1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_gzio.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/gzio.h> 43 #include <sys/imgact.h> 44 #include <sys/imgact_elf.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/mman.h> 51 #include <sys/namei.h> 52 #include <sys/pioctl.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/racct.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sf_buf.h> 60 #include <sys/smp.h> 61 #include <sys/systm.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/sx.h> 65 #include <sys/syscall.h> 66 #include <sys/sysctl.h> 67 #include <sys/sysent.h> 68 #include <sys/vnode.h> 69 #include <sys/syslog.h> 70 #include <sys/eventhandler.h> 71 #include <sys/user.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #define CORE_BUF_SIZE (16 * 1024) 108 109 int __elfN(fallback_brand) = -1; 110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 111 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 112 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 113 114 static int elf_legacy_coredump = 0; 115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 116 &elf_legacy_coredump, 0, 117 "include all and only RW pages in core dumps"); 118 119 int __elfN(nxstack) = 120 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 121 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) 122 1; 123 #else 124 0; 125 #endif 126 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 127 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 128 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 129 130 #if __ELF_WORD_SIZE == 32 131 #if defined(__amd64__) 132 int i386_read_exec = 0; 133 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 134 "enable execution from readable segments"); 135 #endif 136 #endif 137 138 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 139 140 #define trunc_page_ps(va, ps) rounddown2(va, ps) 141 #define round_page_ps(va, ps) roundup2(va, ps) 142 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 143 144 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 145 146 Elf_Brandnote __elfN(freebsd_brandnote) = { 147 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 148 .hdr.n_descsz = sizeof(int32_t), 149 .hdr.n_type = NT_FREEBSD_ABI_TAG, 150 .vendor = FREEBSD_ABI_VENDOR, 151 .flags = BN_TRANSLATE_OSREL, 152 .trans_osrel = __elfN(freebsd_trans_osrel) 153 }; 154 155 static boolean_t 156 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 157 { 158 uintptr_t p; 159 160 p = (uintptr_t)(note + 1); 161 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 162 *osrel = *(const int32_t *)(p); 163 164 return (TRUE); 165 } 166 167 static const char GNU_ABI_VENDOR[] = "GNU"; 168 static int GNU_KFREEBSD_ABI_DESC = 3; 169 170 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 171 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 172 .hdr.n_descsz = 16, /* XXX at least 16 */ 173 .hdr.n_type = 1, 174 .vendor = GNU_ABI_VENDOR, 175 .flags = BN_TRANSLATE_OSREL, 176 .trans_osrel = kfreebsd_trans_osrel 177 }; 178 179 static boolean_t 180 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 181 { 182 const Elf32_Word *desc; 183 uintptr_t p; 184 185 p = (uintptr_t)(note + 1); 186 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 187 188 desc = (const Elf32_Word *)p; 189 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 190 return (FALSE); 191 192 /* 193 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 194 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 195 */ 196 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 197 198 return (TRUE); 199 } 200 201 int 202 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 203 { 204 int i; 205 206 for (i = 0; i < MAX_BRANDS; i++) { 207 if (elf_brand_list[i] == NULL) { 208 elf_brand_list[i] = entry; 209 break; 210 } 211 } 212 if (i == MAX_BRANDS) { 213 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 214 __func__, entry); 215 return (-1); 216 } 217 return (0); 218 } 219 220 int 221 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 222 { 223 int i; 224 225 for (i = 0; i < MAX_BRANDS; i++) { 226 if (elf_brand_list[i] == entry) { 227 elf_brand_list[i] = NULL; 228 break; 229 } 230 } 231 if (i == MAX_BRANDS) 232 return (-1); 233 return (0); 234 } 235 236 int 237 __elfN(brand_inuse)(Elf_Brandinfo *entry) 238 { 239 struct proc *p; 240 int rval = FALSE; 241 242 sx_slock(&allproc_lock); 243 FOREACH_PROC_IN_SYSTEM(p) { 244 if (p->p_sysent == entry->sysvec) { 245 rval = TRUE; 246 break; 247 } 248 } 249 sx_sunlock(&allproc_lock); 250 251 return (rval); 252 } 253 254 static Elf_Brandinfo * 255 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 256 int interp_name_len, int32_t *osrel) 257 { 258 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 259 Elf_Brandinfo *bi, *bi_m; 260 boolean_t ret; 261 int i; 262 263 /* 264 * We support four types of branding -- (1) the ELF EI_OSABI field 265 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 266 * branding w/in the ELF header, (3) path of the `interp_path' 267 * field, and (4) the ".note.ABI-tag" ELF section. 268 */ 269 270 /* Look for an ".note.ABI-tag" ELF section */ 271 bi_m = NULL; 272 for (i = 0; i < MAX_BRANDS; i++) { 273 bi = elf_brand_list[i]; 274 if (bi == NULL) 275 continue; 276 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 277 continue; 278 if (hdr->e_machine == bi->machine && (bi->flags & 279 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 280 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 281 /* Give brand a chance to veto check_note's guess */ 282 if (ret && bi->header_supported) 283 ret = bi->header_supported(imgp); 284 /* 285 * If note checker claimed the binary, but the 286 * interpreter path in the image does not 287 * match default one for the brand, try to 288 * search for other brands with the same 289 * interpreter. Either there is better brand 290 * with the right interpreter, or, failing 291 * this, we return first brand which accepted 292 * our note and, optionally, header. 293 */ 294 if (ret && bi_m == NULL && (strlen(bi->interp_path) + 295 1 != interp_name_len || strncmp(interp, 296 bi->interp_path, interp_name_len) != 0)) { 297 bi_m = bi; 298 ret = 0; 299 } 300 if (ret) 301 return (bi); 302 } 303 } 304 if (bi_m != NULL) 305 return (bi_m); 306 307 /* If the executable has a brand, search for it in the brand list. */ 308 for (i = 0; i < MAX_BRANDS; i++) { 309 bi = elf_brand_list[i]; 310 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 311 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 312 continue; 313 if (hdr->e_machine == bi->machine && 314 (hdr->e_ident[EI_OSABI] == bi->brand || 315 (bi->compat_3_brand != NULL && 316 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 317 bi->compat_3_brand) == 0))) { 318 /* Looks good, but give brand a chance to veto */ 319 if (!bi->header_supported || 320 bi->header_supported(imgp)) { 321 /* 322 * Again, prefer strictly matching 323 * interpreter path. 324 */ 325 if (interp_name_len == 0 && 326 bi->interp_path == NULL) 327 return (bi); 328 if (bi->interp_path != NULL && 329 strlen(bi->interp_path) + 1 == 330 interp_name_len && strncmp(interp, 331 bi->interp_path, interp_name_len) == 0) 332 return (bi); 333 if (bi_m == NULL) 334 bi_m = bi; 335 } 336 } 337 } 338 if (bi_m != NULL) 339 return (bi_m); 340 341 /* No known brand, see if the header is recognized by any brand */ 342 for (i = 0; i < MAX_BRANDS; i++) { 343 bi = elf_brand_list[i]; 344 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 345 bi->header_supported == NULL) 346 continue; 347 if (hdr->e_machine == bi->machine) { 348 ret = bi->header_supported(imgp); 349 if (ret) 350 return (bi); 351 } 352 } 353 354 /* Lacking a known brand, search for a recognized interpreter. */ 355 if (interp != NULL) { 356 for (i = 0; i < MAX_BRANDS; i++) { 357 bi = elf_brand_list[i]; 358 if (bi == NULL || (bi->flags & 359 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 360 != 0) 361 continue; 362 if (hdr->e_machine == bi->machine && 363 /* ELF image p_filesz includes terminating zero */ 364 strlen(bi->interp_path) + 1 == interp_name_len && 365 strncmp(interp, bi->interp_path, interp_name_len) 366 == 0) 367 return (bi); 368 } 369 } 370 371 /* Lacking a recognized interpreter, try the default brand */ 372 for (i = 0; i < MAX_BRANDS; i++) { 373 bi = elf_brand_list[i]; 374 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 375 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 376 continue; 377 if (hdr->e_machine == bi->machine && 378 __elfN(fallback_brand) == bi->brand) 379 return (bi); 380 } 381 return (NULL); 382 } 383 384 static int 385 __elfN(check_header)(const Elf_Ehdr *hdr) 386 { 387 Elf_Brandinfo *bi; 388 int i; 389 390 if (!IS_ELF(*hdr) || 391 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 392 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 393 hdr->e_ident[EI_VERSION] != EV_CURRENT || 394 hdr->e_phentsize != sizeof(Elf_Phdr) || 395 hdr->e_version != ELF_TARG_VER) 396 return (ENOEXEC); 397 398 /* 399 * Make sure we have at least one brand for this machine. 