1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "opt_capsicum.h" 35 36 #include <sys/param.h> 37 #include <sys/capsicum.h> 38 #include <sys/compressor.h> 39 #include <sys/exec.h> 40 #include <sys/fcntl.h> 41 #include <sys/imgact.h> 42 #include <sys/imgact_elf.h> 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mman.h> 49 #include <sys/namei.h> 50 #include <sys/proc.h> 51 #include <sys/procfs.h> 52 #include <sys/ptrace.h> 53 #include <sys/racct.h> 54 #include <sys/reg.h> 55 #include <sys/resourcevar.h> 56 #include <sys/rwlock.h> 57 #include <sys/sbuf.h> 58 #include <sys/sf_buf.h> 59 #include <sys/smp.h> 60 #include <sys/systm.h> 61 #include <sys/signalvar.h> 62 #include <sys/stat.h> 63 #include <sys/sx.h> 64 #include <sys/syscall.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysent.h> 67 #include <sys/vnode.h> 68 #include <sys/syslog.h> 69 #include <sys/eventhandler.h> 70 #include <sys/user.h> 71 72 #include <vm/vm.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_param.h> 75 #include <vm/pmap.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_object.h> 78 #include <vm/vm_extern.h> 79 80 #include <machine/elf.h> 81 #include <machine/md_var.h> 82 83 #define ELF_NOTE_ROUNDSIZE 4 84 #define OLD_EI_BRAND 8 85 86 static int __elfN(check_header)(const Elf_Ehdr *hdr); 87 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 88 const char *interp, int32_t *osrel, uint32_t *fctl0); 89 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 90 u_long *entry); 91 static int __elfN(load_section)(const struct image_params *imgp, 92 vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, 93 vm_prot_t prot); 94 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 95 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 96 int32_t *osrel); 97 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 98 static bool __elfN(check_note)(struct image_params *imgp, 99 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 100 uint32_t *fctl0); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 static size_t __elfN(prepare_register_notes)(struct thread *td, 104 struct note_info_list *list, struct thread *target_td); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 107 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 ""); 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if defined(__amd64__) 133 static int __elfN(vdso) = 1; 134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 135 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0, 136 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading"); 137 #else 138 static int __elfN(vdso) = 0; 139 #endif 140 141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 142 int i386_read_exec = 0; 143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 144 "enable execution from readable segments"); 145 #endif 146 147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 148 static int 149 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 150 { 151 u_long val; 152 int error; 153 154 val = __elfN(pie_base); 155 error = sysctl_handle_long(oidp, &val, 0, req); 156 if (error != 0 || req->newptr == NULL) 157 return (error); 158 if ((val & PAGE_MASK) != 0) 159 return (EINVAL); 160 __elfN(pie_base) = val; 161 return (0); 162 } 163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 164 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 165 sysctl_pie_base, "LU", 166 "PIE load base without randomization"); 167 168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 170 ""); 171 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 172 173 /* 174 * Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures 175 * have limited address space (which can cause issues for applications with 176 * high memory use) so we leave it off there. 177 */ 178 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 179 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 180 &__elfN(aslr_enabled), 0, 181 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 182 ": enable address map randomization"); 183 184 /* 185 * Enable ASLR by default for 64-bit PIE binaries. 186 */ 187 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 188 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 189 &__elfN(pie_aslr_enabled), 0, 190 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 191 ": enable address map randomization for PIE binaries"); 192 193 /* 194 * Sbrk is deprecated and it can be assumed that in most cases it will not be 195 * used anyway. This setting is valid only with ASLR enabled, and allows ASLR 196 * to use the bss grow region. 197 */ 198 static int __elfN(aslr_honor_sbrk) = 0; 199 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 200 &__elfN(aslr_honor_sbrk), 0, 201 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 202 203 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64; 204 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN, 205 &__elfN(aslr_stack), 0, 206 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 207 ": enable stack address randomization"); 208 209 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64; 210 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN, 211 &__elfN(aslr_shared_page), 0, 212 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 213 ": enable shared page address randomization"); 214 215 static int __elfN(sigfastblock) = 1; 216 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 217 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 218 "enable sigfastblock for new processes"); 219 220 static bool __elfN(allow_wx) = true; 221 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 222 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 223 "Allow pages to be mapped simultaneously writable and executable"); 224 225 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 226 227 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 228 229 Elf_Brandnote __elfN(freebsd_brandnote) = { 230 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 231 .hdr.n_descsz = sizeof(int32_t), 232 .hdr.n_type = NT_FREEBSD_ABI_TAG, 233 .vendor = FREEBSD_ABI_VENDOR, 234 .flags = BN_TRANSLATE_OSREL, 235 .trans_osrel = __elfN(freebsd_trans_osrel) 236 }; 237 238 static bool 239 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 240 { 241 uintptr_t p; 242 243 p = (uintptr_t)(note + 1); 244 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 245 *osrel = *(const int32_t *)(p); 246 247 return (true); 248 } 249 250 static int GNU_KFREEBSD_ABI_DESC = 3; 251 252 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 253 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 254 .hdr.n_descsz = 16, /* XXX at least 16 */ 255 .hdr.n_type = 1, 256 .vendor = GNU_ABI_VENDOR, 257 .flags = BN_TRANSLATE_OSREL, 258 .trans_osrel = kfreebsd_trans_osrel 259 }; 260 261 static bool 262 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 263 { 264 const Elf32_Word *desc; 265 uintptr_t p; 266 267 p = (uintptr_t)(note + 1); 268 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 269 270 desc = (const Elf32_Word *)p; 271 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 272 return (false); 273 274 /* 275 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 276 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 277 */ 278 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 279 280 return (true); 281 } 282 283 int 284 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 285 { 286 int i; 287 288 for (i = 0; i < MAX_BRANDS; i++) { 289 if (elf_brand_list[i] == NULL) { 290 elf_brand_list[i] = entry; 291 break; 292 } 293 } 294 if (i == MAX_BRANDS) { 295 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 296 __func__, entry); 297 return (-1); 298 } 299 return (0); 300 } 301 302 int 303 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 304 { 305 int i; 306 307 for (i = 0; i < MAX_BRANDS; i++) { 308 if (elf_brand_list[i] == entry) { 309 elf_brand_list[i] = NULL; 310 break; 311 } 312 } 313 if (i == MAX_BRANDS) 314 return (-1); 315 return (0); 316 } 317 318 bool 319 __elfN(brand_inuse)(Elf_Brandinfo *entry) 320 { 321 struct proc *p; 322 bool rval = false; 323 324 sx_slock(&allproc_lock); 325 FOREACH_PROC_IN_SYSTEM(p) { 326 if (p->p_sysent == entry->sysvec) { 327 rval = true; 328 break; 329 } 330 } 331 sx_sunlock(&allproc_lock); 332 333 return (rval); 334 } 335 336 static Elf_Brandinfo * 337 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 338 int32_t *osrel, uint32_t *fctl0) 339 { 340 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 341 Elf_Brandinfo *bi, *bi_m; 342 bool ret, has_fctl0; 343 int i, interp_name_len; 344 345 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 346 347 /* 348 * We support four types of branding -- (1) the ELF EI_OSABI field 349 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 350 * branding w/in the ELF header, (3) path of the `interp_path' 351 * field, and (4) the ".note.ABI-tag" ELF section. 352 */ 353 354 /* Look for an ".note.ABI-tag" ELF section */ 355 bi_m = NULL; 356 for (i = 0; i < MAX_BRANDS; i++) { 357 bi = elf_brand_list[i]; 358 if (bi == NULL) 359 continue; 360 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 361 continue; 362 if (hdr->e_machine == bi->machine && (bi->flags & 363 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 364 has_fctl0 = false; 365 *fctl0 = 0; 366 *osrel = 0; 367 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 368 &has_fctl0, fctl0); 369 /* Give brand a chance to veto check_note's guess */ 370 if (ret && bi->header_supported) { 371 ret = bi->header_supported(imgp, osrel, 372 has_fctl0 ? fctl0 : NULL); 373 } 374 /* 375 * If note checker claimed the binary, but the 376 * interpreter path in the image does not 377 * match default one for the brand, try to 378 * search for other brands with the same 379 * interpreter. Either there is better brand 380 * with the right interpreter, or, failing 381 * this, we return first brand which accepted 382 * our note and, optionally, header. 