xref: /freebsd/sys/kern/imgact_elf.c (revision f18976136625a7d016e97bfd9eabddf640b3e06d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/pioctl.h>
54 #include <sys/proc.h>
55 #include <sys/procfs.h>
56 #include <sys/ptrace.h>
57 #include <sys/racct.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static boolean_t __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0);
102 static vm_prot_t __elfN(trans_prot)(Elf_Word);
103 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104 
105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
106     "");
107 
108 #define	CORE_BUF_SIZE	(16 * 1024)
109 
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114 
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117     &elf_legacy_coredump, 0,
118     "include all and only RW pages in core dumps");
119 
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
123     defined(__riscv)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
131 
132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
133 int i386_read_exec = 0;
134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
135     "enable execution from readable segments");
136 #endif
137 
138 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
139 static int
140 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
141 {
142 	u_long val;
143 	int error;
144 
145 	val = __elfN(pie_base);
146 	error = sysctl_handle_long(oidp, &val, 0, req);
147 	if (error != 0 || req->newptr == NULL)
148 		return (error);
149 	if ((val & PAGE_MASK) != 0)
150 		return (EINVAL);
151 	__elfN(pie_base) = val;
152 	return (0);
153 }
154 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
155     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
156     sysctl_pie_base, "LU",
157     "PIE load base without randomization");
158 
159 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0,
160     "");
161 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
162 
163 static int __elfN(aslr_enabled) = 0;
164 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
165     &__elfN(aslr_enabled), 0,
166     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
167     ": enable address map randomization");
168 
169 static int __elfN(pie_aslr_enabled) = 0;
170 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
171     &__elfN(pie_aslr_enabled), 0,
172     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
173     ": enable address map randomization for PIE binaries");
174 
175 static int __elfN(aslr_honor_sbrk) = 1;
176 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
177     &__elfN(aslr_honor_sbrk), 0,
178     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
179 
180 static int __elfN(aslr_stack_gap) = 3;
181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW,
182     &__elfN(aslr_stack_gap), 0,
183     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
184     ": maximum percentage of main stack to waste on a random gap");
185 
186 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
187 
188 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
189 
190 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
191 
192 Elf_Brandnote __elfN(freebsd_brandnote) = {
193 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
194 	.hdr.n_descsz	= sizeof(int32_t),
195 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
196 	.vendor		= FREEBSD_ABI_VENDOR,
197 	.flags		= BN_TRANSLATE_OSREL,
198 	.trans_osrel	= __elfN(freebsd_trans_osrel)
199 };
200 
201 static bool
202 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
203 {
204 	uintptr_t p;
205 
206 	p = (uintptr_t)(note + 1);
207 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
208 	*osrel = *(const int32_t *)(p);
209 
210 	return (true);
211 }
212 
213 static const char GNU_ABI_VENDOR[] = "GNU";
214 static int GNU_KFREEBSD_ABI_DESC = 3;
215 
216 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
217 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
218 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
219 	.hdr.n_type	= 1,
220 	.vendor		= GNU_ABI_VENDOR,
221 	.flags		= BN_TRANSLATE_OSREL,
222 	.trans_osrel	= kfreebsd_trans_osrel
223 };
224 
225 static bool
226 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
227 {
228 	const Elf32_Word *desc;
229 	uintptr_t p;
230 
231 	p = (uintptr_t)(note + 1);
232 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
233 
234 	desc = (const Elf32_Word *)p;
235 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
236 		return (false);
237 
238 	/*
239 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
240 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
241 	 */
242 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
243 
244 	return (true);
245 }
246 
247 int
248 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
249 {
250 	int i;
251 
252 	for (i = 0; i < MAX_BRANDS; i++) {
253 		if (elf_brand_list[i] == NULL) {
254 			elf_brand_list[i] = entry;
255 			break;
256 		}
257 	}
258 	if (i == MAX_BRANDS) {
259 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
260 			__func__, entry);
261 		return (-1);
262 	}
263 	return (0);
264 }
265 
266 int
267 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
268 {
269 	int i;
270 
271 	for (i = 0; i < MAX_BRANDS; i++) {
272 		if (elf_brand_list[i] == entry) {
273 			elf_brand_list[i] = NULL;
274 			break;
275 		}
276 	}
277 	if (i == MAX_BRANDS)
278 		return (-1);
279 	return (0);
280 }
281 
282 int
283 __elfN(brand_inuse)(Elf_Brandinfo *entry)
284 {
285 	struct proc *p;
286 	int rval = FALSE;
287 
288 	sx_slock(&allproc_lock);
289 	FOREACH_PROC_IN_SYSTEM(p) {
290 		if (p->p_sysent == entry->sysvec) {
291 			rval = TRUE;
292 			break;
293 		}
294 	}
295 	sx_sunlock(&allproc_lock);
296 
297 	return (rval);
298 }
299 
300 static Elf_Brandinfo *
301 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
302     int32_t *osrel, uint32_t *fctl0)
303 {
304 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
305 	Elf_Brandinfo *bi, *bi_m;
306 	boolean_t ret;
307 	int i, interp_name_len;
308 
309 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
310 
311 	/*
312 	 * We support four types of branding -- (1) the ELF EI_OSABI field
313 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
314 	 * branding w/in the ELF header, (3) path of the `interp_path'
315 	 * field, and (4) the ".note.ABI-tag" ELF section.
316 	 */
317 
318 	/* Look for an ".note.ABI-tag" ELF section */
319 	bi_m = NULL;
320 	for (i = 0; i < MAX_BRANDS; i++) {
321 		bi = elf_brand_list[i];
322 		if (bi == NULL)
323 			continue;
324 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
325 			continue;
326 		if (hdr->e_machine == bi->machine && (bi->flags &
327 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
328 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
329 			    fctl0);
330 			/* Give brand a chance to veto check_note's guess */
331 			if (ret && bi->header_supported)
332 				ret = bi->header_supported(imgp);
333 			/*
334 			 * If note checker claimed the binary, but the
335 			 * interpreter path in the image does not
336 			 * match default one for the brand, try to
337 			 * search for other brands with the same
338 			 * interpreter.  Either there is better brand
339 			 * with the right interpreter, or, failing
340 			 * this, we return first brand which accepted
341 			 * our note and, optionally, header.
342 			 */
343 			if (ret && bi_m == NULL && interp != NULL &&
344 			    (bi->interp_path == NULL ||
345 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
346 			    strncmp(interp, bi->interp_path, interp_name_len)
347 			    != 0))) {
348 				bi_m = bi;
349 				ret = 0;
350 			}
351 			if (ret)
352 				return (bi);
353 		}
354 	}
355 	if (bi_m != NULL)
356 		return (bi_m);
357 
358 	/* If the executable has a brand, search for it in the brand list. */
359 	for (i = 0; i < MAX_BRANDS; i++) {
360 		bi = elf_brand_list[i];
361 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
362 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
363 			continue;
364 		if (hdr->e_machine == bi->machine &&
365 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
366 		    (bi->compat_3_brand != NULL &&
367 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
368 		    bi->compat_3_brand) == 0))) {
369 			/* Looks good, but give brand a chance to veto */
370 			if (bi->header_supported == NULL ||
371 			    bi->header_supported(imgp)) {
372 				/*
373 				 * Again, prefer strictly matching
374 				 * interpreter path.
375 				 */
376 				if (interp_name_len == 0 &&
377 				    bi->interp_path == NULL)
378 					return (bi);
379 				if (bi->interp_path != NULL &&
380 				    strlen(bi->interp_path) + 1 ==
381 				    interp_name_len && strncmp(interp,
382 				    bi->interp_path, interp_name_len) == 0)
383 					return (bi);
384 				if (bi_m == NULL)
385 					bi_m = bi;
386 			}
387 		}
388 	}
389 	if (bi_m != NULL)
390 		return (bi_m);
391 
392 	/* No known brand, see if the header is recognized by any brand */
393 	for (i = 0; i < MAX_BRANDS; i++) {
394 		bi = elf_brand_list[i];
395 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
396 		    bi->header_supported == NULL)
397 			continue;
398 		if (hdr->e_machine == bi->machine) {
399 			ret = bi->header_supported(imgp);
400 			if (ret)
401 				return (bi);
402 		}
403 	}
404 
405 	/* Lacking a known brand, search for a recognized interpreter. */
406 	if (interp != NULL) {
407 		for (i = 0; i < MAX_BRANDS; i++) {
408 			bi = elf_brand_list[i];
409 			if (bi == NULL || (bi->flags &
410 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
411 			    != 0)
412 				continue;
413 			if (hdr->e_machine == bi->machine &&
414 			    bi->interp_path != NULL &&
415 			    /* ELF image p_filesz includes terminating zero */
416 			    strlen(bi->interp_path) + 1 == interp_name_len &&
417 			    strncmp(interp, bi->interp_path, interp_name_len)
418 			    == 0 && (bi->header_supported == NULL ||
419 			    bi->header_supported(imgp)))
420 				return (bi);
421 		}
422 	}
423 
424 	/* Lacking a recognized interpreter, try the default brand */
425 	for (i = 0; i < MAX_BRANDS; i++) {
426 		bi = elf_brand_list[i];
427 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
428 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
429 			continue;
430 		if (hdr->e_machine == bi->machine &&
431 		    __elfN(fallback_brand) == bi->brand &&
432 		    (bi->header_supported == NULL ||
433 		    bi->header_supported(imgp)))
434 			return (bi);
435 	}
436 	return (NULL);
437 }
438 
439 static int
440 __elfN(check_header)(const Elf_Ehdr *hdr)
441 {
442 	Elf_Brandinfo *bi;
443 	int i;
444 
445 	if (!IS_ELF(*hdr) ||
446 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
447 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
448 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
449 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
450 	    hdr->e_version != ELF_TARG_VER)
451 		return (ENOEXEC);
452 
453 	/*
454 	 * Make sure we have at least one brand for this machine.