400 */ 401 402 for (i = 0; i < MAX_BRANDS; i++) { 403 bi = elf_brand_list[i]; 404 if (bi != NULL && bi->machine == hdr->e_machine) 405 break; 406 } 407 if (i == MAX_BRANDS) 408 return (ENOEXEC); 409 410 return (0); 411 } 412 413 static int 414 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 415 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 416 { 417 struct sf_buf *sf; 418 int error; 419 vm_offset_t off; 420 421 /* 422 * Create the page if it doesn't exist yet. Ignore errors. 423 */ 424 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 425 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 426 427 /* 428 * Find the page from the underlying object. 429 */ 430 if (object != NULL) { 431 sf = vm_imgact_map_page(object, offset); 432 if (sf == NULL) 433 return (KERN_FAILURE); 434 off = offset - trunc_page(offset); 435 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 436 end - start); 437 vm_imgact_unmap_page(sf); 438 if (error != 0) 439 return (KERN_FAILURE); 440 } 441 442 return (KERN_SUCCESS); 443 } 444 445 static int 446 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 447 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 448 int cow) 449 { 450 struct sf_buf *sf; 451 vm_offset_t off; 452 vm_size_t sz; 453 int error, locked, rv; 454 455 if (start != trunc_page(start)) { 456 rv = __elfN(map_partial)(map, object, offset, start, 457 round_page(start), prot); 458 if (rv != KERN_SUCCESS) 459 return (rv); 460 offset += round_page(start) - start; 461 start = round_page(start); 462 } 463 if (end != round_page(end)) { 464 rv = __elfN(map_partial)(map, object, offset + 465 trunc_page(end) - start, trunc_page(end), end, prot); 466 if (rv != KERN_SUCCESS) 467 return (rv); 468 end = trunc_page(end); 469 } 470 if (start >= end) 471 return (KERN_SUCCESS); 472 if ((offset & PAGE_MASK) != 0) { 473 /* 474 * The mapping is not page aligned. This means that we have 475 * to copy the data. 476 */ 477 rv = vm_map_fixed(map, NULL, 0, start, end - start, 478 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 479 if (rv != KERN_SUCCESS) 480 return (rv); 481 if (object == NULL) 482 return (KERN_SUCCESS); 483 for (; start < end; start += sz) { 484 sf = vm_imgact_map_page(object, offset); 485 if (sf == NULL) 486 return (KERN_FAILURE); 487 off = offset - trunc_page(offset); 488 sz = end - start; 489 if (sz > PAGE_SIZE - off) 490 sz = PAGE_SIZE - off; 491 error = copyout((caddr_t)sf_buf_kva(sf) + off, 492 (caddr_t)start, sz); 493 vm_imgact_unmap_page(sf); 494 if (error != 0) 495 return (KERN_FAILURE); 496 offset += sz; 497 } 498 } else { 499 vm_object_reference(object); 500 rv = vm_map_fixed(map, object, offset, start, end - start, 501 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 502 if (rv != KERN_SUCCESS) { 503 locked = VOP_ISLOCKED(imgp->vp); 504 VOP_UNLOCK(imgp->vp, 0); 505 vm_object_deallocate(object); 506 vn_lock(imgp->vp, locked | LK_RETRY); 507 return (rv); 508 } 509 } 510 return (KERN_SUCCESS); 511 } 512 513 static int 514 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 515 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 516 size_t pagesize) 517 { 518 struct sf_buf *sf; 519 size_t map_len; 520 vm_map_t map; 521 vm_object_t object; 522 vm_offset_t off, map_addr; 523 int error, rv, cow; 524 size_t copy_len; 525 vm_ooffset_t file_addr; 526 527 /* 528 * It's necessary to fail if the filsz + offset taken from the 529 * header is greater than the actual file pager object's size. 530 * If we were to allow this, then the vm_map_find() below would 531 * walk right off the end of the file object and into the ether. 532 * 533 * While I'm here, might as well check for something else that 534 * is invalid: filsz cannot be greater than memsz. 535 */ 536 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 537 filsz > memsz) { 538 uprintf("elf_load_section: truncated ELF file\n"); 539 return (ENOEXEC); 540 } 541 542 object = imgp->object; 543 map = &imgp->proc->p_vmspace->vm_map; 544 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 545 file_addr = trunc_page_ps(offset, pagesize); 546 547 /* 548 * We have two choices. We can either clear the data in the last page 549 * of an oversized mapping, or we can start the anon mapping a page 550 * early and copy the initialized data into that first page. We 551 * choose the second. 552 */ 553 if (filsz == 0) 554 map_len = 0; 555 else if (memsz > filsz) 556 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 557 else 558 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 559 560 if (map_len != 0) { 561 /* cow flags: don't dump readonly sections in core */ 562 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 563 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 564 565 rv = __elfN(map_insert)(imgp, map, 566 object, 567 file_addr, /* file offset */ 568 map_addr, /* virtual start */ 569 map_addr + map_len,/* virtual end */ 570 prot, 571 cow); 572 if (rv != KERN_SUCCESS) 573 return (EINVAL); 574 575 /* we can stop now if we've covered it all */ 576 if (memsz == filsz) 577 return (0); 578 } 579 580 581 /* 582 * We have to get the remaining bit of the file into the first part 583 * of the oversized map segment. This is normally because the .data 584 * segment in the file is extended to provide bss. It's a neat idea 585 * to try and save a page, but it's a pain in the behind to implement. 586 */ 587 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset + 588 filsz, pagesize); 589 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 590 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 591 map_addr; 592 593 /* This had damn well better be true! */ 594 if (map_len != 0) { 595 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 596 map_addr + map_len, prot, 0); 597 if (rv != KERN_SUCCESS) 598 return (EINVAL); 599 } 600 601 if (copy_len != 0) { 602 sf = vm_imgact_map_page(object, offset + filsz); 603 if (sf == NULL) 604 return (EIO); 605 606 /* send the page fragment to user space */ 607 off = trunc_page_ps(offset + filsz, pagesize) - 608 trunc_page(offset + filsz); 609 error = copyout((caddr_t)sf_buf_kva(sf) + off, 610 (caddr_t)map_addr, copy_len); 611 vm_imgact_unmap_page(sf); 612 if (error != 0) 613 return (error); 614 } 615 616 /* 617 * Remove write access to the page if it was only granted by map_insert 618 * to allow copyout. 619 */ 620 if ((prot & VM_PROT_WRITE) == 0) 621 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 622 map_len), prot, FALSE); 623 624 return (0); 625 } 626 627 /* 628 * Load the file "file" into memory. It may be either a shared object 629 * or an executable. 630 * 631 * The "addr" reference parameter is in/out. On entry, it specifies 632 * the address where a shared object should be loaded. If the file is 633 * an executable, this value is ignored. On exit, "addr" specifies 634 * where the file was actually loaded. 635 * 636 * The "entry" reference parameter is out only. On exit, it specifies 637 * the entry point for the loaded file. 638 */ 639 static int 640 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 641 u_long *entry, size_t pagesize) 642 { 643 struct { 644 struct nameidata nd; 645 struct vattr attr; 646 struct image_params image_params; 647 } *tempdata; 648 const Elf_Ehdr *hdr = NULL; 649 const Elf_Phdr *phdr = NULL; 650 struct nameidata *nd; 651 struct vattr *attr; 652 struct image_params *imgp; 653 vm_prot_t prot; 654 u_long rbase; 655 u_long base_addr = 0; 656 int error, i, numsegs; 657 658 #ifdef CAPABILITY_MODE 659 /* 660 * XXXJA: This check can go away once we are sufficiently confident 661 * that the checks in namei() are correct. 