383 */ 384 if (ret && bi_m == NULL && interp != NULL && 385 (bi->interp_path == NULL || 386 (strlen(bi->interp_path) + 1 != interp_name_len || 387 strncmp(interp, bi->interp_path, interp_name_len) 388 != 0))) { 389 bi_m = bi; 390 ret = 0; 391 } 392 if (ret) 393 return (bi); 394 } 395 } 396 if (bi_m != NULL) 397 return (bi_m); 398 399 /* If the executable has a brand, search for it in the brand list. */ 400 for (i = 0; i < MAX_BRANDS; i++) { 401 bi = elf_brand_list[i]; 402 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 403 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 404 continue; 405 if (hdr->e_machine == bi->machine && 406 (hdr->e_ident[EI_OSABI] == bi->brand || 407 (bi->compat_3_brand != NULL && 408 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 409 bi->compat_3_brand) == 0))) { 410 /* Looks good, but give brand a chance to veto */ 411 if (bi->header_supported == NULL || 412 bi->header_supported(imgp, NULL, NULL)) { 413 /* 414 * Again, prefer strictly matching 415 * interpreter path. 416 */ 417 if (interp_name_len == 0 && 418 bi->interp_path == NULL) 419 return (bi); 420 if (bi->interp_path != NULL && 421 strlen(bi->interp_path) + 1 == 422 interp_name_len && strncmp(interp, 423 bi->interp_path, interp_name_len) == 0) 424 return (bi); 425 if (bi_m == NULL) 426 bi_m = bi; 427 } 428 } 429 } 430 if (bi_m != NULL) 431 return (bi_m); 432 433 /* No known brand, see if the header is recognized by any brand */ 434 for (i = 0; i < MAX_BRANDS; i++) { 435 bi = elf_brand_list[i]; 436 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 437 bi->header_supported == NULL) 438 continue; 439 if (hdr->e_machine == bi->machine) { 440 ret = bi->header_supported(imgp, NULL, NULL); 441 if (ret) 442 return (bi); 443 } 444 } 445 446 /* Lacking a known brand, search for a recognized interpreter. */ 447 if (interp != NULL) { 448 for (i = 0; i < MAX_BRANDS; i++) { 449 bi = elf_brand_list[i]; 450 if (bi == NULL || (bi->flags & 451 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 452 != 0) 453 continue; 454 if (hdr->e_machine == bi->machine && 455 bi->interp_path != NULL && 456 /* ELF image p_filesz includes terminating zero */ 457 strlen(bi->interp_path) + 1 == interp_name_len && 458 strncmp(interp, bi->interp_path, interp_name_len) 459 == 0 && (bi->header_supported == NULL || 460 bi->header_supported(imgp, NULL, NULL))) 461 return (bi); 462 } 463 } 464 465 /* Lacking a recognized interpreter, try the default brand */ 466 for (i = 0; i < MAX_BRANDS; i++) { 467 bi = elf_brand_list[i]; 468 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 469 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 470 continue; 471 if (hdr->e_machine == bi->machine && 472 __elfN(fallback_brand) == bi->brand && 473 (bi->header_supported == NULL || 474 bi->header_supported(imgp, NULL, NULL))) 475 return (bi); 476 } 477 return (NULL); 478 } 479 480 static bool 481 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 482 { 483 return (hdr->e_phoff <= PAGE_SIZE && 484 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 485 } 486 487 static int 488 __elfN(check_header)(const Elf_Ehdr *hdr) 489 { 490 Elf_Brandinfo *bi; 491 int i; 492 493 if (!IS_ELF(*hdr) || 494 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 495 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 496 hdr->e_ident[EI_VERSION] != EV_CURRENT || 497 hdr->e_phentsize != sizeof(Elf_Phdr) || 498 hdr->e_version != ELF_TARG_VER) 499 return (ENOEXEC); 500 501 /* 502 * Make sure we have at least one brand for this machine. 503 */ 504 505 for (i = 0; i < MAX_BRANDS; i++) { 506 bi = elf_brand_list[i]; 507 if (bi != NULL && bi->machine == hdr->e_machine) 508 break; 509 } 510 if (i == MAX_BRANDS) 511 return (ENOEXEC); 512 513 return (0); 514 } 515 516 static int 517 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 518 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 519 { 520 struct sf_buf *sf; 521 int error; 522 vm_offset_t off; 523 524 /* 525 * Create the page if it doesn't exist yet. Ignore errors. 526 */ 527 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 528 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 529 530 /* 531 * Find the page from the underlying object. 532 */ 533 if (object != NULL) { 534 sf = vm_imgact_map_page(object, offset); 535 if (sf == NULL) 536 return (KERN_FAILURE); 537 off = offset - trunc_page(offset); 538 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 539 end - start); 540 vm_imgact_unmap_page(sf); 541 if (error != 0) 542 return (KERN_FAILURE); 543 } 544 545 return (KERN_SUCCESS); 546 } 547 548 static int 549 __elfN(map_insert)(const struct image_params *imgp, vm_map_t map, 550 vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, 551 vm_prot_t prot, int cow) 552 { 553 struct sf_buf *sf; 554 vm_offset_t off; 555 vm_size_t sz; 556 int error, locked, rv; 557 558 if (start != trunc_page(start)) { 559 rv = __elfN(map_partial)(map, object, offset, start, 560 round_page(start), prot); 561 if (rv != KERN_SUCCESS) 562 return (rv); 563 offset += round_page(start) - start; 564 start = round_page(start); 565 } 566 if (end != round_page(end)) { 567 rv = __elfN(map_partial)(map, object, offset + 568 trunc_page(end) - start, trunc_page(end), end, prot); 569 if (rv != KERN_SUCCESS) 570 return (rv); 571 end = trunc_page(end); 572 } 573 if (start >= end) 574 return (KERN_SUCCESS); 575 if ((offset & PAGE_MASK) != 0) { 576 /* 577 * The mapping is not page aligned. This means that we have 578 * to copy the data. 579 */ 580 rv = vm_map_fixed(map, NULL, 0, start, end - start, 581 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 582 if (rv != KERN_SUCCESS) 583 return (rv); 584 if (object == NULL) 585 return (KERN_SUCCESS); 586 for (; start < end; start += sz) { 587 sf = vm_imgact_map_page(object, offset); 588 if (sf == NULL) 589 return (KERN_FAILURE); 590 off = offset - trunc_page(offset); 591 sz = end - start; 592 if (sz > PAGE_SIZE - off) 593 sz = PAGE_SIZE - off; 594 error = copyout((caddr_t)sf_buf_kva(sf) + off, 595 (caddr_t)start, sz); 596 vm_imgact_unmap_page(sf); 597 if (error != 0) 598 return (KERN_FAILURE); 599 offset += sz; 600 } 601 } else { 602 vm_object_reference(object); 603 rv = vm_map_fixed(map, object, offset, start, end - start, 604 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 605 (object != NULL ? MAP_VN_EXEC : 0)); 606 if (rv != KERN_SUCCESS) { 607 locked = VOP_ISLOCKED(imgp->vp); 608 VOP_UNLOCK(imgp->vp); 609 vm_object_deallocate(object); 610 vn_lock(imgp->vp, locked | LK_RETRY); 611 return (rv); 612 } else if (object != NULL) { 613 MPASS(imgp->vp->v_object == object); 614 VOP_SET_TEXT_CHECKED(imgp->vp); 615 } 616 } 617 return (KERN_SUCCESS); 618 } 619 620 static int __elfN(load_section)(const struct image_params *imgp, 621 vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, 622 vm_prot_t prot) 623 { 624 struct sf_buf *sf; 625 size_t map_len; 626 vm_map_t map; 627 vm_object_t object; 628 vm_offset_t map_addr; 629 int error, rv, cow; 630 size_t copy_len; 631 vm_ooffset_t file_addr; 632 633 /* 634 * It's necessary to fail if the filsz + offset taken from the 635 * header is greater than the actual file pager object's size. 636 * If we were to allow this, then the vm_map_find() below would 637 * walk right off the end of the file object and into the ether. 638 * 639 * While I'm here, might as well check for something else that 640 * is invalid: filsz cannot be greater than memsz. 641 */ 642 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 643 filsz > memsz) { 644 uprintf("elf_load_section: truncated ELF file\n"); 645 return (ENOEXEC); 646 } 647 648 object = imgp->object; 649 map = &imgp->proc->p_vmspace->vm_map; 650 map_addr = trunc_page((vm_offset_t)vmaddr); 651 file_addr = trunc_page(offset); 652 653 /* 654 * We have two choices. We can either clear the data in the last page 655 * of an oversized mapping, or we can start the anon mapping a page 656 * early and copy the initialized data into that first page. We 657 * choose the second. 658 */ 659 if (filsz == 0) 660 map_len = 0; 661 else if (memsz > filsz) 662 map_len = trunc_page(offset + filsz) - file_addr; 663 else 664 map_len = round_page(offset + filsz) - file_addr; 665 666 if (map_len != 0) { 667 /* cow flags: don't dump readonly sections in core */ 668 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 669 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 670 671 rv = __elfN(map_insert)(imgp, map, object, file_addr, 672 map_addr, map_addr + map_len, prot, cow); 673 if (rv != KERN_SUCCESS) 674 return (EINVAL); 675 676 /* we can stop now if we've covered it all */ 677 if (memsz == filsz) 678 return (0); 679 } 680 681 /* 682 * We have to get the remaining bit of the file into the first part 683 * of the oversized map segment. This is normally because the .data 684 * segment in the file is extended to provide bss. It's a neat idea 685 * to try and save a page, but it's a pain in the behind to implement. 686 */ 687 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 688 filsz); 689 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 690 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 691 692 /* This had damn well better be true! */ 693 if (map_len != 0) { 694 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 695 map_addr + map_len, prot, 0); 696 if (rv != KERN_SUCCESS) 697 return (EINVAL); 698 } 699 700 if (copy_len != 0) { 701 sf = vm_imgact_map_page(object, offset + filsz); 702 if (sf == NULL) 703 return (EIO); 704 705 /* send the page fragment to user space */ 706 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 707 copy_len); 708 vm_imgact_unmap_page(sf); 709 if (error != 0) 710 return (error); 711 } 712 713 /* 714 * Remove write access to the page if it was only granted by map_insert 715 * to allow copyout. 716 */ 717 if ((prot & VM_PROT_WRITE) == 0) 718 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 719 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 720 721 return (0); 722 } 723 724 static int 725 __elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr, 726 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 727 { 728 vm_prot_t prot; 729 u_long base_addr; 730 bool first; 731 int error, i; 732 733 ASSERT_VOP_LOCKED(imgp->vp, __func__); 734 735 base_addr = 0; 736 first = true; 737 738 for (i = 0; i < hdr->e_phnum; i++) { 739 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 740 continue; 741 742 /* Loadable segment */ 743 prot = __elfN(trans_prot)(phdr[i].p_flags); 744 error = __elfN(load_section)(imgp, phdr[i].p_offset, 745 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 746 phdr[i].p_memsz, phdr[i].p_filesz, prot); 747 if (error != 0) 748 return (error); 749 750 /* 751 * Establish the base address if this is the first segment. 752 */ 753 if (first) { 754 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 755 first = false; 756 } 757 } 758 759 if (base_addrp != NULL) 760 *base_addrp = base_addr; 761 762 return (0); 763 } 764 765 /* 766 * Load the file "file" into memory. It may be either a shared object 767 * or an executable. 768 * 769 * The "addr" reference parameter is in/out. On entry, it specifies 770 * the address where a shared object should be loaded. If the file is 771 * an executable, this value is ignored. On exit, "addr" specifies 772 * where the file was actually loaded. 