1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 106 ""); 107 108 #define CORE_BUF_SIZE (16 * 1024) 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0, 139 ""); 140 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 141 142 static int __elfN(aslr_enabled) = 0; 143 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 144 &__elfN(aslr_enabled), 0, 145 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 146 ": enable address map randomization"); 147 148 static int __elfN(pie_aslr_enabled) = 0; 149 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 150 &__elfN(pie_aslr_enabled), 0, 151 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 152 ": enable address map randomization for PIE binaries"); 153 154 static int __elfN(aslr_honor_sbrk) = 1; 155 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 156 &__elfN(aslr_honor_sbrk), 0, 157 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 158 159 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 160 161 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 162 163 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 164 165 Elf_Brandnote __elfN(freebsd_brandnote) = { 166 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 167 .hdr.n_descsz = sizeof(int32_t), 168 .hdr.n_type = NT_FREEBSD_ABI_TAG, 169 .vendor = FREEBSD_ABI_VENDOR, 170 .flags = BN_TRANSLATE_OSREL, 171 .trans_osrel = __elfN(freebsd_trans_osrel) 172 }; 173 174 static bool 175 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 176 { 177 uintptr_t p; 178 179 p = (uintptr_t)(note + 1); 180 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 181 *osrel = *(const int32_t *)(p); 182 183 return (true); 184 } 185 186 static const char GNU_ABI_VENDOR[] = "GNU"; 187 static int GNU_KFREEBSD_ABI_DESC = 3; 188 189 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 190 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 191 .hdr.n_descsz = 16, /* XXX at least 16 */ 192 .hdr.n_type = 1, 193 .vendor = GNU_ABI_VENDOR, 194 .flags = BN_TRANSLATE_OSREL, 195 .trans_osrel = kfreebsd_trans_osrel 196 }; 197 198 static bool 199 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 200 { 201 const Elf32_Word *desc; 202 uintptr_t p; 203 204 p = (uintptr_t)(note + 1); 205 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 206 207 desc = (const Elf32_Word *)p; 208 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 209 return (false); 210 211 /* 212 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 213 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 214 */ 215 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 216 217 return (true); 218 } 219 220 int 221 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 222 { 223 int i; 224 225 for (i = 0; i < MAX_BRANDS; i++) { 226 if (elf_brand_list[i] == NULL) { 227 elf_brand_list[i] = entry; 228 break; 229 } 230 } 231 if (i == MAX_BRANDS) { 232 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 233 __func__, entry); 234 return (-1); 235 } 236 return (0); 237 } 238 239 int 240 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 241 { 242 int i; 243 244 for (i = 0; i < MAX_BRANDS; i++) { 245 if (elf_brand_list[i] == entry) { 246 elf_brand_list[i] = NULL; 247 break; 248 } 249 } 250 if (i == MAX_BRANDS) 251 return (-1); 252 return (0); 253 } 254 255 int 256 __elfN(brand_inuse)(Elf_Brandinfo *entry) 257 { 258 struct proc *p; 259 int rval = FALSE; 260 261 sx_slock(&allproc_lock); 262 FOREACH_PROC_IN_SYSTEM(p) { 263 if (p->p_sysent == entry->sysvec) { 264 rval = TRUE; 265 break; 266 } 267 } 268 sx_sunlock(&allproc_lock); 269 270 return (rval); 271 } 272 273 static Elf_Brandinfo * 274 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 275 int32_t *osrel, uint32_t *fctl0) 276 { 277 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 278 Elf_Brandinfo *bi, *bi_m; 279 boolean_t ret; 280 int i, interp_name_len; 281 282 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 283 284 /* 285 * We support four types of branding -- (1) the ELF EI_OSABI field 286 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 287 * branding w/in the ELF header, (3) path of the `interp_path' 288 * field, and (4) the ".note.ABI-tag" ELF section. 289 */ 290 291 /* Look for an ".note.ABI-tag" ELF section */ 292 bi_m = NULL; 293 for (i = 0; i < MAX_BRANDS; i++) { 294 bi = elf_brand_list[i]; 295 if (bi == NULL) 296 continue; 297 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 298 continue; 299 if (hdr->e_machine == bi->machine && (bi->flags & 300 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 301 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 302 fctl0); 303 /* Give brand a chance to veto check_note's guess */ 304 if (ret && bi->header_supported) 305 ret = bi->header_supported(imgp); 306 /* 307 * If note checker claimed the binary, but the 308 * interpreter path in the image does not 309 * match default one for the brand, try to 310 * search for other brands with the same 311 * interpreter. Either there is better brand 312 * with the right interpreter, or, failing 313 * this, we return first brand which accepted 314 * our note and, optionally, header. 