662 */ 663 if (IN_CAPABILITY_MODE(curthread)) 664 return (ECAPMODE); 665 #endif 666 667 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 668 nd = &tempdata->nd; 669 attr = &tempdata->attr; 670 imgp = &tempdata->image_params; 671 672 /* 673 * Initialize part of the common data 674 */ 675 imgp->proc = p; 676 imgp->attr = attr; 677 imgp->firstpage = NULL; 678 imgp->image_header = NULL; 679 imgp->object = NULL; 680 imgp->execlabel = NULL; 681 682 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 683 if ((error = namei(nd)) != 0) { 684 nd->ni_vp = NULL; 685 goto fail; 686 } 687 NDFREE(nd, NDF_ONLY_PNBUF); 688 imgp->vp = nd->ni_vp; 689 690 /* 691 * Check permissions, modes, uid, etc on the file, and "open" it. 692 */ 693 error = exec_check_permissions(imgp); 694 if (error) 695 goto fail; 696 697 error = exec_map_first_page(imgp); 698 if (error) 699 goto fail; 700 701 /* 702 * Also make certain that the interpreter stays the same, so set 703 * its VV_TEXT flag, too. 704 */ 705 VOP_SET_TEXT(nd->ni_vp); 706 707 imgp->object = nd->ni_vp->v_object; 708 709 hdr = (const Elf_Ehdr *)imgp->image_header; 710 if ((error = __elfN(check_header)(hdr)) != 0) 711 goto fail; 712 if (hdr->e_type == ET_DYN) 713 rbase = *addr; 714 else if (hdr->e_type == ET_EXEC) 715 rbase = 0; 716 else { 717 error = ENOEXEC; 718 goto fail; 719 } 720 721 /* Only support headers that fit within first page for now */ 722 if ((hdr->e_phoff > PAGE_SIZE) || 723 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 724 error = ENOEXEC; 725 goto fail; 726 } 727 728 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 729 if (!aligned(phdr, Elf_Addr)) { 730 error = ENOEXEC; 731 goto fail; 732 } 733 734 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 735 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 736 /* Loadable segment */ 737 prot = __elfN(trans_prot)(phdr[i].p_flags); 738 error = __elfN(load_section)(imgp, phdr[i].p_offset, 739 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 740 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 741 if (error != 0) 742 goto fail; 743 /* 744 * Establish the base address if this is the 745 * first segment. 746 */ 747 if (numsegs == 0) 748 base_addr = trunc_page(phdr[i].p_vaddr + 749 rbase); 750 numsegs++; 751 } 752 } 753 *addr = base_addr; 754 *entry = (unsigned long)hdr->e_entry + rbase; 755 756 fail: 757 if (imgp->firstpage) 758 exec_unmap_first_page(imgp); 759 760 if (nd->ni_vp) 761 vput(nd->ni_vp); 762 763 free(tempdata, M_TEMP); 764 765 return (error); 766 } 767 768 static int 769 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 770 { 771 struct thread *td; 772 const Elf_Ehdr *hdr; 773 const Elf_Phdr *phdr; 774 Elf_Auxargs *elf_auxargs; 775 struct vmspace *vmspace; 776 const char *err_str, *newinterp; 777 char *interp, *interp_buf, *path; 778 Elf_Brandinfo *brand_info; 779 struct sysentvec *sv; 780 vm_prot_t prot; 781 u_long text_size, data_size, total_size, text_addr, data_addr; 782 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 783 int32_t osrel; 784 int error, i, n, interp_name_len, have_interp; 785 786 hdr = (const Elf_Ehdr *)imgp->image_header; 787 788 /* 789 * Do we have a valid ELF header ? 790 * 791 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 792 * if particular brand doesn't support it. 793 */ 794 if (__elfN(check_header)(hdr) != 0 || 795 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 796 return (-1); 797 798 /* 799 * From here on down, we return an errno, not -1, as we've 800 * detected an ELF file. 801 */ 802 803 if ((hdr->e_phoff > PAGE_SIZE) || 804 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 805 /* Only support headers in first page for now */ 806 uprintf("Program headers not in the first page\n"); 807 return (ENOEXEC); 808 } 809 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 810 if (!aligned(phdr, Elf_Addr)) { 811 uprintf("Unaligned program headers\n"); 812 return (ENOEXEC); 813 } 814 815 n = error = 0; 816 baddr = 0; 817 osrel = 0; 818 text_size = data_size = total_size = text_addr = data_addr = 0; 819 entry = proghdr = 0; 820 interp_name_len = 0; 821 err_str = newinterp = NULL; 822 interp = interp_buf = NULL; 823 td = curthread; 824 825 for (i = 0; i < hdr->e_phnum; i++) { 826 switch (phdr[i].p_type) { 827 case PT_LOAD: 828 if (n == 0) 829 baddr = phdr[i].p_vaddr; 830 n++; 831 break; 832 case PT_INTERP: 833 /* Path to interpreter */ 834 if (phdr[i].p_filesz > MAXPATHLEN) { 835 uprintf("Invalid PT_INTERP\n"); 836 error = ENOEXEC; 837 goto ret; 838 } 839 if (interp != NULL) { 840 uprintf("Multiple PT_INTERP headers\n"); 841 error = ENOEXEC; 842 goto ret; 843 } 844 interp_name_len = phdr[i].p_filesz; 845 if (phdr[i].p_offset > PAGE_SIZE || 846 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 847 VOP_UNLOCK(imgp->vp, 0); 848 interp_buf = malloc(interp_name_len + 1, M_TEMP, 849 M_WAITOK); 850 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 851 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 852 interp_name_len, phdr[i].p_offset, 853 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 854 NOCRED, NULL, td); 855 if (error != 0) { 856 uprintf("i/o error PT_INTERP\n"); 857 goto ret; 858 } 859 interp_buf[interp_name_len] = '\0'; 860 interp = interp_buf; 861 } else { 862 interp = __DECONST(char *, imgp->image_header) + 863 phdr[i].p_offset; 864 } 865 break; 866 case PT_GNU_STACK: 867 if (__elfN(nxstack)) 868 imgp->stack_prot = 869 __elfN(trans_prot)(phdr[i].p_flags); 870 imgp->stack_sz = phdr[i].p_memsz; 871 break; 872 } 873 } 874 875 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 876 &osrel); 877 if (brand_info == NULL) { 878 uprintf("ELF binary type \"%u\" not known.\n", 879 hdr->e_ident[EI_OSABI]); 880 error = ENOEXEC; 881 goto ret; 882 } 883 et_dyn_addr = 0; 884 if (hdr->e_type == ET_DYN) { 885 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 886 uprintf("Cannot execute shared object\n"); 887 error = ENOEXEC; 888 goto ret; 889 } 890 /* 891 * Honour the base load address from the dso if it is 892 * non-zero for some reason. 893 */ 894 if (baddr == 0) 895 et_dyn_addr = ET_DYN_LOAD_ADDR; 896 } 897 sv = brand_info->sysvec; 898 if (interp != NULL && brand_info->interp_newpath != NULL) 899 newinterp = brand_info->interp_newpath; 900 901 /* 902 * Avoid a possible deadlock if the current address space is destroyed 903 * and that address space maps the locked vnode. In the common case, 904 * the locked vnode's v_usecount is decremented but remains greater 905 * than zero. Consequently, the vnode lock is not needed by vrele(). 906 * However, in cases where the vnode lock is external, such as nullfs, 907 * v_usecount may become zero. 908 * 909 * The VV_TEXT flag prevents modifications to the executable while 910 * the vnode is unlocked. 911 */ 912 VOP_UNLOCK(imgp->vp, 0); 913 914 error = exec_new_vmspace(imgp, sv); 915 imgp->proc->p_sysent = sv; 916 917 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 918 if (error != 0) 919 goto ret; 920 921 for (i = 0; i < hdr->e_phnum; i++) { 922 switch (phdr[i].p_type) { 923 case PT_LOAD: /* Loadable segment */ 924 if (phdr[i].p_memsz == 0) 925 break; 926 prot = __elfN(trans_prot)(phdr[i].p_flags); 927 error = __elfN(load_section)(imgp, phdr[i].p_offset, 928 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 929 phdr[i].p_memsz, phdr[i].p_filesz, prot, 930 sv->sv_pagesize); 931 if (error != 0) 932 goto ret; 933 934 /* 935 * If this segment contains the program headers, 936 * remember their virtual address for the AT_PHDR 937 * aux entry. Static binaries don't usually include 938 * a PT_PHDR entry. 939 */ 940 if (phdr[i].p_offset == 0 && 941 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 942 <= phdr[i].p_filesz) 943 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 944 et_dyn_addr; 945 946 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 947 seg_size = round_page(phdr[i].p_memsz + 948 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 949 950 /* 951 * Make the largest executable segment the official 952 * text segment and all others data. 953 * 954 * Note that obreak() assumes that data_addr + 955 * data_size == end of data load area, and the ELF 956 * file format expects segments to be sorted by 957 * address. If multiple data segments exist, the 958 * last one will be used. 959 */ 960 961 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 962 text_size = seg_size; 963 text_addr = seg_addr; 964 } else { 965 data_size = seg_size; 966 data_addr = seg_addr; 967 } 968 total_size += seg_size; 969 break; 970 case PT_PHDR: /* Program header table info */ 971 proghdr = phdr[i].p_vaddr + et_dyn_addr; 972 break; 973 default: 974 break; 975 } 976 } 977 978 if (data_addr == 0 && data_size == 0) { 979 data_addr = text_addr; 980 data_size = text_size; 981 } 982 983 entry = (u_long)hdr->e_entry + et_dyn_addr; 984 985 /* 986 * Check limits. It should be safe to check the 987 * limits after loading the segments since we do 988 * not actually fault in all the segments pages. 