773 * 774 * The "entry" reference parameter is out only. On exit, it specifies 775 * the entry point for the loaded file. 776 */ 777 static int 778 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 779 u_long *entry) 780 { 781 struct { 782 struct nameidata nd; 783 struct vattr attr; 784 struct image_params image_params; 785 } *tempdata; 786 const Elf_Ehdr *hdr = NULL; 787 const Elf_Phdr *phdr = NULL; 788 struct nameidata *nd; 789 struct vattr *attr; 790 struct image_params *imgp; 791 u_long rbase; 792 u_long base_addr = 0; 793 int error; 794 795 #ifdef CAPABILITY_MODE 796 /* 797 * XXXJA: This check can go away once we are sufficiently confident 798 * that the checks in namei() are correct. 799 */ 800 if (IN_CAPABILITY_MODE(curthread)) 801 return (ECAPMODE); 802 #endif 803 804 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 805 nd = &tempdata->nd; 806 attr = &tempdata->attr; 807 imgp = &tempdata->image_params; 808 809 /* 810 * Initialize part of the common data 811 */ 812 imgp->proc = p; 813 imgp->attr = attr; 814 815 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 816 UIO_SYSSPACE, file); 817 if ((error = namei(nd)) != 0) { 818 nd->ni_vp = NULL; 819 goto fail; 820 } 821 NDFREE_PNBUF(nd); 822 imgp->vp = nd->ni_vp; 823 824 /* 825 * Check permissions, modes, uid, etc on the file, and "open" it. 826 */ 827 error = exec_check_permissions(imgp); 828 if (error) 829 goto fail; 830 831 error = exec_map_first_page(imgp); 832 if (error) 833 goto fail; 834 835 imgp->object = nd->ni_vp->v_object; 836 837 hdr = (const Elf_Ehdr *)imgp->image_header; 838 if ((error = __elfN(check_header)(hdr)) != 0) 839 goto fail; 840 if (hdr->e_type == ET_DYN) 841 rbase = *addr; 842 else if (hdr->e_type == ET_EXEC) 843 rbase = 0; 844 else { 845 error = ENOEXEC; 846 goto fail; 847 } 848 849 /* Only support headers that fit within first page for now */ 850 if (!__elfN(phdr_in_zero_page)(hdr)) { 851 error = ENOEXEC; 852 goto fail; 853 } 854 855 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 856 if (!aligned(phdr, Elf_Addr)) { 857 error = ENOEXEC; 858 goto fail; 859 } 860 861 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 862 if (error != 0) 863 goto fail; 864 865 if (p->p_sysent->sv_protect != NULL) 866 p->p_sysent->sv_protect(imgp, SVP_INTERP); 867 868 *addr = base_addr; 869 *entry = (unsigned long)hdr->e_entry + rbase; 870 871 fail: 872 if (imgp->firstpage) 873 exec_unmap_first_page(imgp); 874 875 if (nd->ni_vp) { 876 if (imgp->textset) 877 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 878 vput(nd->ni_vp); 879 } 880 free(tempdata, M_TEMP); 881 882 return (error); 883 } 884 885 /* 886 * Select randomized valid address in the map map, between minv and 887 * maxv, with specified alignment. The [minv, maxv) range must belong 888 * to the map. Note that function only allocates the address, it is 889 * up to caller to clamp maxv in a way that the final allocation 890 * length fit into the map. 891 * 892 * Result is returned in *resp, error code indicates that arguments 893 * did not pass sanity checks for overflow and range correctness. 894 */ 895 static int 896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv, 897 u_int align, u_long *resp) 898 { 899 u_long rbase, res; 900 901 MPASS(vm_map_min(map) <= minv); 902 903 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) { 904 uprintf("Invalid ELF segments layout\n"); 905 return (ENOEXEC); 906 } 907 908 arc4rand(&rbase, sizeof(rbase), 0); 909 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 910 res &= ~((u_long)align - 1); 911 if (res >= maxv) 912 res -= align; 913 914 KASSERT(res >= minv, 915 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 916 res, minv, maxv, rbase)); 917 KASSERT(res < maxv, 918 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 919 res, maxv, minv, rbase)); 920 921 *resp = res; 922 return (0); 923 } 924 925 static int 926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 927 const Elf_Phdr *phdr) 928 { 929 struct vmspace *vmspace; 930 const char *err_str; 931 u_long text_size, data_size, total_size, text_addr, data_addr; 932 u_long seg_size, seg_addr; 933 int i; 934 935 err_str = NULL; 936 text_size = data_size = total_size = text_addr = data_addr = 0; 937 938 for (i = 0; i < hdr->e_phnum; i++) { 939 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 940 continue; 941 942 seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr); 943 seg_size = round_page(phdr[i].p_memsz + 944 phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr); 945 946 /* 947 * Make the largest executable segment the official 948 * text segment and all others data. 949 * 950 * Note that obreak() assumes that data_addr + data_size == end 951 * of data load area, and the ELF file format expects segments 952 * to be sorted by address. If multiple data segments exist, 953 * the last one will be used. 954 */ 955 956 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 957 text_size = seg_size; 958 text_addr = seg_addr; 959 } else { 960 data_size = seg_size; 961 data_addr = seg_addr; 962 } 963 total_size += seg_size; 964 } 965 966 if (data_addr == 0 && data_size == 0) { 967 data_addr = text_addr; 968 data_size = text_size; 969 } 970 971 /* 972 * Check limits. It should be safe to check the 973 * limits after loading the segments since we do 974 * not actually fault in all the segments pages. 975 */ 976 PROC_LOCK(imgp->proc); 977 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 978 err_str = "Data segment size exceeds process limit"; 979 else if (text_size > maxtsiz) 980 err_str = "Text segment size exceeds system limit"; 981 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 982 err_str = "Total segment size exceeds process limit"; 983 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 984 err_str = "Data segment size exceeds resource limit"; 985 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 986 err_str = "Total segment size exceeds resource limit"; 987 PROC_UNLOCK(imgp->proc); 988 if (err_str != NULL) { 989 uprintf("%s\n", err_str); 990 return (ENOMEM); 991 } 992 993 vmspace = imgp->proc->p_vmspace; 994 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 995 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 996 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 997 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 998 999 return (0); 1000 } 1001 1002 static int 1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 1004 char **interpp, bool *free_interpp) 1005 { 1006 struct thread *td; 1007 char *interp; 1008 int error, interp_name_len; 1009 1010 KASSERT(phdr->p_type == PT_INTERP, 1011 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 1012 ASSERT_VOP_LOCKED(imgp->vp, __func__); 1013 1014 td = curthread; 1015 1016 /* Path to interpreter */ 1017 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 1018 uprintf("Invalid PT_INTERP\n"); 1019 return (ENOEXEC); 1020 } 1021 1022 interp_name_len = phdr->p_filesz; 1023 if (phdr->p_offset > PAGE_SIZE || 1024 interp_name_len > PAGE_SIZE - phdr->p_offset) { 1025 /* 1026 * The vnode lock might be needed by the pagedaemon to 1027 * clean pages owned by the vnode. Do not allow sleep 1028 * waiting for memory with the vnode locked, instead 1029 * try non-sleepable allocation first, and if it 1030 * fails, go to the slow path were we drop the lock 1031 * and do M_WAITOK. A text reference prevents 1032 * modifications to the vnode content. 1033 */ 1034 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1035 if (interp == NULL) { 1036 VOP_UNLOCK(imgp->vp); 1037 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1038 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1039 } 1040 1041 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1042 interp_name_len, phdr->p_offset, 1043 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1044 NOCRED, NULL, td); 1045 if (error != 0) { 1046 free(interp, M_TEMP); 1047 uprintf("i/o error PT_INTERP %d\n", error); 1048 return (error); 1049 } 1050 interp[interp_name_len] = '\0'; 1051 1052 *interpp = interp; 1053 *free_interpp = true; 1054 return (0); 1055 } 1056 1057 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1058 if (interp[interp_name_len - 1] != '\0') { 1059 uprintf("Invalid PT_INTERP\n"); 1060 return (ENOEXEC); 1061 } 1062 1063 *interpp = interp; 1064 *free_interpp = false; 1065 return (0); 1066 } 1067 1068 static int 1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1070 const char *interp, u_long *addr, u_long *entry) 1071 { 1072 int error; 1073 1074 if (brand_info->interp_newpath != NULL && 1075 (brand_info->interp_path == NULL || 1076 strcmp(interp, brand_info->interp_path) == 0)) { 1077 error = __elfN(load_file)(imgp->proc, 1078 brand_info->interp_newpath, addr, entry); 1079 if (error == 0) 1080 return (0); 1081 } 1082 1083 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1084 if (error == 0) 1085 return (0); 1086 1087 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1088 return (error); 1089 } 1090 1091 /* 1092 * Impossible et_dyn_addr initial value indicating that the real base 1093 * must be calculated later with some randomization applied. 1094 */ 1095 #define ET_DYN_ADDR_RAND 1 1096 1097 static int 1098 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1099 { 1100 struct thread *td; 1101 const Elf_Ehdr *hdr; 1102 const Elf_Phdr *phdr; 1103 Elf_Auxargs *elf_auxargs; 1104 struct vmspace *vmspace; 1105 vm_map_t map; 1106 char *interp; 1107 Elf_Brandinfo *brand_info; 1108 struct sysentvec *sv; 1109 u_long addr, baddr, entry, proghdr; 1110 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc; 1111 uint32_t fctl0; 1112 int32_t osrel; 1113 bool free_interp; 1114 int error, i, n; 1115 1116 hdr = (const Elf_Ehdr *)imgp->image_header; 1117 1118 /* 1119 * Do we have a valid ELF header ? 1120 * 1121 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1122 * if particular brand doesn't support it. 1123 */ 1124 if (__elfN(check_header)(hdr) != 0 || 1125 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1126 return (-1); 1127 1128 /* 1129 * From here on down, we return an errno, not -1, as we've 1130 * detected an ELF file. 1131 */ 1132 1133 if (!__elfN(phdr_in_zero_page)(hdr)) { 1134 uprintf("Program headers not in the first page\n"); 1135 return (ENOEXEC); 1136 } 1137 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1138 if (!aligned(phdr, Elf_Addr)) { 1139 uprintf("Unaligned program headers\n"); 1140 return (ENOEXEC); 1141 } 1142 1143 n = error = 0; 1144 baddr = 0; 1145 osrel = 0; 1146 fctl0 = 0; 1147 entry = proghdr = 0; 1148 interp = NULL; 1149 free_interp = false; 1150 td = curthread; 1151 1152 /* 1153 * Somewhat arbitrary, limit accepted max alignment for the 1154 * loadable segment to the max supported superpage size. Too 1155 * large alignment requests are not useful and are indicators 1156 * of corrupted or outright malicious binary. 