455 	 */
456 
457 	for (i = 0; i < MAX_BRANDS; i++) {
458 		bi = elf_brand_list[i];
459 		if (bi != NULL && bi->machine == hdr->e_machine)
460 			break;
461 	}
462 	if (i == MAX_BRANDS)
463 		return (ENOEXEC);
464 
465 	return (0);
466 }
467 
468 static int
469 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
470     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
471 {
472 	struct sf_buf *sf;
473 	int error;
474 	vm_offset_t off;
475 
476 	/*
477 	 * Create the page if it doesn't exist yet. Ignore errors.
478 	 */
479 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
480 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
481 
482 	/*
483 	 * Find the page from the underlying object.
484 	 */
485 	if (object != NULL) {
486 		sf = vm_imgact_map_page(object, offset);
487 		if (sf == NULL)
488 			return (KERN_FAILURE);
489 		off = offset - trunc_page(offset);
490 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
491 		    end - start);
492 		vm_imgact_unmap_page(sf);
493 		if (error != 0)
494 			return (KERN_FAILURE);
495 	}
496 
497 	return (KERN_SUCCESS);
498 }
499 
500 static int
501 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
502     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
503     int cow)
504 {
505 	struct sf_buf *sf;
506 	vm_offset_t off;
507 	vm_size_t sz;
508 	int error, locked, rv;
509 
510 	if (start != trunc_page(start)) {
511 		rv = __elfN(map_partial)(map, object, offset, start,
512 		    round_page(start), prot);
513 		if (rv != KERN_SUCCESS)
514 			return (rv);
515 		offset += round_page(start) - start;
516 		start = round_page(start);
517 	}
518 	if (end != round_page(end)) {
519 		rv = __elfN(map_partial)(map, object, offset +
520 		    trunc_page(end) - start, trunc_page(end), end, prot);
521 		if (rv != KERN_SUCCESS)
522 			return (rv);
523 		end = trunc_page(end);
524 	}
525 	if (start >= end)
526 		return (KERN_SUCCESS);
527 	if ((offset & PAGE_MASK) != 0) {
528 		/*
529 		 * The mapping is not page aligned.  This means that we have
530 		 * to copy the data.
531 		 */
532 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
533 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
534 		if (rv != KERN_SUCCESS)
535 			return (rv);
536 		if (object == NULL)
537 			return (KERN_SUCCESS);
538 		for (; start < end; start += sz) {
539 			sf = vm_imgact_map_page(object, offset);
540 			if (sf == NULL)
541 				return (KERN_FAILURE);
542 			off = offset - trunc_page(offset);
543 			sz = end - start;
544 			if (sz > PAGE_SIZE - off)
545 				sz = PAGE_SIZE - off;
546 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
547 			    (caddr_t)start, sz);
548 			vm_imgact_unmap_page(sf);
549 			if (error != 0)
550 				return (KERN_FAILURE);
551 			offset += sz;
552 		}
553 	} else {
554 		vm_object_reference(object);
555 		rv = vm_map_fixed(map, object, offset, start, end - start,
556 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
557 		    (object != NULL ? MAP_VN_EXEC : 0));
558 		if (rv != KERN_SUCCESS) {
559 			locked = VOP_ISLOCKED(imgp->vp);
560 			VOP_UNLOCK(imgp->vp, 0);
561 			vm_object_deallocate(object);
562 			vn_lock(imgp->vp, locked | LK_RETRY);
563 			return (rv);
564 		} else if (object != NULL) {
565 			MPASS(imgp->vp->v_object == object);
566 			VOP_SET_TEXT_CHECKED(imgp->vp);
567 		}
568 	}
569 	return (KERN_SUCCESS);
570 }
571 
572 static int
573 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
574     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
575 {
576 	struct sf_buf *sf;
577 	size_t map_len;
578 	vm_map_t map;
579 	vm_object_t object;
580 	vm_offset_t map_addr;
581 	int error, rv, cow;
582 	size_t copy_len;
583 	vm_ooffset_t file_addr;
584 
585 	/*
586 	 * It's necessary to fail if the filsz + offset taken from the
587 	 * header is greater than the actual file pager object's size.
588 	 * If we were to allow this, then the vm_map_find() below would
589 	 * walk right off the end of the file object and into the ether.
590 	 *
591 	 * While I'm here, might as well check for something else that
592 	 * is invalid: filsz cannot be greater than memsz.
593 	 */
594 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
595 	    filsz > memsz) {
596 		uprintf("elf_load_section: truncated ELF file\n");
597 		return (ENOEXEC);
598 	}
599 
600 	object = imgp->object;
601 	map = &imgp->proc->p_vmspace->vm_map;
602 	map_addr = trunc_page((vm_offset_t)vmaddr);
603 	file_addr = trunc_page(offset);
604 
605 	/*
606 	 * We have two choices.  We can either clear the data in the last page
607 	 * of an oversized mapping, or we can start the anon mapping a page
608 	 * early and copy the initialized data into that first page.  We
609 	 * choose the second.
610 	 */
611 	if (filsz == 0)
612 		map_len = 0;
613 	else if (memsz > filsz)
614 		map_len = trunc_page(offset + filsz) - file_addr;
615 	else
616 		map_len = round_page(offset + filsz) - file_addr;
617 
618 	if (map_len != 0) {
619 		/* cow flags: don't dump readonly sections in core */
620 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
621 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
622 
623 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
624 		    map_addr, map_addr + map_len, prot, cow);
625 		if (rv != KERN_SUCCESS)
626 			return (EINVAL);
627 
628 		/* we can stop now if we've covered it all */
629 		if (memsz == filsz)
630 			return (0);
631 	}
632 
633 
634 	/*
635 	 * We have to get the remaining bit of the file into the first part
636 	 * of the oversized map segment.  This is normally because the .data
637 	 * segment in the file is extended to provide bss.  It's a neat idea
638 	 * to try and save a page, but it's a pain in the behind to implement.
639 	 */
640 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
641 	    filsz);
642 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
643 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
644 
645 	/* This had damn well better be true! */
646 	if (map_len != 0) {
647 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
648 		    map_addr + map_len, prot, 0);
649 		if (rv != KERN_SUCCESS)
650 			return (EINVAL);
651 	}
652 
653 	if (copy_len != 0) {
654 		sf = vm_imgact_map_page(object, offset + filsz);
655 		if (sf == NULL)
656 			return (EIO);
657 
658 		/* send the page fragment to user space */
659 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
660 		    copy_len);
661 		vm_imgact_unmap_page(sf);
662 		if (error != 0)
663 			return (error);
664 	}
665 
666 	/*
667 	 * Remove write access to the page if it was only granted by map_insert
668 	 * to allow copyout.
669 	 */
670 	if ((prot & VM_PROT_WRITE) == 0)
671 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
672 		    map_len), prot, FALSE);
673 
674 	return (0);
675 }
676 
677 static int
678 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
679     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
680 {
681 	vm_prot_t prot;
682 	u_long base_addr;
683 	bool first;
684 	int error, i;
685 
686 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
687 
688 	base_addr = 0;
689 	first = true;
690 
691 	for (i = 0; i < hdr->e_phnum; i++) {
692 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
693 			continue;
694 
695 		/* Loadable segment */
696 		prot = __elfN(trans_prot)(phdr[i].p_flags);
697 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
698 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
699 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
700 		if (error != 0)
701 			return (error);
702 
703 		/*
704 		 * Establish the base address if this is the first segment.
705 		 */
706 		if (first) {
707   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
708 			first = false;
709 		}
710 	}
711 
712 	if (base_addrp != NULL)
713 		*base_addrp = base_addr;
714 
715 	return (0);
716 }
717 
718 /*
719  * Load the file "file" into memory.  It may be either a shared object
720  * or an executable.
721  *
722  * The "addr" reference parameter is in/out.  On entry, it specifies
723  * the address where a shared object should be loaded.  If the file is
724  * an executable, this value is ignored.  On exit, "addr" specifies
725  * where the file was actually loaded.
726  *
727  * The "entry" reference parameter is out only.  On exit, it specifies
728  * the entry point for the loaded file.
729  */
730 static int
731 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
732 	u_long *entry)
733 {
734 	struct {
735 		struct nameidata nd;
736 		struct vattr attr;
737 		struct image_params image_params;
738 	} *tempdata;
739 	const Elf_Ehdr *hdr = NULL;
740 	const Elf_Phdr *phdr = NULL;
741 	struct nameidata *nd;
742 	struct vattr *attr;
743 	struct image_params *imgp;
744 	u_long rbase;
745 	u_long base_addr = 0;
746 	int error;
747 
748 #ifdef CAPABILITY_MODE
749 	/*
750 	 * XXXJA: This check can go away once we are sufficiently confident
751 	 * that the checks in namei() are correct.
752 	 */
753 	if (IN_CAPABILITY_MODE(curthread))
754 		return (ECAPMODE);
755 #endif
756 
757 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
758 	nd = &tempdata->nd;
759 	attr = &tempdata->attr;
760 	imgp = &tempdata->image_params;
761 
762 	/*
763 	 * Initialize part of the common data
764 	 */
765 	imgp->proc = p;
766 	imgp->attr = attr;
767 
768 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
769 	    UIO_SYSSPACE, file, curthread);
770 	if ((error = namei(nd)) != 0) {
771 		nd->ni_vp = NULL;
772 		goto fail;
773 	}
774 	NDFREE(nd, NDF_ONLY_PNBUF);
775 	imgp->vp = nd->ni_vp;
776 
777 	/*
778 	 * Check permissions, modes, uid, etc on the file, and "open" it.