315 */ 316 if (ret && bi_m == NULL && interp != NULL && 317 (bi->interp_path == NULL || 318 (strlen(bi->interp_path) + 1 != interp_name_len || 319 strncmp(interp, bi->interp_path, interp_name_len) 320 != 0))) { 321 bi_m = bi; 322 ret = 0; 323 } 324 if (ret) 325 return (bi); 326 } 327 } 328 if (bi_m != NULL) 329 return (bi_m); 330 331 /* If the executable has a brand, search for it in the brand list. */ 332 for (i = 0; i < MAX_BRANDS; i++) { 333 bi = elf_brand_list[i]; 334 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 335 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 336 continue; 337 if (hdr->e_machine == bi->machine && 338 (hdr->e_ident[EI_OSABI] == bi->brand || 339 (bi->compat_3_brand != NULL && 340 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 341 bi->compat_3_brand) == 0))) { 342 /* Looks good, but give brand a chance to veto */ 343 if (bi->header_supported == NULL || 344 bi->header_supported(imgp)) { 345 /* 346 * Again, prefer strictly matching 347 * interpreter path. 348 */ 349 if (interp_name_len == 0 && 350 bi->interp_path == NULL) 351 return (bi); 352 if (bi->interp_path != NULL && 353 strlen(bi->interp_path) + 1 == 354 interp_name_len && strncmp(interp, 355 bi->interp_path, interp_name_len) == 0) 356 return (bi); 357 if (bi_m == NULL) 358 bi_m = bi; 359 } 360 } 361 } 362 if (bi_m != NULL) 363 return (bi_m); 364 365 /* No known brand, see if the header is recognized by any brand */ 366 for (i = 0; i < MAX_BRANDS; i++) { 367 bi = elf_brand_list[i]; 368 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 369 bi->header_supported == NULL) 370 continue; 371 if (hdr->e_machine == bi->machine) { 372 ret = bi->header_supported(imgp); 373 if (ret) 374 return (bi); 375 } 376 } 377 378 /* Lacking a known brand, search for a recognized interpreter. */ 379 if (interp != NULL) { 380 for (i = 0; i < MAX_BRANDS; i++) { 381 bi = elf_brand_list[i]; 382 if (bi == NULL || (bi->flags & 383 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 384 != 0) 385 continue; 386 if (hdr->e_machine == bi->machine && 387 bi->interp_path != NULL && 388 /* ELF image p_filesz includes terminating zero */ 389 strlen(bi->interp_path) + 1 == interp_name_len && 390 strncmp(interp, bi->interp_path, interp_name_len) 391 == 0 && (bi->header_supported == NULL || 392 bi->header_supported(imgp))) 393 return (bi); 394 } 395 } 396 397 /* Lacking a recognized interpreter, try the default brand */ 398 for (i = 0; i < MAX_BRANDS; i++) { 399 bi = elf_brand_list[i]; 400 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 401 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 402 continue; 403 if (hdr->e_machine == bi->machine && 404 __elfN(fallback_brand) == bi->brand && 405 (bi->header_supported == NULL || 406 bi->header_supported(imgp))) 407 return (bi); 408 } 409 return (NULL); 410 } 411 412 static int 413 __elfN(check_header)(const Elf_Ehdr *hdr) 414 { 415 Elf_Brandinfo *bi; 416 int i; 417 418 if (!IS_ELF(*hdr) || 419 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 420 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 421 hdr->e_ident[EI_VERSION] != EV_CURRENT || 422 hdr->e_phentsize != sizeof(Elf_Phdr) || 423 hdr->e_version != ELF_TARG_VER) 424 return (ENOEXEC); 425 426 /* 427 * Make sure we have at least one brand for this machine. 428 */ 429 430 for (i = 0; i < MAX_BRANDS; i++) { 431 bi = elf_brand_list[i]; 432 if (bi != NULL && bi->machine == hdr->e_machine) 433 break; 434 } 435 if (i == MAX_BRANDS) 436 return (ENOEXEC); 437 438 return (0); 439 } 440 441 static int 442 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 443 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 444 { 445 struct sf_buf *sf; 446 int error; 447 vm_offset_t off; 448 449 /* 450 * Create the page if it doesn't exist yet. Ignore errors. 451 */ 452 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 453 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 454 455 /* 456 * Find the page from the underlying object. 457 */ 458 if (object != NULL) { 459 sf = vm_imgact_map_page(object, offset); 460 if (sf == NULL) 461 return (KERN_FAILURE); 462 off = offset - trunc_page(offset); 463 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 464 end - start); 465 vm_imgact_unmap_page(sf); 466 if (error != 0) 467 return (KERN_FAILURE); 468 } 469 470 return (KERN_SUCCESS); 471 } 472 473 static int 474 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 475 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 476 int cow) 477 { 478 struct sf_buf *sf; 479 vm_offset_t off; 480 vm_size_t sz; 481 int error, locked, rv; 482 483 if (start != trunc_page(start)) { 484 rv = __elfN(map_partial)(map, object, offset, start, 485 round_page(start), prot); 486 if (rv != KERN_SUCCESS) 487 return (rv); 488 offset += round_page(start) - start; 489 start = round_page(start); 490 } 491 if (end != round_page(end)) { 492 rv = __elfN(map_partial)(map, object, offset + 493 trunc_page(end) - start, trunc_page(end), end, prot); 494 if (rv != KERN_SUCCESS) 495 return (rv); 496 end = trunc_page(end); 497 } 498 if (start >= end) 499 return (KERN_SUCCESS); 500 if ((offset & PAGE_MASK) != 0) { 501 /* 502 * The mapping is not page aligned. This means that we have 503 * to copy the data. 504 */ 505 rv = vm_map_fixed(map, NULL, 0, start, end - start, 506 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 507 if (rv != KERN_SUCCESS) 508 return (rv); 509 if (object == NULL) 510 return (KERN_SUCCESS); 511 for (; start < end; start += sz) { 512 sf = vm_imgact_map_page(object, offset); 513 if (sf == NULL) 514 return (KERN_FAILURE); 515 off = offset - trunc_page(offset); 516 sz = end - start; 517 if (sz > PAGE_SIZE - off) 518 sz = PAGE_SIZE - off; 519 error = copyout((caddr_t)sf_buf_kva(sf) + off, 520 (caddr_t)start, sz); 521 vm_imgact_unmap_page(sf); 522 if (error != 0) 523 return (KERN_FAILURE); 524 offset += sz; 525 } 526 } else { 527 vm_object_reference(object); 528 rv = vm_map_fixed(map, object, offset, start, end - start, 529 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 530 if (rv != KERN_SUCCESS) { 531 locked = VOP_ISLOCKED(imgp->vp); 532 VOP_UNLOCK(imgp->vp, 0); 533 vm_object_deallocate(object); 534 vn_lock(imgp->vp, locked | LK_RETRY); 535 return (rv); 536 } 537 } 538 return (KERN_SUCCESS); 539 } 540 541 static int 542 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 543 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 544 { 545 struct sf_buf *sf; 546 size_t map_len; 547 vm_map_t map; 548 vm_object_t object; 549 vm_offset_t off, map_addr; 550 int error, rv, cow; 551 size_t copy_len; 552 vm_ooffset_t file_addr; 553 554 /* 555 * It's necessary to fail if the filsz + offset taken from the 556 * header is greater than the actual file pager object's size. 557 * If we were to allow this, then the vm_map_find() below would 558 * walk right off the end of the file object and into the ether. 