1157 */ 1158 maxalign = PAGE_SIZE; 1159 maxsalign = PAGE_SIZE * 1024; 1160 for (i = MAXPAGESIZES - 1; i > 0; i--) { 1161 if (pagesizes[i] > maxsalign) 1162 maxsalign = pagesizes[i]; 1163 } 1164 1165 mapsz = 0; 1166 1167 for (i = 0; i < hdr->e_phnum; i++) { 1168 switch (phdr[i].p_type) { 1169 case PT_LOAD: 1170 if (n == 0) 1171 baddr = phdr[i].p_vaddr; 1172 if (!powerof2(phdr[i].p_align) || 1173 phdr[i].p_align > maxsalign) { 1174 uprintf("Invalid segment alignment\n"); 1175 error = ENOEXEC; 1176 goto ret; 1177 } 1178 if (phdr[i].p_align > maxalign) 1179 maxalign = phdr[i].p_align; 1180 if (mapsz + phdr[i].p_memsz < mapsz) { 1181 uprintf("Mapsize overflow\n"); 1182 error = ENOEXEC; 1183 goto ret; 1184 } 1185 mapsz += phdr[i].p_memsz; 1186 n++; 1187 1188 /* 1189 * If this segment contains the program headers, 1190 * remember their virtual address for the AT_PHDR 1191 * aux entry. Static binaries don't usually include 1192 * a PT_PHDR entry. 1193 */ 1194 if (phdr[i].p_offset == 0 && 1195 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= 1196 phdr[i].p_filesz) 1197 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1198 break; 1199 case PT_INTERP: 1200 /* Path to interpreter */ 1201 if (interp != NULL) { 1202 uprintf("Multiple PT_INTERP headers\n"); 1203 error = ENOEXEC; 1204 goto ret; 1205 } 1206 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1207 &free_interp); 1208 if (error != 0) 1209 goto ret; 1210 break; 1211 case PT_GNU_STACK: 1212 if (__elfN(nxstack)) { 1213 imgp->stack_prot = 1214 __elfN(trans_prot)(phdr[i].p_flags); 1215 if ((imgp->stack_prot & VM_PROT_RW) != 1216 VM_PROT_RW) { 1217 uprintf("Invalid PT_GNU_STACK\n"); 1218 error = ENOEXEC; 1219 goto ret; 1220 } 1221 } 1222 imgp->stack_sz = phdr[i].p_memsz; 1223 break; 1224 case PT_PHDR: /* Program header table info */ 1225 proghdr = phdr[i].p_vaddr; 1226 break; 1227 } 1228 } 1229 1230 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1231 if (brand_info == NULL) { 1232 uprintf("ELF binary type \"%u\" not known.\n", 1233 hdr->e_ident[EI_OSABI]); 1234 error = ENOEXEC; 1235 goto ret; 1236 } 1237 sv = brand_info->sysvec; 1238 if (hdr->e_type == ET_DYN) { 1239 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1240 uprintf("Cannot execute shared object\n"); 1241 error = ENOEXEC; 1242 goto ret; 1243 } 1244 /* 1245 * Honour the base load address from the dso if it is 1246 * non-zero for some reason. 1247 */ 1248 if (baddr == 0) { 1249 if ((sv->sv_flags & SV_ASLR) == 0 || 1250 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1251 imgp->et_dyn_addr = __elfN(pie_base); 1252 else if ((__elfN(pie_aslr_enabled) && 1253 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1254 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1255 imgp->et_dyn_addr = ET_DYN_ADDR_RAND; 1256 else 1257 imgp->et_dyn_addr = __elfN(pie_base); 1258 } 1259 } 1260 1261 /* 1262 * Avoid a possible deadlock if the current address space is destroyed 1263 * and that address space maps the locked vnode. In the common case, 1264 * the locked vnode's v_usecount is decremented but remains greater 1265 * than zero. Consequently, the vnode lock is not needed by vrele(). 1266 * However, in cases where the vnode lock is external, such as nullfs, 1267 * v_usecount may become zero. 1268 * 1269 * The VV_TEXT flag prevents modifications to the executable while 1270 * the vnode is unlocked. 1271 */ 1272 VOP_UNLOCK(imgp->vp); 1273 1274 /* 1275 * Decide whether to enable randomization of user mappings. 1276 * First, reset user preferences for the setid binaries. 1277 * Then, account for the support of the randomization by the 1278 * ABI, by user preferences, and make special treatment for 1279 * PIE binaries. 1280 */ 1281 if (imgp->credential_setid) { 1282 PROC_LOCK(imgp->proc); 1283 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1284 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1285 PROC_UNLOCK(imgp->proc); 1286 } 1287 if ((sv->sv_flags & SV_ASLR) == 0 || 1288 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1289 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1290 KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND, 1291 ("imgp->et_dyn_addr == RAND and !ASLR")); 1292 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1293 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1294 imgp->et_dyn_addr == ET_DYN_ADDR_RAND) { 1295 imgp->map_flags |= MAP_ASLR; 1296 /* 1297 * If user does not care about sbrk, utilize the bss 1298 * grow region for mappings as well. We can select 1299 * the base for the image anywere and still not suffer 1300 * from the fragmentation. 1301 */ 1302 if (!__elfN(aslr_honor_sbrk) || 1303 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1304 imgp->map_flags |= MAP_ASLR_IGNSTART; 1305 if (__elfN(aslr_stack)) 1306 imgp->map_flags |= MAP_ASLR_STACK; 1307 if (__elfN(aslr_shared_page)) 1308 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE; 1309 } 1310 1311 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1312 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1313 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1314 imgp->map_flags |= MAP_WXORX; 1315 1316 error = exec_new_vmspace(imgp, sv); 1317 1318 imgp->proc->p_sysent = sv; 1319 imgp->proc->p_elf_brandinfo = brand_info; 1320 1321 vmspace = imgp->proc->p_vmspace; 1322 map = &vmspace->vm_map; 1323 maxv = sv->sv_usrstack; 1324 if ((imgp->map_flags & MAP_ASLR_STACK) == 0) 1325 maxv -= lim_max(td, RLIMIT_STACK); 1326 if (error == 0 && mapsz >= maxv - vm_map_min(map)) { 1327 uprintf("Excessive mapping size\n"); 1328 error = ENOEXEC; 1329 } 1330 1331 if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) { 1332 KASSERT((map->flags & MAP_ASLR) != 0, 1333 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1334 error = __CONCAT(rnd_, __elfN(base))(map, 1335 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1336 /* reserve half of the address space to interpreter */ 1337 maxv / 2, maxalign, &imgp->et_dyn_addr); 1338 } 1339 1340 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1341 if (error != 0) 1342 goto ret; 1343 1344 error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL); 1345 if (error != 0) 1346 goto ret; 1347 1348 error = __elfN(enforce_limits)(imgp, hdr, phdr); 1349 if (error != 0) 1350 goto ret; 1351 1352 /* 1353 * We load the dynamic linker where a userland call 1354 * to mmap(0, ...) would put it. The rationale behind this 1355 * calculation is that it leaves room for the heap to grow to 1356 * its maximum allowed size. 1357 */ 1358 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1359 RLIMIT_DATA)); 1360 if ((map->flags & MAP_ASLR) != 0) { 1361 maxv1 = maxv / 2 + addr / 2; 1362 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1363 (MAXPAGESIZES > 1 && pagesizes[1] != 0) ? 1364 pagesizes[1] : pagesizes[0], &anon_loc); 1365 if (error != 0) 1366 goto ret; 1367 map->anon_loc = anon_loc; 1368 } else { 1369 map->anon_loc = addr; 1370 } 1371 1372 entry = (u_long)hdr->e_entry + imgp->et_dyn_addr; 1373 imgp->entry_addr = entry; 1374 1375 if (sv->sv_protect != NULL) 1376 sv->sv_protect(imgp, SVP_IMAGE); 1377 1378 if (interp != NULL) { 1379 VOP_UNLOCK(imgp->vp); 1380 if ((map->flags & MAP_ASLR) != 0) { 1381 /* Assume that interpreter fits into 1/4 of AS */ 1382 maxv1 = maxv / 2 + addr / 2; 1383 error = __CONCAT(rnd_, __elfN(base))(map, addr, 1384 maxv1, PAGE_SIZE, &addr); 1385 } 1386 if (error == 0) { 1387 error = __elfN(load_interp)(imgp, brand_info, interp, 1388 &addr, &imgp->entry_addr); 1389 } 1390 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1391 if (error != 0) 1392 goto ret; 1393 } else 1394 addr = imgp->et_dyn_addr; 1395 1396 error = exec_map_stack(imgp); 1397 if (error != 0) 1398 goto ret; 1399 1400 /* 1401 * Construct auxargs table (used by the copyout_auxargs routine) 1402 */ 1403 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1404 if (elf_auxargs == NULL) { 1405 VOP_UNLOCK(imgp->vp); 1406 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1407 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1408 } 1409 elf_auxargs->execfd = -1; 1410 elf_auxargs->phdr = proghdr + imgp->et_dyn_addr; 1411 elf_auxargs->phent = hdr->e_phentsize; 1412 elf_auxargs->phnum = hdr->e_phnum; 1413 elf_auxargs->pagesz = PAGE_SIZE; 1414 elf_auxargs->base = addr; 1415 elf_auxargs->flags = 0; 1416 elf_auxargs->entry = entry; 1417 elf_auxargs->hdr_eflags = hdr->e_flags; 1418 1419 imgp->auxargs = elf_auxargs; 1420 imgp->interpreted = 0; 1421 imgp->reloc_base = addr; 1422 imgp->proc->p_osrel = osrel; 1423 imgp->proc->p_fctl0 = fctl0; 1424 imgp->proc->p_elf_flags = hdr->e_flags; 1425 1426 ret: 1427 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock"); 1428 if (free_interp) 1429 free(interp, M_TEMP); 1430 return (error); 1431 } 1432 1433 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1434 1435 int 1436 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1437 { 1438 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1439 Elf_Auxinfo *argarray, *pos; 1440 struct vmspace *vmspace; 1441 rlim_t stacksz; 1442 int error, oc; 1443 uint32_t bsdflags; 1444 1445 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1446 M_WAITOK | M_ZERO); 1447 1448 vmspace = imgp->proc->p_vmspace; 1449 1450 if (args->execfd != -1) 1451 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1452 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1453 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1454 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1455 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1456 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1457 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1458 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1459 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1460 if (imgp->execpathp != 0) 1461 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1462 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1463 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1464 if (imgp->canary != 0) { 1465 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1466 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1467 } 1468 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1469 if (imgp->pagesizes != 0) { 1470 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1471 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1472 } 1473 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) { 1474 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1475 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset); 1476 } 1477 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1478 