989 */ 990 PROC_LOCK(imgp->proc); 991 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 992 err_str = "Data segment size exceeds process limit"; 993 else if (text_size > maxtsiz) 994 err_str = "Text segment size exceeds system limit"; 995 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 996 err_str = "Total segment size exceeds process limit"; 997 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 998 err_str = "Data segment size exceeds resource limit"; 999 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 1000 err_str = "Total segment size exceeds resource limit"; 1001 if (err_str != NULL) { 1002 PROC_UNLOCK(imgp->proc); 1003 uprintf("%s\n", err_str); 1004 error = ENOMEM; 1005 goto ret; 1006 } 1007 1008 vmspace = imgp->proc->p_vmspace; 1009 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 1010 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 1011 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 1012 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 1013 1014 /* 1015 * We load the dynamic linker where a userland call 1016 * to mmap(0, ...) would put it. The rationale behind this 1017 * calculation is that it leaves room for the heap to grow to 1018 * its maximum allowed size. 1019 */ 1020 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1021 RLIMIT_DATA)); 1022 PROC_UNLOCK(imgp->proc); 1023 1024 imgp->entry_addr = entry; 1025 1026 if (interp != NULL) { 1027 have_interp = FALSE; 1028 VOP_UNLOCK(imgp->vp, 0); 1029 if (brand_info->emul_path != NULL && 1030 brand_info->emul_path[0] != '\0') { 1031 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1032 snprintf(path, MAXPATHLEN, "%s%s", 1033 brand_info->emul_path, interp); 1034 error = __elfN(load_file)(imgp->proc, path, &addr, 1035 &imgp->entry_addr, sv->sv_pagesize); 1036 free(path, M_TEMP); 1037 if (error == 0) 1038 have_interp = TRUE; 1039 } 1040 if (!have_interp && newinterp != NULL && 1041 (brand_info->interp_path == NULL || 1042 strcmp(interp, brand_info->interp_path) == 0)) { 1043 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1044 &imgp->entry_addr, sv->sv_pagesize); 1045 if (error == 0) 1046 have_interp = TRUE; 1047 } 1048 if (!have_interp) { 1049 error = __elfN(load_file)(imgp->proc, interp, &addr, 1050 &imgp->entry_addr, sv->sv_pagesize); 1051 } 1052 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1053 if (error != 0) { 1054 uprintf("ELF interpreter %s not found, error %d\n", 1055 interp, error); 1056 goto ret; 1057 } 1058 } else 1059 addr = et_dyn_addr; 1060 1061 /* 1062 * Construct auxargs table (used by the fixup routine) 1063 */ 1064 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1065 elf_auxargs->execfd = -1; 1066 elf_auxargs->phdr = proghdr; 1067 elf_auxargs->phent = hdr->e_phentsize; 1068 elf_auxargs->phnum = hdr->e_phnum; 1069 elf_auxargs->pagesz = PAGE_SIZE; 1070 elf_auxargs->base = addr; 1071 elf_auxargs->flags = 0; 1072 elf_auxargs->entry = entry; 1073 elf_auxargs->hdr_eflags = hdr->e_flags; 1074 1075 imgp->auxargs = elf_auxargs; 1076 imgp->interpreted = 0; 1077 imgp->reloc_base = addr; 1078 imgp->proc->p_osrel = osrel; 1079 imgp->proc->p_elf_machine = hdr->e_machine; 1080 imgp->proc->p_elf_flags = hdr->e_flags; 1081 1082 ret: 1083 free(interp_buf, M_TEMP); 1084 return (error); 1085 } 1086 1087 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1088 1089 int 1090 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1091 { 1092 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1093 Elf_Addr *base; 1094 Elf_Addr *pos; 1095 1096 base = (Elf_Addr *)*stack_base; 1097 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1098 1099 if (args->execfd != -1) 1100 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1101 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1102 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1103 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1104 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1105 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1106 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1107 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1108 #ifdef AT_EHDRFLAGS 1109 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1110 #endif 1111 if (imgp->execpathp != 0) 1112 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1113 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1114 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1115 if (imgp->canary != 0) { 1116 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1117 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1118 } 1119 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1120 if (imgp->pagesizes != 0) { 1121 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1122 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1123 } 1124 if (imgp->sysent->sv_timekeep_base != 0) { 1125 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1126 imgp->sysent->sv_timekeep_base); 1127 } 1128 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1129 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1130 imgp->sysent->sv_stackprot); 1131 AUXARGS_ENTRY(pos, AT_NULL, 0); 1132 1133 free(imgp->auxargs, M_TEMP); 1134 imgp->auxargs = NULL; 1135 1136 base--; 1137 suword(base, (long)imgp->args->argc); 1138 *stack_base = (register_t *)base; 1139 return (0); 1140 } 1141 1142 /* 1143 * Code for generating ELF core dumps. 1144 */ 1145 1146 typedef void (*segment_callback)(vm_map_entry_t, void *); 1147 1148 /* Closure for cb_put_phdr(). */ 1149 struct phdr_closure { 1150 Elf_Phdr *phdr; /* Program header to fill in */ 1151 Elf_Off offset; /* Offset of segment in core file */ 1152 }; 1153 1154 /* Closure for cb_size_segment(). */ 1155 struct sseg_closure { 1156 int count; /* Count of writable segments. */ 1157 size_t size; /* Total size of all writable segments. */ 1158 }; 1159 1160 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1161 1162 struct note_info { 1163 int type; /* Note type. */ 1164 outfunc_t outfunc; /* Output function. */ 1165 void *outarg; /* Argument for the output function. */ 1166 size_t outsize; /* Output size. */ 1167 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1168 }; 1169 1170 TAILQ_HEAD(note_info_list, note_info); 1171 1172 /* Coredump output parameters. */ 1173 struct coredump_params { 1174 off_t offset; 1175 struct ucred *active_cred; 1176 struct ucred *file_cred; 1177 struct thread *td; 1178 struct vnode *vp; 1179 struct gzio_stream *gzs; 1180 }; 1181 1182 static void cb_put_phdr(vm_map_entry_t, void *); 1183 static void cb_size_segment(vm_map_entry_t, void *); 1184 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1185 enum uio_seg); 1186 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1187 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1188 struct note_info_list *, size_t); 1189 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1190 size_t *); 1191 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1192 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1193 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1194 static int sbuf_drain_core_output(void *, const char *, int); 1195 static int sbuf_drain_count(void *arg, const char *data, int len); 1196 1197 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1198 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1199 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1200 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1201 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1202 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1203 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1204 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1205 static void note_procstat_files(void *, struct sbuf *, size_t *); 1206 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1207 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1208 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1209 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1210 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1211 1212 #ifdef GZIO 1213 extern int compress_user_cores_gzlevel; 1214 1215 /* 1216 * Write out a core segment to the compression stream. 1217 */ 1218 static int 1219 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1220 { 1221 u_int chunk_len; 1222 int error; 1223 1224 while (len > 0) { 1225 chunk_len = MIN(len, CORE_BUF_SIZE); 1226 1227 /* 1228 * We can get EFAULT error here. 1229 * In that case zero out the current chunk of the segment. 