559 * 560 * While I'm here, might as well check for something else that 561 * is invalid: filsz cannot be greater than memsz. 562 */ 563 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 564 filsz > memsz) { 565 uprintf("elf_load_section: truncated ELF file\n"); 566 return (ENOEXEC); 567 } 568 569 object = imgp->object; 570 map = &imgp->proc->p_vmspace->vm_map; 571 map_addr = trunc_page((vm_offset_t)vmaddr); 572 file_addr = trunc_page(offset); 573 574 /* 575 * We have two choices. We can either clear the data in the last page 576 * of an oversized mapping, or we can start the anon mapping a page 577 * early and copy the initialized data into that first page. We 578 * choose the second. 579 */ 580 if (filsz == 0) 581 map_len = 0; 582 else if (memsz > filsz) 583 map_len = trunc_page(offset + filsz) - file_addr; 584 else 585 map_len = round_page(offset + filsz) - file_addr; 586 587 if (map_len != 0) { 588 /* cow flags: don't dump readonly sections in core */ 589 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 590 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 591 592 rv = __elfN(map_insert)(imgp, map, 593 object, 594 file_addr, /* file offset */ 595 map_addr, /* virtual start */ 596 map_addr + map_len,/* virtual end */ 597 prot, 598 cow); 599 if (rv != KERN_SUCCESS) 600 return (EINVAL); 601 602 /* we can stop now if we've covered it all */ 603 if (memsz == filsz) 604 return (0); 605 } 606 607 608 /* 609 * We have to get the remaining bit of the file into the first part 610 * of the oversized map segment. This is normally because the .data 611 * segment in the file is extended to provide bss. It's a neat idea 612 * to try and save a page, but it's a pain in the behind to implement. 613 */ 614 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 615 filsz); 616 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 617 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 618 619 /* This had damn well better be true! */ 620 if (map_len != 0) { 621 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 622 map_addr + map_len, prot, 0); 623 if (rv != KERN_SUCCESS) 624 return (EINVAL); 625 } 626 627 if (copy_len != 0) { 628 sf = vm_imgact_map_page(object, offset + filsz); 629 if (sf == NULL) 630 return (EIO); 631 632 /* send the page fragment to user space */ 633 off = trunc_page(offset + filsz) - trunc_page(offset + filsz); 634 error = copyout((caddr_t)sf_buf_kva(sf) + off, 635 (caddr_t)map_addr, copy_len); 636 vm_imgact_unmap_page(sf); 637 if (error != 0) 638 return (error); 639 } 640 641 /* 642 * Remove write access to the page if it was only granted by map_insert 643 * to allow copyout. 644 */ 645 if ((prot & VM_PROT_WRITE) == 0) 646 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 647 map_len), prot, FALSE); 648 649 return (0); 650 } 651 652 static int 653 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 654 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 655 { 656 vm_prot_t prot; 657 u_long base_addr; 658 bool first; 659 int error, i; 660 661 ASSERT_VOP_LOCKED(imgp->vp, __func__); 662 663 base_addr = 0; 664 first = true; 665 666 for (i = 0; i < hdr->e_phnum; i++) { 667 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 668 continue; 669 670 /* Loadable segment */ 671 prot = __elfN(trans_prot)(phdr[i].p_flags); 672 error = __elfN(load_section)(imgp, phdr[i].p_offset, 673 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 674 phdr[i].p_memsz, phdr[i].p_filesz, prot); 675 if (error != 0) 676 return (error); 677 678 /* 679 * Establish the base address if this is the first segment. 680 */ 681 if (first) { 682 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 683 first = false; 684 } 685 } 686 687 if (base_addrp != NULL) 688 *base_addrp = base_addr; 689 690 return (0); 691 } 692 693 /* 694 * Load the file "file" into memory. It may be either a shared object 695 * or an executable. 696 * 697 * The "addr" reference parameter is in/out. On entry, it specifies 698 * the address where a shared object should be loaded. If the file is 699 * an executable, this value is ignored. On exit, "addr" specifies 700 * where the file was actually loaded. 701 * 702 * The "entry" reference parameter is out only. On exit, it specifies 703 * the entry point for the loaded file. 704 */ 705 static int 706 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 707 u_long *entry) 708 { 709 struct { 710 struct nameidata nd; 711 struct vattr attr; 712 struct image_params image_params; 713 } *tempdata; 714 const Elf_Ehdr *hdr = NULL; 715 const Elf_Phdr *phdr = NULL; 716 struct nameidata *nd; 717 struct vattr *attr; 718 struct image_params *imgp; 719 u_long flags, rbase; 720 u_long base_addr = 0; 721 int error; 722 723 #ifdef CAPABILITY_MODE 724 /* 725 * XXXJA: This check can go away once we are sufficiently confident 726 * that the checks in namei() are correct. 