xref: /freebsd/sys/kern/imgact_elf.c (revision f0574f5cf69e168cc4ea71ebbe5fdec9ec9a3dfe)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_capsicum.h"
35 #include "opt_compat.h"
36 #include "opt_gzio.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/exec.h>
41 #include <sys/fcntl.h>
42 #include <sys/gzio.h>
43 #include <sys/imgact.h>
44 #include <sys/imgact_elf.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/mman.h>
51 #include <sys/namei.h>
52 #include <sys/pioctl.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/racct.h>
56 #include <sys/resourcevar.h>
57 #include <sys/rwlock.h>
58 #include <sys/sbuf.h>
59 #include <sys/sf_buf.h>
60 #include <sys/smp.h>
61 #include <sys/systm.h>
62 #include <sys/signalvar.h>
63 #include <sys/stat.h>
64 #include <sys/sx.h>
65 #include <sys/syscall.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysent.h>
68 #include <sys/vnode.h>
69 #include <sys/syslog.h>
70 #include <sys/eventhandler.h>
71 #include <sys/user.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_param.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80 
81 #include <machine/elf.h>
82 #include <machine/md_var.h>
83 
84 #define ELF_NOTE_ROUNDSIZE	4
85 #define OLD_EI_BRAND	8
86 
87 static int __elfN(check_header)(const Elf_Ehdr *hdr);
88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
89     const char *interp, int interp_name_len, int32_t *osrel);
90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
91     u_long *entry, size_t pagesize);
92 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
93     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
94     size_t pagesize);
95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note,
97     int32_t *osrel);
98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
99 static boolean_t __elfN(check_note)(struct image_params *imgp,
100     Elf_Brandnote *checknote, int32_t *osrel);
101 static vm_prot_t __elfN(trans_prot)(Elf_Word);
102 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
103 
104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
105     "");
106 
107 #define	CORE_BUF_SIZE	(16 * 1024)
108 
109 int __elfN(fallback_brand) = -1;
110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
111     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
112     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
113 
114 static int elf_legacy_coredump = 0;
115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
116     &elf_legacy_coredump, 0,
117     "include all and only RW pages in core dumps");
118 
119 int __elfN(nxstack) =
120 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
121     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__)
122 	1;
123 #else
124 	0;
125 #endif
126 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
127     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
128     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
129 
130 #if __ELF_WORD_SIZE == 32
131 #if defined(__amd64__)
132 int i386_read_exec = 0;
133 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
134     "enable execution from readable segments");
135 #endif
136 #endif
137 
138 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
139 
140 #define	trunc_page_ps(va, ps)	rounddown2(va, ps)
141 #define	round_page_ps(va, ps)	roundup2(va, ps)
142 #define	aligned(a, t)	(trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a))
143 
144 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
145 
146 Elf_Brandnote __elfN(freebsd_brandnote) = {
147 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
148 	.hdr.n_descsz	= sizeof(int32_t),
149 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
150 	.vendor		= FREEBSD_ABI_VENDOR,
151 	.flags		= BN_TRANSLATE_OSREL,
152 	.trans_osrel	= __elfN(freebsd_trans_osrel)
153 };
154 
155 static boolean_t
156 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
157 {
158 	uintptr_t p;
159 
160 	p = (uintptr_t)(note + 1);
161 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
162 	*osrel = *(const int32_t *)(p);
163 
164 	return (TRUE);
165 }
166 
167 static const char GNU_ABI_VENDOR[] = "GNU";
168 static int GNU_KFREEBSD_ABI_DESC = 3;
169 
170 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
171 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
172 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
173 	.hdr.n_type	= 1,
174 	.vendor		= GNU_ABI_VENDOR,
175 	.flags		= BN_TRANSLATE_OSREL,
176 	.trans_osrel	= kfreebsd_trans_osrel
177 };
178 
179 static boolean_t
180 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
181 {
182 	const Elf32_Word *desc;
183 	uintptr_t p;
184 
185 	p = (uintptr_t)(note + 1);
186 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
187 
188 	desc = (const Elf32_Word *)p;
189 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
190 		return (FALSE);
191 
192 	/*
193 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
194 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
195 	 */
196 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
197 
198 	return (TRUE);
199 }
200 
201 int
202 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
203 {
204 	int i;
205 
206 	for (i = 0; i < MAX_BRANDS; i++) {
207 		if (elf_brand_list[i] == NULL) {
208 			elf_brand_list[i] = entry;
209 			break;
210 		}
211 	}
212 	if (i == MAX_BRANDS) {
213 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
214 			__func__, entry);
215 		return (-1);
216 	}
217 	return (0);
218 }
219 
220 int
221 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
222 {
223 	int i;
224 
225 	for (i = 0; i < MAX_BRANDS; i++) {
226 		if (elf_brand_list[i] == entry) {
227 			elf_brand_list[i] = NULL;
228 			break;
229 		}
230 	}
231 	if (i == MAX_BRANDS)
232 		return (-1);
233 	return (0);
234 }
235 
236 int
237 __elfN(brand_inuse)(Elf_Brandinfo *entry)
238 {
239 	struct proc *p;
240 	int rval = FALSE;
241 
242 	sx_slock(&allproc_lock);
243 	FOREACH_PROC_IN_SYSTEM(p) {
244 		if (p->p_sysent == entry->sysvec) {
245 			rval = TRUE;
246 			break;
247 		}
248 	}
249 	sx_sunlock(&allproc_lock);
250 
251 	return (rval);
252 }
253 
254 static Elf_Brandinfo *
255 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
256     int interp_name_len, int32_t *osrel)
257 {
258 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
259 	Elf_Brandinfo *bi, *bi_m;
260 	boolean_t ret;
261 	int i;
262 
263 	/*
264 	 * We support four types of branding -- (1) the ELF EI_OSABI field
265 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
266 	 * branding w/in the ELF header, (3) path of the `interp_path'
267 	 * field, and (4) the ".note.ABI-tag" ELF section.
268 	 */
269 
270 	/* Look for an ".note.ABI-tag" ELF section */
271 	bi_m = NULL;
272 	for (i = 0; i < MAX_BRANDS; i++) {
273 		bi = elf_brand_list[i];
274 		if (bi == NULL)
275 			continue;
276 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
277 			continue;
278 		if (hdr->e_machine == bi->machine && (bi->flags &
279 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
280 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
281 			/* Give brand a chance to veto check_note's guess */
282 			if (ret && bi->header_supported)
283 				ret = bi->header_supported(imgp);
284 			/*
285 			 * If note checker claimed the binary, but the
286 			 * interpreter path in the image does not
287 			 * match default one for the brand, try to
288 			 * search for other brands with the same
289 			 * interpreter.  Either there is better brand
290 			 * with the right interpreter, or, failing
291 			 * this, we return first brand which accepted
292 			 * our note and, optionally, header.
293 			 */
294 			if (ret && bi_m == NULL && (strlen(bi->interp_path) +
295 			    1 != interp_name_len || strncmp(interp,
296 			    bi->interp_path, interp_name_len) != 0)) {
297 				bi_m = bi;
298 				ret = 0;
299 			}
300 			if (ret)
301 				return (bi);
302 		}
303 	}
304 	if (bi_m != NULL)
305 		return (bi_m);
306 
307 	/* If the executable has a brand, search for it in the brand list. */
308 	for (i = 0; i < MAX_BRANDS; i++) {
309 		bi = elf_brand_list[i];
310 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
311 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
312 			continue;
313 		if (hdr->e_machine == bi->machine &&
314 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
315 		    (bi->compat_3_brand != NULL &&
316 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
317 		    bi->compat_3_brand) == 0))) {
318 			/* Looks good, but give brand a chance to veto */
319 			if (!bi->header_supported ||
320 			    bi->header_supported(imgp)) {
321 				/*
322 				 * Again, prefer strictly matching
323 				 * interpreter path.
324 				 */
325 				if (interp_name_len == 0 &&
326 				    bi->interp_path == NULL)
327 					return (bi);
328 				if (bi->interp_path != NULL &&
329 				    strlen(bi->interp_path) + 1 ==
330 				    interp_name_len && strncmp(interp,
331 				    bi->interp_path, interp_name_len) == 0)
332 					return (bi);
333 				if (bi_m == NULL)
334 					bi_m = bi;
335 			}
336 		}
337 	}
338 	if (bi_m != NULL)
339 		return (bi_m);
340 
341 	/* No known brand, see if the header is recognized by any brand */
342 	for (i = 0; i < MAX_BRANDS; i++) {
343 		bi = elf_brand_list[i];
344 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
345 		    bi->header_supported == NULL)
346 			continue;
347 		if (hdr->e_machine == bi->machine) {
348 			ret = bi->header_supported(imgp);
349 			if (ret)
350 				return (bi);
351 		}
352 	}
353 
354 	/* Lacking a known brand, search for a recognized interpreter. */
355 	if (interp != NULL) {
356 		for (i = 0; i < MAX_BRANDS; i++) {
357 			bi = elf_brand_list[i];
358 			if (bi == NULL || (bi->flags &
359 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
360 			    != 0)
361 				continue;
362 			if (hdr->e_machine == bi->machine &&
363 			    /* ELF image p_filesz includes terminating zero */
364 			    strlen(bi->interp_path) + 1 == interp_name_len &&
365 			    strncmp(interp, bi->interp_path, interp_name_len)
366 			    == 0)
367 				return (bi);
368 		}
369 	}
370 
371 	/* Lacking a recognized interpreter, try the default brand */
372 	for (i = 0; i < MAX_BRANDS; i++) {
373 		bi = elf_brand_list[i];
374 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
375 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
376 			continue;
377 		if (hdr->e_machine == bi->machine &&
378 		    __elfN(fallback_brand) == bi->brand)
379 			return (bi);
380 	}
381 	return (NULL);
382 }
383 
384 static int
385 __elfN(check_header)(const Elf_Ehdr *hdr)
386 {
387 	Elf_Brandinfo *bi;
388 	int i;
389 
390 	if (!IS_ELF(*hdr) ||
391 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
392 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
393 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
394 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
395 	    hdr->e_version != ELF_TARG_VER)
396 		return (ENOEXEC);
397 
398 	/*
399 	 * Make sure we have at least one brand for this machine.