1230 */ 1231 error = copyin(base, buf, chunk_len); 1232 if (error != 0) 1233 bzero(buf, chunk_len); 1234 error = gzio_write(p->gzs, buf, chunk_len); 1235 if (error != 0) 1236 break; 1237 base += chunk_len; 1238 len -= chunk_len; 1239 } 1240 return (error); 1241 } 1242 1243 static int 1244 core_gz_write(void *base, size_t len, off_t offset, void *arg) 1245 { 1246 1247 return (core_write((struct coredump_params *)arg, base, len, offset, 1248 UIO_SYSSPACE)); 1249 } 1250 #endif /* GZIO */ 1251 1252 static int 1253 core_write(struct coredump_params *p, const void *base, size_t len, 1254 off_t offset, enum uio_seg seg) 1255 { 1256 1257 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1258 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1259 p->active_cred, p->file_cred, NULL, p->td)); 1260 } 1261 1262 static int 1263 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1264 void *tmpbuf) 1265 { 1266 int error; 1267 1268 #ifdef GZIO 1269 if (p->gzs != NULL) 1270 return (compress_chunk(p, base, tmpbuf, len)); 1271 #endif 1272 /* 1273 * EFAULT is a non-fatal error that we can get, for example, 1274 * if the segment is backed by a file but extends beyond its 1275 * end. 1276 */ 1277 error = core_write(p, base, len, offset, UIO_USERSPACE); 1278 if (error == EFAULT) { 1279 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1280 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1281 "for process %s\n", base, len, offset, curproc->p_comm); 1282 1283 /* 1284 * Write a "real" zero byte at the end of the target region 1285 * in the case this is the last segment. 1286 * The intermediate space will be implicitly zero-filled. 1287 */ 1288 error = core_write(p, zero_region, 1, offset + len - 1, 1289 UIO_SYSSPACE); 1290 } 1291 return (error); 1292 } 1293 1294 /* 1295 * Drain into a core file. 1296 */ 1297 static int 1298 sbuf_drain_core_output(void *arg, const char *data, int len) 1299 { 1300 struct coredump_params *p; 1301 int error, locked; 1302 1303 p = (struct coredump_params *)arg; 1304 1305 /* 1306 * Some kern_proc out routines that print to this sbuf may 1307 * call us with the process lock held. Draining with the 1308 * non-sleepable lock held is unsafe. The lock is needed for 1309 * those routines when dumping a live process. In our case we 1310 * can safely release the lock before draining and acquire 1311 * again after. 1312 */ 1313 locked = PROC_LOCKED(p->td->td_proc); 1314 if (locked) 1315 PROC_UNLOCK(p->td->td_proc); 1316 #ifdef GZIO 1317 if (p->gzs != NULL) 1318 error = gzio_write(p->gzs, __DECONST(char *, data), len); 1319 else 1320 #endif 1321 error = core_write(p, __DECONST(void *, data), len, p->offset, 1322 UIO_SYSSPACE); 1323 if (locked) 1324 PROC_LOCK(p->td->td_proc); 1325 if (error != 0) 1326 return (-error); 1327 p->offset += len; 1328 return (len); 1329 } 1330 1331 /* 1332 * Drain into a counter. 1333 */ 1334 static int 1335 sbuf_drain_count(void *arg, const char *data __unused, int len) 1336 { 1337 size_t *sizep; 1338 1339 sizep = (size_t *)arg; 1340 *sizep += len; 1341 return (len); 1342 } 1343 1344 int 1345 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1346 { 1347 struct ucred *cred = td->td_ucred; 1348 int error = 0; 1349 struct sseg_closure seginfo; 1350 struct note_info_list notelst; 1351 struct coredump_params params; 1352 struct note_info *ninfo; 1353 void *hdr, *tmpbuf; 1354 size_t hdrsize, notesz, coresize; 1355 #ifdef GZIO 1356 boolean_t compress; 1357 1358 compress = (flags & IMGACT_CORE_COMPRESS) != 0; 1359 #endif 1360 hdr = NULL; 1361 tmpbuf = NULL; 1362 TAILQ_INIT(¬elst); 1363 1364 /* Size the program segments. */ 1365 seginfo.count = 0; 1366 seginfo.size = 0; 1367 each_dumpable_segment(td, cb_size_segment, &seginfo); 1368 1369 /* 1370 * Collect info about the core file header area. 1371 */ 1372 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1373 if (seginfo.count + 1 >= PN_XNUM) 1374 hdrsize += sizeof(Elf_Shdr); 1375 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1376 coresize = round_page(hdrsize + notesz) + seginfo.size; 1377 1378 /* Set up core dump parameters. */ 1379 params.offset = 0; 1380 params.active_cred = cred; 1381 params.file_cred = NOCRED; 1382 params.td = td; 1383 params.vp = vp; 1384 params.gzs = NULL; 1385 1386 #ifdef RACCT 1387 if (racct_enable) { 1388 PROC_LOCK(td->td_proc); 1389 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1390 PROC_UNLOCK(td->td_proc); 1391 if (error != 0) { 1392 error = EFAULT; 1393 goto done; 1394 } 1395 } 1396 #endif 1397 if (coresize >= limit) { 1398 error = EFAULT; 1399 goto done; 1400 } 1401 1402 #ifdef GZIO 1403 /* Create a compression stream if necessary. */ 1404 if (compress) { 1405 params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE, 1406 CORE_BUF_SIZE, compress_user_cores_gzlevel, ¶ms); 1407 if (params.gzs == NULL) { 1408 error = EFAULT; 1409 goto done; 1410 } 1411 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1412 } 1413 #endif 1414 1415 /* 1416 * Allocate memory for building the header, fill it up, 1417 * and write it out following the notes. 1418 */ 1419 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1420 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1421 notesz); 1422 1423 /* Write the contents of all of the writable segments. */ 1424 if (error == 0) { 1425 Elf_Phdr *php; 1426 off_t offset; 1427 int i; 1428 1429 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1430 offset = round_page(hdrsize + notesz); 1431 for (i = 0; i < seginfo.count; i++) { 1432 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1433 php->p_filesz, offset, ¶ms, tmpbuf); 1434 if (error != 0) 1435 break; 1436 offset += php->p_filesz; 1437 php++; 1438 } 1439 #ifdef GZIO 1440 if (error == 0 && compress) 1441 error = gzio_flush(params.gzs); 1442 #endif 1443 } 1444 if (error) { 1445 log(LOG_WARNING, 1446 "Failed to write core file for process %s (error %d)\n", 1447 curproc->p_comm, error); 1448 } 1449 1450 done: 1451 #ifdef GZIO 1452 if (compress) { 1453 free(tmpbuf, M_TEMP); 1454 if (params.gzs != NULL) 1455 gzio_fini(params.gzs); 1456 } 1457 #endif 1458 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1459 TAILQ_REMOVE(¬elst, ninfo, link); 1460 free(ninfo, M_TEMP); 1461 } 1462 if (hdr != NULL) 1463 free(hdr, M_TEMP); 1464 1465 return (error); 1466 } 1467 1468 /* 1469 * A callback for each_dumpable_segment() to write out the segment's 1470 * program header entry. 1471 */ 1472 static void 1473 cb_put_phdr(entry, closure) 1474 vm_map_entry_t entry; 1475 void *closure; 1476 { 1477 struct phdr_closure *phc = (struct phdr_closure *)closure; 1478 Elf_Phdr *phdr = phc->phdr; 1479 1480 phc->offset = round_page(phc->offset); 1481 1482 phdr->p_type = PT_LOAD; 1483 phdr->p_offset = phc->offset; 1484 phdr->p_vaddr = entry->start; 1485 phdr->p_paddr = 0; 1486 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1487 phdr->p_align = PAGE_SIZE; 1488 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1489 1490 phc->offset += phdr->p_filesz; 1491 phc->phdr++; 1492 } 1493 1494 /* 1495 * A callback for each_dumpable_segment() to gather information about 1496 * the number of segments and their total size. 1497 */ 1498 static void 1499 cb_size_segment(vm_map_entry_t entry, void *closure) 1500 { 1501 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1502 1503 ssc->count++; 1504 ssc->size += entry->end - entry->start; 1505 } 1506 1507 /* 1508 * For each writable segment in the process's memory map, call the given 1509 * function with a pointer to the map entry and some arbitrary 1510 * caller-supplied data. 1511 */ 1512 static void 1513 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1514 { 1515 struct proc *p = td->td_proc; 1516 vm_map_t map = &p->p_vmspace->vm_map; 1517 vm_map_entry_t entry; 1518 vm_object_t backing_object, object; 1519 boolean_t ignore_entry; 1520 1521 vm_map_lock_read(map); 1522 for (entry = map->header.next; entry != &map->header; 1523 entry = entry->next) { 1524 /* 1525 * Don't dump inaccessible mappings, deal with legacy 1526 * coredump mode. 1527 * 1528 * Note that read-only segments related to the elf binary 1529 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1530 * need to arbitrarily ignore such segments. 1531 */ 1532 if (elf_legacy_coredump) { 1533 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1534 continue; 1535 } else { 1536 if ((entry->protection & VM_PROT_ALL) == 0) 1537 continue; 1538 } 1539 1540 /* 1541 * Dont include memory segment in the coredump if 1542 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1543 * madvise(2). Do not dump submaps (i.e. parts of the 1544 * kernel map). 