779 	 */
780 	error = exec_check_permissions(imgp);
781 	if (error)
782 		goto fail;
783 
784 	error = exec_map_first_page(imgp);
785 	if (error)
786 		goto fail;
787 
788 	imgp->object = nd->ni_vp->v_object;
789 
790 	hdr = (const Elf_Ehdr *)imgp->image_header;
791 	if ((error = __elfN(check_header)(hdr)) != 0)
792 		goto fail;
793 	if (hdr->e_type == ET_DYN)
794 		rbase = *addr;
795 	else if (hdr->e_type == ET_EXEC)
796 		rbase = 0;
797 	else {
798 		error = ENOEXEC;
799 		goto fail;
800 	}
801 
802 	/* Only support headers that fit within first page for now      */
803 	if ((hdr->e_phoff > PAGE_SIZE) ||
804 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
805 		error = ENOEXEC;
806 		goto fail;
807 	}
808 
809 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
810 	if (!aligned(phdr, Elf_Addr)) {
811 		error = ENOEXEC;
812 		goto fail;
813 	}
814 
815 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
816 	if (error != 0)
817 		goto fail;
818 
819 	*addr = base_addr;
820 	*entry = (unsigned long)hdr->e_entry + rbase;
821 
822 fail:
823 	if (imgp->firstpage)
824 		exec_unmap_first_page(imgp);
825 
826 	if (nd->ni_vp) {
827 		if (imgp->textset)
828 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
829 		vput(nd->ni_vp);
830 	}
831 	free(tempdata, M_TEMP);
832 
833 	return (error);
834 }
835 
836 static u_long
837 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv,
838     u_int align)
839 {
840 	u_long rbase, res;
841 
842 	MPASS(vm_map_min(map) <= minv);
843 	MPASS(maxv <= vm_map_max(map));
844 	MPASS(minv < maxv);
845 	MPASS(minv + align < maxv);
846 	arc4rand(&rbase, sizeof(rbase), 0);
847 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
848 	res &= ~((u_long)align - 1);
849 	if (res >= maxv)
850 		res -= align;
851 	KASSERT(res >= minv,
852 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
853 	    res, minv, maxv, rbase));
854 	KASSERT(res < maxv,
855 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
856 	    res, maxv, minv, rbase));
857 	return (res);
858 }
859 
860 static int
861 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
862     const Elf_Phdr *phdr, u_long et_dyn_addr)
863 {
864 	struct vmspace *vmspace;
865 	const char *err_str;
866 	u_long text_size, data_size, total_size, text_addr, data_addr;
867 	u_long seg_size, seg_addr;
868 	int i;
869 
870 	err_str = NULL;
871 	text_size = data_size = total_size = text_addr = data_addr = 0;
872 
873 	for (i = 0; i < hdr->e_phnum; i++) {
874 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
875 			continue;
876 
877 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
878 		seg_size = round_page(phdr[i].p_memsz +
879 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
880 
881 		/*
882 		 * Make the largest executable segment the official
883 		 * text segment and all others data.
884 		 *
885 		 * Note that obreak() assumes that data_addr + data_size == end
886 		 * of data load area, and the ELF file format expects segments
887 		 * to be sorted by address.  If multiple data segments exist,
888 		 * the last one will be used.
889 		 */
890 
891 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
892 			text_size = seg_size;
893 			text_addr = seg_addr;
894 		} else {
895 			data_size = seg_size;
896 			data_addr = seg_addr;
897 		}
898 		total_size += seg_size;
899 	}
900 
901 	if (data_addr == 0 && data_size == 0) {
902 		data_addr = text_addr;
903 		data_size = text_size;
904 	}
905 
906 	/*
907 	 * Check limits.  It should be safe to check the
908 	 * limits after loading the segments since we do
909 	 * not actually fault in all the segments pages.
910 	 */
911 	PROC_LOCK(imgp->proc);
912 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
913 		err_str = "Data segment size exceeds process limit";
914 	else if (text_size > maxtsiz)
915 		err_str = "Text segment size exceeds system limit";
916 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
917 		err_str = "Total segment size exceeds process limit";
918 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
919 		err_str = "Data segment size exceeds resource limit";
920 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
921 		err_str = "Total segment size exceeds resource limit";
922 	PROC_UNLOCK(imgp->proc);
923 	if (err_str != NULL) {
924 		uprintf("%s\n", err_str);
925 		return (ENOMEM);
926 	}
927 
928 	vmspace = imgp->proc->p_vmspace;
929 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
930 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
931 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
932 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
933 
934 	return (0);
935 }
936 
937 static int
938 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
939     char **interpp, bool *free_interpp)
940 {
941 	struct thread *td;
942 	char *interp;
943 	int error, interp_name_len;
944 
945 	KASSERT(phdr->p_type == PT_INTERP,
946 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
947 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
948 
949 	td = curthread;
950 
951 	/* Path to interpreter */
952 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
953 		uprintf("Invalid PT_INTERP\n");
954 		return (ENOEXEC);
955 	}
956 
957 	interp_name_len = phdr->p_filesz;
958 	if (phdr->p_offset > PAGE_SIZE ||
959 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
960 		/*
961 		 * The vnode lock might be needed by the pagedaemon to
962 		 * clean pages owned by the vnode.  Do not allow sleep
963 		 * waiting for memory with the vnode locked, instead
964 		 * try non-sleepable allocation first, and if it
965 		 * fails, go to the slow path were we drop the lock
966 		 * and do M_WAITOK.  A text reference prevents
967 		 * modifications to the vnode content.
968 		 */
969 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
970 		if (interp == NULL) {
971 			VOP_UNLOCK(imgp->vp, 0);
972 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
973 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
974 		}
975 
976 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
977 		    interp_name_len, phdr->p_offset,
978 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
979 		    NOCRED, NULL, td);
980 		if (error != 0) {
981 			free(interp, M_TEMP);
982 			uprintf("i/o error PT_INTERP %d\n", error);
983 			return (error);
984 		}
985 		interp[interp_name_len] = '\0';
986 
987 		*interpp = interp;
988 		*free_interpp = true;
989 		return (0);
990 	}
991 
992 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
993 	if (interp[interp_name_len - 1] != '\0') {
994 		uprintf("Invalid PT_INTERP\n");
995 		return (ENOEXEC);
996 	}
997 
998 	*interpp = interp;
999 	*free_interpp = false;
1000 	return (0);
1001 }
1002 
1003 static int
1004 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1005     const char *interp, u_long *addr, u_long *entry)
1006 {
1007 	char *path;
1008 	int error;
1009 
1010 	if (brand_info->emul_path != NULL &&
1011 	    brand_info->emul_path[0] != '\0') {
1012 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1013 		snprintf(path, MAXPATHLEN, "%s%s",
1014 		    brand_info->emul_path, interp);
1015 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1016 		free(path, M_TEMP);
1017 		if (error == 0)
1018 			return (0);
1019 	}
1020 
1021 	if (brand_info->interp_newpath != NULL &&
1022 	    (brand_info->interp_path == NULL ||
1023 	    strcmp(interp, brand_info->interp_path) == 0)) {
1024 		error = __elfN(load_file)(imgp->proc,
1025 		    brand_info->interp_newpath, addr, entry);
1026 		if (error == 0)
1027 			return (0);
1028 	}
1029 
1030 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1031 	if (error == 0)
1032 		return (0);
1033 
1034 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1035 	return (error);
1036 }
1037 
1038 /*
1039  * Impossible et_dyn_addr initial value indicating that the real base
1040  * must be calculated later with some randomization applied.
1041  */
1042 #define	ET_DYN_ADDR_RAND	1
1043 
1044 static int
1045 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1046 {
1047 	struct thread *td;
1048 	const Elf_Ehdr *hdr;
1049 	const Elf_Phdr *phdr;
1050 	Elf_Auxargs *elf_auxargs;
1051 	struct vmspace *vmspace;
1052 	vm_map_t map;
1053 	char *interp;
1054 	Elf_Brandinfo *brand_info;
1055 	struct sysentvec *sv;
1056 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1057 	u_long maxalign, mapsz, maxv, maxv1;
1058 	uint32_t fctl0;
1059 	int32_t osrel;
1060 	bool free_interp;
1061 	int error, i, n;
1062 
1063 	hdr = (const Elf_Ehdr *)imgp->image_header;
1064 
1065 	/*
1066 	 * Do we have a valid ELF header ?
1067 	 *
1068 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1069 	 * if particular brand doesn't support it.
1070 	 */
1071 	if (__elfN(check_header)(hdr) != 0 ||
1072 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1073 		return (-1);
1074 
1075 	/*
1076 	 * From here on down, we return an errno, not -1, as we've
1077 	 * detected an ELF file.
1078 	 */
1079 
1080 	if ((hdr->e_phoff > PAGE_SIZE) ||
1081 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
1082 		/* Only support headers in first page for now */
1083 		uprintf("Program headers not in the first page\n");
1084 		return (ENOEXEC);
1085 	}
1086 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1087 	if (!aligned(phdr, Elf_Addr)) {
1088 		uprintf("Unaligned program headers\n");
1089 		return (ENOEXEC);
1090 	}
1091 
1092 	n = error = 0;
1093 	baddr = 0;
1094 	osrel = 0;
1095 	fctl0 = 0;
1096 	entry = proghdr = 0;
1097 	interp = NULL;
1098 	free_interp = false;
1099 	td = curthread;
1100 	maxalign = PAGE_SIZE;
1101 	mapsz = 0;
1102 
1103 	for (i = 0; i < hdr->e_phnum; i++) {
1104 		switch (phdr[i].p_type) {
1105 		case PT_LOAD:
1106 			if (n == 0)
1107 				baddr = phdr[i].p_vaddr;
1108 			if (phdr[i].p_align > maxalign)
1109 				maxalign = phdr[i].p_align;
1110 			mapsz += phdr[i].p_memsz;
1111 			n++;
1112 
1113 			/*
1114 			 * If this segment contains the program headers,
1115 			 * remember their virtual address for the AT_PHDR
1116 			 * aux entry. Static binaries don't usually include
1117 			 * a PT_PHDR entry.
1118 			 */
1119 			if (phdr[i].p_offset == 0 &&
1120 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
1121 				<= phdr[i].p_filesz)
1122 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1123 			break;
1124 		case PT_INTERP:
1125 			/* Path to interpreter */
1126 			if (interp != NULL) {
1127 				uprintf("Multiple PT_INTERP headers\n");
1128 				error = ENOEXEC;
1129 				goto ret;
1130 			}
1131 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1132 			    &free_interp);
1133 			if (error != 0)
1134 				goto ret;
1135 			break;
1136 		case PT_GNU_STACK:
1137 			if (__elfN(nxstack))
1138 				imgp->stack_prot =
1139 				    __elfN(trans_prot)(phdr[i].p_flags);
1140 			imgp->stack_sz = phdr[i].p_memsz;
1141 			break;
1142 		case PT_PHDR: 	/* Program header table info */
1143 			proghdr = phdr[i].p_vaddr;
1144 			break;
1145 		}
1146 	}
1147 
1148 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1149 	if (brand_info == NULL) {
1150 		uprintf("ELF binary type \"%u\" not known.\n",
1151 		    hdr->e_ident[EI_OSABI]);
1152 		error = ENOEXEC;
1153 		goto ret;
1154 	}
1155 	sv = brand_info->sysvec;
1156 	et_dyn_addr = 0;
1157 	if (hdr->e_type == ET_DYN) {
1158 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1159 			uprintf("Cannot execute shared object\n");
1160 			error = ENOEXEC;
1161 			goto ret;
1162 		}
1163 		/*
1164 		 * Honour the base load address from the dso if it is
1165 		 * non-zero for some reason.