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1479 imgp->sysent->sv_stackprot); 1480 if (imgp->sysent->sv_hwcap != NULL) 1481 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1482 if (imgp->sysent->sv_hwcap2 != NULL) 1483 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1484 bsdflags = 0; 1485 bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0; 1486 oc = atomic_load_int(&vm_overcommit); 1487 bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) != 1488 0 ? ELF_BSDF_VMNOOVERCOMMIT : 0; 1489 AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags); 1490 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1491 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1492 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1493 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1494 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1495 #ifdef RANDOM_FENESTRASX 1496 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) { 1497 AUXARGS_ENTRY(pos, AT_FXRNG, 1498 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset); 1499 } 1500 #endif 1501 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) { 1502 AUXARGS_ENTRY(pos, AT_KPRELOAD, 1503 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset); 1504 } 1505 AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop)); 1506 stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 1507 AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz); 1508 AUXARGS_ENTRY(pos, AT_NULL, 0); 1509 1510 free(imgp->auxargs, M_TEMP); 1511 imgp->auxargs = NULL; 1512 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1513 1514 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1515 free(argarray, M_TEMP); 1516 return (error); 1517 } 1518 1519 int 1520 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1521 { 1522 Elf_Addr *base; 1523 1524 base = (Elf_Addr *)*stack_base; 1525 base--; 1526 if (elf_suword(base, imgp->args->argc) == -1) 1527 return (EFAULT); 1528 *stack_base = (uintptr_t)base; 1529 return (0); 1530 } 1531 1532 /* 1533 * Code for generating ELF core dumps. 1534 */ 1535 1536 typedef void (*segment_callback)(vm_map_entry_t, void *); 1537 1538 /* Closure for cb_put_phdr(). */ 1539 struct phdr_closure { 1540 Elf_Phdr *phdr; /* Program header to fill in */ 1541 Elf_Off offset; /* Offset of segment in core file */ 1542 }; 1543 1544 struct note_info { 1545 int type; /* Note type. */ 1546 struct regset *regset; /* Register set. */ 1547 outfunc_t outfunc; /* Output function. */ 1548 void *outarg; /* Argument for the output function. */ 1549 size_t outsize; /* Output size. */ 1550 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1551 }; 1552 1553 TAILQ_HEAD(note_info_list, note_info); 1554 1555 extern int compress_user_cores; 1556 extern int compress_user_cores_level; 1557 1558 static void cb_put_phdr(vm_map_entry_t, void *); 1559 static void cb_size_segment(vm_map_entry_t, void *); 1560 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1561 int); 1562 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1563 struct note_info_list *, size_t, int); 1564 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1565 1566 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1567 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1568 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1569 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1570 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1571 static void note_procstat_files(void *, struct sbuf *, size_t *); 1572 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1573 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1574 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1575 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1576 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1577 1578 static int 1579 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1580 { 1581 1582 return (core_write((struct coredump_params *)arg, base, len, offset, 1583 UIO_SYSSPACE, NULL)); 1584 } 1585 1586 int 1587 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1588 { 1589 struct ucred *cred = td->td_ucred; 1590 int compm, error = 0; 1591 struct sseg_closure seginfo; 1592 struct note_info_list notelst; 1593 struct coredump_params params; 1594 struct note_info *ninfo; 1595 void *hdr, *tmpbuf; 1596 size_t hdrsize, notesz, coresize; 1597 1598 hdr = NULL; 1599 tmpbuf = NULL; 1600 TAILQ_INIT(¬elst); 1601 1602 /* Size the program segments. */ 1603 __elfN(size_segments)(td, &seginfo, flags); 1604 1605 /* 1606 * Collect info about the core file header area. 1607 */ 1608 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1609 if (seginfo.count + 1 >= PN_XNUM) 1610 hdrsize += sizeof(Elf_Shdr); 1611 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1612 coresize = round_page(hdrsize + notesz) + seginfo.size; 1613 1614 /* Set up core dump parameters. */ 1615 params.offset = 0; 1616 params.active_cred = cred; 1617 params.file_cred = NOCRED; 1618 params.td = td; 1619 params.vp = vp; 1620 params.comp = NULL; 1621 1622 #ifdef RACCT 1623 if (racct_enable) { 1624 PROC_LOCK(td->td_proc); 1625 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1626 PROC_UNLOCK(td->td_proc); 1627 if (error != 0) { 1628 error = EFAULT; 1629 goto done; 1630 } 1631 } 1632 #endif 1633 if (coresize >= limit) { 1634 error = EFAULT; 1635 goto done; 1636 } 1637 1638 /* Create a compression stream if necessary. */ 1639 compm = compress_user_cores; 1640 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1641 compm == 0) 1642 compm = COMPRESS_GZIP; 1643 if (compm != 0) { 1644 params.comp = compressor_init(core_compressed_write, 1645 compm, CORE_BUF_SIZE, 1646 compress_user_cores_level, ¶ms); 1647 if (params.comp == NULL) { 1648 error = EFAULT; 1649 goto done; 1650 } 1651 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1652 } 1653 1654 /* 1655 * Allocate memory for building the header, fill it up, 1656 * and write it out following the notes. 1657 */ 1658 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1659 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1660 notesz, flags); 1661 1662 /* Write the contents of all of the writable segments. */ 1663 if (error == 0) { 1664 Elf_Phdr *php; 1665 off_t offset; 1666 int i; 1667 1668 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1669 offset = round_page(hdrsize + notesz); 1670 for (i = 0; i < seginfo.count; i++) { 1671 error = core_output((char *)(uintptr_t)php->p_vaddr, 1672 php->p_filesz, offset, ¶ms, tmpbuf); 1673 if (error != 0) 1674 break; 1675 offset += php->p_filesz; 1676 php++; 1677 } 1678 if (error == 0 && params.comp != NULL) 1679 error = compressor_flush(params.comp); 1680 } 1681 if (error) { 1682 log(LOG_WARNING, 1683 "Failed to write core file for process %s (error %d)\n", 1684 curproc->p_comm, error); 1685 } 1686 1687 done: 1688 free(tmpbuf, M_TEMP); 1689 if (params.comp != NULL) 1690 compressor_fini(params.comp); 1691 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1692 TAILQ_REMOVE(¬elst, ninfo, link); 1693 free(ninfo, M_TEMP); 1694 } 1695 if (hdr != NULL) 1696 free(hdr, M_TEMP); 1697 1698 return (error); 1699 } 1700 1701 /* 1702 * A callback for each_dumpable_segment() to write out the segment's 1703 * program header entry. 1704 */ 1705 static void 1706 cb_put_phdr(vm_map_entry_t entry, void *closure) 1707 { 1708 struct phdr_closure *phc = (struct phdr_closure *)closure; 1709 Elf_Phdr *phdr = phc->phdr; 1710 1711 phc->offset = round_page(phc->offset); 1712 1713 phdr->p_type = PT_LOAD; 1714 phdr->p_offset = phc->offset; 1715 phdr->p_vaddr = entry->start; 1716 phdr->p_paddr = 0; 1717 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1718 phdr->p_align = PAGE_SIZE; 1719 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1720 1721 phc->offset += phdr->p_filesz; 1722 phc->phdr++; 1723 } 1724 1725 /* 1726 * A callback for each_dumpable_segment() to gather information about 1727 * the number of segments and their total size. 1728 */ 1729 static void 1730 cb_size_segment(vm_map_entry_t entry, void *closure) 1731 { 1732 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1733 1734 ssc->count++; 1735 ssc->size += entry->end - entry->start; 1736 } 1737 1738 void 1739 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1740 int flags) 1741 { 1742 seginfo->count = 0; 1743 seginfo->size = 0; 1744 1745 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1746 } 1747 1748 /* 1749 * For each writable segment in the process's memory map, call the given 1750 * function with a pointer to the map entry and some arbitrary 1751 * caller-supplied data. 1752 */ 1753 static void 1754 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1755 int flags) 1756 { 1757 struct proc *p = td->td_proc; 1758 vm_map_t map = &p->p_vmspace->vm_map; 1759 vm_map_entry_t entry; 1760 vm_object_t backing_object, object; 1761 bool ignore_entry; 1762 1763 vm_map_lock_read(map); 1764 VM_MAP_ENTRY_FOREACH(entry, map) { 1765 /* 1766 * Don't dump inaccessible mappings, deal with legacy 1767 * coredump mode. 1768 * 1769 * Note that read-only segments related to the elf binary 1770 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1771 * need to arbitrarily ignore such segments. 1772 */ 1773 if ((flags & SVC_ALL) == 0) { 1774 if (elf_legacy_coredump) { 1775 if ((entry->protection & VM_PROT_RW) != 1776 VM_PROT_RW) 1777 continue; 1778 } else { 1779 if ((entry->protection & VM_PROT_ALL) == 0) 1780 continue; 1781 } 1782 } 1783 1784 /* 1785 * Dont include memory segment in the coredump if 1786 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1787 * madvise(2). Do not dump submaps (i.e. parts of the 1788 * kernel map). 1789 */ 1790 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1791 continue; 1792 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1793 (flags & SVC_ALL) == 0) 1794 continue; 1795 if ((object = entry->object.vm_object) == NULL) 1796 continue; 1797 1798 /* Ignore memory-mapped devices and such things. */ 1799 VM_OBJECT_RLOCK(object); 1800 while ((backing_object = object->backing_object) != NULL) { 1801 VM_OBJECT_RLOCK(backing_object); 1802 VM_OBJECT_RUNLOCK(object); 1803 object = backing_object; 1804 } 1805 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1806 VM_OBJECT_RUNLOCK(object); 1807 if (ignore_entry) 1808 continue; 1809 1810 (*func)(entry, closure); 1811 } 1812 vm_map_unlock_read(map); 1813 } 1814 1815 /* 1816 * Write the core file header to the file, including padding up to 1817 * the page boundary. 