2510 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2511 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2512 #else 2513 ps_strings = p->p_sysent->sv_psstrings; 2514 #endif 2515 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2516 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2517 } 2518 *sizep = size; 2519 } 2520 2521 static void 2522 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2523 { 2524 struct proc *p; 2525 size_t size; 2526 int structsize; 2527 2528 p = (struct proc *)arg; 2529 if (sb == NULL) { 2530 size = 0; 2531 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2532 sbuf_set_drain(sb, sbuf_count_drain, &size); 2533 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2534 PHOLD(p); 2535 proc_getauxv(curthread, p, sb); 2536 PRELE(p); 2537 sbuf_finish(sb); 2538 sbuf_delete(sb); 2539 *sizep = size; 2540 } else { 2541 structsize = sizeof(Elf_Auxinfo); 2542 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2543 PHOLD(p); 2544 proc_getauxv(curthread, p, sb); 2545 PRELE(p); 2546 } 2547 } 2548 2549 static boolean_t 2550 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2551 const char *note_vendor, const Elf_Phdr *pnote, 2552 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2553 { 2554 const Elf_Note *note, *note0, *note_end; 2555 const char *note_name; 2556 char *buf; 2557 int i, error; 2558 boolean_t res; 2559 2560 /* We need some limit, might as well use PAGE_SIZE. */ 2561 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2562 return (FALSE); 2563 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2564 if (pnote->p_offset > PAGE_SIZE || 2565 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2566 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2567 if (buf == NULL) { 2568 VOP_UNLOCK(imgp->vp); 2569 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2570 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2571 } 2572 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2573 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2574 curthread->td_ucred, NOCRED, NULL, curthread); 2575 if (error != 0) { 2576 uprintf("i/o error PT_NOTE\n"); 2577 goto retf; 2578 } 2579 note = note0 = (const Elf_Note *)buf; 2580 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2581 } else { 2582 note = note0 = (const Elf_Note *)(imgp->image_header + 2583 pnote->p_offset); 2584 note_end = (const Elf_Note *)(imgp->image_header + 2585 pnote->p_offset + pnote->p_filesz); 2586 buf = NULL; 2587 } 2588 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2589 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2590 (const char *)note < sizeof(Elf_Note)) { 2591 goto retf; 2592 } 2593 if (note->n_namesz != checknote->n_namesz || 2594 note->n_descsz != checknote->n_descsz || 2595 note->n_type != checknote->n_type) 2596 goto nextnote; 2597 note_name = (const char *)(note + 1); 2598 if (note_name + checknote->n_namesz >= 2599 (const char *)note_end || strncmp(note_vendor, 2600 note_name, checknote->n_namesz) != 0) 2601 goto nextnote; 2602 2603 if (cb(note, cb_arg, &res)) 2604 goto ret; 2605 nextnote: 2606 note = (const Elf_Note *)((const char *)(note + 1) + 2607 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2608 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2609 } 2610 retf: 2611 res = FALSE; 2612 ret: 2613 free(buf, M_TEMP); 2614 return (res); 2615 } 2616 2617 struct brandnote_cb_arg { 2618 Elf_Brandnote *brandnote; 2619 int32_t *osrel; 2620 }; 2621 2622 static boolean_t 2623 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2624 { 2625 struct brandnote_cb_arg *arg; 2626 2627 arg = arg0; 2628 2629 /* 2630 * Fetch the osreldate for binary from the ELF OSABI-note if 2631 * necessary. 2632 */ 2633 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2634 arg->brandnote->trans_osrel != NULL ? 2635 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2636 2637 return (TRUE); 2638 } 2639 2640 static Elf_Note fctl_note = { 2641 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2642 .n_descsz = sizeof(uint32_t), 2643 .n_type = NT_FREEBSD_FEATURE_CTL, 2644 }; 2645 2646 struct fctl_cb_arg { 2647 uint32_t *fctl0; 2648 }; 2649 2650 static boolean_t 2651 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2652 { 2653 struct fctl_cb_arg *arg; 2654 const Elf32_Word *desc; 2655 uintptr_t p; 2656 2657 arg = arg0; 2658 p = (uintptr_t)(note + 1); 2659 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2660 desc = (const Elf32_Word *)p; 2661 *arg->fctl0 = desc[0]; 2662 return (TRUE); 2663 } 2664 2665 /* 2666 * Try to find the appropriate ABI-note section for checknote, fetch 2667 * the osreldate and feature control flags for binary from the ELF 2668 * OSABI-note. Only the first page of the image is searched, the same 2669 * as for headers. 2670 */ 2671 static boolean_t 2672 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2673 int32_t *osrel, uint32_t *fctl0) 2674 { 2675 const Elf_Phdr *phdr; 2676 const Elf_Ehdr *hdr; 2677 struct brandnote_cb_arg b_arg; 2678 struct fctl_cb_arg f_arg; 2679 int i, j; 2680 2681 hdr = (const Elf_Ehdr *)imgp->image_header; 2682 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2683 b_arg.brandnote = brandnote; 2684 b_arg.osrel = osrel; 2685 f_arg.fctl0 = fctl0; 2686 2687 for (i = 0; i < hdr->e_phnum; i++) { 2688 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2689 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2690 &b_arg)) { 2691 for (j = 0; j < hdr->e_phnum; j++) { 2692 if (phdr[j].p_type == PT_NOTE && 2693 __elfN(parse_notes)(imgp, &fctl_note, 2694 FREEBSD_ABI_VENDOR, &phdr[j], 2695 note_fctl_cb, &f_arg)) 2696 break; 2697 } 2698 return (TRUE); 2699 } 2700 } 2701 return (FALSE); 2702 2703 } 2704 2705 /* 2706 * Tell kern_execve.c about it, with a little help from the linker. 2707 */ 2708 static struct execsw __elfN(execsw) = { 2709 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2710 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2711 }; 2712 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2713 2714 static vm_prot_t 2715 __elfN(trans_prot)(Elf_Word flags) 2716 { 2717 vm_prot_t prot; 2718 2719 prot = 0; 2720 if (flags & PF_X) 2721 prot |= VM_PROT_EXECUTE; 2722 if (flags & PF_W) 2723 prot |= VM_PROT_WRITE; 2724 if (flags & PF_R) 2725 prot |= VM_PROT_READ; 2726 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2727 if (i386_read_exec && (flags & PF_R)) 2728 prot |= VM_PROT_EXECUTE; 2729 #endif 2730 return (prot); 2731 } 2732 2733 static Elf_Word 2734 __elfN(untrans_prot)(vm_prot_t prot) 2735 { 2736 Elf_Word flags; 2737 2738 flags = 0; 2739 if (prot & VM_PROT_EXECUTE) 2740 flags |= PF_X; 2741 if (prot & VM_PROT_READ) 2742 flags |= PF_R; 2743 if (prot & VM_PROT_WRITE) 2744 flags |= PF_W; 2745 return (flags); 2746 } 2747 2748 void 2749 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) 2750 { 2751 uintptr_t range, rbase, gap; 2752 int pct; 2753 2754 if ((imgp->map_flags & MAP_ASLR) == 0) 2755 return; 2756 pct = __elfN(aslr_stack_gap); 2757 if (pct == 0) 2758 return; 2759 if (pct > 50) 2760 pct = 50; 2761 range = imgp->eff_stack_sz * pct / 100; 2762 arc4rand(&rbase, sizeof(rbase), 0); 2763 gap = rbase % range; 2764 gap &= ~(sizeof(u_long) - 1); 2765 *stack_base -= gap; 2766 } 2767