1166 		 */
1167 		if (baddr == 0) {
1168 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1169 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1170 				et_dyn_addr = __elfN(pie_base);
1171 			else if ((__elfN(pie_aslr_enabled) &&
1172 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1173 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1174 				et_dyn_addr = ET_DYN_ADDR_RAND;
1175 			else
1176 				et_dyn_addr = __elfN(pie_base);
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * Avoid a possible deadlock if the current address space is destroyed
1182 	 * and that address space maps the locked vnode.  In the common case,
1183 	 * the locked vnode's v_usecount is decremented but remains greater
1184 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1185 	 * However, in cases where the vnode lock is external, such as nullfs,
1186 	 * v_usecount may become zero.
1187 	 *
1188 	 * The VV_TEXT flag prevents modifications to the executable while
1189 	 * the vnode is unlocked.
1190 	 */
1191 	VOP_UNLOCK(imgp->vp, 0);
1192 
1193 	/*
1194 	 * Decide whether to enable randomization of user mappings.
1195 	 * First, reset user preferences for the setid binaries.
1196 	 * Then, account for the support of the randomization by the
1197 	 * ABI, by user preferences, and make special treatment for
1198 	 * PIE binaries.
1199 	 */
1200 	if (imgp->credential_setid) {
1201 		PROC_LOCK(imgp->proc);
1202 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
1203 		PROC_UNLOCK(imgp->proc);
1204 	}
1205 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1206 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1207 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1208 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1209 		    ("et_dyn_addr == RAND and !ASLR"));
1210 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1211 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1212 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1213 		imgp->map_flags |= MAP_ASLR;
1214 		/*
1215 		 * If user does not care about sbrk, utilize the bss
1216 		 * grow region for mappings as well.  We can select
1217 		 * the base for the image anywere and still not suffer
1218 		 * from the fragmentation.
1219 		 */
1220 		if (!__elfN(aslr_honor_sbrk) ||
1221 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1222 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1223 	}
1224 
1225 	error = exec_new_vmspace(imgp, sv);
1226 	vmspace = imgp->proc->p_vmspace;
1227 	map = &vmspace->vm_map;
1228 
1229 	imgp->proc->p_sysent = sv;
1230 
1231 	maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK);
1232 	if (et_dyn_addr == ET_DYN_ADDR_RAND) {
1233 		KASSERT((map->flags & MAP_ASLR) != 0,
1234 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1235 		et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map,
1236 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1237 		    /* reserve half of the address space to interpreter */
1238 		    maxv / 2, 1UL << flsl(maxalign));
1239 	}
1240 
1241 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1242 	if (error != 0)
1243 		goto ret;
1244 
1245 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1246 	if (error != 0)
1247 		goto ret;
1248 
1249 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1250 	if (error != 0)
1251 		goto ret;
1252 
1253 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1254 
1255 	/*
1256 	 * We load the dynamic linker where a userland call
1257 	 * to mmap(0, ...) would put it.  The rationale behind this
1258 	 * calculation is that it leaves room for the heap to grow to
1259 	 * its maximum allowed size.
1260 	 */
1261 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1262 	    RLIMIT_DATA));
1263 	if ((map->flags & MAP_ASLR) != 0) {
1264 		maxv1 = maxv / 2 + addr / 2;
1265 		MPASS(maxv1 >= addr);	/* No overflow */
1266 		map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1267 		    MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]);
1268 	} else {
1269 		map->anon_loc = addr;
1270 	}
1271 
1272 	imgp->entry_addr = entry;
1273 
1274 	if (interp != NULL) {
1275 		VOP_UNLOCK(imgp->vp, 0);
1276 		if ((map->flags & MAP_ASLR) != 0) {
1277 			/* Assume that interpeter fits into 1/4 of AS */
1278 			maxv1 = maxv / 2 + addr / 2;
1279 			MPASS(maxv1 >= addr);	/* No overflow */
1280 			addr = __CONCAT(rnd_, __elfN(base))(map, addr,
1281 			    maxv1, PAGE_SIZE);
1282 		}
1283 		error = __elfN(load_interp)(imgp, brand_info, interp, &addr,
1284 		    &imgp->entry_addr);
1285 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1286 		if (error != 0)
1287 			goto ret;
1288 	} else
1289 		addr = et_dyn_addr;
1290 
1291 	/*
1292 	 * Construct auxargs table (used by the fixup routine)
1293 	 */
1294 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1295 	if (elf_auxargs == NULL) {
1296 		VOP_UNLOCK(imgp->vp, 0);
1297 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1298 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1299 	}
1300 	elf_auxargs->execfd = -1;
1301 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1302 	elf_auxargs->phent = hdr->e_phentsize;
1303 	elf_auxargs->phnum = hdr->e_phnum;
1304 	elf_auxargs->pagesz = PAGE_SIZE;
1305 	elf_auxargs->base = addr;
1306 	elf_auxargs->flags = 0;
1307 	elf_auxargs->entry = entry;
1308 	elf_auxargs->hdr_eflags = hdr->e_flags;
1309 
1310 	imgp->auxargs = elf_auxargs;
1311 	imgp->interpreted = 0;
1312 	imgp->reloc_base = addr;
1313 	imgp->proc->p_osrel = osrel;
1314 	imgp->proc->p_fctl0 = fctl0;
1315 	imgp->proc->p_elf_machine = hdr->e_machine;
1316 	imgp->proc->p_elf_flags = hdr->e_flags;
1317 
1318 ret:
1319 	if (free_interp)
1320 		free(interp, M_TEMP);
1321 	return (error);
1322 }
1323 
1324 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1325 
1326 int
1327 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
1328 {
1329 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1330 	Elf_Auxinfo *argarray, *pos;
1331 	Elf_Addr *base, *auxbase;
1332 	int error;
1333 
1334 	base = (Elf_Addr *)*stack_base;
1335 	auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1;
1336 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1337 	    M_WAITOK | M_ZERO);
1338 
1339 	if (args->execfd != -1)
1340 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1341 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1342 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1343 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1344 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1345 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1346 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1347 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1348 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1349 	if (imgp->execpathp != 0)
1350 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1351 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1352 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1353 	if (imgp->canary != 0) {
1354 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1355 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1356 	}
1357 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1358 	if (imgp->pagesizes != 0) {
1359 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1360 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1361 	}
1362 	if (imgp->sysent->sv_timekeep_base != 0) {
1363 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1364 		    imgp->sysent->sv_timekeep_base);
1365 	}
1366 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1367 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1368 	    imgp->sysent->sv_stackprot);
1369 	if (imgp->sysent->sv_hwcap != NULL)
1370 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1371 	if (imgp->sysent->sv_hwcap2 != NULL)
1372 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1373 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1374 
1375 	free(imgp->auxargs, M_TEMP);
1376 	imgp->auxargs = NULL;
1377 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1378 
1379 	error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT);
1380 	free(argarray, M_TEMP);
1381 	if (error != 0)
1382 		return (error);
1383 
1384 	base--;
1385 	if (suword(base, imgp->args->argc) == -1)
1386 		return (EFAULT);
1387 	*stack_base = (register_t *)base;
1388 	return (0);
1389 }
1390 
1391 /*
1392  * Code for generating ELF core dumps.
1393  */
1394 
1395 typedef void (*segment_callback)(vm_map_entry_t, void *);
1396 
1397 /* Closure for cb_put_phdr(). */
1398 struct phdr_closure {
1399 	Elf_Phdr *phdr;		/* Program header to fill in */
1400 	Elf_Off offset;		/* Offset of segment in core file */
1401 };
1402 
1403 /* Closure for cb_size_segment(). */
1404 struct sseg_closure {
1405 	int count;		/* Count of writable segments. */
1406 	size_t size;		/* Total size of all writable segments. */
1407 };
1408 
1409 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1410 
1411 struct note_info {
1412 	int		type;		/* Note type. */
1413 	outfunc_t 	outfunc; 	/* Output function. */
1414 	void		*outarg;	/* Argument for the output function. */
1415 	size_t		outsize;	/* Output size. */
1416 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1417 };
1418 
1419 TAILQ_HEAD(note_info_list, note_info);
1420 
1421 /* Coredump output parameters. */
1422 struct coredump_params {
1423 	off_t		offset;
1424 	struct ucred	*active_cred;
1425 	struct ucred	*file_cred;
1426 	struct thread	*td;
1427 	struct vnode	*vp;
1428 	struct compressor *comp;
1429 };
1430 
1431 extern int compress_user_cores;
1432 extern int compress_user_cores_level;
1433 
1434 static void cb_put_phdr(vm_map_entry_t, void *);
1435 static void cb_size_segment(vm_map_entry_t, void *);
1436 static int core_write(struct coredump_params *, const void *, size_t, off_t,
1437     enum uio_seg);
1438 static void each_dumpable_segment(struct thread *, segment_callback, void *);
1439 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1440     struct note_info_list *, size_t);
1441 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1442     size_t *);
1443 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1444 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1445 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1446 static int sbuf_drain_core_output(void *, const char *, int);
1447 
1448 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1449 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1450 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1451 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1452 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1453 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
1454 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1455 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1456 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1457 static void note_procstat_files(void *, struct sbuf *, size_t *);
1458 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1459 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1460 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1461 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1462 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1463 
1464 /*
1465  * Write out a core segment to the compression stream.
1466  */
1467 static int
1468 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1469 {
1470 	u_int chunk_len;
1471 	int error;
1472 
1473 	while (len > 0) {
1474 		chunk_len = MIN(len, CORE_BUF_SIZE);
1475 
1476 		/*
1477 		 * We can get EFAULT error here.