727 */ 728 if (IN_CAPABILITY_MODE(curthread)) 729 return (ECAPMODE); 730 #endif 731 732 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 733 nd = &tempdata->nd; 734 attr = &tempdata->attr; 735 imgp = &tempdata->image_params; 736 737 /* 738 * Initialize part of the common data 739 */ 740 imgp->proc = p; 741 imgp->attr = attr; 742 imgp->firstpage = NULL; 743 imgp->image_header = NULL; 744 imgp->object = NULL; 745 imgp->execlabel = NULL; 746 747 flags = FOLLOW | LOCKSHARED | LOCKLEAF; 748 749 again: 750 NDINIT(nd, LOOKUP, flags, UIO_SYSSPACE, file, curthread); 751 if ((error = namei(nd)) != 0) { 752 nd->ni_vp = NULL; 753 goto fail; 754 } 755 NDFREE(nd, NDF_ONLY_PNBUF); 756 imgp->vp = nd->ni_vp; 757 758 /* 759 * Check permissions, modes, uid, etc on the file, and "open" it. 760 */ 761 error = exec_check_permissions(imgp); 762 if (error) 763 goto fail; 764 765 /* 766 * Also make certain that the interpreter stays the same, 767 * so set its VV_TEXT flag, too. Since this function is only 768 * used to load the interpreter, the VV_TEXT is almost always 769 * already set. 770 */ 771 if (VOP_IS_TEXT(nd->ni_vp) == 0) { 772 if (VOP_ISLOCKED(nd->ni_vp) != LK_EXCLUSIVE) { 773 /* 774 * LK_UPGRADE could have resulted in dropping 775 * the lock. Just try again from the start, 776 * this time with exclusive vnode lock. 777 */ 778 vput(nd->ni_vp); 779 flags &= ~LOCKSHARED; 780 goto again; 781 } 782 783 VOP_SET_TEXT(nd->ni_vp); 784 } 785 786 error = exec_map_first_page(imgp); 787 if (error) 788 goto fail; 789 790 imgp->object = nd->ni_vp->v_object; 791 792 hdr = (const Elf_Ehdr *)imgp->image_header; 793 if ((error = __elfN(check_header)(hdr)) != 0) 794 goto fail; 795 if (hdr->e_type == ET_DYN) 796 rbase = *addr; 797 else if (hdr->e_type == ET_EXEC) 798 rbase = 0; 799 else { 800 error = ENOEXEC; 801 goto fail; 802 } 803 804 /* Only support headers that fit within first page for now */ 805 if ((hdr->e_phoff > PAGE_SIZE) || 806 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 807 error = ENOEXEC; 808 goto fail; 809 } 810 811 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 812 if (!aligned(phdr, Elf_Addr)) { 813 error = ENOEXEC; 814 goto fail; 815 } 816 817 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 818 if (error != 0) 819 goto fail; 820 821 *addr = base_addr; 822 *entry = (unsigned long)hdr->e_entry + rbase; 823 824 fail: 825 if (imgp->firstpage) 826 exec_unmap_first_page(imgp); 827 828 if (nd->ni_vp) 829 vput(nd->ni_vp); 830 831 free(tempdata, M_TEMP); 832 833 return (error); 834 } 835 836 static u_long 837 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 838 u_int align) 839 { 840 u_long rbase, res; 841 842 MPASS(vm_map_min(map) <= minv); 843 MPASS(maxv <= vm_map_max(map)); 844 MPASS(minv < maxv); 845 MPASS(minv + align < maxv); 846 arc4rand(&rbase, sizeof(rbase), 0); 847 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 848 res &= ~((u_long)align - 1); 849 if (res >= maxv) 850 res -= align; 851 KASSERT(res >= minv, 852 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 853 res, minv, maxv, rbase)); 854 KASSERT(res < maxv, 855 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 856 res, maxv, minv, rbase)); 857 return (res); 858 } 859 860 static int 861 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 862 const Elf_Phdr *phdr, u_long et_dyn_addr) 863 { 864 struct vmspace *vmspace; 865 const char *err_str; 866 u_long text_size, data_size, total_size, text_addr, data_addr; 867 u_long seg_size, seg_addr; 868 int i; 869 870 err_str = NULL; 871 text_size = data_size = total_size = text_addr = data_addr = 0; 872 873 for (i = 0; i < hdr->e_phnum; i++) { 874 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 875 continue; 876 877 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 878 seg_size = round_page(phdr[i].p_memsz + 879 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 880 881 /* 882 * Make the largest executable segment the official 883 * text segment and all others data. 884 * 885 * Note that obreak() assumes that data_addr + data_size == end 886 * of data load area, and the ELF file format expects segments 887 * to be sorted by address. If multiple data segments exist, 888 * the last one will be used. 889 */ 890 891 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 892 text_size = seg_size; 893 text_addr = seg_addr; 894 } else { 895 data_size = seg_size; 896 data_addr = seg_addr; 897 } 898 total_size += seg_size; 899 } 900 901 if (data_addr == 0 && data_size == 0) { 902 data_addr = text_addr; 903 data_size = text_size; 904 } 905 906 /* 907 * Check limits. It should be safe to check the 908 * limits after loading the segments since we do 909 * not actually fault in all the segments pages. 910 */ 911 PROC_LOCK(imgp->proc); 912 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 913 err_str = "Data segment size exceeds process limit"; 914 else if (text_size > maxtsiz) 915 err_str = "Text segment size exceeds system limit"; 916 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 917 err_str = "Total segment size exceeds process limit"; 918 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 919 err_str = "Data segment size exceeds resource limit"; 920 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 921 err_str = "Total segment size exceeds resource limit"; 922 PROC_UNLOCK(imgp->proc); 923 if (err_str != NULL) { 924 uprintf("%s\n", err_str); 925 return (ENOMEM); 926 } 927 928 vmspace = imgp->proc->p_vmspace; 929 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 930 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 931 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 932 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 933 934 return (0); 935 } 936 937 static int 938 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 939 char **interpp, bool *free_interpp) 940 { 941 struct thread *td; 942 char *interp; 943 int error, interp_name_len; 944 945 KASSERT(phdr->p_type == PT_INTERP, 946 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 947 ASSERT_VOP_LOCKED(imgp->vp, __func__); 948 949 td = curthread; 950 951 /* Path to interpreter */ 952 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 953 uprintf("Invalid PT_INTERP\n"); 954 return (ENOEXEC); 955 } 956 957 interp_name_len = phdr->p_filesz; 958 if (phdr->p_offset > PAGE_SIZE || 959 interp_name_len > PAGE_SIZE - phdr->p_offset) { 960 VOP_UNLOCK(imgp->vp, 0); 961 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 962 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 963 error = vn_rdwr(UIO_READ, imgp->vp, interp, 964 interp_name_len, phdr->p_offset, 965 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 966 NOCRED, NULL, td); 967 if (error != 0) { 968 free(interp, M_TEMP); 969 uprintf("i/o error PT_INTERP %d\n", error); 970 return (error); 971 } 972 interp[interp_name_len] = '\0'; 973 974 *interpp = interp; 975 *free_interpp = true; 976 return (0); 977 } 978 979 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 980 if (interp[interp_name_len - 1] != '\0') { 981 uprintf("Invalid PT_INTERP\n"); 982 return (ENOEXEC); 983 } 984 985 *interpp = interp; 986 *free_interpp = false; 987 return (0); 988 } 989 990 static int 991 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 992 const char *interp, u_long *addr, u_long *entry) 993 { 994 char *path; 995 int error; 996 997 if (brand_info->emul_path != NULL && 998 brand_info->emul_path[0] != '\0') { 999 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1000 snprintf(path, MAXPATHLEN, "%s%s", 1001 brand_info->emul_path, interp); 1002 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1003 free(path, M_TEMP); 1004 if (error == 0) 1005 return (0); 1006 } 1007 1008 if (brand_info->interp_newpath != NULL && 1009 (brand_info->interp_path == NULL || 1010 strcmp(interp, brand_info->interp_path) == 0)) { 1011 error = __elfN(load_file)(imgp->proc, 1012 brand_info->interp_newpath, addr, entry); 1013 if (error == 0) 1014 return (0); 1015 } 1016 1017 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1018 if (error == 0) 1019 return (0); 1020 1021 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1022 return (error); 1023 } 1024 1025 /* 1026 * Impossible et_dyn_addr initial value indicating that the real base 1027 * must be calculated later with some randomization applied. 1028 */ 1029 #define ET_DYN_ADDR_RAND 1 1030 1031 static int 1032 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1033 { 1034 struct thread *td; 1035 const Elf_Ehdr *hdr; 1036 const Elf_Phdr *phdr; 1037 Elf_Auxargs *elf_auxargs; 1038 struct vmspace *vmspace; 1039 vm_map_t map; 1040 char *interp; 1041 Elf_Brandinfo *brand_info; 1042 struct sysentvec *sv; 1043 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1044 u_long maxalign, mapsz, maxv, maxv1; 1045 uint32_t fctl0; 1046 int32_t osrel; 1047 bool free_interp; 1048 int error, i, n; 1049 1050 hdr = (const Elf_Ehdr *)imgp->image_header; 1051 1052 /* 1053 * Do we have a valid ELF header ? 1054 * 1055 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1056 * if particular brand doesn't support it. 1057 */ 1058 if (__elfN(check_header)(hdr) != 0 || 1059 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1060 return (-1); 1061 1062 /* 1063 * From here on down, we return an errno, not -1, as we've 1064 * detected an ELF file. 1065 */ 1066 1067 if ((hdr->e_phoff > PAGE_SIZE) || 1068 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 1069 /* Only support headers in first page for now */ 1070 uprintf("Program headers not in the first page\n"); 1071 return (ENOEXEC); 1072 } 1073 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1074 if (!aligned(phdr, Elf_Addr)) { 1075 uprintf("Unaligned program headers\n"); 1076 return (ENOEXEC); 1077 } 1078 1079 n = error = 0; 1080 baddr = 0; 1081 osrel = 0; 1082 fctl0 = 0; 1083 entry = proghdr = 0; 1084 interp = NULL; 1085 free_interp = false; 1086 td = curthread; 1087 maxalign = PAGE_SIZE; 1088 mapsz = 0; 1089 1090 for (i = 0; i < hdr->e_phnum; i++) { 1091 switch (phdr[i].p_type) { 1092 case PT_LOAD: 1093 if (n == 0) 1094 baddr = phdr[i].p_vaddr; 1095 if (phdr[i].p_align > maxalign) 1096 maxalign = phdr[i].p_align; 1097 mapsz += phdr[i].p_memsz; 1098 n++; 1099 1100 /* 1101 * If this segment contains the program headers, 1102 * remember their virtual address for the AT_PHDR 1103 * aux entry. Static binaries don't usually include 1104 * a PT_PHDR entry. 1105 */ 1106 if (phdr[i].p_offset == 0 && 1107 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1108 <= phdr[i].p_filesz) 1109 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1110 break; 1111 case PT_INTERP: 1112 /* Path to interpreter */ 1113 if (interp != NULL) { 1114 uprintf("Multiple PT_INTERP headers\n"); 1115 error = ENOEXEC; 1116 goto ret; 1117 } 1118 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1119 &free_interp); 1120 if (error != 0) 1121 goto ret; 1122 break; 1123 case PT_GNU_STACK: 1124 if (__elfN(nxstack)) 1125 imgp->stack_prot = 1126 __elfN(trans_prot)(phdr[i].p_flags); 1127 imgp->stack_sz = phdr[i].p_memsz; 1128 break; 1129 case PT_PHDR: /* Program header table info */ 1130 proghdr = phdr[i].p_vaddr; 1131 break; 1132 } 1133 } 1134 1135 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1136 if (brand_info == NULL) { 1137 uprintf("ELF binary type \"%u\" not known.\n", 1138 hdr->e_ident[EI_OSABI]); 1139 error = ENOEXEC; 1140 goto ret; 1141 } 1142 sv = brand_info->sysvec; 1143 et_dyn_addr = 0; 1144 if (hdr->e_type == ET_DYN) { 1145 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1146 uprintf("Cannot execute shared object\n"); 1147 error = ENOEXEC; 1148 goto ret; 1149 } 1150 /* 1151 * Honour the base load address from the dso if it is 1152 * non-zero for some reason. 