1818 */ 1819 static int 1820 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1821 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1822 int flags) 1823 { 1824 struct note_info *ninfo; 1825 struct sbuf *sb; 1826 int error; 1827 1828 /* Fill in the header. */ 1829 bzero(hdr, hdrsize); 1830 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1831 1832 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1833 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1834 sbuf_start_section(sb, NULL); 1835 sbuf_bcat(sb, hdr, hdrsize); 1836 TAILQ_FOREACH(ninfo, notelst, link) 1837 __elfN(putnote)(p->td, ninfo, sb); 1838 /* Align up to a page boundary for the program segments. */ 1839 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1840 error = sbuf_finish(sb); 1841 sbuf_delete(sb); 1842 1843 return (error); 1844 } 1845 1846 void 1847 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1848 size_t *sizep) 1849 { 1850 struct proc *p; 1851 struct thread *thr; 1852 size_t size; 1853 1854 p = td->td_proc; 1855 size = 0; 1856 1857 size += __elfN(register_note)(td, list, NT_PRPSINFO, 1858 __elfN(note_prpsinfo), p); 1859 1860 /* 1861 * To have the debugger select the right thread (LWP) as the initial 1862 * thread, we dump the state of the thread passed to us in td first. 1863 * This is the thread that causes the core dump and thus likely to 1864 * be the right thread one wants to have selected in the debugger. 1865 */ 1866 thr = td; 1867 while (thr != NULL) { 1868 size += __elfN(prepare_register_notes)(td, list, thr); 1869 size += __elfN(register_note)(td, list, -1, 1870 __elfN(note_threadmd), thr); 1871 1872 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1873 TAILQ_NEXT(thr, td_plist); 1874 if (thr == td) 1875 thr = TAILQ_NEXT(thr, td_plist); 1876 } 1877 1878 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1879 __elfN(note_procstat_proc), p); 1880 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1881 note_procstat_files, p); 1882 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1883 note_procstat_vmmap, p); 1884 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1885 note_procstat_groups, p); 1886 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1887 note_procstat_umask, p); 1888 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1889 note_procstat_rlimit, p); 1890 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1891 note_procstat_osrel, p); 1892 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1893 __elfN(note_procstat_psstrings), p); 1894 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1895 __elfN(note_procstat_auxv), p); 1896 1897 *sizep = size; 1898 } 1899 1900 void 1901 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1902 size_t notesz, int flags) 1903 { 1904 Elf_Ehdr *ehdr; 1905 Elf_Phdr *phdr; 1906 Elf_Shdr *shdr; 1907 struct phdr_closure phc; 1908 Elf_Brandinfo *bi; 1909 1910 ehdr = (Elf_Ehdr *)hdr; 1911 bi = td->td_proc->p_elf_brandinfo; 1912 1913 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1914 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1915 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1916 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1917 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1918 ehdr->e_ident[EI_DATA] = ELF_DATA; 1919 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1920 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1921 ehdr->e_ident[EI_ABIVERSION] = 0; 1922 ehdr->e_ident[EI_PAD] = 0; 1923 ehdr->e_type = ET_CORE; 1924 ehdr->e_machine = bi->machine; 1925 ehdr->e_version = EV_CURRENT; 1926 ehdr->e_entry = 0; 1927 ehdr->e_phoff = sizeof(Elf_Ehdr); 1928 ehdr->e_flags = td->td_proc->p_elf_flags; 1929 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1930 ehdr->e_phentsize = sizeof(Elf_Phdr); 1931 ehdr->e_shentsize = sizeof(Elf_Shdr); 1932 ehdr->e_shstrndx = SHN_UNDEF; 1933 if (numsegs + 1 < PN_XNUM) { 1934 ehdr->e_phnum = numsegs + 1; 1935 ehdr->e_shnum = 0; 1936 } else { 1937 ehdr->e_phnum = PN_XNUM; 1938 ehdr->e_shnum = 1; 1939 1940 ehdr->e_shoff = ehdr->e_phoff + 1941 (numsegs + 1) * ehdr->e_phentsize; 1942 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1943 ("e_shoff: %zu, hdrsize - shdr: %zu", 1944 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1945 1946 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1947 memset(shdr, 0, sizeof(*shdr)); 1948 /* 1949 * A special first section is used to hold large segment and 1950 * section counts. This was proposed by Sun Microsystems in 1951 * Solaris and has been adopted by Linux; the standard ELF 1952 * tools are already familiar with the technique. 1953 * 1954 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1955 * (or 12-7 depending on the version of the document) for more 1956 * details. 1957 */ 1958 shdr->sh_type = SHT_NULL; 1959 shdr->sh_size = ehdr->e_shnum; 1960 shdr->sh_link = ehdr->e_shstrndx; 1961 shdr->sh_info = numsegs + 1; 1962 } 1963 1964 /* 1965 * Fill in the program header entries. 1966 */ 1967 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1968 1969 /* The note segement. */ 1970 phdr->p_type = PT_NOTE; 1971 phdr->p_offset = hdrsize; 1972 phdr->p_vaddr = 0; 1973 phdr->p_paddr = 0; 1974 phdr->p_filesz = notesz; 1975 phdr->p_memsz = 0; 1976 phdr->p_flags = PF_R; 1977 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1978 phdr++; 1979 1980 /* All the writable segments from the program. */ 1981 phc.phdr = phdr; 1982 phc.offset = round_page(hdrsize + notesz); 1983 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1984 } 1985 1986 static size_t 1987 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list, 1988 struct regset *regset, struct thread *target_td) 1989 { 1990 const struct sysentvec *sv; 1991 struct note_info *ninfo; 1992 size_t size, notesize; 1993 1994 size = 0; 1995 if (!regset->get(regset, target_td, NULL, &size) || size == 0) 1996 return (0); 1997 1998 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1999 ninfo->type = regset->note; 2000 ninfo->regset = regset; 2001 ninfo->outarg = target_td; 2002 ninfo->outsize = size; 2003 TAILQ_INSERT_TAIL(list, ninfo, link); 2004 2005 sv = td->td_proc->p_sysent; 2006 notesize = sizeof(Elf_Note) + /* note header */ 2007 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2008 /* note name */ 2009 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2010 2011 return (notesize); 2012 } 2013 2014 size_t 2015 __elfN(register_note)(struct thread *td, struct note_info_list *list, 2016 int type, outfunc_t out, void *arg) 2017 { 2018 const struct sysentvec *sv; 2019 struct note_info *ninfo; 2020 size_t size, notesize; 2021 2022 sv = td->td_proc->p_sysent; 2023 size = 0; 2024 out(arg, NULL, &size); 2025 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2026 ninfo->type = type; 2027 ninfo->outfunc = out; 2028 ninfo->outarg = arg; 2029 ninfo->outsize = size; 2030 TAILQ_INSERT_TAIL(list, ninfo, link); 2031 2032 if (type == -1) 2033 return (size); 2034 2035 notesize = sizeof(Elf_Note) + /* note header */ 2036 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2037 /* note name */ 2038 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2039 2040 return (notesize); 2041 } 2042 2043 static size_t 2044 append_note_data(const void *src, void *dst, size_t len) 2045 { 2046 size_t padded_len; 2047 2048 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2049 if (dst != NULL) { 2050 bcopy(src, dst, len); 2051 bzero((char *)dst + len, padded_len - len); 2052 } 2053 return (padded_len); 2054 } 2055 2056 size_t 2057 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2058 { 2059 Elf_Note *note; 2060 char *buf; 2061 size_t notesize; 2062 2063 buf = dst; 2064 if (buf != NULL) { 2065 note = (Elf_Note *)buf; 2066 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2067 note->n_descsz = size; 2068 note->n_type = type; 2069 buf += sizeof(*note); 2070 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2071 sizeof(FREEBSD_ABI_VENDOR)); 2072 append_note_data(src, buf, size); 2073 if (descp != NULL) 2074 *descp = buf; 2075 } 2076 2077 notesize = sizeof(Elf_Note) + /* note header */ 2078 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2079 /* note name */ 2080 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2081 2082 return (notesize); 2083 } 2084 2085 static void 2086 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 2087 { 2088 Elf_Note note; 2089 const struct sysentvec *sv; 2090 ssize_t old_len, sect_len; 2091 size_t new_len, descsz, i; 2092 2093 if (ninfo->type == -1) { 2094 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2095 return; 2096 } 2097 2098 sv = td->td_proc->p_sysent; 2099 2100 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 2101 note.n_descsz = ninfo->outsize; 2102 note.n_type = ninfo->type; 2103 2104 sbuf_bcat(sb, ¬e, sizeof(note)); 2105 sbuf_start_section(sb, &old_len); 2106 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 2107 strlen(sv->sv_elf_core_abi_vendor) + 1); 2108 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2109 if (note.n_descsz == 0) 2110 return; 2111 sbuf_start_section(sb, &old_len); 2112 if (ninfo->regset != NULL) { 2113 struct regset *regset = ninfo->regset; 2114 void *buf; 2115 2116 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK); 2117 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize); 2118 sbuf_bcat(sb, buf, ninfo->outsize); 2119 free(buf, M_TEMP); 2120 } else 2121 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2122 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2123 if (sect_len < 0) 2124 return; 2125 2126 new_len = (size_t)sect_len; 2127 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2128 if (new_len < descsz) { 2129 /* 2130 * It is expected that individual note emitters will correctly 2131 * predict their expected output size and fill up to that size 2132 * themselves, padding in a format-specific way if needed. 2133 * However, in case they don't, just do it here with zeros. 2134 */ 2135 for (i = 0; i < descsz - new_len; i++) 2136 sbuf_putc(sb, 0); 2137 } else if (new_len > descsz) { 2138 /* 2139 * We can't always truncate sb -- we may have drained some 2140 * of it already. 2141 */ 2142 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2143 "read it (%zu > %zu). Since it is longer than " 2144 "expected, this coredump's notes are corrupt. THIS " 2145 "IS A BUG in the note_procstat routine for type %u.\n", 2146 __func__, (unsigned)note.n_type, new_len, descsz, 2147 (unsigned)note.n_type)); 2148 } 2149 } 2150 2151 /* 2152 * Miscellaneous note out functions. 