400 	 */
401 
402 	for (i = 0; i < MAX_BRANDS; i++) {
403 		bi = elf_brand_list[i];
404 		if (bi != NULL && bi->machine == hdr->e_machine)
405 			break;
406 	}
407 	if (i == MAX_BRANDS)
408 		return (ENOEXEC);
409 
410 	return (0);
411 }
412 
413 static int
414 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
415     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
416 {
417 	struct sf_buf *sf;
418 	int error;
419 	vm_offset_t off;
420 
421 	/*
422 	 * Create the page if it doesn't exist yet. Ignore errors.
423 	 */
424 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
425 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
426 
427 	/*
428 	 * Find the page from the underlying object.
429 	 */
430 	if (object != NULL) {
431 		sf = vm_imgact_map_page(object, offset);
432 		if (sf == NULL)
433 			return (KERN_FAILURE);
434 		off = offset - trunc_page(offset);
435 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
436 		    end - start);
437 		vm_imgact_unmap_page(sf);
438 		if (error != 0)
439 			return (KERN_FAILURE);
440 	}
441 
442 	return (KERN_SUCCESS);
443 }
444 
445 static int
446 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
447     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
448     int cow)
449 {
450 	struct sf_buf *sf;
451 	vm_offset_t off;
452 	vm_size_t sz;
453 	int error, locked, rv;
454 
455 	if (start != trunc_page(start)) {
456 		rv = __elfN(map_partial)(map, object, offset, start,
457 		    round_page(start), prot);
458 		if (rv != KERN_SUCCESS)
459 			return (rv);
460 		offset += round_page(start) - start;
461 		start = round_page(start);
462 	}
463 	if (end != round_page(end)) {
464 		rv = __elfN(map_partial)(map, object, offset +
465 		    trunc_page(end) - start, trunc_page(end), end, prot);
466 		if (rv != KERN_SUCCESS)
467 			return (rv);
468 		end = trunc_page(end);
469 	}
470 	if (start >= end)
471 		return (KERN_SUCCESS);
472 	if ((offset & PAGE_MASK) != 0) {
473 		/*
474 		 * The mapping is not page aligned.  This means that we have
475 		 * to copy the data.
476 		 */
477 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
478 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
479 		if (rv != KERN_SUCCESS)
480 			return (rv);
481 		if (object == NULL)
482 			return (KERN_SUCCESS);
483 		for (; start < end; start += sz) {
484 			sf = vm_imgact_map_page(object, offset);
485 			if (sf == NULL)
486 				return (KERN_FAILURE);
487 			off = offset - trunc_page(offset);
488 			sz = end - start;
489 			if (sz > PAGE_SIZE - off)
490 				sz = PAGE_SIZE - off;
491 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
492 			    (caddr_t)start, sz);
493 			vm_imgact_unmap_page(sf);
494 			if (error != 0)
495 				return (KERN_FAILURE);
496 			offset += sz;
497 		}
498 	} else {
499 		vm_object_reference(object);
500 		rv = vm_map_fixed(map, object, offset, start, end - start,
501 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL);
502 		if (rv != KERN_SUCCESS) {
503 			locked = VOP_ISLOCKED(imgp->vp);
504 			VOP_UNLOCK(imgp->vp, 0);
505 			vm_object_deallocate(object);
506 			vn_lock(imgp->vp, locked | LK_RETRY);
507 			return (rv);
508 		}
509 	}
510 	return (KERN_SUCCESS);
511 }
512 
513 static int
514 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
515     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
516     size_t pagesize)
517 {
518 	struct sf_buf *sf;
519 	size_t map_len;
520 	vm_map_t map;
521 	vm_object_t object;
522 	vm_offset_t off, map_addr;
523 	int error, rv, cow;
524 	size_t copy_len;
525 	vm_ooffset_t file_addr;
526 
527 	/*
528 	 * It's necessary to fail if the filsz + offset taken from the
529 	 * header is greater than the actual file pager object's size.
530 	 * If we were to allow this, then the vm_map_find() below would
531 	 * walk right off the end of the file object and into the ether.
532 	 *
533 	 * While I'm here, might as well check for something else that
534 	 * is invalid: filsz cannot be greater than memsz.
535 	 */
536 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
537 	    filsz > memsz) {
538 		uprintf("elf_load_section: truncated ELF file\n");
539 		return (ENOEXEC);
540 	}
541 
542 	object = imgp->object;
543 	map = &imgp->proc->p_vmspace->vm_map;
544 	map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize);
545 	file_addr = trunc_page_ps(offset, pagesize);
546 
547 	/*
548 	 * We have two choices.  We can either clear the data in the last page
549 	 * of an oversized mapping, or we can start the anon mapping a page
550 	 * early and copy the initialized data into that first page.  We
551 	 * choose the second.
552 	 */
553 	if (filsz == 0)
554 		map_len = 0;
555 	else if (memsz > filsz)
556 		map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr;
557 	else
558 		map_len = round_page_ps(offset + filsz, pagesize) - file_addr;
559 
560 	if (map_len != 0) {
561 		/* cow flags: don't dump readonly sections in core */
562 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
563 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
564 
565 		rv = __elfN(map_insert)(imgp, map,
566 				      object,
567 				      file_addr,	/* file offset */
568 				      map_addr,		/* virtual start */
569 				      map_addr + map_len,/* virtual end */
570 				      prot,
571 				      cow);
572 		if (rv != KERN_SUCCESS)
573 			return (EINVAL);
574 
575 		/* we can stop now if we've covered it all */
576 		if (memsz == filsz)
577 			return (0);
578 	}
579 
580 
581 	/*
582 	 * We have to get the remaining bit of the file into the first part
583 	 * of the oversized map segment.  This is normally because the .data
584 	 * segment in the file is extended to provide bss.  It's a neat idea
585 	 * to try and save a page, but it's a pain in the behind to implement.
586 	 */
587 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset +
588 	    filsz, pagesize);
589 	map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize);
590 	map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) -
591 	    map_addr;
592 
593 	/* This had damn well better be true! */
594 	if (map_len != 0) {
595 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
596 		    map_addr + map_len, prot, 0);
597 		if (rv != KERN_SUCCESS)
598 			return (EINVAL);
599 	}
600 
601 	if (copy_len != 0) {
602 		sf = vm_imgact_map_page(object, offset + filsz);
603 		if (sf == NULL)
604 			return (EIO);
605 
606 		/* send the page fragment to user space */
607 		off = trunc_page_ps(offset + filsz, pagesize) -
608 		    trunc_page(offset + filsz);
609 		error = copyout((caddr_t)sf_buf_kva(sf) + off,
610 		    (caddr_t)map_addr, copy_len);
611 		vm_imgact_unmap_page(sf);
612 		if (error != 0)
613 			return (error);
614 	}
615 
616 	/*
617 	 * Remove write access to the page if it was only granted by map_insert
618 	 * to allow copyout.
619 	 */
620 	if ((prot & VM_PROT_WRITE) == 0)
621 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
622 		    map_len), prot, FALSE);
623 
624 	return (0);
625 }
626 
627 /*
628  * Load the file "file" into memory.  It may be either a shared object
629  * or an executable.
630  *
631  * The "addr" reference parameter is in/out.  On entry, it specifies
632  * the address where a shared object should be loaded.  If the file is
633  * an executable, this value is ignored.  On exit, "addr" specifies
634  * where the file was actually loaded.
635  *
636  * The "entry" reference parameter is out only.  On exit, it specifies
637  * the entry point for the loaded file.
638  */
639 static int
640 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
641 	u_long *entry, size_t pagesize)
642 {
643 	struct {
644 		struct nameidata nd;
645 		struct vattr attr;
646 		struct image_params image_params;
647 	} *tempdata;
648 	const Elf_Ehdr *hdr = NULL;
649 	const Elf_Phdr *phdr = NULL;
650 	struct nameidata *nd;
651 	struct vattr *attr;
652 	struct image_params *imgp;
653 	vm_prot_t prot;
654 	u_long rbase;
655 	u_long base_addr = 0;
656 	int error, i, numsegs;
657 
658 #ifdef CAPABILITY_MODE
659 	/*
660 	 * XXXJA: This check can go away once we are sufficiently confident
661 	 * that the checks in namei() are correct.