1545 */ 1546 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1547 continue; 1548 1549 if ((object = entry->object.vm_object) == NULL) 1550 continue; 1551 1552 /* Ignore memory-mapped devices and such things. */ 1553 VM_OBJECT_RLOCK(object); 1554 while ((backing_object = object->backing_object) != NULL) { 1555 VM_OBJECT_RLOCK(backing_object); 1556 VM_OBJECT_RUNLOCK(object); 1557 object = backing_object; 1558 } 1559 ignore_entry = object->type != OBJT_DEFAULT && 1560 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1561 object->type != OBJT_PHYS; 1562 VM_OBJECT_RUNLOCK(object); 1563 if (ignore_entry) 1564 continue; 1565 1566 (*func)(entry, closure); 1567 } 1568 vm_map_unlock_read(map); 1569 } 1570 1571 /* 1572 * Write the core file header to the file, including padding up to 1573 * the page boundary. 1574 */ 1575 static int 1576 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1577 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1578 { 1579 struct note_info *ninfo; 1580 struct sbuf *sb; 1581 int error; 1582 1583 /* Fill in the header. */ 1584 bzero(hdr, hdrsize); 1585 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1586 1587 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1588 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1589 sbuf_start_section(sb, NULL); 1590 sbuf_bcat(sb, hdr, hdrsize); 1591 TAILQ_FOREACH(ninfo, notelst, link) 1592 __elfN(putnote)(ninfo, sb); 1593 /* Align up to a page boundary for the program segments. */ 1594 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1595 error = sbuf_finish(sb); 1596 sbuf_delete(sb); 1597 1598 return (error); 1599 } 1600 1601 static void 1602 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1603 size_t *sizep) 1604 { 1605 struct proc *p; 1606 struct thread *thr; 1607 size_t size; 1608 1609 p = td->td_proc; 1610 size = 0; 1611 1612 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1613 1614 /* 1615 * To have the debugger select the right thread (LWP) as the initial 1616 * thread, we dump the state of the thread passed to us in td first. 1617 * This is the thread that causes the core dump and thus likely to 1618 * be the right thread one wants to have selected in the debugger. 1619 */ 1620 thr = td; 1621 while (thr != NULL) { 1622 size += register_note(list, NT_PRSTATUS, 1623 __elfN(note_prstatus), thr); 1624 size += register_note(list, NT_FPREGSET, 1625 __elfN(note_fpregset), thr); 1626 size += register_note(list, NT_THRMISC, 1627 __elfN(note_thrmisc), thr); 1628 size += register_note(list, -1, 1629 __elfN(note_threadmd), thr); 1630 1631 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1632 TAILQ_NEXT(thr, td_plist); 1633 if (thr == td) 1634 thr = TAILQ_NEXT(thr, td_plist); 1635 } 1636 1637 size += register_note(list, NT_PROCSTAT_PROC, 1638 __elfN(note_procstat_proc), p); 1639 size += register_note(list, NT_PROCSTAT_FILES, 1640 note_procstat_files, p); 1641 size += register_note(list, NT_PROCSTAT_VMMAP, 1642 note_procstat_vmmap, p); 1643 size += register_note(list, NT_PROCSTAT_GROUPS, 1644 note_procstat_groups, p); 1645 size += register_note(list, NT_PROCSTAT_UMASK, 1646 note_procstat_umask, p); 1647 size += register_note(list, NT_PROCSTAT_RLIMIT, 1648 note_procstat_rlimit, p); 1649 size += register_note(list, NT_PROCSTAT_OSREL, 1650 note_procstat_osrel, p); 1651 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1652 __elfN(note_procstat_psstrings), p); 1653 size += register_note(list, NT_PROCSTAT_AUXV, 1654 __elfN(note_procstat_auxv), p); 1655 1656 *sizep = size; 1657 } 1658 1659 static void 1660 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1661 size_t notesz) 1662 { 1663 Elf_Ehdr *ehdr; 1664 Elf_Phdr *phdr; 1665 Elf_Shdr *shdr; 1666 struct phdr_closure phc; 1667 1668 ehdr = (Elf_Ehdr *)hdr; 1669 1670 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1671 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1672 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1673 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1674 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1675 ehdr->e_ident[EI_DATA] = ELF_DATA; 1676 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1677 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1678 ehdr->e_ident[EI_ABIVERSION] = 0; 1679 ehdr->e_ident[EI_PAD] = 0; 1680 ehdr->e_type = ET_CORE; 1681 ehdr->e_machine = td->td_proc->p_elf_machine; 1682 ehdr->e_version = EV_CURRENT; 1683 ehdr->e_entry = 0; 1684 ehdr->e_phoff = sizeof(Elf_Ehdr); 1685 ehdr->e_flags = td->td_proc->p_elf_flags; 1686 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1687 ehdr->e_phentsize = sizeof(Elf_Phdr); 1688 ehdr->e_shentsize = sizeof(Elf_Shdr); 1689 ehdr->e_shstrndx = SHN_UNDEF; 1690 if (numsegs + 1 < PN_XNUM) { 1691 ehdr->e_phnum = numsegs + 1; 1692 ehdr->e_shnum = 0; 1693 } else { 1694 ehdr->e_phnum = PN_XNUM; 1695 ehdr->e_shnum = 1; 1696 1697 ehdr->e_shoff = ehdr->e_phoff + 1698 (numsegs + 1) * ehdr->e_phentsize; 1699 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1700 ("e_shoff: %zu, hdrsize - shdr: %zu", 1701 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1702 1703 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1704 memset(shdr, 0, sizeof(*shdr)); 1705 /* 1706 * A special first section is used to hold large segment and 1707 * section counts. This was proposed by Sun Microsystems in 1708 * Solaris and has been adopted by Linux; the standard ELF 1709 * tools are already familiar with the technique. 1710 * 1711 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1712 * (or 12-7 depending on the version of the document) for more 1713 * details. 1714 */ 1715 shdr->sh_type = SHT_NULL; 1716 shdr->sh_size = ehdr->e_shnum; 1717 shdr->sh_link = ehdr->e_shstrndx; 1718 shdr->sh_info = numsegs + 1; 1719 } 1720 1721 /* 1722 * Fill in the program header entries. 1723 */ 1724 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1725 1726 /* The note segement. */ 1727 phdr->p_type = PT_NOTE; 1728 phdr->p_offset = hdrsize; 1729 phdr->p_vaddr = 0; 1730 phdr->p_paddr = 0; 1731 phdr->p_filesz = notesz; 1732 phdr->p_memsz = 0; 1733 phdr->p_flags = PF_R; 1734 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1735 phdr++; 1736 1737 /* All the writable segments from the program. */ 1738 phc.phdr = phdr; 1739 phc.offset = round_page(hdrsize + notesz); 1740 each_dumpable_segment(td, cb_put_phdr, &phc); 1741 } 1742 1743 static size_t 1744 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1745 { 1746 struct note_info *ninfo; 1747 size_t size, notesize; 1748 1749 size = 0; 1750 out(arg, NULL, &size); 1751 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1752 ninfo->type = type; 1753 ninfo->outfunc = out; 1754 ninfo->outarg = arg; 1755 ninfo->outsize = size; 1756 TAILQ_INSERT_TAIL(list, ninfo, link); 1757 1758 if (type == -1) 1759 return (size); 1760 1761 notesize = sizeof(Elf_Note) + /* note header */ 1762 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1763 /* note name */ 1764 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1765 1766 return (notesize); 1767 } 1768 1769 static size_t 1770 append_note_data(const void *src, void *dst, size_t len) 1771 { 1772 size_t padded_len; 1773 1774 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1775 if (dst != NULL) { 1776 bcopy(src, dst, len); 1777 bzero((char *)dst + len, padded_len - len); 1778 } 1779 return (padded_len); 1780 } 1781 1782 size_t 1783 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1784 { 1785 Elf_Note *note; 1786 char *buf; 1787 size_t notesize; 1788 1789 buf = dst; 1790 if (buf != NULL) { 1791 note = (Elf_Note *)buf; 1792 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1793 note->n_descsz = size; 1794 note->n_type = type; 1795 buf += sizeof(*note); 1796 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1797 sizeof(FREEBSD_ABI_VENDOR)); 1798 append_note_data(src, buf, size); 1799 if (descp != NULL) 1800 *descp = buf; 1801 } 1802 1803 notesize = sizeof(Elf_Note) + /* note header */ 1804 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1805 /* note name */ 1806 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1807 1808 return (notesize); 1809 } 1810 1811 static void 1812 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1813 { 1814 Elf_Note note; 1815 ssize_t old_len, sect_len; 1816 size_t new_len, descsz, i; 1817 1818 if (ninfo->type == -1) { 1819 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1820 return; 1821 } 1822 1823 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1824 note.n_descsz = ninfo->outsize; 1825 note.n_type = ninfo->type; 1826 1827 sbuf_bcat(sb, ¬e, sizeof(note)); 1828 sbuf_start_section(sb, &old_len); 1829 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1830 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1831 if (note.n_descsz == 0) 1832 return; 1833 sbuf_start_section(sb, &old_len); 1834 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1835 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1836 if (sect_len < 0) 1837 return; 1838 1839 new_len = (size_t)sect_len; 1840 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1841 if (new_len < descsz) { 1842 /* 1843 * It is expected that individual note emitters will correctly 1844 * predict their expected output size and fill up to that size 1845 * themselves, padding in a format-specific way if needed. 