1153 */ 1154 if (baddr == 0) { 1155 if ((sv->sv_flags & SV_ASLR) == 0 || 1156 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1157 et_dyn_addr = ET_DYN_LOAD_ADDR; 1158 else if ((__elfN(pie_aslr_enabled) && 1159 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1160 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1161 et_dyn_addr = ET_DYN_ADDR_RAND; 1162 else 1163 et_dyn_addr = ET_DYN_LOAD_ADDR; 1164 } 1165 } 1166 1167 /* 1168 * Avoid a possible deadlock if the current address space is destroyed 1169 * and that address space maps the locked vnode. In the common case, 1170 * the locked vnode's v_usecount is decremented but remains greater 1171 * than zero. Consequently, the vnode lock is not needed by vrele(). 1172 * However, in cases where the vnode lock is external, such as nullfs, 1173 * v_usecount may become zero. 1174 * 1175 * The VV_TEXT flag prevents modifications to the executable while 1176 * the vnode is unlocked. 1177 */ 1178 VOP_UNLOCK(imgp->vp, 0); 1179 1180 /* 1181 * Decide whether to enable randomization of user mappings. 1182 * First, reset user preferences for the setid binaries. 1183 * Then, account for the support of the randomization by the 1184 * ABI, by user preferences, and make special treatment for 1185 * PIE binaries. 1186 */ 1187 if (imgp->credential_setid) { 1188 PROC_LOCK(imgp->proc); 1189 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1190 PROC_UNLOCK(imgp->proc); 1191 } 1192 if ((sv->sv_flags & SV_ASLR) == 0 || 1193 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1194 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1195 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1196 ("et_dyn_addr == RAND and !ASLR")); 1197 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1198 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1199 et_dyn_addr == ET_DYN_ADDR_RAND) { 1200 imgp->map_flags |= MAP_ASLR; 1201 /* 1202 * If user does not care about sbrk, utilize the bss 1203 * grow region for mappings as well. We can select 1204 * the base for the image anywere and still not suffer 1205 * from the fragmentation. 1206 */ 1207 if (!__elfN(aslr_honor_sbrk) || 1208 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1209 imgp->map_flags |= MAP_ASLR_IGNSTART; 1210 } 1211 1212 error = exec_new_vmspace(imgp, sv); 1213 vmspace = imgp->proc->p_vmspace; 1214 map = &vmspace->vm_map; 1215 1216 imgp->proc->p_sysent = sv; 1217 1218 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1219 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1220 KASSERT((map->flags & MAP_ASLR) != 0, 1221 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1222 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1223 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1224 /* reserve half of the address space to interpreter */ 1225 maxv / 2, 1UL << flsl(maxalign)); 1226 } 1227 1228 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1229 if (error != 0) 1230 goto ret; 1231 1232 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1233 if (error != 0) 1234 goto ret; 1235 1236 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1237 if (error != 0) 1238 goto ret; 1239 1240 entry = (u_long)hdr->e_entry + et_dyn_addr; 1241 1242 /* 1243 * We load the dynamic linker where a userland call 1244 * to mmap(0, ...) would put it. The rationale behind this 1245 * calculation is that it leaves room for the heap to grow to 1246 * its maximum allowed size. 1247 */ 1248 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1249 RLIMIT_DATA)); 1250 if ((map->flags & MAP_ASLR) != 0) { 1251 maxv1 = maxv / 2 + addr / 2; 1252 MPASS(maxv1 >= addr); /* No overflow */ 1253 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1254 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1255 } else { 1256 map->anon_loc = addr; 1257 } 1258 1259 imgp->entry_addr = entry; 1260 1261 if (interp != NULL) { 1262 VOP_UNLOCK(imgp->vp, 0); 1263 if ((map->flags & MAP_ASLR) != 0) { 1264 /* Assume that interpeter fits into 1/4 of AS */ 1265 maxv1 = maxv / 2 + addr / 2; 1266 MPASS(maxv1 >= addr); /* No overflow */ 1267 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1268 maxv1, PAGE_SIZE); 1269 } 1270 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1271 &imgp->entry_addr); 1272 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1273 if (error != 0) 1274 goto ret; 1275 } else 1276 addr = et_dyn_addr; 1277 1278 /* 1279 * Construct auxargs table (used by the fixup routine) 1280 */ 1281 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1282 elf_auxargs->execfd = -1; 1283 elf_auxargs->phdr = proghdr + et_dyn_addr; 1284 elf_auxargs->phent = hdr->e_phentsize; 1285 elf_auxargs->phnum = hdr->e_phnum; 1286 elf_auxargs->pagesz = PAGE_SIZE; 1287 elf_auxargs->base = addr; 1288 elf_auxargs->flags = 0; 1289 elf_auxargs->entry = entry; 1290 elf_auxargs->hdr_eflags = hdr->e_flags; 1291 1292 imgp->auxargs = elf_auxargs; 1293 imgp->interpreted = 0; 1294 imgp->reloc_base = addr; 1295 imgp->proc->p_osrel = osrel; 1296 imgp->proc->p_fctl0 = fctl0; 1297 imgp->proc->p_elf_machine = hdr->e_machine; 1298 imgp->proc->p_elf_flags = hdr->e_flags; 1299 1300 ret: 1301 if (free_interp) 1302 free(interp, M_TEMP); 1303 return (error); 1304 } 1305 1306 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1307 1308 int 1309 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1310 { 1311 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1312 Elf_Auxinfo *argarray, *pos; 1313 Elf_Addr *base, *auxbase; 1314 int error; 1315 1316 base = (Elf_Addr *)*stack_base; 1317 auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1; 1318 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1319 M_WAITOK | M_ZERO); 1320 1321 if (args->execfd != -1) 1322 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1323 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1324 