2153 */ 2154 2155 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2156 #include <compat/freebsd32/freebsd32.h> 2157 #include <compat/freebsd32/freebsd32_signal.h> 2158 2159 typedef struct prstatus32 elf_prstatus_t; 2160 typedef struct prpsinfo32 elf_prpsinfo_t; 2161 typedef struct fpreg32 elf_prfpregset_t; 2162 typedef struct fpreg32 elf_fpregset_t; 2163 typedef struct reg32 elf_gregset_t; 2164 typedef struct thrmisc32 elf_thrmisc_t; 2165 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t; 2166 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2167 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2168 typedef uint32_t elf_ps_strings_t; 2169 #else 2170 typedef prstatus_t elf_prstatus_t; 2171 typedef prpsinfo_t elf_prpsinfo_t; 2172 typedef prfpregset_t elf_prfpregset_t; 2173 typedef prfpregset_t elf_fpregset_t; 2174 typedef gregset_t elf_gregset_t; 2175 typedef thrmisc_t elf_thrmisc_t; 2176 typedef struct ptrace_lwpinfo elf_lwpinfo_t; 2177 #define ELF_KERN_PROC_MASK 0 2178 typedef struct kinfo_proc elf_kinfo_proc_t; 2179 typedef vm_offset_t elf_ps_strings_t; 2180 #endif 2181 2182 static void 2183 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2184 { 2185 struct sbuf sbarg; 2186 size_t len; 2187 char *cp, *end; 2188 struct proc *p; 2189 elf_prpsinfo_t *psinfo; 2190 int error; 2191 2192 p = arg; 2193 if (sb != NULL) { 2194 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2195 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2196 psinfo->pr_version = PRPSINFO_VERSION; 2197 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2198 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2199 PROC_LOCK(p); 2200 if (p->p_args != NULL) { 2201 len = sizeof(psinfo->pr_psargs) - 1; 2202 if (len > p->p_args->ar_length) 2203 len = p->p_args->ar_length; 2204 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2205 PROC_UNLOCK(p); 2206 error = 0; 2207 } else { 2208 _PHOLD(p); 2209 PROC_UNLOCK(p); 2210 sbuf_new(&sbarg, psinfo->pr_psargs, 2211 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2212 error = proc_getargv(curthread, p, &sbarg); 2213 PRELE(p); 2214 if (sbuf_finish(&sbarg) == 0) { 2215 len = sbuf_len(&sbarg); 2216 if (len > 0) 2217 len--; 2218 } else { 2219 len = sizeof(psinfo->pr_psargs) - 1; 2220 } 2221 sbuf_delete(&sbarg); 2222 } 2223 if (error != 0 || len == 0 || (ssize_t)len == -1) 2224 strlcpy(psinfo->pr_psargs, p->p_comm, 2225 sizeof(psinfo->pr_psargs)); 2226 else { 2227 KASSERT(len < sizeof(psinfo->pr_psargs), 2228 ("len is too long: %zu vs %zu", len, 2229 sizeof(psinfo->pr_psargs))); 2230 cp = psinfo->pr_psargs; 2231 end = cp + len - 1; 2232 for (;;) { 2233 cp = memchr(cp, '\0', end - cp); 2234 if (cp == NULL) 2235 break; 2236 *cp = ' '; 2237 } 2238 } 2239 psinfo->pr_pid = p->p_pid; 2240 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2241 free(psinfo, M_TEMP); 2242 } 2243 *sizep = sizeof(*psinfo); 2244 } 2245 2246 static bool 2247 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf, 2248 size_t *sizep) 2249 { 2250 elf_prstatus_t *status; 2251 2252 if (buf != NULL) { 2253 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2254 __func__)); 2255 status = buf; 2256 memset(status, 0, *sizep); 2257 status->pr_version = PRSTATUS_VERSION; 2258 status->pr_statussz = sizeof(elf_prstatus_t); 2259 status->pr_gregsetsz = sizeof(elf_gregset_t); 2260 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2261 status->pr_osreldate = osreldate; 2262 status->pr_cursig = td->td_proc->p_sig; 2263 status->pr_pid = td->td_tid; 2264 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2265 fill_regs32(td, &status->pr_reg); 2266 #else 2267 fill_regs(td, &status->pr_reg); 2268 #endif 2269 } 2270 *sizep = sizeof(*status); 2271 return (true); 2272 } 2273 2274 static bool 2275 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf, 2276 size_t size) 2277 { 2278 elf_prstatus_t *status; 2279 2280 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__)); 2281 status = buf; 2282 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2283 set_regs32(td, &status->pr_reg); 2284 #else 2285 set_regs(td, &status->pr_reg); 2286 #endif 2287 return (true); 2288 } 2289 2290 static struct regset __elfN(regset_prstatus) = { 2291 .note = NT_PRSTATUS, 2292 .size = sizeof(elf_prstatus_t), 2293 .get = __elfN(get_prstatus), 2294 .set = __elfN(set_prstatus), 2295 }; 2296 ELF_REGSET(__elfN(regset_prstatus)); 2297 2298 static bool 2299 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf, 2300 size_t *sizep) 2301 { 2302 elf_prfpregset_t *fpregset; 2303 2304 if (buf != NULL) { 2305 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size", 2306 __func__)); 2307 fpregset = buf; 2308 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2309 fill_fpregs32(td, fpregset); 2310 #else 2311 fill_fpregs(td, fpregset); 2312 #endif 2313 } 2314 *sizep = sizeof(*fpregset); 2315 return (true); 2316 } 2317 2318 static bool 2319 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf, 2320 size_t size) 2321 { 2322 elf_prfpregset_t *fpregset; 2323 2324 fpregset = buf; 2325 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__)); 2326 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2327 set_fpregs32(td, fpregset); 2328 #else 2329 set_fpregs(td, fpregset); 2330 #endif 2331 return (true); 2332 } 2333 2334 static struct regset __elfN(regset_fpregset) = { 2335 .note = NT_FPREGSET, 2336 .size = sizeof(elf_prfpregset_t), 2337 .get = __elfN(get_fpregset), 2338 .set = __elfN(set_fpregset), 2339 }; 2340 ELF_REGSET(__elfN(regset_fpregset)); 2341 2342 static bool 2343 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf, 2344 size_t *sizep) 2345 { 2346 elf_thrmisc_t *thrmisc; 2347 2348 if (buf != NULL) { 2349 KASSERT(*sizep == sizeof(*thrmisc), 2350 ("%s: invalid size", __func__)); 2351 thrmisc = buf; 2352 bzero(thrmisc, sizeof(*thrmisc)); 2353 strcpy(thrmisc->pr_tname, td->td_name); 2354 } 2355 *sizep = sizeof(*thrmisc); 2356 return (true); 2357 } 2358 2359 static struct regset __elfN(regset_thrmisc) = { 2360 .note = NT_THRMISC, 2361 .size = sizeof(elf_thrmisc_t), 2362 .get = __elfN(get_thrmisc), 2363 }; 2364 ELF_REGSET(__elfN(regset_thrmisc)); 2365 2366 static bool 2367 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf, 2368 size_t *sizep) 2369 { 2370 elf_lwpinfo_t pl; 2371 size_t size; 2372 int structsize; 2373 2374 size = sizeof(structsize) + sizeof(pl); 2375 if (buf != NULL) { 2376 KASSERT(*sizep == size, ("%s: invalid size", __func__)); 2377 structsize = sizeof(pl); 2378 memcpy(buf, &structsize, sizeof(structsize)); 2379 bzero(&pl, sizeof(pl)); 2380 pl.pl_lwpid = td->td_tid; 2381 pl.pl_event = PL_EVENT_NONE; 2382 pl.pl_sigmask = td->td_sigmask; 2383 pl.pl_siglist = td->td_siglist; 2384 if (td->td_si.si_signo != 0) { 2385 pl.pl_event = PL_EVENT_SIGNAL; 2386 pl.pl_flags |= PL_FLAG_SI; 2387 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2388 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2389 #else 2390 pl.pl_siginfo = td->td_si; 2391 #endif 2392 } 2393 strcpy(pl.pl_tdname, td->td_name); 2394 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2395 memcpy((int *)buf + 1, &pl, sizeof(pl)); 2396 } 2397 *sizep = size; 2398 return (true); 2399 } 2400 2401 static struct regset __elfN(regset_lwpinfo) = { 2402 .note = NT_PTLWPINFO, 2403 .size = sizeof(int) + sizeof(elf_lwpinfo_t), 2404 .get = __elfN(get_lwpinfo), 2405 }; 2406 ELF_REGSET(__elfN(regset_lwpinfo)); 2407 2408 static size_t 2409 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list, 2410 struct thread *target_td) 2411 { 2412 struct sysentvec *sv = td->td_proc->p_sysent; 2413 struct regset **regsetp, **regset_end, *regset; 2414 size_t size; 2415 2416 size = 0; 2417 2418 /* NT_PRSTATUS must be the first register set note. */ 2419 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus), 2420 target_td); 2421 2422 regsetp = sv->sv_regset_begin; 2423 if (regsetp == NULL) { 2424 /* XXX: This shouldn't be true for any FreeBSD ABIs. */ 2425 size += __elfN(register_regset_note)(td, list, 2426 &__elfN(regset_fpregset), target_td); 2427 return (size); 2428 } 2429 regset_end = sv->sv_regset_end; 2430 MPASS(regset_end != NULL); 2431 for (; regsetp < regset_end; regsetp++) { 2432 regset = *regsetp; 2433 if (regset->note == NT_PRSTATUS) 2434 continue; 2435 size += __elfN(register_regset_note)(td, list, regset, 2436 target_td); 2437 } 2438 return (size); 2439 } 2440 2441 /* 2442 * Allow for MD specific notes, as well as any MD 2443 * specific preparations for writing MI notes. 2444 */ 2445 static void 2446 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2447 { 2448 struct thread *td; 2449 void *buf; 2450 size_t size; 2451 2452 td = (struct thread *)arg; 2453 size = *sizep; 2454 if (size != 0 && sb != NULL) 2455 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2456 else 2457 buf = NULL; 2458 size = 0; 2459 __elfN(dump_thread)(td, buf, &size); 2460 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2461 if (size != 0 && sb != NULL) 2462 sbuf_bcat(sb, buf, size); 2463 free(buf, M_TEMP); 2464 *sizep = size; 2465 } 2466 2467 #ifdef KINFO_PROC_SIZE 2468 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2469 #endif 2470 2471 static void 2472 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2473 { 2474 struct proc *p; 2475 size_t size; 2476 int structsize; 2477 2478 p = arg; 2479 size = sizeof(structsize) + p->p_numthreads * 2480 sizeof(elf_kinfo_proc_t); 2481 2482 if (sb != NULL) { 2483 KASSERT(*sizep == size, ("invalid size")); 2484 structsize = sizeof(elf_kinfo_proc_t); 2485 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2486 sx_slock(&proctree_lock); 2487 PROC_LOCK(p); 2488 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2489 sx_sunlock(&proctree_lock); 2490 } 2491 *sizep = size; 2492 } 2493 2494 #ifdef KINFO_FILE_SIZE 2495 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2496 #endif 2497 2498 static void 2499 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2500 { 2501 struct proc *p; 2502 size_t size, sect_sz, i; 2503 ssize_t start_len, sect_len; 2504 int structsize, filedesc_flags; 2505 2506 if (coredump_pack_fileinfo) 2507 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2508 else 2509 filedesc_flags = 0; 2510 2511 p = arg; 2512 structsize = sizeof(struct kinfo_file); 2513 if (sb == NULL) { 2514 size = 0; 2515 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2516 sbuf_set_drain(sb, sbuf_count_drain, &size); 2517 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2518 PROC_LOCK(p); 2519 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2520 sbuf_finish(sb); 2521 sbuf_delete(sb); 2522 *sizep = size; 2523 } else { 2524 sbuf_start_section(sb, &start_len); 2525 2526 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2527 PROC_LOCK(p); 2528 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2529 filedesc_flags); 2530 2531 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2532 if (sect_len < 0) 2533 return; 2534 sect_sz = sect_len; 2535 2536 KASSERT(sect_sz <= *sizep, 2537 ("kern_proc_filedesc_out did not respect maxlen; " 2538 "requested %zu, got %zu", *sizep - sizeof(structsize), 2539 sect_sz - sizeof(structsize))); 2540 2541 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2542 sbuf_putc(sb, 0); 2543 } 2544 } 2545 2546 #ifdef KINFO_VMENTRY_SIZE 2547 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2548 #endif 2549 2550 static void 2551 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2552 { 2553 struct proc *p; 2554 size_t size; 2555 int structsize, vmmap_flags; 2556 2557 if (coredump_pack_vmmapinfo) 2558 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2559 else 2560 vmmap_flags = 0; 2561 2562 p = arg; 2563 structsize = sizeof(struct kinfo_vmentry); 2564 if (sb == NULL) { 2565 size = 0; 2566 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2567 sbuf_set_drain(sb, sbuf_count_drain, &size); 2568 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2569 PROC_LOCK(p); 2570 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2571 sbuf_finish(sb); 2572 sbuf_delete(sb); 2573 *sizep = size; 2574 } else { 2575 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2576 PROC_LOCK(p); 2577 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2578 vmmap_flags); 2579 } 2580 } 2581 2582 static void 2583 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2584 { 2585 struct proc *p; 2586 size_t size; 2587 int structsize; 2588 2589 p = arg; 2590 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2591 if (sb != NULL) { 2592 KASSERT(*sizep == size, ("invalid size")); 2593 structsize = sizeof(gid_t); 2594 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2595 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2596 sizeof(gid_t)); 2597 } 2598 *sizep = size; 2599 } 2600 2601 static void 2602 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2603 { 2604 struct proc *p; 2605 size_t size; 2606 int structsize; 2607 2608 p = arg; 2609 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2610 if (sb != NULL) { 2611 KASSERT(*sizep == size, ("invalid size")); 2612 structsize = sizeof(p->p_pd->pd_cmask); 2613 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2614 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2615 } 2616 *sizep = size; 2617 } 2618 2619 static void 2620 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2621 { 2622 struct proc *p; 2623 struct rlimit rlim[RLIM_NLIMITS]; 2624 size_t size; 2625 int structsize, i; 2626 2627 p = arg; 2628 size = sizeof(structsize) + sizeof(rlim); 2629 if (sb != NULL) { 2630 KASSERT(*sizep == size, ("invalid size")); 2631 structsize = sizeof(rlim); 2632 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2633 PROC_LOCK(p); 2634 for (i = 0; i < RLIM_NLIMITS; i++) 2635 lim_rlimit_proc(p, i, &rlim[i]); 2636 PROC_UNLOCK(p); 2637 sbuf_bcat(sb, rlim, sizeof(rlim)); 2638 } 2639 *sizep = size; 2640 } 2641 2642 static void 2643 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2644 { 2645 struct proc *p; 2646 size_t size; 2647 int structsize; 2648 2649 p = arg; 2650 size = sizeof(structsize) + sizeof(p->p_osrel); 2651 if (sb != NULL) { 2652 KASSERT(*sizep == size, ("invalid size")); 2653 structsize = sizeof(p->p_osrel); 2654 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2655 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2656 } 2657 *sizep = size; 2658 } 2659 2660 static void 2661 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2662 { 2663 struct proc *p; 2664 elf_ps_strings_t ps_strings; 2665 size_t size; 2666 int structsize; 2667 2668 p = arg; 2669 size = sizeof(structsize) + sizeof(ps_strings); 2670 if (sb != NULL) { 2671 KASSERT(*sizep == size, ("invalid size")); 2672 structsize = sizeof(ps_strings); 2673 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2674 ps_strings = PTROUT(PROC_PS_STRINGS(p)); 2675 #else 2676 ps_strings = PROC_PS_STRINGS(p); 2677 #endif 2678 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2679 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2680 } 2681 *sizep = size; 2682 } 2683 2684 static void 2685 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2686 { 2687 struct proc *p; 2688 size_t size; 2689 int structsize; 2690 2691 p = arg; 2692 if (sb == NULL) { 2693 size = 0; 2694 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2695 SBUF_FIXEDLEN); 2696 sbuf_set_drain(sb, sbuf_count_drain, &size); 2697 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2698 PHOLD(p); 2699 proc_getauxv(curthread, p, sb); 2700 PRELE(p); 2701 sbuf_finish(sb); 2702 sbuf_delete(sb); 2703 *sizep = size; 2704 } else { 2705 structsize = sizeof(Elf_Auxinfo); 2706 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2707 PHOLD(p); 2708 proc_getauxv(curthread, p, sb); 2709 PRELE(p); 2710 } 2711 } 2712 2713 #define MAX_NOTES_LOOP 4096 2714 bool 2715 __elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote, 2716 const char *note_vendor, const Elf_Phdr *pnote, 2717 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2718 { 2719 const Elf_Note *note, *note0, *note_end; 2720 const char *note_name; 2721 char *buf; 2722 int i, error; 2723 bool res; 2724 2725 /* We need some limit, might as well use PAGE_SIZE. */ 2726 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2727 return (false); 2728 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2729 if (pnote->p_offset > PAGE_SIZE || 2730 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2731 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2732 if (buf == NULL) { 2733 VOP_UNLOCK(imgp->vp); 2734 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2735 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2736 } 2737 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2738 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2739 curthread->td_ucred, NOCRED, NULL, curthread); 2740 if (error != 0) { 2741 uprintf("i/o error PT_NOTE\n"); 2742 goto retf; 2743 } 2744 note = note0 = (const Elf_Note *)buf; 2745 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2746 } else { 2747 note = note0 = (const Elf_Note *)(imgp->image_header + 2748 pnote->p_offset); 2749 note_end = (const Elf_Note *)(imgp->image_header + 2750 pnote->p_offset + pnote->p_filesz); 2751 buf = NULL; 2752 } 2753 for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end; 2754 i++) { 2755 if (!aligned(note, Elf32_Addr)) { 2756 uprintf("Unaligned ELF note\n"); 2757 goto retf; 2758 } 2759 if ((const char *)note_end - (const char *)note < 2760 sizeof(Elf_Note)) { 2761 uprintf("ELF note to short\n"); 2762 goto retf; 2763 } 2764 if (note->n_namesz != checknote->n_namesz || 2765 note->n_descsz != checknote->n_descsz || 2766 note->n_type != checknote->n_type) 2767 goto nextnote; 2768 note_name = (const char *)(note + 1); 2769 if (note_name + checknote->n_namesz >= 2770 (const char *)note_end || strncmp(note_vendor, 2771 note_name, checknote->n_namesz) != 0) 2772 goto nextnote; 2773 2774 if (cb(note, cb_arg, &res)) 2775 goto ret; 2776 nextnote: 2777 note = (const Elf_Note *)((const char *)(note + 1) + 2778 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2779 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2780 } 2781 if (i >= MAX_NOTES_LOOP) 2782 uprintf("ELF note parser reached %d notes\n", i); 2783 retf: 2784 res = false; 2785 ret: 2786 free(buf, M_TEMP); 2787 return (res); 2788 } 2789 2790 struct brandnote_cb_arg { 2791 Elf_Brandnote *brandnote; 2792 int32_t *osrel; 2793 }; 2794 2795 static bool 2796 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2797 { 2798 struct brandnote_cb_arg *arg; 2799 2800 arg = arg0; 2801 2802 /* 2803 * Fetch the osreldate for binary from the ELF OSABI-note if 2804 * necessary. 2805 */ 2806 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2807 arg->brandnote->trans_osrel != NULL ? 2808 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2809 2810 return (true); 2811 } 2812 2813 static Elf_Note fctl_note = { 2814 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2815 .n_descsz = sizeof(uint32_t), 2816 .n_type = NT_FREEBSD_FEATURE_CTL, 2817 }; 2818 2819 struct fctl_cb_arg { 2820 bool *has_fctl0; 2821 uint32_t *fctl0; 2822 }; 2823 2824 static bool 2825 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2826 { 2827 struct fctl_cb_arg *arg; 2828 const Elf32_Word *desc; 2829 uintptr_t p; 2830 2831 arg = arg0; 2832 p = (uintptr_t)(note + 1); 2833 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2834 desc = (const Elf32_Word *)p; 2835 *arg->has_fctl0 = true; 2836 *arg->fctl0 = desc[0]; 2837 *res = true; 2838 return (true); 2839 } 2840 2841 /* 2842 * Try to find the appropriate ABI-note section for checknote, fetch 2843 * the osreldate and feature control flags for binary from the ELF 2844 * OSABI-note. Only the first page of the image is searched, the same 2845 * as for headers. 2846 */ 2847 static bool 2848 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2849 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2850 { 2851 const Elf_Phdr *phdr; 2852 const Elf_Ehdr *hdr; 2853 struct brandnote_cb_arg b_arg; 2854 struct fctl_cb_arg f_arg; 2855 int i, j; 2856 2857 hdr = (const Elf_Ehdr *)imgp->image_header; 2858 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2859 b_arg.brandnote = brandnote; 2860 b_arg.osrel = osrel; 2861 f_arg.has_fctl0 = has_fctl0; 2862 f_arg.fctl0 = fctl0; 2863 2864 for (i = 0; i < hdr->e_phnum; i++) { 2865 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2866 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2867 &b_arg)) { 2868 for (j = 0; j < hdr->e_phnum; j++) { 2869 if (phdr[j].p_type == PT_NOTE && 2870 __elfN(parse_notes)(imgp, &fctl_note, 2871 FREEBSD_ABI_VENDOR, &phdr[j], 2872 note_fctl_cb, &f_arg)) 2873 break; 2874 } 2875 return (true); 2876 } 2877 } 2878 return (false); 2879 2880 } 2881 2882 /* 2883 * Tell kern_execve.c about it, with a little help from the linker. 2884 */ 2885 static struct execsw __elfN(execsw) = { 2886 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2887 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2888 }; 2889 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2890 2891 static vm_prot_t 2892 __elfN(trans_prot)(Elf_Word flags) 2893 { 2894 vm_prot_t prot; 2895 2896 prot = 0; 2897 if (flags & PF_X) 2898 prot |= VM_PROT_EXECUTE; 2899 if (flags & PF_W) 2900 prot |= VM_PROT_WRITE; 2901 if (flags & PF_R) 2902 prot |= VM_PROT_READ; 2903 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2904 if (i386_read_exec && (flags & PF_R)) 2905 prot |= VM_PROT_EXECUTE; 2906 #endif 2907 return (prot); 2908 } 2909 2910 static Elf_Word 2911 __elfN(untrans_prot)(vm_prot_t prot) 2912 { 2913 Elf_Word flags; 2914 2915 flags = 0; 2916 if (prot & VM_PROT_EXECUTE) 2917 flags |= PF_X; 2918 if (prot & VM_PROT_READ) 2919 flags |= PF_R; 2920 if (prot & VM_PROT_WRITE) 2921 flags |= PF_W; 2922 return (flags); 2923 } 2924