662 	 */
663 	if (IN_CAPABILITY_MODE(curthread))
664 		return (ECAPMODE);
665 #endif
666 
667 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
668 	nd = &tempdata->nd;
669 	attr = &tempdata->attr;
670 	imgp = &tempdata->image_params;
671 
672 	/*
673 	 * Initialize part of the common data
674 	 */
675 	imgp->proc = p;
676 	imgp->attr = attr;
677 	imgp->firstpage = NULL;
678 	imgp->image_header = NULL;
679 	imgp->object = NULL;
680 	imgp->execlabel = NULL;
681 
682 	NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread);
683 	if ((error = namei(nd)) != 0) {
684 		nd->ni_vp = NULL;
685 		goto fail;
686 	}
687 	NDFREE(nd, NDF_ONLY_PNBUF);
688 	imgp->vp = nd->ni_vp;
689 
690 	/*
691 	 * Check permissions, modes, uid, etc on the file, and "open" it.
692 	 */
693 	error = exec_check_permissions(imgp);
694 	if (error)
695 		goto fail;
696 
697 	error = exec_map_first_page(imgp);
698 	if (error)
699 		goto fail;
700 
701 	/*
702 	 * Also make certain that the interpreter stays the same, so set
703 	 * its VV_TEXT flag, too.
704 	 */
705 	VOP_SET_TEXT(nd->ni_vp);
706 
707 	imgp->object = nd->ni_vp->v_object;
708 
709 	hdr = (const Elf_Ehdr *)imgp->image_header;
710 	if ((error = __elfN(check_header)(hdr)) != 0)
711 		goto fail;
712 	if (hdr->e_type == ET_DYN)
713 		rbase = *addr;
714 	else if (hdr->e_type == ET_EXEC)
715 		rbase = 0;
716 	else {
717 		error = ENOEXEC;
718 		goto fail;
719 	}
720 
721 	/* Only support headers that fit within first page for now      */
722 	if ((hdr->e_phoff > PAGE_SIZE) ||
723 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
724 		error = ENOEXEC;
725 		goto fail;
726 	}
727 
728 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
729 	if (!aligned(phdr, Elf_Addr)) {
730 		error = ENOEXEC;
731 		goto fail;
732 	}
733 
734 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
735 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
736 			/* Loadable segment */
737 			prot = __elfN(trans_prot)(phdr[i].p_flags);
738 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
739 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
740 			    phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize);
741 			if (error != 0)
742 				goto fail;
743 			/*
744 			 * Establish the base address if this is the
745 			 * first segment.
746 			 */
747 			if (numsegs == 0)
748   				base_addr = trunc_page(phdr[i].p_vaddr +
749 				    rbase);
750 			numsegs++;
751 		}
752 	}
753 	*addr = base_addr;
754 	*entry = (unsigned long)hdr->e_entry + rbase;
755 
756 fail:
757 	if (imgp->firstpage)
758 		exec_unmap_first_page(imgp);
759 
760 	if (nd->ni_vp)
761 		vput(nd->ni_vp);
762 
763 	free(tempdata, M_TEMP);
764 
765 	return (error);
766 }
767 
768 static int
769 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
770 {
771 	struct thread *td;
772 	const Elf_Ehdr *hdr;
773 	const Elf_Phdr *phdr;
774 	Elf_Auxargs *elf_auxargs;
775 	struct vmspace *vmspace;
776 	const char *err_str, *newinterp;
777 	char *interp, *interp_buf, *path;
778 	Elf_Brandinfo *brand_info;
779 	struct sysentvec *sv;
780 	vm_prot_t prot;
781 	u_long text_size, data_size, total_size, text_addr, data_addr;
782 	u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr;
783 	int32_t osrel;
784 	int error, i, n, interp_name_len, have_interp;
785 
786 	hdr = (const Elf_Ehdr *)imgp->image_header;
787 
788 	/*
789 	 * Do we have a valid ELF header ?
790 	 *
791 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
792 	 * if particular brand doesn't support it.
793 	 */
794 	if (__elfN(check_header)(hdr) != 0 ||
795 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
796 		return (-1);
797 
798 	/*
799 	 * From here on down, we return an errno, not -1, as we've
800 	 * detected an ELF file.
801 	 */
802 
803 	if ((hdr->e_phoff > PAGE_SIZE) ||
804 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
805 		/* Only support headers in first page for now */
806 		uprintf("Program headers not in the first page\n");
807 		return (ENOEXEC);
808 	}
809 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
810 	if (!aligned(phdr, Elf_Addr)) {
811 		uprintf("Unaligned program headers\n");
812 		return (ENOEXEC);
813 	}
814 
815 	n = error = 0;
816 	baddr = 0;
817 	osrel = 0;
818 	text_size = data_size = total_size = text_addr = data_addr = 0;
819 	entry = proghdr = 0;
820 	interp_name_len = 0;
821 	err_str = newinterp = NULL;
822 	interp = interp_buf = NULL;
823 	td = curthread;
824 
825 	for (i = 0; i < hdr->e_phnum; i++) {
826 		switch (phdr[i].p_type) {
827 		case PT_LOAD:
828 			if (n == 0)
829 				baddr = phdr[i].p_vaddr;
830 			n++;
831 			break;
832 		case PT_INTERP:
833 			/* Path to interpreter */
834 			if (phdr[i].p_filesz > MAXPATHLEN) {
835 				uprintf("Invalid PT_INTERP\n");
836 				error = ENOEXEC;
837 				goto ret;
838 			}
839 			if (interp != NULL) {
840 				uprintf("Multiple PT_INTERP headers\n");
841 				error = ENOEXEC;
842 				goto ret;
843 			}
844 			interp_name_len = phdr[i].p_filesz;
845 			if (phdr[i].p_offset > PAGE_SIZE ||
846 			    interp_name_len > PAGE_SIZE - phdr[i].p_offset) {
847 				VOP_UNLOCK(imgp->vp, 0);
848 				interp_buf = malloc(interp_name_len + 1, M_TEMP,
849 				    M_WAITOK);
850 				vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
851 				error = vn_rdwr(UIO_READ, imgp->vp, interp_buf,
852 				    interp_name_len, phdr[i].p_offset,
853 				    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
854 				    NOCRED, NULL, td);
855 				if (error != 0) {
856 					uprintf("i/o error PT_INTERP\n");
857 					goto ret;
858 				}
859 				interp_buf[interp_name_len] = '\0';
860 				interp = interp_buf;
861 			} else {
862 				interp = __DECONST(char *, imgp->image_header) +
863 				    phdr[i].p_offset;
864 			}
865 			break;
866 		case PT_GNU_STACK:
867 			if (__elfN(nxstack))
868 				imgp->stack_prot =
869 				    __elfN(trans_prot)(phdr[i].p_flags);
870 			imgp->stack_sz = phdr[i].p_memsz;
871 			break;
872 		}
873 	}
874 
875 	brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len,
876 	    &osrel);
877 	if (brand_info == NULL) {
878 		uprintf("ELF binary type \"%u\" not known.\n",
879 		    hdr->e_ident[EI_OSABI]);
880 		error = ENOEXEC;
881 		goto ret;
882 	}
883 	et_dyn_addr = 0;
884 	if (hdr->e_type == ET_DYN) {
885 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
886 			uprintf("Cannot execute shared object\n");
887 			error = ENOEXEC;
888 			goto ret;
889 		}
890 		/*
891 		 * Honour the base load address from the dso if it is
892 		 * non-zero for some reason.
893 		 */
894 		if (baddr == 0)
895 			et_dyn_addr = ET_DYN_LOAD_ADDR;
896 	}
897 	sv = brand_info->sysvec;
898 	if (interp != NULL && brand_info->interp_newpath != NULL)
899 		newinterp = brand_info->interp_newpath;
900 
901 	/*
902 	 * Avoid a possible deadlock if the current address space is destroyed
903 	 * and that address space maps the locked vnode.  In the common case,
904 	 * the locked vnode's v_usecount is decremented but remains greater
905 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
906 	 * However, in cases where the vnode lock is external, such as nullfs,
907 	 * v_usecount may become zero.
908 	 *
909 	 * The VV_TEXT flag prevents modifications to the executable while
910 	 * the vnode is unlocked.
911 	 */
912 	VOP_UNLOCK(imgp->vp, 0);
913 
914 	error = exec_new_vmspace(imgp, sv);
915 	imgp->proc->p_sysent = sv;
916 
917 	vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
918 	if (error != 0)
919 		goto ret;
920 
921 	for (i = 0; i < hdr->e_phnum; i++) {
922 		switch (phdr[i].p_type) {
923 		case PT_LOAD:	/* Loadable segment */
924 			if (phdr[i].p_memsz == 0)
925 				break;
926 			prot = __elfN(trans_prot)(phdr[i].p_flags);
927 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
928 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr,
929 			    phdr[i].p_memsz, phdr[i].p_filesz, prot,
930 			    sv->sv_pagesize);
931 			if (error != 0)
932 				goto ret;
933 
934 			/*
935 			 * If this segment contains the program headers,
936 			 * remember their virtual address for the AT_PHDR
937 			 * aux entry. Static binaries don't usually include
938 			 * a PT_PHDR entry.
939 			 */
940 			if (phdr[i].p_offset == 0 &&
941 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
942 				<= phdr[i].p_filesz)
943 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
944 				    et_dyn_addr;
945 
946 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
947 			seg_size = round_page(phdr[i].p_memsz +
948 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
949 
950 			/*
951 			 * Make the largest executable segment the official
952 			 * text segment and all others data.