1478 		 * In that case zero out the current chunk of the segment.
1479 		 */
1480 		error = copyin(base, buf, chunk_len);
1481 		if (error != 0)
1482 			bzero(buf, chunk_len);
1483 		error = compressor_write(p->comp, buf, chunk_len);
1484 		if (error != 0)
1485 			break;
1486 		base += chunk_len;
1487 		len -= chunk_len;
1488 	}
1489 	return (error);
1490 }
1491 
1492 static int
1493 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1494 {
1495 
1496 	return (core_write((struct coredump_params *)arg, base, len, offset,
1497 	    UIO_SYSSPACE));
1498 }
1499 
1500 static int
1501 core_write(struct coredump_params *p, const void *base, size_t len,
1502     off_t offset, enum uio_seg seg)
1503 {
1504 
1505 	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1506 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1507 	    p->active_cred, p->file_cred, NULL, p->td));
1508 }
1509 
1510 static int
1511 core_output(void *base, size_t len, off_t offset, struct coredump_params *p,
1512     void *tmpbuf)
1513 {
1514 	int error;
1515 
1516 	if (p->comp != NULL)
1517 		return (compress_chunk(p, base, tmpbuf, len));
1518 
1519 	/*
1520 	 * EFAULT is a non-fatal error that we can get, for example,
1521 	 * if the segment is backed by a file but extends beyond its
1522 	 * end.
1523 	 */
1524 	error = core_write(p, base, len, offset, UIO_USERSPACE);
1525 	if (error == EFAULT) {
1526 		log(LOG_WARNING, "Failed to fully fault in a core file segment "
1527 		    "at VA %p with size 0x%zx to be written at offset 0x%jx "
1528 		    "for process %s\n", base, len, offset, curproc->p_comm);
1529 
1530 		/*
1531 		 * Write a "real" zero byte at the end of the target region
1532 		 * in the case this is the last segment.
1533 		 * The intermediate space will be implicitly zero-filled.
1534 		 */
1535 		error = core_write(p, zero_region, 1, offset + len - 1,
1536 		    UIO_SYSSPACE);
1537 	}
1538 	return (error);
1539 }
1540 
1541 /*
1542  * Drain into a core file.
1543  */
1544 static int
1545 sbuf_drain_core_output(void *arg, const char *data, int len)
1546 {
1547 	struct coredump_params *p;
1548 	int error, locked;
1549 
1550 	p = (struct coredump_params *)arg;
1551 
1552 	/*
1553 	 * Some kern_proc out routines that print to this sbuf may
1554 	 * call us with the process lock held. Draining with the
1555 	 * non-sleepable lock held is unsafe. The lock is needed for
1556 	 * those routines when dumping a live process. In our case we
1557 	 * can safely release the lock before draining and acquire
1558 	 * again after.
1559 	 */
1560 	locked = PROC_LOCKED(p->td->td_proc);
1561 	if (locked)
1562 		PROC_UNLOCK(p->td->td_proc);
1563 	if (p->comp != NULL)
1564 		error = compressor_write(p->comp, __DECONST(char *, data), len);
1565 	else
1566 		error = core_write(p, __DECONST(void *, data), len, p->offset,
1567 		    UIO_SYSSPACE);
1568 	if (locked)
1569 		PROC_LOCK(p->td->td_proc);
1570 	if (error != 0)
1571 		return (-error);
1572 	p->offset += len;
1573 	return (len);
1574 }
1575 
1576 int
1577 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1578 {
1579 	struct ucred *cred = td->td_ucred;
1580 	int error = 0;
1581 	struct sseg_closure seginfo;
1582 	struct note_info_list notelst;
1583 	struct coredump_params params;
1584 	struct note_info *ninfo;
1585 	void *hdr, *tmpbuf;
1586 	size_t hdrsize, notesz, coresize;
1587 
1588 	hdr = NULL;
1589 	tmpbuf = NULL;
1590 	TAILQ_INIT(&notelst);
1591 
1592 	/* Size the program segments. */
1593 	seginfo.count = 0;
1594 	seginfo.size = 0;
1595 	each_dumpable_segment(td, cb_size_segment, &seginfo);
1596 
1597 	/*
1598 	 * Collect info about the core file header area.
1599 	 */
1600 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1601 	if (seginfo.count + 1 >= PN_XNUM)
1602 		hdrsize += sizeof(Elf_Shdr);
1603 	__elfN(prepare_notes)(td, &notelst, &notesz);
1604 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1605 
1606 	/* Set up core dump parameters. */
1607 	params.offset = 0;
1608 	params.active_cred = cred;
1609 	params.file_cred = NOCRED;
1610 	params.td = td;
1611 	params.vp = vp;
1612 	params.comp = NULL;
1613 
1614 #ifdef RACCT
1615 	if (racct_enable) {
1616 		PROC_LOCK(td->td_proc);
1617 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1618 		PROC_UNLOCK(td->td_proc);
1619 		if (error != 0) {
1620 			error = EFAULT;
1621 			goto done;
1622 		}
1623 	}
1624 #endif
1625 	if (coresize >= limit) {
1626 		error = EFAULT;
1627 		goto done;
1628 	}
1629 
1630 	/* Create a compression stream if necessary. */
1631 	if (compress_user_cores != 0) {
1632 		params.comp = compressor_init(core_compressed_write,
1633 		    compress_user_cores, CORE_BUF_SIZE,
1634 		    compress_user_cores_level, &params);
1635 		if (params.comp == NULL) {
1636 			error = EFAULT;
1637 			goto done;
1638 		}
1639 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1640         }
1641 
1642 	/*
1643 	 * Allocate memory for building the header, fill it up,
1644 	 * and write it out following the notes.
1645 	 */
1646 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1647 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1648 	    notesz);
1649 
1650 	/* Write the contents of all of the writable segments. */
1651 	if (error == 0) {
1652 		Elf_Phdr *php;
1653 		off_t offset;
1654 		int i;
1655 
1656 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1657 		offset = round_page(hdrsize + notesz);
1658 		for (i = 0; i < seginfo.count; i++) {
1659 			error = core_output((caddr_t)(uintptr_t)php->p_vaddr,
1660 			    php->p_filesz, offset, &params, tmpbuf);
1661 			if (error != 0)
1662 				break;
1663 			offset += php->p_filesz;
1664 			php++;
1665 		}
1666 		if (error == 0 && params.comp != NULL)
1667 			error = compressor_flush(params.comp);
1668 	}
1669 	if (error) {
1670 		log(LOG_WARNING,
1671 		    "Failed to write core file for process %s (error %d)\n",
1672 		    curproc->p_comm, error);
1673 	}
1674 
1675 done:
1676 	free(tmpbuf, M_TEMP);
1677 	if (params.comp != NULL)
1678 		compressor_fini(params.comp);
1679 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1680 		TAILQ_REMOVE(&notelst, ninfo, link);
1681 		free(ninfo, M_TEMP);
1682 	}
1683 	if (hdr != NULL)
1684 		free(hdr, M_TEMP);
1685 
1686 	return (error);
1687 }
1688 
1689 /*
1690  * A callback for each_dumpable_segment() to write out the segment's
1691  * program header entry.
1692  */
1693 static void
1694 cb_put_phdr(vm_map_entry_t entry, void *closure)
1695 {
1696 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1697 	Elf_Phdr *phdr = phc->phdr;
1698 
1699 	phc->offset = round_page(phc->offset);
1700 
1701 	phdr->p_type = PT_LOAD;
1702 	phdr->p_offset = phc->offset;
1703 	phdr->p_vaddr = entry->start;
1704 	phdr->p_paddr = 0;
1705 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1706 	phdr->p_align = PAGE_SIZE;
1707 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1708 
1709 	phc->offset += phdr->p_filesz;
1710 	phc->phdr++;
1711 }
1712 
1713 /*
1714  * A callback for each_dumpable_segment() to gather information about
1715  * the number of segments and their total size.
1716  */
1717 static void
1718 cb_size_segment(vm_map_entry_t entry, void *closure)
1719 {
1720 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1721 
1722 	ssc->count++;
1723 	ssc->size += entry->end - entry->start;
1724 }
1725 
1726 /*
1727  * For each writable segment in the process's memory map, call the given
1728  * function with a pointer to the map entry and some arbitrary
1729  * caller-supplied data.
1730  */
1731 static void
1732 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
1733 {
1734 	struct proc *p = td->td_proc;
1735 	vm_map_t map = &p->p_vmspace->vm_map;
1736 	vm_map_entry_t entry;
1737 	vm_object_t backing_object, object;
1738 	boolean_t ignore_entry;
1739 
1740 	vm_map_lock_read(map);
1741 	VM_MAP_ENTRY_FOREACH(entry, map) {
1742 		/*
1743 		 * Don't dump inaccessible mappings, deal with legacy
1744 		 * coredump mode.
1745 		 *
1746 		 * Note that read-only segments related to the elf binary
1747 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1748 		 * need to arbitrarily ignore such segments.
1749 		 */
1750 		if (elf_legacy_coredump) {
1751 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1752 				continue;
1753 		} else {
1754 			if ((entry->protection & VM_PROT_ALL) == 0)
1755 				continue;
1756 		}
1757 
1758 		/*
1759 		 * Dont include memory segment in the coredump if
1760 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1761 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1762 		 * kernel map).
1763 		 */
1764 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1765 			continue;
1766 
1767 		if ((object = entry->object.vm_object) == NULL)
1768 			continue;
1769 
1770 		/* Ignore memory-mapped devices and such things. */
1771 		VM_OBJECT_RLOCK(object);
1772 		while ((backing_object = object->backing_object) != NULL) {
1773 			VM_OBJECT_RLOCK(backing_object);
1774 			VM_OBJECT_RUNLOCK(object);
1775 			object = backing_object;
1776 		}
1777 		ignore_entry = object->type != OBJT_DEFAULT &&
1778 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1779 		    object->type != OBJT_PHYS;
1780 		VM_OBJECT_RUNLOCK(object);
1781 		if (ignore_entry)
1782 			continue;
1783 
1784 		(*func)(entry, closure);
1785 	}
1786 	vm_map_unlock_read(map);
1787 }
1788 
1789 /*
1790  * Write the core file header to the file, including padding up to
1791  * the page boundary.