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1325 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1326 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1327 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1328 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1329 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1330 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1331 if (imgp->execpathp != 0) 1332 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1333 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1334 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1335 if (imgp->canary != 0) { 1336 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1337 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1338 } 1339 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1340 if (imgp->pagesizes != 0) { 1341 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1342 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1343 } 1344 if (imgp->sysent->sv_timekeep_base != 0) { 1345 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1346 imgp->sysent->sv_timekeep_base); 1347 } 1348 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1349 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1350 imgp->sysent->sv_stackprot); 1351 if (imgp->sysent->sv_hwcap != NULL) 1352 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1353 if (imgp->sysent->sv_hwcap2 != NULL) 1354 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1355 AUXARGS_ENTRY(pos, AT_NULL, 0); 1356 1357 free(imgp->auxargs, M_TEMP); 1358 imgp->auxargs = NULL; 1359 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1360 1361 error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT); 1362 free(argarray, M_TEMP); 1363 if (error != 0) 1364 return (error); 1365 1366 base--; 1367 if (suword(base, imgp->args->argc) == -1) 1368 return (EFAULT); 1369 *stack_base = (register_t *)base; 1370 return (0); 1371 } 1372 1373 /* 1374 * Code for generating ELF core dumps. 1375 */ 1376 1377 typedef void (*segment_callback)(vm_map_entry_t, void *); 1378 1379 /* Closure for cb_put_phdr(). */ 1380 struct phdr_closure { 1381 Elf_Phdr *phdr; /* Program header to fill in */ 1382 Elf_Off offset; /* Offset of segment in core file */ 1383 }; 1384 1385 /* Closure for cb_size_segment(). */ 1386 struct sseg_closure { 1387 int count; /* Count of writable segments. */ 1388 size_t size; /* Total size of all writable segments. */ 1389 }; 1390 1391 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1392 1393 struct note_info { 1394 int type; /* Note type. */ 1395 outfunc_t outfunc; /* Output function. */ 1396 void *outarg; /* Argument for the output function. */ 1397 size_t outsize; /* Output size. */ 1398 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1399 }; 1400 1401 TAILQ_HEAD(note_info_list, note_info); 1402 1403 /* Coredump output parameters. */ 1404 struct coredump_params { 1405 off_t offset; 1406 struct ucred *active_cred; 1407 struct ucred *file_cred; 1408 struct thread *td; 1409 struct vnode *vp; 1410 struct compressor *comp; 1411 }; 1412 1413 extern int compress_user_cores; 1414 extern int compress_user_cores_level; 1415 1416 static void cb_put_phdr(vm_map_entry_t, void *); 1417 static void cb_size_segment(vm_map_entry_t, void *); 1418 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1419 enum uio_seg); 1420 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1421 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1422 struct note_info_list *, size_t); 1423 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1424 size_t *); 1425 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1426 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1427 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1428 static int sbuf_drain_core_output(void *, const char *, int); 1429 static int sbuf_drain_count(void *arg, const char *data, int len); 1430 1431 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1432 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1433 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1434 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1435 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1436 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1437 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1438 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1439 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1440 static void note_procstat_files(void *, struct sbuf *, size_t *); 1441 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1442 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1443 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1444 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1445 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1446 1447 /* 1448 * Write out a core segment to the compression stream. 1449 */ 1450 static int 1451 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1452 { 1453 u_int chunk_len; 1454 int error; 1455 1456 while (len > 0) { 1457 chunk_len = MIN(len, CORE_BUF_SIZE); 1458 1459 /* 1460 * We can get EFAULT error here. 1461 * In that case zero out the current chunk of the segment. 