953 			 *
954 			 * Note that obreak() assumes that data_addr +
955 			 * data_size == end of data load area, and the ELF
956 			 * file format expects segments to be sorted by
957 			 * address.  If multiple data segments exist, the
958 			 * last one will be used.
959 			 */
960 
961 			if (phdr[i].p_flags & PF_X && text_size < seg_size) {
962 				text_size = seg_size;
963 				text_addr = seg_addr;
964 			} else {
965 				data_size = seg_size;
966 				data_addr = seg_addr;
967 			}
968 			total_size += seg_size;
969 			break;
970 		case PT_PHDR: 	/* Program header table info */
971 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
972 			break;
973 		default:
974 			break;
975 		}
976 	}
977 
978 	if (data_addr == 0 && data_size == 0) {
979 		data_addr = text_addr;
980 		data_size = text_size;
981 	}
982 
983 	entry = (u_long)hdr->e_entry + et_dyn_addr;
984 
985 	/*
986 	 * Check limits.  It should be safe to check the
987 	 * limits after loading the segments since we do
988 	 * not actually fault in all the segments pages.
989 	 */
990 	PROC_LOCK(imgp->proc);
991 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
992 		err_str = "Data segment size exceeds process limit";
993 	else if (text_size > maxtsiz)
994 		err_str = "Text segment size exceeds system limit";
995 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
996 		err_str = "Total segment size exceeds process limit";
997 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
998 		err_str = "Data segment size exceeds resource limit";
999 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
1000 		err_str = "Total segment size exceeds resource limit";
1001 	if (err_str != NULL) {
1002 		PROC_UNLOCK(imgp->proc);
1003 		uprintf("%s\n", err_str);
1004 		error = ENOMEM;
1005 		goto ret;
1006 	}
1007 
1008 	vmspace = imgp->proc->p_vmspace;
1009 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
1010 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
1011 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
1012 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
1013 
1014 	/*
1015 	 * We load the dynamic linker where a userland call
1016 	 * to mmap(0, ...) would put it.  The rationale behind this
1017 	 * calculation is that it leaves room for the heap to grow to
1018 	 * its maximum allowed size.
1019 	 */
1020 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1021 	    RLIMIT_DATA));
1022 	PROC_UNLOCK(imgp->proc);
1023 
1024 	imgp->entry_addr = entry;
1025 
1026 	if (interp != NULL) {
1027 		have_interp = FALSE;
1028 		VOP_UNLOCK(imgp->vp, 0);
1029 		if (brand_info->emul_path != NULL &&
1030 		    brand_info->emul_path[0] != '\0') {
1031 			path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1032 			snprintf(path, MAXPATHLEN, "%s%s",
1033 			    brand_info->emul_path, interp);
1034 			error = __elfN(load_file)(imgp->proc, path, &addr,
1035 			    &imgp->entry_addr, sv->sv_pagesize);
1036 			free(path, M_TEMP);
1037 			if (error == 0)
1038 				have_interp = TRUE;
1039 		}
1040 		if (!have_interp && newinterp != NULL &&
1041 		    (brand_info->interp_path == NULL ||
1042 		    strcmp(interp, brand_info->interp_path) == 0)) {
1043 			error = __elfN(load_file)(imgp->proc, newinterp, &addr,
1044 			    &imgp->entry_addr, sv->sv_pagesize);
1045 			if (error == 0)
1046 				have_interp = TRUE;
1047 		}
1048 		if (!have_interp) {
1049 			error = __elfN(load_file)(imgp->proc, interp, &addr,
1050 			    &imgp->entry_addr, sv->sv_pagesize);
1051 		}
1052 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
1053 		if (error != 0) {
1054 			uprintf("ELF interpreter %s not found, error %d\n",
1055 			    interp, error);
1056 			goto ret;
1057 		}
1058 	} else
1059 		addr = et_dyn_addr;
1060 
1061 	/*
1062 	 * Construct auxargs table (used by the fixup routine)
1063 	 */
1064 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1065 	elf_auxargs->execfd = -1;
1066 	elf_auxargs->phdr = proghdr;
1067 	elf_auxargs->phent = hdr->e_phentsize;
1068 	elf_auxargs->phnum = hdr->e_phnum;
1069 	elf_auxargs->pagesz = PAGE_SIZE;
1070 	elf_auxargs->base = addr;
1071 	elf_auxargs->flags = 0;
1072 	elf_auxargs->entry = entry;
1073 	elf_auxargs->hdr_eflags = hdr->e_flags;
1074 
1075 	imgp->auxargs = elf_auxargs;
1076 	imgp->interpreted = 0;
1077 	imgp->reloc_base = addr;
1078 	imgp->proc->p_osrel = osrel;
1079 	imgp->proc->p_elf_machine = hdr->e_machine;
1080 	imgp->proc->p_elf_flags = hdr->e_flags;
1081 
1082 ret:
1083 	free(interp_buf, M_TEMP);
1084 	return (error);
1085 }
1086 
1087 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1088 
1089 int
1090 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
1091 {
1092 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1093 	Elf_Addr *base;
1094 	Elf_Addr *pos;
1095 
1096 	base = (Elf_Addr *)*stack_base;
1097 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
1098 
1099 	if (args->execfd != -1)
1100 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1101 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1102 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1103 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1104 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1105 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1106 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1107 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1108 #ifdef AT_EHDRFLAGS
1109 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1110 #endif
1111 	if (imgp->execpathp != 0)
1112 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1113 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1114 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1115 	if (imgp->canary != 0) {
1116 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1117 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1118 	}
1119 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1120 	if (imgp->pagesizes != 0) {
1121 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1122 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1123 	}
1124 	if (imgp->sysent->sv_timekeep_base != 0) {
1125 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1126 		    imgp->sysent->sv_timekeep_base);
1127 	}
1128 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1129 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1130 	    imgp->sysent->sv_stackprot);
1131 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1132 
1133 	free(imgp->auxargs, M_TEMP);
1134 	imgp->auxargs = NULL;
1135 
1136 	base--;
1137 	suword(base, (long)imgp->args->argc);
1138 	*stack_base = (register_t *)base;
1139 	return (0);
1140 }
1141 
1142 /*
1143  * Code for generating ELF core dumps.
1144  */
1145 
1146 typedef void (*segment_callback)(vm_map_entry_t, void *);
1147 
1148 /* Closure for cb_put_phdr(). */
1149 struct phdr_closure {
1150 	Elf_Phdr *phdr;		/* Program header to fill in */
1151 	Elf_Off offset;		/* Offset of segment in core file */
1152 };
1153 
1154 /* Closure for cb_size_segment(). */
1155 struct sseg_closure {
1156 	int count;		/* Count of writable segments. */
1157 	size_t size;		/* Total size of all writable segments. */
1158 };
1159 
1160 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1161 
1162 struct note_info {
1163 	int		type;		/* Note type. */
1164 	outfunc_t 	outfunc; 	/* Output function. */
1165 	void		*outarg;	/* Argument for the output function. */
1166 	size_t		outsize;	/* Output size. */
1167 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1168 };
1169 
1170 TAILQ_HEAD(note_info_list, note_info);
1171 
1172 /* Coredump output parameters. */
1173 struct coredump_params {
1174 	off_t		offset;
1175 	struct ucred	*active_cred;
1176 	struct ucred	*file_cred;
1177 	struct thread	*td;
1178 	struct vnode	*vp;
1179 	struct gzio_stream *gzs;
1180 };
1181 
1182 static void cb_put_phdr(vm_map_entry_t, void *);
1183 static void cb_size_segment(vm_map_entry_t, void *);
1184 static int core_write(struct coredump_params *, const void *, size_t, off_t,
1185     enum uio_seg);
1186 static void each_dumpable_segment(struct thread *, segment_callback, void *);
1187 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1188     struct note_info_list *, size_t);
1189 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1190     size_t *);
1191 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1192 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1193 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1194 static int sbuf_drain_core_output(void *, const char *, int);
1195 static int sbuf_drain_count(void *arg, const char *data, int len);
1196 
1197 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1198 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1199 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1200 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1201 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1202 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1203 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1204 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1205 static void note_procstat_files(void *, struct sbuf *, size_t *);
1206 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1207 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1208 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1209 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1210 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1211 
1212 #ifdef GZIO
1213 extern int compress_user_cores_gzlevel;
1214 
1215 /*
1216  * Write out a core segment to the compression stream.
1217  */
1218 static int
1219 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1220 {
1221 	u_int chunk_len;
1222 	int error;
1223 
1224 	while (len > 0) {
1225 		chunk_len = MIN(len, CORE_BUF_SIZE);
1226 
1227 		/*
1228 		 * We can get EFAULT error here.
1229 		 * In that case zero out the current chunk of the segment.