1792  */
1793 static int
1794 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1795     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
1796 {
1797 	struct note_info *ninfo;
1798 	struct sbuf *sb;
1799 	int error;
1800 
1801 	/* Fill in the header. */
1802 	bzero(hdr, hdrsize);
1803 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
1804 
1805 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1806 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1807 	sbuf_start_section(sb, NULL);
1808 	sbuf_bcat(sb, hdr, hdrsize);
1809 	TAILQ_FOREACH(ninfo, notelst, link)
1810 	    __elfN(putnote)(ninfo, sb);
1811 	/* Align up to a page boundary for the program segments. */
1812 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1813 	error = sbuf_finish(sb);
1814 	sbuf_delete(sb);
1815 
1816 	return (error);
1817 }
1818 
1819 static void
1820 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1821     size_t *sizep)
1822 {
1823 	struct proc *p;
1824 	struct thread *thr;
1825 	size_t size;
1826 
1827 	p = td->td_proc;
1828 	size = 0;
1829 
1830 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1831 
1832 	/*
1833 	 * To have the debugger select the right thread (LWP) as the initial
1834 	 * thread, we dump the state of the thread passed to us in td first.
1835 	 * This is the thread that causes the core dump and thus likely to
1836 	 * be the right thread one wants to have selected in the debugger.
1837 	 */
1838 	thr = td;
1839 	while (thr != NULL) {
1840 		size += register_note(list, NT_PRSTATUS,
1841 		    __elfN(note_prstatus), thr);
1842 		size += register_note(list, NT_FPREGSET,
1843 		    __elfN(note_fpregset), thr);
1844 		size += register_note(list, NT_THRMISC,
1845 		    __elfN(note_thrmisc), thr);
1846 		size += register_note(list, NT_PTLWPINFO,
1847 		    __elfN(note_ptlwpinfo), thr);
1848 		size += register_note(list, -1,
1849 		    __elfN(note_threadmd), thr);
1850 
1851 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1852 		    TAILQ_NEXT(thr, td_plist);
1853 		if (thr == td)
1854 			thr = TAILQ_NEXT(thr, td_plist);
1855 	}
1856 
1857 	size += register_note(list, NT_PROCSTAT_PROC,
1858 	    __elfN(note_procstat_proc), p);
1859 	size += register_note(list, NT_PROCSTAT_FILES,
1860 	    note_procstat_files, p);
1861 	size += register_note(list, NT_PROCSTAT_VMMAP,
1862 	    note_procstat_vmmap, p);
1863 	size += register_note(list, NT_PROCSTAT_GROUPS,
1864 	    note_procstat_groups, p);
1865 	size += register_note(list, NT_PROCSTAT_UMASK,
1866 	    note_procstat_umask, p);
1867 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1868 	    note_procstat_rlimit, p);
1869 	size += register_note(list, NT_PROCSTAT_OSREL,
1870 	    note_procstat_osrel, p);
1871 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1872 	    __elfN(note_procstat_psstrings), p);
1873 	size += register_note(list, NT_PROCSTAT_AUXV,
1874 	    __elfN(note_procstat_auxv), p);
1875 
1876 	*sizep = size;
1877 }
1878 
1879 static void
1880 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1881     size_t notesz)
1882 {
1883 	Elf_Ehdr *ehdr;
1884 	Elf_Phdr *phdr;
1885 	Elf_Shdr *shdr;
1886 	struct phdr_closure phc;
1887 
1888 	ehdr = (Elf_Ehdr *)hdr;
1889 
1890 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1891 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1892 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1893 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1894 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1895 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1896 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1897 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1898 	ehdr->e_ident[EI_ABIVERSION] = 0;
1899 	ehdr->e_ident[EI_PAD] = 0;
1900 	ehdr->e_type = ET_CORE;
1901 	ehdr->e_machine = td->td_proc->p_elf_machine;
1902 	ehdr->e_version = EV_CURRENT;
1903 	ehdr->e_entry = 0;
1904 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1905 	ehdr->e_flags = td->td_proc->p_elf_flags;
1906 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1907 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1908 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1909 	ehdr->e_shstrndx = SHN_UNDEF;
1910 	if (numsegs + 1 < PN_XNUM) {
1911 		ehdr->e_phnum = numsegs + 1;
1912 		ehdr->e_shnum = 0;
1913 	} else {
1914 		ehdr->e_phnum = PN_XNUM;
1915 		ehdr->e_shnum = 1;
1916 
1917 		ehdr->e_shoff = ehdr->e_phoff +
1918 		    (numsegs + 1) * ehdr->e_phentsize;
1919 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1920 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1921 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1922 
1923 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1924 		memset(shdr, 0, sizeof(*shdr));
1925 		/*
1926 		 * A special first section is used to hold large segment and
1927 		 * section counts.  This was proposed by Sun Microsystems in
1928 		 * Solaris and has been adopted by Linux; the standard ELF
1929 		 * tools are already familiar with the technique.
1930 		 *
1931 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1932 		 * (or 12-7 depending on the version of the document) for more
1933 		 * details.
1934 		 */
1935 		shdr->sh_type = SHT_NULL;
1936 		shdr->sh_size = ehdr->e_shnum;
1937 		shdr->sh_link = ehdr->e_shstrndx;
1938 		shdr->sh_info = numsegs + 1;
1939 	}
1940 
1941 	/*
1942 	 * Fill in the program header entries.
1943 	 */
1944 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1945 
1946 	/* The note segement. */
1947 	phdr->p_type = PT_NOTE;
1948 	phdr->p_offset = hdrsize;
1949 	phdr->p_vaddr = 0;
1950 	phdr->p_paddr = 0;
1951 	phdr->p_filesz = notesz;
1952 	phdr->p_memsz = 0;
1953 	phdr->p_flags = PF_R;
1954 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1955 	phdr++;
1956 
1957 	/* All the writable segments from the program. */
1958 	phc.phdr = phdr;
1959 	phc.offset = round_page(hdrsize + notesz);
1960 	each_dumpable_segment(td, cb_put_phdr, &phc);
1961 }
1962 
1963 static size_t
1964 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1965 {
1966 	struct note_info *ninfo;
1967 	size_t size, notesize;
1968 
1969 	size = 0;
1970 	out(arg, NULL, &size);
1971 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1972 	ninfo->type = type;
1973 	ninfo->outfunc = out;
1974 	ninfo->outarg = arg;
1975 	ninfo->outsize = size;
1976 	TAILQ_INSERT_TAIL(list, ninfo, link);
1977 
1978 	if (type == -1)
1979 		return (size);
1980 
1981 	notesize = sizeof(Elf_Note) +		/* note header */
1982 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1983 						/* note name */
1984 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1985 
1986 	return (notesize);
1987 }
1988 
1989 static size_t
1990 append_note_data(const void *src, void *dst, size_t len)
1991 {
1992 	size_t padded_len;
1993 
1994 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1995 	if (dst != NULL) {
1996 		bcopy(src, dst, len);
1997 		bzero((char *)dst + len, padded_len - len);
1998 	}
1999 	return (padded_len);
2000 }
2001 
2002 size_t
2003 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2004 {
2005 	Elf_Note *note;
2006 	char *buf;
2007 	size_t notesize;
2008 
2009 	buf = dst;
2010 	if (buf != NULL) {
2011 		note = (Elf_Note *)buf;
2012 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2013 		note->n_descsz = size;
2014 		note->n_type = type;
2015 		buf += sizeof(*note);
2016 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2017 		    sizeof(FREEBSD_ABI_VENDOR));
2018 		append_note_data(src, buf, size);
2019 		if (descp != NULL)
2020 			*descp = buf;
2021 	}
2022 
2023 	notesize = sizeof(Elf_Note) +		/* note header */
2024 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2025 						/* note name */
2026 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2027 
2028 	return (notesize);
2029 }
2030 
2031 static void
2032 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
2033 {
2034 	Elf_Note note;
2035 	ssize_t old_len, sect_len;
2036 	size_t new_len, descsz, i;
2037 
2038 	if (ninfo->type == -1) {
2039 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2040 		return;
2041 	}
2042 
2043 	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2044 	note.n_descsz = ninfo->outsize;
2045 	note.n_type = ninfo->type;
2046 
2047 	sbuf_bcat(sb, &note, sizeof(note));
2048 	sbuf_start_section(sb, &old_len);
2049 	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
2050 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2051 	if (note.n_descsz == 0)
2052 		return;
2053 	sbuf_start_section(sb, &old_len);
2054 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2055 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2056 	if (sect_len < 0)
2057 		return;
2058 
2059 	new_len = (size_t)sect_len;
2060 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2061 	if (new_len < descsz) {
2062 		/*
2063 		 * It is expected that individual note emitters will correctly
2064 		 * predict their expected output size and fill up to that size
2065 		 * themselves, padding in a format-specific way if needed.
2066 		 * However, in case they don't, just do it here with zeros.
2067 		 */
2068 		for (i = 0; i < descsz - new_len; i++)
2069 			sbuf_putc(sb, 0);
2070 	} else if (new_len > descsz) {
2071 		/*
2072 		 * We can't always truncate sb -- we may have drained some
2073 		 * of it already.
2074 		 */
2075 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2076 		    "read it (%zu > %zu).  Since it is longer than "
2077 		    "expected, this coredump's notes are corrupt.  THIS "
2078 		    "IS A BUG in the note_procstat routine for type %u.\n",
2079 		    __func__, (unsigned)note.n_type, new_len, descsz,
2080 		    (unsigned)note.n_type));
2081 	}
2082 }
2083 
2084 /*
2085  * Miscellaneous note out functions.