1846 * However, in case they don't, just do it here with zeros. 1847 */ 1848 for (i = 0; i < descsz - new_len; i++) 1849 sbuf_putc(sb, 0); 1850 } else if (new_len > descsz) { 1851 /* 1852 * We can't always truncate sb -- we may have drained some 1853 * of it already. 1854 */ 1855 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1856 "read it (%zu > %zu). Since it is longer than " 1857 "expected, this coredump's notes are corrupt. THIS " 1858 "IS A BUG in the note_procstat routine for type %u.\n", 1859 __func__, (unsigned)note.n_type, new_len, descsz, 1860 (unsigned)note.n_type)); 1861 } 1862 } 1863 1864 /* 1865 * Miscellaneous note out functions. 1866 */ 1867 1868 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1869 #include <compat/freebsd32/freebsd32.h> 1870 1871 typedef struct prstatus32 elf_prstatus_t; 1872 typedef struct prpsinfo32 elf_prpsinfo_t; 1873 typedef struct fpreg32 elf_prfpregset_t; 1874 typedef struct fpreg32 elf_fpregset_t; 1875 typedef struct reg32 elf_gregset_t; 1876 typedef struct thrmisc32 elf_thrmisc_t; 1877 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1878 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1879 typedef uint32_t elf_ps_strings_t; 1880 #else 1881 typedef prstatus_t elf_prstatus_t; 1882 typedef prpsinfo_t elf_prpsinfo_t; 1883 typedef prfpregset_t elf_prfpregset_t; 1884 typedef prfpregset_t elf_fpregset_t; 1885 typedef gregset_t elf_gregset_t; 1886 typedef thrmisc_t elf_thrmisc_t; 1887 #define ELF_KERN_PROC_MASK 0 1888 typedef struct kinfo_proc elf_kinfo_proc_t; 1889 typedef vm_offset_t elf_ps_strings_t; 1890 #endif 1891 1892 static void 1893 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1894 { 1895 struct sbuf sbarg; 1896 size_t len; 1897 char *cp, *end; 1898 struct proc *p; 1899 elf_prpsinfo_t *psinfo; 1900 int error; 1901 1902 p = (struct proc *)arg; 1903 if (sb != NULL) { 1904 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1905 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1906 psinfo->pr_version = PRPSINFO_VERSION; 1907 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1908 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1909 PROC_LOCK(p); 1910 if (p->p_args != NULL) { 1911 len = sizeof(psinfo->pr_psargs) - 1; 1912 if (len > p->p_args->ar_length) 1913 len = p->p_args->ar_length; 1914 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 1915 PROC_UNLOCK(p); 1916 error = 0; 1917 } else { 1918 _PHOLD(p); 1919 PROC_UNLOCK(p); 1920 sbuf_new(&sbarg, psinfo->pr_psargs, 1921 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 1922 error = proc_getargv(curthread, p, &sbarg); 1923 PRELE(p); 1924 if (sbuf_finish(&sbarg) == 0) 1925 len = sbuf_len(&sbarg) - 1; 1926 else 1927 len = sizeof(psinfo->pr_psargs) - 1; 1928 sbuf_delete(&sbarg); 1929 } 1930 if (error || len == 0) 1931 strlcpy(psinfo->pr_psargs, p->p_comm, 1932 sizeof(psinfo->pr_psargs)); 1933 else { 1934 KASSERT(len < sizeof(psinfo->pr_psargs), 1935 ("len is too long: %zu vs %zu", len, 1936 sizeof(psinfo->pr_psargs))); 1937 cp = psinfo->pr_psargs; 1938 end = cp + len - 1; 1939 for (;;) { 1940 cp = memchr(cp, '\0', end - cp); 1941 if (cp == NULL) 1942 break; 1943 *cp = ' '; 1944 } 1945 } 1946 psinfo->pr_pid = p->p_pid; 1947 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1948 free(psinfo, M_TEMP); 1949 } 1950 *sizep = sizeof(*psinfo); 1951 } 1952 1953 static void 1954 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1955 { 1956 struct thread *td; 1957 elf_prstatus_t *status; 1958 1959 td = (struct thread *)arg; 1960 if (sb != NULL) { 1961 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1962 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1963 status->pr_version = PRSTATUS_VERSION; 1964 status->pr_statussz = sizeof(elf_prstatus_t); 1965 status->pr_gregsetsz = sizeof(elf_gregset_t); 1966 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1967 status->pr_osreldate = osreldate; 1968 status->pr_cursig = td->td_proc->p_sig; 1969 status->pr_pid = td->td_tid; 1970 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1971 fill_regs32(td, &status->pr_reg); 1972 #else 1973 fill_regs(td, &status->pr_reg); 1974 #endif 1975 sbuf_bcat(sb, status, sizeof(*status)); 1976 free(status, M_TEMP); 1977 } 1978 *sizep = sizeof(*status); 1979 } 1980 1981 static void 1982 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1983 { 1984 struct thread *td; 1985 elf_prfpregset_t *fpregset; 1986 1987 td = (struct thread *)arg; 1988 if (sb != NULL) { 1989 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1990 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1991 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1992 fill_fpregs32(td, fpregset); 1993 #else 1994 fill_fpregs(td, fpregset); 1995 #endif 1996 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1997 free(fpregset, M_TEMP); 1998 } 1999 *sizep = sizeof(*fpregset); 2000 } 2001 2002 static void 2003 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2004 { 2005 struct thread *td; 2006 elf_thrmisc_t thrmisc; 2007 2008 td = (struct thread *)arg; 2009 if (sb != NULL) { 2010 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2011 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2012 strcpy(thrmisc.pr_tname, td->td_name); 2013 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2014 } 2015 *sizep = sizeof(thrmisc); 2016 } 2017 2018 /* 2019 * Allow for MD specific notes, as well as any MD 2020 * specific preparations for writing MI notes. 2021 */ 2022 static void 2023 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2024 { 2025 struct thread *td; 2026 void *buf; 2027 size_t size; 2028 2029 td = (struct thread *)arg; 2030 size = *sizep; 2031 if (size != 0 && sb != NULL) 2032 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2033 else 2034 buf = NULL; 2035 size = 0; 2036 __elfN(dump_thread)(td, buf, &size); 2037 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2038 if (size != 0 && sb != NULL) 2039 sbuf_bcat(sb, buf, size); 2040 free(buf, M_TEMP); 2041 *sizep = size; 2042 } 2043 2044 #ifdef KINFO_PROC_SIZE 2045 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2046 #endif 2047 2048 static void 2049 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2050 { 2051 struct proc *p; 2052 size_t size; 2053 int structsize; 2054 2055 p = (struct proc *)arg; 2056 size = sizeof(structsize) + p->p_numthreads * 2057 sizeof(elf_kinfo_proc_t); 2058 2059 if (sb != NULL) { 2060 KASSERT(*sizep == size, ("invalid size")); 2061 structsize = sizeof(elf_kinfo_proc_t); 2062 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2063 sx_slock(&proctree_lock); 2064 PROC_LOCK(p); 2065 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2066 sx_sunlock(&proctree_lock); 2067 } 2068 *sizep = size; 2069 } 2070 2071 #ifdef KINFO_FILE_SIZE 2072 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2073 #endif 2074 2075 static void 2076 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2077 { 2078 struct proc *p; 2079 size_t size, sect_sz, i; 2080 ssize_t start_len, sect_len; 2081 int structsize, filedesc_flags; 2082 2083 if (coredump_pack_fileinfo) 2084 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2085 else 2086 filedesc_flags = 0; 2087 2088 p = (struct proc *)arg; 2089 structsize = sizeof(struct kinfo_file); 2090 if (sb == NULL) { 2091 size = 0; 2092 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2093 sbuf_set_drain(sb, sbuf_drain_count, &size); 2094 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2095 PROC_LOCK(p); 2096 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2097 sbuf_finish(sb); 2098 sbuf_delete(sb); 2099 *sizep = size; 2100 } else { 2101 sbuf_start_section(sb, &start_len); 2102 2103 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2104 PROC_LOCK(p); 2105 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2106 filedesc_flags); 2107 2108 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2109 if (sect_len < 0) 2110 return; 2111 sect_sz = sect_len; 2112 2113 KASSERT(sect_sz <= *sizep, 2114 ("kern_proc_filedesc_out did not respect maxlen; " 2115 "requested %zu, got %zu", *sizep - sizeof(structsize), 2116 sect_sz - sizeof(structsize))); 2117 2118 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2119 sbuf_putc(sb, 0); 2120 } 2121 } 2122 2123 #ifdef KINFO_VMENTRY_SIZE 2124 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2125 #endif 2126 2127 static void 2128 