1230 		 */
1231 		error = copyin(base, buf, chunk_len);
1232 		if (error != 0)
1233 			bzero(buf, chunk_len);
1234 		error = gzio_write(p->gzs, buf, chunk_len);
1235 		if (error != 0)
1236 			break;
1237 		base += chunk_len;
1238 		len -= chunk_len;
1239 	}
1240 	return (error);
1241 }
1242 
1243 static int
1244 core_gz_write(void *base, size_t len, off_t offset, void *arg)
1245 {
1246 
1247 	return (core_write((struct coredump_params *)arg, base, len, offset,
1248 	    UIO_SYSSPACE));
1249 }
1250 #endif /* GZIO */
1251 
1252 static int
1253 core_write(struct coredump_params *p, const void *base, size_t len,
1254     off_t offset, enum uio_seg seg)
1255 {
1256 
1257 	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1258 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1259 	    p->active_cred, p->file_cred, NULL, p->td));
1260 }
1261 
1262 static int
1263 core_output(void *base, size_t len, off_t offset, struct coredump_params *p,
1264     void *tmpbuf)
1265 {
1266 	int error;
1267 
1268 #ifdef GZIO
1269 	if (p->gzs != NULL)
1270 		return (compress_chunk(p, base, tmpbuf, len));
1271 #endif
1272 	/*
1273 	 * EFAULT is a non-fatal error that we can get, for example,
1274 	 * if the segment is backed by a file but extends beyond its
1275 	 * end.
1276 	 */
1277 	error = core_write(p, base, len, offset, UIO_USERSPACE);
1278 	if (error == EFAULT) {
1279 		log(LOG_WARNING, "Failed to fully fault in a core file segment "
1280 		    "at VA %p with size 0x%zx to be written at offset 0x%jx "
1281 		    "for process %s\n", base, len, offset, curproc->p_comm);
1282 
1283 		/*
1284 		 * Write a "real" zero byte at the end of the target region
1285 		 * in the case this is the last segment.
1286 		 * The intermediate space will be implicitly zero-filled.
1287 		 */
1288 		error = core_write(p, zero_region, 1, offset + len - 1,
1289 		    UIO_SYSSPACE);
1290 	}
1291 	return (error);
1292 }
1293 
1294 /*
1295  * Drain into a core file.
1296  */
1297 static int
1298 sbuf_drain_core_output(void *arg, const char *data, int len)
1299 {
1300 	struct coredump_params *p;
1301 	int error, locked;
1302 
1303 	p = (struct coredump_params *)arg;
1304 
1305 	/*
1306 	 * Some kern_proc out routines that print to this sbuf may
1307 	 * call us with the process lock held. Draining with the
1308 	 * non-sleepable lock held is unsafe. The lock is needed for
1309 	 * those routines when dumping a live process. In our case we
1310 	 * can safely release the lock before draining and acquire
1311 	 * again after.
1312 	 */
1313 	locked = PROC_LOCKED(p->td->td_proc);
1314 	if (locked)
1315 		PROC_UNLOCK(p->td->td_proc);
1316 #ifdef GZIO
1317 	if (p->gzs != NULL)
1318 		error = gzio_write(p->gzs, __DECONST(char *, data), len);
1319 	else
1320 #endif
1321 		error = core_write(p, __DECONST(void *, data), len, p->offset,
1322 		    UIO_SYSSPACE);
1323 	if (locked)
1324 		PROC_LOCK(p->td->td_proc);
1325 	if (error != 0)
1326 		return (-error);
1327 	p->offset += len;
1328 	return (len);
1329 }
1330 
1331 /*
1332  * Drain into a counter.
1333  */
1334 static int
1335 sbuf_drain_count(void *arg, const char *data __unused, int len)
1336 {
1337 	size_t *sizep;
1338 
1339 	sizep = (size_t *)arg;
1340 	*sizep += len;
1341 	return (len);
1342 }
1343 
1344 int
1345 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1346 {
1347 	struct ucred *cred = td->td_ucred;
1348 	int error = 0;
1349 	struct sseg_closure seginfo;
1350 	struct note_info_list notelst;
1351 	struct coredump_params params;
1352 	struct note_info *ninfo;
1353 	void *hdr, *tmpbuf;
1354 	size_t hdrsize, notesz, coresize;
1355 #ifdef GZIO
1356 	boolean_t compress;
1357 
1358 	compress = (flags & IMGACT_CORE_COMPRESS) != 0;
1359 #endif
1360 	hdr = NULL;
1361 	tmpbuf = NULL;
1362 	TAILQ_INIT(&notelst);
1363 
1364 	/* Size the program segments. */
1365 	seginfo.count = 0;
1366 	seginfo.size = 0;
1367 	each_dumpable_segment(td, cb_size_segment, &seginfo);
1368 
1369 	/*
1370 	 * Collect info about the core file header area.
1371 	 */
1372 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1373 	if (seginfo.count + 1 >= PN_XNUM)
1374 		hdrsize += sizeof(Elf_Shdr);
1375 	__elfN(prepare_notes)(td, &notelst, &notesz);
1376 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1377 
1378 	/* Set up core dump parameters. */
1379 	params.offset = 0;
1380 	params.active_cred = cred;
1381 	params.file_cred = NOCRED;
1382 	params.td = td;
1383 	params.vp = vp;
1384 	params.gzs = NULL;
1385 
1386 #ifdef RACCT
1387 	if (racct_enable) {
1388 		PROC_LOCK(td->td_proc);
1389 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1390 		PROC_UNLOCK(td->td_proc);
1391 		if (error != 0) {
1392 			error = EFAULT;
1393 			goto done;
1394 		}
1395 	}
1396 #endif
1397 	if (coresize >= limit) {
1398 		error = EFAULT;
1399 		goto done;
1400 	}
1401 
1402 #ifdef GZIO
1403 	/* Create a compression stream if necessary. */
1404 	if (compress) {
1405 		params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE,
1406 		    CORE_BUF_SIZE, compress_user_cores_gzlevel, &params);
1407 		if (params.gzs == NULL) {
1408 			error = EFAULT;
1409 			goto done;
1410 		}
1411 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1412         }
1413 #endif
1414 
1415 	/*
1416 	 * Allocate memory for building the header, fill it up,
1417 	 * and write it out following the notes.
1418 	 */
1419 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1420 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1421 	    notesz);
1422 
1423 	/* Write the contents of all of the writable segments. */
1424 	if (error == 0) {
1425 		Elf_Phdr *php;
1426 		off_t offset;
1427 		int i;
1428 
1429 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1430 		offset = round_page(hdrsize + notesz);
1431 		for (i = 0; i < seginfo.count; i++) {
1432 			error = core_output((caddr_t)(uintptr_t)php->p_vaddr,
1433 			    php->p_filesz, offset, &params, tmpbuf);
1434 			if (error != 0)
1435 				break;
1436 			offset += php->p_filesz;
1437 			php++;
1438 		}
1439 #ifdef GZIO
1440 		if (error == 0 && compress)
1441 			error = gzio_flush(params.gzs);
1442 #endif
1443 	}
1444 	if (error) {
1445 		log(LOG_WARNING,
1446 		    "Failed to write core file for process %s (error %d)\n",
1447 		    curproc->p_comm, error);
1448 	}
1449 
1450 done:
1451 #ifdef GZIO
1452 	if (compress) {
1453 		free(tmpbuf, M_TEMP);
1454 		if (params.gzs != NULL)
1455 			gzio_fini(params.gzs);
1456 	}
1457 #endif
1458 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1459 		TAILQ_REMOVE(&notelst, ninfo, link);
1460 		free(ninfo, M_TEMP);
1461 	}
1462 	if (hdr != NULL)
1463 		free(hdr, M_TEMP);
1464 
1465 	return (error);
1466 }
1467 
1468 /*
1469  * A callback for each_dumpable_segment() to write out the segment's
1470  * program header entry.
1471  */
1472 static void
1473 cb_put_phdr(entry, closure)
1474 	vm_map_entry_t entry;
1475 	void *closure;
1476 {
1477 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1478 	Elf_Phdr *phdr = phc->phdr;
1479 
1480 	phc->offset = round_page(phc->offset);
1481 
1482 	phdr->p_type = PT_LOAD;
1483 	phdr->p_offset = phc->offset;
1484 	phdr->p_vaddr = entry->start;
1485 	phdr->p_paddr = 0;
1486 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1487 	phdr->p_align = PAGE_SIZE;
1488 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1489 
1490 	phc->offset += phdr->p_filesz;
1491 	phc->phdr++;
1492 }
1493 
1494 /*
1495  * A callback for each_dumpable_segment() to gather information about
1496  * the number of segments and their total size.
1497  */
1498 static void
1499 cb_size_segment(vm_map_entry_t entry, void *closure)
1500 {
1501 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1502 
1503 	ssc->count++;
1504 	ssc->size += entry->end - entry->start;
1505 }
1506 
1507 /*
1508  * For each writable segment in the process's memory map, call the given
1509  * function with a pointer to the map entry and some arbitrary
1510  * caller-supplied data.
1511  */
1512 static void
1513 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
1514 {
1515 	struct proc *p = td->td_proc;
1516 	vm_map_t map = &p->p_vmspace->vm_map;
1517 	vm_map_entry_t entry;
1518 	vm_object_t backing_object, object;
1519 	boolean_t ignore_entry;
1520 
1521 	vm_map_lock_read(map);
1522 	for (entry = map->header.next; entry != &map->header;
1523 	    entry = entry->next) {
1524 		/*
1525 		 * Don't dump inaccessible mappings, deal with legacy
1526 		 * coredump mode.
1527 		 *
1528 		 * Note that read-only segments related to the elf binary
1529 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1530 		 * need to arbitrarily ignore such segments.
1531 		 */
1532 		if (elf_legacy_coredump) {
1533 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1534 				continue;
1535 		} else {
1536 			if ((entry->protection & VM_PROT_ALL) == 0)
1537 				continue;
1538 		}
1539 
1540 		/*
1541 		 * Dont include memory segment in the coredump if
1542 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1543 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1544 		 * kernel map).