2086  */
2087 
2088 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2089 #include <compat/freebsd32/freebsd32.h>
2090 #include <compat/freebsd32/freebsd32_signal.h>
2091 
2092 typedef struct prstatus32 elf_prstatus_t;
2093 typedef struct prpsinfo32 elf_prpsinfo_t;
2094 typedef struct fpreg32 elf_prfpregset_t;
2095 typedef struct fpreg32 elf_fpregset_t;
2096 typedef struct reg32 elf_gregset_t;
2097 typedef struct thrmisc32 elf_thrmisc_t;
2098 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2099 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2100 typedef uint32_t elf_ps_strings_t;
2101 #else
2102 typedef prstatus_t elf_prstatus_t;
2103 typedef prpsinfo_t elf_prpsinfo_t;
2104 typedef prfpregset_t elf_prfpregset_t;
2105 typedef prfpregset_t elf_fpregset_t;
2106 typedef gregset_t elf_gregset_t;
2107 typedef thrmisc_t elf_thrmisc_t;
2108 #define ELF_KERN_PROC_MASK	0
2109 typedef struct kinfo_proc elf_kinfo_proc_t;
2110 typedef vm_offset_t elf_ps_strings_t;
2111 #endif
2112 
2113 static void
2114 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2115 {
2116 	struct sbuf sbarg;
2117 	size_t len;
2118 	char *cp, *end;
2119 	struct proc *p;
2120 	elf_prpsinfo_t *psinfo;
2121 	int error;
2122 
2123 	p = (struct proc *)arg;
2124 	if (sb != NULL) {
2125 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2126 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2127 		psinfo->pr_version = PRPSINFO_VERSION;
2128 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2129 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2130 		PROC_LOCK(p);
2131 		if (p->p_args != NULL) {
2132 			len = sizeof(psinfo->pr_psargs) - 1;
2133 			if (len > p->p_args->ar_length)
2134 				len = p->p_args->ar_length;
2135 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2136 			PROC_UNLOCK(p);
2137 			error = 0;
2138 		} else {
2139 			_PHOLD(p);
2140 			PROC_UNLOCK(p);
2141 			sbuf_new(&sbarg, psinfo->pr_psargs,
2142 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2143 			error = proc_getargv(curthread, p, &sbarg);
2144 			PRELE(p);
2145 			if (sbuf_finish(&sbarg) == 0)
2146 				len = sbuf_len(&sbarg) - 1;
2147 			else
2148 				len = sizeof(psinfo->pr_psargs) - 1;
2149 			sbuf_delete(&sbarg);
2150 		}
2151 		if (error || len == 0)
2152 			strlcpy(psinfo->pr_psargs, p->p_comm,
2153 			    sizeof(psinfo->pr_psargs));
2154 		else {
2155 			KASSERT(len < sizeof(psinfo->pr_psargs),
2156 			    ("len is too long: %zu vs %zu", len,
2157 			    sizeof(psinfo->pr_psargs)));
2158 			cp = psinfo->pr_psargs;
2159 			end = cp + len - 1;
2160 			for (;;) {
2161 				cp = memchr(cp, '\0', end - cp);
2162 				if (cp == NULL)
2163 					break;
2164 				*cp = ' ';
2165 			}
2166 		}
2167 		psinfo->pr_pid = p->p_pid;
2168 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2169 		free(psinfo, M_TEMP);
2170 	}
2171 	*sizep = sizeof(*psinfo);
2172 }
2173 
2174 static void
2175 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
2176 {
2177 	struct thread *td;
2178 	elf_prstatus_t *status;
2179 
2180 	td = (struct thread *)arg;
2181 	if (sb != NULL) {
2182 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
2183 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
2184 		status->pr_version = PRSTATUS_VERSION;
2185 		status->pr_statussz = sizeof(elf_prstatus_t);
2186 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2187 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2188 		status->pr_osreldate = osreldate;
2189 		status->pr_cursig = td->td_proc->p_sig;
2190 		status->pr_pid = td->td_tid;
2191 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2192 		fill_regs32(td, &status->pr_reg);
2193 #else
2194 		fill_regs(td, &status->pr_reg);
2195 #endif
2196 		sbuf_bcat(sb, status, sizeof(*status));
2197 		free(status, M_TEMP);
2198 	}
2199 	*sizep = sizeof(*status);
2200 }
2201 
2202 static void
2203 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
2204 {
2205 	struct thread *td;
2206 	elf_prfpregset_t *fpregset;
2207 
2208 	td = (struct thread *)arg;
2209 	if (sb != NULL) {
2210 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
2211 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
2212 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2213 		fill_fpregs32(td, fpregset);
2214 #else
2215 		fill_fpregs(td, fpregset);
2216 #endif
2217 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
2218 		free(fpregset, M_TEMP);
2219 	}
2220 	*sizep = sizeof(*fpregset);
2221 }
2222 
2223 static void
2224 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2225 {
2226 	struct thread *td;
2227 	elf_thrmisc_t thrmisc;
2228 
2229 	td = (struct thread *)arg;
2230 	if (sb != NULL) {
2231 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2232 		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
2233 		strcpy(thrmisc.pr_tname, td->td_name);
2234 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2235 	}
2236 	*sizep = sizeof(thrmisc);
2237 }
2238 
2239 static void
2240 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2241 {
2242 	struct thread *td;
2243 	size_t size;
2244 	int structsize;
2245 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2246 	struct ptrace_lwpinfo32 pl;
2247 #else
2248 	struct ptrace_lwpinfo pl;
2249 #endif
2250 
2251 	td = (struct thread *)arg;
2252 	size = sizeof(structsize) + sizeof(pl);
2253 	if (sb != NULL) {
2254 		KASSERT(*sizep == size, ("invalid size"));
2255 		structsize = sizeof(pl);
2256 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2257 		bzero(&pl, sizeof(pl));
2258 		pl.pl_lwpid = td->td_tid;
2259 		pl.pl_event = PL_EVENT_NONE;
2260 		pl.pl_sigmask = td->td_sigmask;
2261 		pl.pl_siglist = td->td_siglist;
2262 		if (td->td_si.si_signo != 0) {
2263 			pl.pl_event = PL_EVENT_SIGNAL;
2264 			pl.pl_flags |= PL_FLAG_SI;
2265 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2266 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2267 #else
2268 			pl.pl_siginfo = td->td_si;
2269 #endif
2270 		}
2271 		strcpy(pl.pl_tdname, td->td_name);
2272 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2273 		sbuf_bcat(sb, &pl, sizeof(pl));
2274 	}
2275 	*sizep = size;
2276 }
2277 
2278 /*
2279  * Allow for MD specific notes, as well as any MD
2280  * specific preparations for writing MI notes.
2281  */
2282 static void
2283 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2284 {
2285 	struct thread *td;
2286 	void *buf;
2287 	size_t size;
2288 
2289 	td = (struct thread *)arg;
2290 	size = *sizep;
2291 	if (size != 0 && sb != NULL)
2292 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2293 	else
2294 		buf = NULL;
2295 	size = 0;
2296 	__elfN(dump_thread)(td, buf, &size);
2297 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2298 	if (size != 0 && sb != NULL)
2299 		sbuf_bcat(sb, buf, size);
2300 	free(buf, M_TEMP);
2301 	*sizep = size;
2302 }
2303 
2304 #ifdef KINFO_PROC_SIZE
2305 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2306 #endif
2307 
2308 static void
2309 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2310 {
2311 	struct proc *p;
2312 	size_t size;
2313 	int structsize;
2314 
2315 	p = (struct proc *)arg;
2316 	size = sizeof(structsize) + p->p_numthreads *
2317 	    sizeof(elf_kinfo_proc_t);
2318 
2319 	if (sb != NULL) {
2320 		KASSERT(*sizep == size, ("invalid size"));
2321 		structsize = sizeof(elf_kinfo_proc_t);
2322 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2323 		PROC_LOCK(p);
2324 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2325 	}
2326 	*sizep = size;
2327 }
2328 
2329 #ifdef KINFO_FILE_SIZE
2330 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2331 #endif
2332 
2333 static void
2334 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2335 {
2336 	struct proc *p;
2337 	size_t size, sect_sz, i;
2338 	ssize_t start_len, sect_len;
2339 	int structsize, filedesc_flags;
2340 
2341 	if (coredump_pack_fileinfo)
2342 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2343 	else
2344 		filedesc_flags = 0;
2345 
2346 	p = (struct proc *)arg;
2347 	structsize = sizeof(struct kinfo_file);
2348 	if (sb == NULL) {
2349 		size = 0;
2350 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2351 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2352 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2353 		PROC_LOCK(p);
2354 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2355 		sbuf_finish(sb);
2356 		sbuf_delete(sb);
2357 		*sizep = size;
2358 	} else {
2359 		sbuf_start_section(sb, &start_len);
2360 
2361 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2362 		PROC_LOCK(p);
2363 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2364 		    filedesc_flags);
2365 
2366 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2367 		if (sect_len < 0)
2368 			return;
2369 		sect_sz = sect_len;
2370 
2371 		KASSERT(sect_sz <= *sizep,
2372 		    ("kern_proc_filedesc_out did not respect maxlen; "
2373 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2374 		     sect_sz - sizeof(structsize)));
2375 
2376 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2377 			sbuf_putc(sb, 0);
2378 	}
2379 }
2380 
2381 #ifdef KINFO_VMENTRY_SIZE
2382 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2383 #endif
2384 
2385 static void
2386 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2387 {
2388 	struct proc *p;
2389 	size_t size;
2390 	int structsize, vmmap_flags;
2391 
2392 	if (coredump_pack_vmmapinfo)
2393 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2394 	else
2395 		vmmap_flags = 0;
2396 
2397 	p = (struct proc *)arg;
2398 	structsize = sizeof(struct kinfo_vmentry);
2399 	if (sb == NULL) {
2400 		size = 0;
2401 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2402 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2403 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2404 		PROC_LOCK(p);
2405 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2406 		sbuf_finish(sb);
2407 		sbuf_delete(sb);
2408 		*sizep = size;
2409 	} else {
2410 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2411 		PROC_LOCK(p);
2412 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2413 		    vmmap_flags);
2414 	}
2415 }
2416 
2417 static void