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2129 { 2130 struct proc *p; 2131 size_t size; 2132 int structsize, vmmap_flags; 2133 2134 if (coredump_pack_vmmapinfo) 2135 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2136 else 2137 vmmap_flags = 0; 2138 2139 p = (struct proc *)arg; 2140 structsize = sizeof(struct kinfo_vmentry); 2141 if (sb == NULL) { 2142 size = 0; 2143 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2144 sbuf_set_drain(sb, sbuf_drain_count, &size); 2145 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2146 PROC_LOCK(p); 2147 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2148 sbuf_finish(sb); 2149 sbuf_delete(sb); 2150 *sizep = size; 2151 } else { 2152 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2153 PROC_LOCK(p); 2154 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2155 vmmap_flags); 2156 } 2157 } 2158 2159 static void 2160 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2161 { 2162 struct proc *p; 2163 size_t size; 2164 int structsize; 2165 2166 p = (struct proc *)arg; 2167 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2168 if (sb != NULL) { 2169 KASSERT(*sizep == size, ("invalid size")); 2170 structsize = sizeof(gid_t); 2171 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2172 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2173 sizeof(gid_t)); 2174 } 2175 *sizep = size; 2176 } 2177 2178 static void 2179 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2180 { 2181 struct proc *p; 2182 size_t size; 2183 int structsize; 2184 2185 p = (struct proc *)arg; 2186 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2187 if (sb != NULL) { 2188 KASSERT(*sizep == size, ("invalid size")); 2189 structsize = sizeof(p->p_fd->fd_cmask); 2190 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2191 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2192 } 2193 *sizep = size; 2194 } 2195 2196 static void 2197 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2198 { 2199 struct proc *p; 2200 struct rlimit rlim[RLIM_NLIMITS]; 2201 size_t size; 2202 int structsize, i; 2203 2204 p = (struct proc *)arg; 2205 size = sizeof(structsize) + sizeof(rlim); 2206 if (sb != NULL) { 2207 KASSERT(*sizep == size, ("invalid size")); 2208 structsize = sizeof(rlim); 2209 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2210 PROC_LOCK(p); 2211 for (i = 0; i < RLIM_NLIMITS; i++) 2212 lim_rlimit_proc(p, i, &rlim[i]); 2213 PROC_UNLOCK(p); 2214 sbuf_bcat(sb, rlim, sizeof(rlim)); 2215 } 2216 *sizep = size; 2217 } 2218 2219 static void 2220 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2221 { 2222 struct proc *p; 2223 size_t size; 2224 int structsize; 2225 2226 p = (struct proc *)arg; 2227 size = sizeof(structsize) + sizeof(p->p_osrel); 2228 if (sb != NULL) { 2229 KASSERT(*sizep == size, ("invalid size")); 2230 structsize = sizeof(p->p_osrel); 2231 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2232 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2233 } 2234 *sizep = size; 2235 } 2236 2237 static void 2238 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2239 { 2240 struct proc *p; 2241 elf_ps_strings_t ps_strings; 2242 size_t size; 2243 int structsize; 2244 2245 p = (struct proc *)arg; 2246 size = sizeof(structsize) + sizeof(ps_strings); 2247 if (sb != NULL) { 2248 KASSERT(*sizep == size, ("invalid size")); 2249 structsize = sizeof(ps_strings); 2250 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2251 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2252 #else 2253 ps_strings = p->p_sysent->sv_psstrings; 2254 #endif 2255 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2256 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2257 } 2258 *sizep = size; 2259 } 2260 2261 static void 2262 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2263 { 2264 struct proc *p; 2265 size_t size; 2266 int structsize; 2267 2268 p = (struct proc *)arg; 2269 if (sb == NULL) { 2270 size = 0; 2271 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2272 sbuf_set_drain(sb, sbuf_drain_count, &size); 2273 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2274 PHOLD(p); 2275 proc_getauxv(curthread, p, sb); 2276 PRELE(p); 2277 sbuf_finish(sb); 2278 sbuf_delete(sb); 2279 *sizep = size; 2280 } else { 2281 structsize = sizeof(Elf_Auxinfo); 2282 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2283 PHOLD(p); 2284 proc_getauxv(curthread, p, sb); 2285 PRELE(p); 2286 } 2287 } 2288 2289 static boolean_t 2290 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2291 int32_t *osrel, const Elf_Phdr *pnote) 2292 { 2293 const Elf_Note *note, *note0, *note_end; 2294 const char *note_name; 2295 char *buf; 2296 int i, error; 2297 boolean_t res; 2298 2299 /* We need some limit, might as well use PAGE_SIZE. */ 2300 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2301 return (FALSE); 2302 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2303 if (pnote->p_offset > PAGE_SIZE || 2304 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2305 VOP_UNLOCK(imgp->vp, 0); 2306 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2307 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2308 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2309 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2310 curthread->td_ucred, NOCRED, NULL, curthread); 2311 if (error != 0) { 2312 uprintf("i/o error PT_NOTE\n"); 2313 res = FALSE; 2314 goto ret; 2315 } 2316 note = note0 = (const Elf_Note *)buf; 2317 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2318 } else { 2319 note = note0 = (const Elf_Note *)(imgp->image_header + 2320 pnote->p_offset); 2321 note_end = (const Elf_Note *)(imgp->image_header + 2322 pnote->p_offset + pnote->p_filesz); 2323 buf = NULL; 2324 } 2325 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2326 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2327 (const char *)note < sizeof(Elf_Note)) { 2328 res = FALSE; 2329 goto ret; 2330 } 2331 if (note->n_namesz != checknote->hdr.n_namesz || 2332 note->n_descsz != checknote->hdr.n_descsz || 2333 note->n_type != checknote->hdr.n_type) 2334 goto nextnote; 2335 note_name = (const char *)(note + 1); 2336 if (note_name + checknote->hdr.n_namesz >= 2337 (const char *)note_end || strncmp(checknote->vendor, 2338 note_name, checknote->hdr.n_namesz) != 0) 2339 goto nextnote; 2340 2341 /* 2342 * Fetch the osreldate for binary 2343 * from the ELF OSABI-note if necessary. 2344 */ 2345 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2346 checknote->trans_osrel != NULL) { 2347 res = checknote->trans_osrel(note, osrel); 2348 goto ret; 2349 } 2350 res = TRUE; 2351 goto ret; 2352 nextnote: 2353 note = (const Elf_Note *)((const char *)(note + 1) + 2354 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2355 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2356 } 2357 res = FALSE; 2358 ret: 2359 free(buf, M_TEMP); 2360 return (res); 2361 } 2362 2363 /* 2364 * Try to find the appropriate ABI-note section for checknote, 2365 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2366 * first page of the image is searched, the same as for headers. 2367 */ 2368 static boolean_t 2369 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2370 int32_t *osrel) 2371 { 2372 const Elf_Phdr *phdr; 2373 const Elf_Ehdr *hdr; 2374 int i; 2375 2376 hdr = (const Elf_Ehdr *)imgp->image_header; 2377 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2378 2379 for (i = 0; i < hdr->e_phnum; i++) { 2380 if (phdr[i].p_type == PT_NOTE && 2381 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2382 return (TRUE); 2383 } 2384 return (FALSE); 2385 2386 } 2387 2388 /* 2389 * Tell kern_execve.c about it, with a little help from the linker. 2390 */ 2391 static struct execsw __elfN(execsw) = { 2392 __CONCAT(exec_, __elfN(imgact)), 2393 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2394 }; 2395 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2396 2397 static vm_prot_t 2398 __elfN(trans_prot)(Elf_Word flags) 2399 { 2400 vm_prot_t prot; 2401 2402 prot = 0; 2403 if (flags & PF_X) 2404 prot |= VM_PROT_EXECUTE; 2405 if (flags & PF_W) 2406 prot |= VM_PROT_WRITE; 2407 if (flags & PF_R) 2408 prot |= VM_PROT_READ; 2409 #if __ELF_WORD_SIZE == 32 2410 #if defined(__amd64__) 2411 if (i386_read_exec && (flags & PF_R)) 2412 prot |= VM_PROT_EXECUTE; 2413 #endif 2414 #endif 2415 return (prot); 2416 } 2417 2418 static Elf_Word 2419 __elfN(untrans_prot)(vm_prot_t prot) 2420 { 2421 Elf_Word flags; 2422 2423 flags = 0; 2424 if (prot & VM_PROT_EXECUTE) 2425 flags |= PF_X; 2426 if (prot & VM_PROT_READ) 2427 flags |= PF_R; 2428 if (prot & VM_PROT_WRITE) 2429 flags |= PF_W; 2430 return (flags); 2431 } 2432