1545 		 */
1546 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1547 			continue;
1548 
1549 		if ((object = entry->object.vm_object) == NULL)
1550 			continue;
1551 
1552 		/* Ignore memory-mapped devices and such things. */
1553 		VM_OBJECT_RLOCK(object);
1554 		while ((backing_object = object->backing_object) != NULL) {
1555 			VM_OBJECT_RLOCK(backing_object);
1556 			VM_OBJECT_RUNLOCK(object);
1557 			object = backing_object;
1558 		}
1559 		ignore_entry = object->type != OBJT_DEFAULT &&
1560 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1561 		    object->type != OBJT_PHYS;
1562 		VM_OBJECT_RUNLOCK(object);
1563 		if (ignore_entry)
1564 			continue;
1565 
1566 		(*func)(entry, closure);
1567 	}
1568 	vm_map_unlock_read(map);
1569 }
1570 
1571 /*
1572  * Write the core file header to the file, including padding up to
1573  * the page boundary.
1574  */
1575 static int
1576 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1577     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
1578 {
1579 	struct note_info *ninfo;
1580 	struct sbuf *sb;
1581 	int error;
1582 
1583 	/* Fill in the header. */
1584 	bzero(hdr, hdrsize);
1585 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
1586 
1587 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1588 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1589 	sbuf_start_section(sb, NULL);
1590 	sbuf_bcat(sb, hdr, hdrsize);
1591 	TAILQ_FOREACH(ninfo, notelst, link)
1592 	    __elfN(putnote)(ninfo, sb);
1593 	/* Align up to a page boundary for the program segments. */
1594 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1595 	error = sbuf_finish(sb);
1596 	sbuf_delete(sb);
1597 
1598 	return (error);
1599 }
1600 
1601 static void
1602 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1603     size_t *sizep)
1604 {
1605 	struct proc *p;
1606 	struct thread *thr;
1607 	size_t size;
1608 
1609 	p = td->td_proc;
1610 	size = 0;
1611 
1612 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1613 
1614 	/*
1615 	 * To have the debugger select the right thread (LWP) as the initial
1616 	 * thread, we dump the state of the thread passed to us in td first.
1617 	 * This is the thread that causes the core dump and thus likely to
1618 	 * be the right thread one wants to have selected in the debugger.
1619 	 */
1620 	thr = td;
1621 	while (thr != NULL) {
1622 		size += register_note(list, NT_PRSTATUS,
1623 		    __elfN(note_prstatus), thr);
1624 		size += register_note(list, NT_FPREGSET,
1625 		    __elfN(note_fpregset), thr);
1626 		size += register_note(list, NT_THRMISC,
1627 		    __elfN(note_thrmisc), thr);
1628 		size += register_note(list, -1,
1629 		    __elfN(note_threadmd), thr);
1630 
1631 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1632 		    TAILQ_NEXT(thr, td_plist);
1633 		if (thr == td)
1634 			thr = TAILQ_NEXT(thr, td_plist);
1635 	}
1636 
1637 	size += register_note(list, NT_PROCSTAT_PROC,
1638 	    __elfN(note_procstat_proc), p);
1639 	size += register_note(list, NT_PROCSTAT_FILES,
1640 	    note_procstat_files, p);
1641 	size += register_note(list, NT_PROCSTAT_VMMAP,
1642 	    note_procstat_vmmap, p);
1643 	size += register_note(list, NT_PROCSTAT_GROUPS,
1644 	    note_procstat_groups, p);
1645 	size += register_note(list, NT_PROCSTAT_UMASK,
1646 	    note_procstat_umask, p);
1647 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1648 	    note_procstat_rlimit, p);
1649 	size += register_note(list, NT_PROCSTAT_OSREL,
1650 	    note_procstat_osrel, p);
1651 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1652 	    __elfN(note_procstat_psstrings), p);
1653 	size += register_note(list, NT_PROCSTAT_AUXV,
1654 	    __elfN(note_procstat_auxv), p);
1655 
1656 	*sizep = size;
1657 }
1658 
1659 static void
1660 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1661     size_t notesz)
1662 {
1663 	Elf_Ehdr *ehdr;
1664 	Elf_Phdr *phdr;
1665 	Elf_Shdr *shdr;
1666 	struct phdr_closure phc;
1667 
1668 	ehdr = (Elf_Ehdr *)hdr;
1669 
1670 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1671 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1672 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1673 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1674 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1675 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1676 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1677 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1678 	ehdr->e_ident[EI_ABIVERSION] = 0;
1679 	ehdr->e_ident[EI_PAD] = 0;
1680 	ehdr->e_type = ET_CORE;
1681 	ehdr->e_machine = td->td_proc->p_elf_machine;
1682 	ehdr->e_version = EV_CURRENT;
1683 	ehdr->e_entry = 0;
1684 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1685 	ehdr->e_flags = td->td_proc->p_elf_flags;
1686 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1687 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1688 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1689 	ehdr->e_shstrndx = SHN_UNDEF;
1690 	if (numsegs + 1 < PN_XNUM) {
1691 		ehdr->e_phnum = numsegs + 1;
1692 		ehdr->e_shnum = 0;
1693 	} else {
1694 		ehdr->e_phnum = PN_XNUM;
1695 		ehdr->e_shnum = 1;
1696 
1697 		ehdr->e_shoff = ehdr->e_phoff +
1698 		    (numsegs + 1) * ehdr->e_phentsize;
1699 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1700 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1701 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1702 
1703 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1704 		memset(shdr, 0, sizeof(*shdr));
1705 		/*
1706 		 * A special first section is used to hold large segment and
1707 		 * section counts.  This was proposed by Sun Microsystems in
1708 		 * Solaris and has been adopted by Linux; the standard ELF
1709 		 * tools are already familiar with the technique.
1710 		 *
1711 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1712 		 * (or 12-7 depending on the version of the document) for more
1713 		 * details.
1714 		 */
1715 		shdr->sh_type = SHT_NULL;
1716 		shdr->sh_size = ehdr->e_shnum;
1717 		shdr->sh_link = ehdr->e_shstrndx;
1718 		shdr->sh_info = numsegs + 1;
1719 	}
1720 
1721 	/*
1722 	 * Fill in the program header entries.
1723 	 */
1724 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1725 
1726 	/* The note segement. */
1727 	phdr->p_type = PT_NOTE;
1728 	phdr->p_offset = hdrsize;
1729 	phdr->p_vaddr = 0;
1730 	phdr->p_paddr = 0;
1731 	phdr->p_filesz = notesz;
1732 	phdr->p_memsz = 0;
1733 	phdr->p_flags = PF_R;
1734 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1735 	phdr++;
1736 
1737 	/* All the writable segments from the program. */
1738 	phc.phdr = phdr;
1739 	phc.offset = round_page(hdrsize + notesz);
1740 	each_dumpable_segment(td, cb_put_phdr, &phc);
1741 }
1742 
1743 static size_t
1744 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1745 {
1746 	struct note_info *ninfo;
1747 	size_t size, notesize;
1748 
1749 	size = 0;
1750 	out(arg, NULL, &size);
1751 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1752 	ninfo->type = type;
1753 	ninfo->outfunc = out;
1754 	ninfo->outarg = arg;
1755 	ninfo->outsize = size;
1756 	TAILQ_INSERT_TAIL(list, ninfo, link);
1757 
1758 	if (type == -1)
1759 		return (size);
1760 
1761 	notesize = sizeof(Elf_Note) +		/* note header */
1762 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1763 						/* note name */
1764 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1765 
1766 	return (notesize);
1767 }
1768 
1769 static size_t
1770 append_note_data(const void *src, void *dst, size_t len)
1771 {
1772 	size_t padded_len;
1773 
1774 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1775 	if (dst != NULL) {
1776 		bcopy(src, dst, len);
1777 		bzero((char *)dst + len, padded_len - len);
1778 	}
1779 	return (padded_len);
1780 }
1781 
1782 size_t
1783 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
1784 {
1785 	Elf_Note *note;
1786 	char *buf;
1787 	size_t notesize;
1788 
1789 	buf = dst;
1790 	if (buf != NULL) {
1791 		note = (Elf_Note *)buf;
1792 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1793 		note->n_descsz = size;
1794 		note->n_type = type;
1795 		buf += sizeof(*note);
1796 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
1797 		    sizeof(FREEBSD_ABI_VENDOR));
1798 		append_note_data(src, buf, size);
1799 		if (descp != NULL)
1800 			*descp = buf;
1801 	}
1802 
1803 	notesize = sizeof(Elf_Note) +		/* note header */
1804 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1805 						/* note name */
1806 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1807 
1808 	return (notesize);
1809 }
1810 
1811 static void
1812 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
1813 {
1814 	Elf_Note note;
1815 	ssize_t old_len, sect_len;
1816 	size_t new_len, descsz, i;
1817 
1818 	if (ninfo->type == -1) {
1819 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1820 		return;
1821 	}
1822 
1823 	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1824 	note.n_descsz = ninfo->outsize;
1825 	note.n_type = ninfo->type;
1826 
1827 	sbuf_bcat(sb, &note, sizeof(note));
1828 	sbuf_start_section(sb, &old_len);
1829 	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
1830 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1831 	if (note.n_descsz == 0)
1832 		return;
1833 	sbuf_start_section(sb, &old_len);
1834 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1835 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1836 	if (sect_len < 0)
1837 		return;
1838 
1839 	new_len = (size_t)sect_len;
1840 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
1841 	if (new_len < descsz) {
1842 		/*
1843 		 * It is expected that individual note emitters will correctly
1844 		 * predict their expected output size and fill up to that size
1845 		 * themselves, padding in a format-specific way if needed.