2418 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2419 {
2420 	struct proc *p;
2421 	size_t size;
2422 	int structsize;
2423 
2424 	p = (struct proc *)arg;
2425 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2426 	if (sb != NULL) {
2427 		KASSERT(*sizep == size, ("invalid size"));
2428 		structsize = sizeof(gid_t);
2429 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2430 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2431 		    sizeof(gid_t));
2432 	}
2433 	*sizep = size;
2434 }
2435 
2436 static void
2437 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2438 {
2439 	struct proc *p;
2440 	size_t size;
2441 	int structsize;
2442 
2443 	p = (struct proc *)arg;
2444 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2445 	if (sb != NULL) {
2446 		KASSERT(*sizep == size, ("invalid size"));
2447 		structsize = sizeof(p->p_fd->fd_cmask);
2448 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2449 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2450 	}
2451 	*sizep = size;
2452 }
2453 
2454 static void
2455 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2456 {
2457 	struct proc *p;
2458 	struct rlimit rlim[RLIM_NLIMITS];
2459 	size_t size;
2460 	int structsize, i;
2461 
2462 	p = (struct proc *)arg;
2463 	size = sizeof(structsize) + sizeof(rlim);
2464 	if (sb != NULL) {
2465 		KASSERT(*sizep == size, ("invalid size"));
2466 		structsize = sizeof(rlim);
2467 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2468 		PROC_LOCK(p);
2469 		for (i = 0; i < RLIM_NLIMITS; i++)
2470 			lim_rlimit_proc(p, i, &rlim[i]);
2471 		PROC_UNLOCK(p);
2472 		sbuf_bcat(sb, rlim, sizeof(rlim));
2473 	}
2474 	*sizep = size;
2475 }
2476 
2477 static void
2478 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2479 {
2480 	struct proc *p;
2481 	size_t size;
2482 	int structsize;
2483 
2484 	p = (struct proc *)arg;
2485 	size = sizeof(structsize) + sizeof(p->p_osrel);
2486 	if (sb != NULL) {
2487 		KASSERT(*sizep == size, ("invalid size"));
2488 		structsize = sizeof(p->p_osrel);
2489 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2490 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2491 	}
2492 	*sizep = size;
2493 }
2494 
2495 static void
2496 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2497 {
2498 	struct proc *p;
2499 	elf_ps_strings_t ps_strings;
2500 	size_t size;
2501 	int structsize;
2502 
2503 	p = (struct proc *)arg;
2504 	size = sizeof(structsize) + sizeof(ps_strings);
2505 	if (sb != NULL) {
2506 		KASSERT(*sizep == size, ("invalid size"));
2507 		structsize = sizeof(ps_strings);
2508 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2509 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2510 #else
2511 		ps_strings = p->p_sysent->sv_psstrings;
2512 #endif
2513 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2514 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2515 	}
2516 	*sizep = size;
2517 }
2518 
2519 static void
2520 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2521 {
2522 	struct proc *p;
2523 	size_t size;
2524 	int structsize;
2525 
2526 	p = (struct proc *)arg;
2527 	if (sb == NULL) {
2528 		size = 0;
2529 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2530 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2531 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2532 		PHOLD(p);
2533 		proc_getauxv(curthread, p, sb);
2534 		PRELE(p);
2535 		sbuf_finish(sb);
2536 		sbuf_delete(sb);
2537 		*sizep = size;
2538 	} else {
2539 		structsize = sizeof(Elf_Auxinfo);
2540 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2541 		PHOLD(p);
2542 		proc_getauxv(curthread, p, sb);
2543 		PRELE(p);
2544 	}
2545 }
2546 
2547 static boolean_t
2548 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2549     const char *note_vendor, const Elf_Phdr *pnote,
2550     boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg)
2551 {
2552 	const Elf_Note *note, *note0, *note_end;
2553 	const char *note_name;
2554 	char *buf;
2555 	int i, error;
2556 	boolean_t res;
2557 
2558 	/* We need some limit, might as well use PAGE_SIZE. */
2559 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2560 		return (FALSE);
2561 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2562 	if (pnote->p_offset > PAGE_SIZE ||
2563 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2564 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2565 		if (buf == NULL) {
2566 			VOP_UNLOCK(imgp->vp, 0);
2567 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2568 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2569 		}
2570 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2571 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2572 		    curthread->td_ucred, NOCRED, NULL, curthread);
2573 		if (error != 0) {
2574 			uprintf("i/o error PT_NOTE\n");
2575 			goto retf;
2576 		}
2577 		note = note0 = (const Elf_Note *)buf;
2578 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2579 	} else {
2580 		note = note0 = (const Elf_Note *)(imgp->image_header +
2581 		    pnote->p_offset);
2582 		note_end = (const Elf_Note *)(imgp->image_header +
2583 		    pnote->p_offset + pnote->p_filesz);
2584 		buf = NULL;
2585 	}
2586 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2587 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2588 		    (const char *)note < sizeof(Elf_Note)) {
2589 			goto retf;
2590 		}
2591 		if (note->n_namesz != checknote->n_namesz ||
2592 		    note->n_descsz != checknote->n_descsz ||
2593 		    note->n_type != checknote->n_type)
2594 			goto nextnote;
2595 		note_name = (const char *)(note + 1);
2596 		if (note_name + checknote->n_namesz >=
2597 		    (const char *)note_end || strncmp(note_vendor,
2598 		    note_name, checknote->n_namesz) != 0)
2599 			goto nextnote;
2600 
2601 		if (cb(note, cb_arg, &res))
2602 			goto ret;
2603 nextnote:
2604 		note = (const Elf_Note *)((const char *)(note + 1) +
2605 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2606 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2607 	}
2608 retf:
2609 	res = FALSE;
2610 ret:
2611 	free(buf, M_TEMP);
2612 	return (res);
2613 }
2614 
2615 struct brandnote_cb_arg {
2616 	Elf_Brandnote *brandnote;
2617 	int32_t *osrel;
2618 };
2619 
2620 static boolean_t
2621 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2622 {
2623 	struct brandnote_cb_arg *arg;
2624 
2625 	arg = arg0;
2626 
2627 	/*
2628 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2629 	 * necessary.
2630 	 */
2631 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2632 	    arg->brandnote->trans_osrel != NULL ?
2633 	    arg->brandnote->trans_osrel(note, arg->osrel) : TRUE;
2634 
2635 	return (TRUE);
2636 }
2637 
2638 static Elf_Note fctl_note = {
2639 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2640 	.n_descsz = sizeof(uint32_t),
2641 	.n_type = NT_FREEBSD_FEATURE_CTL,
2642 };
2643 
2644 struct fctl_cb_arg {
2645 	uint32_t *fctl0;
2646 };
2647 
2648 static boolean_t
2649 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2650 {
2651 	struct fctl_cb_arg *arg;
2652 	const Elf32_Word *desc;
2653 	uintptr_t p;
2654 
2655 	arg = arg0;
2656 	p = (uintptr_t)(note + 1);
2657 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2658 	desc = (const Elf32_Word *)p;
2659 	*arg->fctl0 = desc[0];
2660 	return (TRUE);
2661 }
2662 
2663 /*
2664  * Try to find the appropriate ABI-note section for checknote, fetch
2665  * the osreldate and feature control flags for binary from the ELF
2666  * OSABI-note.  Only the first page of the image is searched, the same
2667  * as for headers.
2668  */
2669 static boolean_t
2670 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2671     int32_t *osrel, uint32_t *fctl0)
2672 {
2673 	const Elf_Phdr *phdr;
2674 	const Elf_Ehdr *hdr;
2675 	struct brandnote_cb_arg b_arg;
2676 	struct fctl_cb_arg f_arg;
2677 	int i, j;
2678 
2679 	hdr = (const Elf_Ehdr *)imgp->image_header;
2680 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2681 	b_arg.brandnote = brandnote;
2682 	b_arg.osrel = osrel;
2683 	f_arg.fctl0 = fctl0;
2684 
2685 	for (i = 0; i < hdr->e_phnum; i++) {
2686 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2687 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2688 		    &b_arg)) {
2689 			for (j = 0; j < hdr->e_phnum; j++) {
2690 				if (phdr[j].p_type == PT_NOTE &&
2691 				    __elfN(parse_notes)(imgp, &fctl_note,
2692 				    FREEBSD_ABI_VENDOR, &phdr[j],
2693 				    note_fctl_cb, &f_arg))
2694 					break;
2695 			}
2696 			return (TRUE);
2697 		}
2698 	}
2699 	return (FALSE);
2700 
2701 }
2702 
2703 /*
2704  * Tell kern_execve.c about it, with a little help from the linker.
2705  */
2706 static struct execsw __elfN(execsw) = {
2707 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2708 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2709 };
2710 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2711 
2712 static vm_prot_t
2713 __elfN(trans_prot)(Elf_Word flags)
2714 {
2715 	vm_prot_t prot;
2716 
2717 	prot = 0;
2718 	if (flags & PF_X)
2719 		prot |= VM_PROT_EXECUTE;
2720 	if (flags & PF_W)
2721 		prot |= VM_PROT_WRITE;
2722 	if (flags & PF_R)
2723 		prot |= VM_PROT_READ;
2724 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2725 	if (i386_read_exec && (flags & PF_R))
2726 		prot |= VM_PROT_EXECUTE;
2727 #endif
2728 	return (prot);
2729 }
2730 
2731 static Elf_Word
2732 __elfN(untrans_prot)(vm_prot_t prot)
2733 {
2734 	Elf_Word flags;
2735 
2736 	flags = 0;
2737 	if (prot & VM_PROT_EXECUTE)
2738 		flags |= PF_X;
2739 	if (prot & VM_PROT_READ)
2740 		flags |= PF_R;
2741 	if (prot & VM_PROT_WRITE)
2742 		flags |= PF_W;
2743 	return (flags);
2744 }
2745 
2746 void
2747 __elfN(stackgap)(struct image_params *imgp, u_long *stack_base)
2748 {
2749 	u_long range, rbase, gap;
2750 	int pct;
2751 
2752 	if ((imgp->map_flags & MAP_ASLR) == 0)
2753 		return;
2754 	pct = __elfN(aslr_stack_gap);
2755 	if (pct == 0)
2756 		return;
2757 	if (pct > 50)
2758 		pct = 50;
2759 	range = imgp->eff_stack_sz * pct / 100;
2760 	arc4rand(&rbase, sizeof(rbase), 0);
2761 	gap = rbase % range;
2762 	gap &= ~(sizeof(u_long) - 1);
2763 	*stack_base -= gap;
2764 }
2765