1846 		 * However, in case they don't, just do it here with zeros.
1847 		 */
1848 		for (i = 0; i < descsz - new_len; i++)
1849 			sbuf_putc(sb, 0);
1850 	} else if (new_len > descsz) {
1851 		/*
1852 		 * We can't always truncate sb -- we may have drained some
1853 		 * of it already.
1854 		 */
1855 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
1856 		    "read it (%zu > %zu).  Since it is longer than "
1857 		    "expected, this coredump's notes are corrupt.  THIS "
1858 		    "IS A BUG in the note_procstat routine for type %u.\n",
1859 		    __func__, (unsigned)note.n_type, new_len, descsz,
1860 		    (unsigned)note.n_type));
1861 	}
1862 }
1863 
1864 /*
1865  * Miscellaneous note out functions.
1866  */
1867 
1868 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1869 #include <compat/freebsd32/freebsd32.h>
1870 
1871 typedef struct prstatus32 elf_prstatus_t;
1872 typedef struct prpsinfo32 elf_prpsinfo_t;
1873 typedef struct fpreg32 elf_prfpregset_t;
1874 typedef struct fpreg32 elf_fpregset_t;
1875 typedef struct reg32 elf_gregset_t;
1876 typedef struct thrmisc32 elf_thrmisc_t;
1877 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
1878 typedef struct kinfo_proc32 elf_kinfo_proc_t;
1879 typedef uint32_t elf_ps_strings_t;
1880 #else
1881 typedef prstatus_t elf_prstatus_t;
1882 typedef prpsinfo_t elf_prpsinfo_t;
1883 typedef prfpregset_t elf_prfpregset_t;
1884 typedef prfpregset_t elf_fpregset_t;
1885 typedef gregset_t elf_gregset_t;
1886 typedef thrmisc_t elf_thrmisc_t;
1887 #define ELF_KERN_PROC_MASK	0
1888 typedef struct kinfo_proc elf_kinfo_proc_t;
1889 typedef vm_offset_t elf_ps_strings_t;
1890 #endif
1891 
1892 static void
1893 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
1894 {
1895 	struct sbuf sbarg;
1896 	size_t len;
1897 	char *cp, *end;
1898 	struct proc *p;
1899 	elf_prpsinfo_t *psinfo;
1900 	int error;
1901 
1902 	p = (struct proc *)arg;
1903 	if (sb != NULL) {
1904 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
1905 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
1906 		psinfo->pr_version = PRPSINFO_VERSION;
1907 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
1908 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
1909 		PROC_LOCK(p);
1910 		if (p->p_args != NULL) {
1911 			len = sizeof(psinfo->pr_psargs) - 1;
1912 			if (len > p->p_args->ar_length)
1913 				len = p->p_args->ar_length;
1914 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
1915 			PROC_UNLOCK(p);
1916 			error = 0;
1917 		} else {
1918 			_PHOLD(p);
1919 			PROC_UNLOCK(p);
1920 			sbuf_new(&sbarg, psinfo->pr_psargs,
1921 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
1922 			error = proc_getargv(curthread, p, &sbarg);
1923 			PRELE(p);
1924 			if (sbuf_finish(&sbarg) == 0)
1925 				len = sbuf_len(&sbarg) - 1;
1926 			else
1927 				len = sizeof(psinfo->pr_psargs) - 1;
1928 			sbuf_delete(&sbarg);
1929 		}
1930 		if (error || len == 0)
1931 			strlcpy(psinfo->pr_psargs, p->p_comm,
1932 			    sizeof(psinfo->pr_psargs));
1933 		else {
1934 			KASSERT(len < sizeof(psinfo->pr_psargs),
1935 			    ("len is too long: %zu vs %zu", len,
1936 			    sizeof(psinfo->pr_psargs)));
1937 			cp = psinfo->pr_psargs;
1938 			end = cp + len - 1;
1939 			for (;;) {
1940 				cp = memchr(cp, '\0', end - cp);
1941 				if (cp == NULL)
1942 					break;
1943 				*cp = ' ';
1944 			}
1945 		}
1946 		psinfo->pr_pid = p->p_pid;
1947 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
1948 		free(psinfo, M_TEMP);
1949 	}
1950 	*sizep = sizeof(*psinfo);
1951 }
1952 
1953 static void
1954 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
1955 {
1956 	struct thread *td;
1957 	elf_prstatus_t *status;
1958 
1959 	td = (struct thread *)arg;
1960 	if (sb != NULL) {
1961 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
1962 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
1963 		status->pr_version = PRSTATUS_VERSION;
1964 		status->pr_statussz = sizeof(elf_prstatus_t);
1965 		status->pr_gregsetsz = sizeof(elf_gregset_t);
1966 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
1967 		status->pr_osreldate = osreldate;
1968 		status->pr_cursig = td->td_proc->p_sig;
1969 		status->pr_pid = td->td_tid;
1970 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1971 		fill_regs32(td, &status->pr_reg);
1972 #else
1973 		fill_regs(td, &status->pr_reg);
1974 #endif
1975 		sbuf_bcat(sb, status, sizeof(*status));
1976 		free(status, M_TEMP);
1977 	}
1978 	*sizep = sizeof(*status);
1979 }
1980 
1981 static void
1982 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
1983 {
1984 	struct thread *td;
1985 	elf_prfpregset_t *fpregset;
1986 
1987 	td = (struct thread *)arg;
1988 	if (sb != NULL) {
1989 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
1990 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
1991 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1992 		fill_fpregs32(td, fpregset);
1993 #else
1994 		fill_fpregs(td, fpregset);
1995 #endif
1996 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
1997 		free(fpregset, M_TEMP);
1998 	}
1999 	*sizep = sizeof(*fpregset);
2000 }
2001 
2002 static void
2003 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2004 {
2005 	struct thread *td;
2006 	elf_thrmisc_t thrmisc;
2007 
2008 	td = (struct thread *)arg;
2009 	if (sb != NULL) {
2010 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2011 		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
2012 		strcpy(thrmisc.pr_tname, td->td_name);
2013 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2014 	}
2015 	*sizep = sizeof(thrmisc);
2016 }
2017 
2018 /*
2019  * Allow for MD specific notes, as well as any MD
2020  * specific preparations for writing MI notes.
2021  */
2022 static void
2023 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2024 {
2025 	struct thread *td;
2026 	void *buf;
2027 	size_t size;
2028 
2029 	td = (struct thread *)arg;
2030 	size = *sizep;
2031 	if (size != 0 && sb != NULL)
2032 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2033 	else
2034 		buf = NULL;
2035 	size = 0;
2036 	__elfN(dump_thread)(td, buf, &size);
2037 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2038 	if (size != 0 && sb != NULL)
2039 		sbuf_bcat(sb, buf, size);
2040 	free(buf, M_TEMP);
2041 	*sizep = size;
2042 }
2043 
2044 #ifdef KINFO_PROC_SIZE
2045 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2046 #endif
2047 
2048 static void
2049 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2050 {
2051 	struct proc *p;
2052 	size_t size;
2053 	int structsize;
2054 
2055 	p = (struct proc *)arg;
2056 	size = sizeof(structsize) + p->p_numthreads *
2057 	    sizeof(elf_kinfo_proc_t);
2058 
2059 	if (sb != NULL) {
2060 		KASSERT(*sizep == size, ("invalid size"));
2061 		structsize = sizeof(elf_kinfo_proc_t);
2062 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2063 		sx_slock(&proctree_lock);
2064 		PROC_LOCK(p);
2065 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2066 		sx_sunlock(&proctree_lock);
2067 	}
2068 	*sizep = size;
2069 }
2070 
2071 #ifdef KINFO_FILE_SIZE
2072 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2073 #endif
2074 
2075 static void
2076 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2077 {
2078 	struct proc *p;
2079 	size_t size, sect_sz, i;
2080 	ssize_t start_len, sect_len;
2081 	int structsize, filedesc_flags;
2082 
2083 	if (coredump_pack_fileinfo)
2084 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2085 	else
2086 		filedesc_flags = 0;
2087 
2088 	p = (struct proc *)arg;
2089 	structsize = sizeof(struct kinfo_file);
2090 	if (sb == NULL) {
2091 		size = 0;
2092 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2093 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2094 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2095 		PROC_LOCK(p);
2096 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2097 		sbuf_finish(sb);
2098 		sbuf_delete(sb);
2099 		*sizep = size;
2100 	} else {
2101 		sbuf_start_section(sb, &start_len);
2102 
2103 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2104 		PROC_LOCK(p);
2105 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2106 		    filedesc_flags);
2107 
2108 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2109 		if (sect_len < 0)
2110 			return;
2111 		sect_sz = sect_len;
2112 
2113 		KASSERT(sect_sz <= *sizep,
2114 		    ("kern_proc_filedesc_out did not respect maxlen; "
2115 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2116 		     sect_sz - sizeof(structsize)));
2117 
2118 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2119 			sbuf_putc(sb, 0);
2120 	}
2121 }
2122 
2123 #ifdef KINFO_VMENTRY_SIZE
2124 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2125 #endif
2126 
2127 static void
2128 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2129 {
2130 	struct proc *p;
2131 	size_t size;
2132 	int structsize, vmmap_flags;
2133 
2134 	if (coredump_pack_vmmapinfo)
2135 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2136 	else
2137 		vmmap_flags = 0;
2138 
2139 	p = (struct proc *)arg;
2140 	structsize = sizeof(struct kinfo_vmentry);
2141 	if (sb == NULL) {
2142 		size = 0;
2143 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2144 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2145 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2146 		PROC_LOCK(p);
2147 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2148 		sbuf_finish(sb);
2149 		sbuf_delete(sb);
2150 		*sizep = size;
2151 	} else {
2152 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2153 		PROC_LOCK(p);
2154 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2155 		    vmmap_flags);
2156 	}
2157 }
2158 
2159 static void
2160 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2161 {
2162 	struct proc *p;
2163 	size_t size;
2164 	int structsize;
2165 
2166 	p = (struct proc *)arg;
2167 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2168 	if (sb != NULL) {
2169 		KASSERT(*sizep == size, ("invalid size"));
2170 		structsize = sizeof(gid_t);
2171 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2172 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2173 		    sizeof(gid_t));
2174 	}
2175 	*sizep = size;
2176 }
2177 
2178 static void
2179 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2180 {
2181 	struct proc *p;
2182 	size_t size;
2183 	int structsize;
2184 
2185 	p = (struct proc *)arg;
2186 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2187 	if (sb != NULL) {
2188 		KASSERT(*sizep == size, ("invalid size"));
2189 		structsize = sizeof(p->p_fd->fd_cmask);
2190 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2191 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2192 	}
2193 	*sizep = size;
2194 }
2195 
2196 static void
2197 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2198 {
2199 	struct proc *p;
2200 	struct rlimit rlim[RLIM_NLIMITS];
2201 	size_t size;
2202 	int structsize, i;
2203 
2204 	p = (struct proc *)arg;
2205 	size = sizeof(structsize) + sizeof(rlim);
2206 	if (sb != NULL) {
2207 		KASSERT(*sizep == size, ("invalid size"));
2208 		structsize = sizeof(rlim);
2209 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2210 		PROC_LOCK(p);
2211 		for (i = 0; i < RLIM_NLIMITS; i++)
2212 			lim_rlimit_proc(p, i, &rlim[i]);
2213 		PROC_UNLOCK(p);
2214 		sbuf_bcat(sb, rlim, sizeof(rlim));
2215 	}
2216 	*sizep = size;
2217 }
2218 
2219 static void
2220 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2221 {
2222 	struct proc *p;
2223 	size_t size;
2224 	int structsize;
2225 
2226 	p = (struct proc *)arg;
2227 	size = sizeof(structsize) + sizeof(p->p_osrel);
2228 	if (sb != NULL) {
2229 		KASSERT(*sizep == size, ("invalid size"));
2230 		structsize = sizeof(p->p_osrel);
2231 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2232 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2233 	}
2234 	*sizep = size;
2235 }
2236 
2237 static void
2238 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2239 {
2240 	struct proc *p;
2241 	elf_ps_strings_t ps_strings;
2242 	size_t size;
2243 	int structsize;
2244 
2245 	p = (struct proc *)arg;
2246 	size = sizeof(structsize) + sizeof(ps_strings);
2247 	if (sb != NULL) {
2248 		KASSERT(*sizep == size, ("invalid size"));
2249 		structsize = sizeof(ps_strings);
2250 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2251 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2252 #else
2253 		ps_strings = p->p_sysent->sv_psstrings;
2254 #endif
2255 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2256 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2257 	}
2258 	*sizep = size;
2259 }
2260 
2261 static void
2262 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2263 {
2264 	struct proc *p;
2265 	size_t size;
2266 	int structsize;
2267 
2268 	p = (struct proc *)arg;
2269 	if (sb == NULL) {
2270 		size = 0;
2271 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2272 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2273 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2274 		PHOLD(p);
2275 		proc_getauxv(curthread, p, sb);
2276 		PRELE(p);
2277 		sbuf_finish(sb);
2278 		sbuf_delete(sb);
2279 		*sizep = size;
2280 	} else {
2281 		structsize = sizeof(Elf_Auxinfo);
2282 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2283 		PHOLD(p);
2284 		proc_getauxv(curthread, p, sb);
2285 		PRELE(p);
2286 	}
2287 }
2288 
2289 static boolean_t
2290 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote,
2291     int32_t *osrel, const Elf_Phdr *pnote)
2292 {
2293 	const Elf_Note *note, *note0, *note_end;
2294 	const char *note_name;
2295 	char *buf;
2296 	int i, error;
2297 	boolean_t res;
2298 
2299 	/* We need some limit, might as well use PAGE_SIZE. */
2300 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2301 		return (FALSE);
2302 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2303 	if (pnote->p_offset > PAGE_SIZE ||
2304 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2305 		VOP_UNLOCK(imgp->vp, 0);
2306 		buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2307 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
2308 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2309 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2310 		    curthread->td_ucred, NOCRED, NULL, curthread);
2311 		if (error != 0) {
2312 			uprintf("i/o error PT_NOTE\n");
2313 			res = FALSE;
2314 			goto ret;
2315 		}
2316 		note = note0 = (const Elf_Note *)buf;
2317 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2318 	} else {
2319 		note = note0 = (const Elf_Note *)(imgp->image_header +
2320 		    pnote->p_offset);
2321 		note_end = (const Elf_Note *)(imgp->image_header +
2322 		    pnote->p_offset + pnote->p_filesz);
2323 		buf = NULL;
2324 	}
2325 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2326 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2327 		    (const char *)note < sizeof(Elf_Note)) {
2328 			res = FALSE;
2329 			goto ret;
2330 		}
2331 		if (note->n_namesz != checknote->hdr.n_namesz ||
2332 		    note->n_descsz != checknote->hdr.n_descsz ||
2333 		    note->n_type != checknote->hdr.n_type)
2334 			goto nextnote;
2335 		note_name = (const char *)(note + 1);
2336 		if (note_name + checknote->hdr.n_namesz >=
2337 		    (const char *)note_end || strncmp(checknote->vendor,
2338 		    note_name, checknote->hdr.n_namesz) != 0)
2339 			goto nextnote;
2340 
2341 		/*
2342 		 * Fetch the osreldate for binary
2343 		 * from the ELF OSABI-note if necessary.
2344 		 */
2345 		if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
2346 		    checknote->trans_osrel != NULL) {
2347 			res = checknote->trans_osrel(note, osrel);
2348 			goto ret;
2349 		}
2350 		res = TRUE;
2351 		goto ret;
2352 nextnote:
2353 		note = (const Elf_Note *)((const char *)(note + 1) +
2354 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2355 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2356 	}
2357 	res = FALSE;
2358 ret:
2359 	free(buf, M_TEMP);
2360 	return (res);
2361 }
2362 
2363 /*
2364  * Try to find the appropriate ABI-note section for checknote,
2365  * fetch the osreldate for binary from the ELF OSABI-note. Only the
2366  * first page of the image is searched, the same as for headers.
2367  */
2368 static boolean_t
2369 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
2370     int32_t *osrel)
2371 {
2372 	const Elf_Phdr *phdr;
2373 	const Elf_Ehdr *hdr;
2374 	int i;
2375 
2376 	hdr = (const Elf_Ehdr *)imgp->image_header;
2377 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2378 
2379 	for (i = 0; i < hdr->e_phnum; i++) {
2380 		if (phdr[i].p_type == PT_NOTE &&
2381 		    __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i]))
2382 			return (TRUE);
2383 	}
2384 	return (FALSE);
2385 
2386 }
2387 
2388 /*
2389  * Tell kern_execve.c about it, with a little help from the linker.
2390  */
2391 static struct execsw __elfN(execsw) = {
2392 	__CONCAT(exec_, __elfN(imgact)),
2393 	__XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2394 };
2395 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2396 
2397 static vm_prot_t
2398 __elfN(trans_prot)(Elf_Word flags)
2399 {
2400 	vm_prot_t prot;
2401 
2402 	prot = 0;
2403 	if (flags & PF_X)
2404 		prot |= VM_PROT_EXECUTE;
2405 	if (flags & PF_W)
2406 		prot |= VM_PROT_WRITE;
2407 	if (flags & PF_R)
2408 		prot |= VM_PROT_READ;
2409 #if __ELF_WORD_SIZE == 32
2410 #if defined(__amd64__)
2411 	if (i386_read_exec && (flags & PF_R))
2412 		prot |= VM_PROT_EXECUTE;
2413 #endif
2414 #endif
2415 	return (prot);
2416 }
2417 
2418 static Elf_Word
2419 __elfN(untrans_prot)(vm_prot_t prot)
2420 {
2421 	Elf_Word flags;
2422 
2423 	flags = 0;
2424 	if (prot & VM_PROT_EXECUTE)
2425 		flags |= PF_X;
2426 	if (prot & VM_PROT_READ)
2427 		flags |= PF_R;
2428 	if (prot & VM_PROT_WRITE)
2429 		flags |= PF_W;
2430 	return (flags);
2431 }
2432