1462 */ 1463 error = copyin(base, buf, chunk_len); 1464 if (error != 0) 1465 bzero(buf, chunk_len); 1466 error = compressor_write(p->comp, buf, chunk_len); 1467 if (error != 0) 1468 break; 1469 base += chunk_len; 1470 len -= chunk_len; 1471 } 1472 return (error); 1473 } 1474 1475 static int 1476 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1477 { 1478 1479 return (core_write((struct coredump_params *)arg, base, len, offset, 1480 UIO_SYSSPACE)); 1481 } 1482 1483 static int 1484 core_write(struct coredump_params *p, const void *base, size_t len, 1485 off_t offset, enum uio_seg seg) 1486 { 1487 1488 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1489 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1490 p->active_cred, p->file_cred, NULL, p->td)); 1491 } 1492 1493 static int 1494 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1495 void *tmpbuf) 1496 { 1497 int error; 1498 1499 if (p->comp != NULL) 1500 return (compress_chunk(p, base, tmpbuf, len)); 1501 1502 /* 1503 * EFAULT is a non-fatal error that we can get, for example, 1504 * if the segment is backed by a file but extends beyond its 1505 * end. 1506 */ 1507 error = core_write(p, base, len, offset, UIO_USERSPACE); 1508 if (error == EFAULT) { 1509 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1510 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1511 "for process %s\n", base, len, offset, curproc->p_comm); 1512 1513 /* 1514 * Write a "real" zero byte at the end of the target region 1515 * in the case this is the last segment. 1516 * The intermediate space will be implicitly zero-filled. 1517 */ 1518 error = core_write(p, zero_region, 1, offset + len - 1, 1519 UIO_SYSSPACE); 1520 } 1521 return (error); 1522 } 1523 1524 /* 1525 * Drain into a core file. 1526 */ 1527 static int 1528 sbuf_drain_core_output(void *arg, const char *data, int len) 1529 { 1530 struct coredump_params *p; 1531 int error, locked; 1532 1533 p = (struct coredump_params *)arg; 1534 1535 /* 1536 * Some kern_proc out routines that print to this sbuf may 1537 * call us with the process lock held. Draining with the 1538 * non-sleepable lock held is unsafe. The lock is needed for 1539 * those routines when dumping a live process. In our case we 1540 * can safely release the lock before draining and acquire 1541 * again after. 1542 */ 1543 locked = PROC_LOCKED(p->td->td_proc); 1544 if (locked) 1545 PROC_UNLOCK(p->td->td_proc); 1546 if (p->comp != NULL) 1547 error = compressor_write(p->comp, __DECONST(char *, data), len); 1548 else 1549 error = core_write(p, __DECONST(void *, data), len, p->offset, 1550 UIO_SYSSPACE); 1551 if (locked) 1552 PROC_LOCK(p->td->td_proc); 1553 if (error != 0) 1554 return (-error); 1555 p->offset += len; 1556 return (len); 1557 } 1558 1559 /* 1560 * Drain into a counter. 1561 */ 1562 static int 1563 sbuf_drain_count(void *arg, const char *data __unused, int len) 1564 { 1565 size_t *sizep; 1566 1567 sizep = (size_t *)arg; 1568 *sizep += len; 1569 return (len); 1570 } 1571 1572 int 1573 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1574 { 1575 struct ucred *cred = td->td_ucred; 1576 int error = 0; 1577 struct sseg_closure seginfo; 1578 struct note_info_list notelst; 1579 struct coredump_params params; 1580 struct note_info *ninfo; 1581 void *hdr, *tmpbuf; 1582 size_t hdrsize, notesz, coresize; 1583 1584 hdr = NULL; 1585 tmpbuf = NULL; 1586 TAILQ_INIT(¬elst); 1587 1588 /* Size the program segments. */ 1589 seginfo.count = 0; 1590 seginfo.size = 0; 1591 each_dumpable_segment(td, cb_size_segment, &seginfo); 1592 1593 /* 1594 * Collect info about the core file header area. 1595 */ 1596 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1597 if (seginfo.count + 1 >= PN_XNUM) 1598 hdrsize += sizeof(Elf_Shdr); 1599 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1600 coresize = round_page(hdrsize + notesz) + seginfo.size; 1601 1602 /* Set up core dump parameters. */ 1603 params.offset = 0; 1604 params.active_cred = cred; 1605 params.file_cred = NOCRED; 1606 params.td = td; 1607 params.vp = vp; 1608 params.comp = NULL; 1609 1610 #ifdef RACCT 1611 if (racct_enable) { 1612 PROC_LOCK(td->td_proc); 1613 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1614 PROC_UNLOCK(td->td_proc); 1615 if (error != 0) { 1616 error = EFAULT; 1617 goto done; 1618 } 1619 } 1620 #endif 1621 if (coresize >= limit) { 1622 error = EFAULT; 1623 goto done; 1624 } 1625 1626 /* Create a compression stream if necessary. */ 1627 if (compress_user_cores != 0) { 1628 params.comp = compressor_init(core_compressed_write, 1629 compress_user_cores, CORE_BUF_SIZE, 1630 compress_user_cores_level, ¶ms); 1631 if (params.comp == NULL) { 1632 error = EFAULT; 1633 goto done; 1634 } 1635 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1636 } 1637 1638 /* 1639 * Allocate memory for building the header, fill it up, 1640 * and write it out following the notes. 1641 */ 1642 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1643 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1644 notesz); 1645 1646 /* Write the contents of all of the writable segments. */ 1647 if (error == 0) { 1648 Elf_Phdr *php; 1649 off_t offset; 1650 int i; 1651 1652 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1653 offset = round_page(hdrsize + notesz); 1654 for (i = 0; i < seginfo.count; i++) { 1655 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1656 php->p_filesz, offset, ¶ms, tmpbuf); 1657 if (error != 0) 1658 break; 1659 offset += php->p_filesz; 1660 php++; 1661 } 1662 if (error == 0 && params.comp != NULL) 1663 error = compressor_flush(params.comp); 1664 } 1665 if (error) { 1666 log(LOG_WARNING, 1667 "Failed to write core file for process %s (error %d)\n", 1668 curproc->p_comm, error); 1669 } 1670 1671 done: 1672 free(tmpbuf, M_TEMP); 1673 if (params.comp != NULL) 1674 compressor_fini(params.comp); 1675 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1676 TAILQ_REMOVE(¬elst, ninfo, link); 1677 free(ninfo, M_TEMP); 1678 } 1679 if (hdr != NULL) 1680 free(hdr, M_TEMP); 1681 1682 return (error); 1683 } 1684 1685 /* 1686 * A callback for each_dumpable_segment() to write out the segment's 1687 * program header entry. 1688 */ 1689 static void 1690 cb_put_phdr(vm_map_entry_t entry, void *closure) 1691 { 1692 struct phdr_closure *phc = (struct phdr_closure *)closure; 1693 Elf_Phdr *phdr = phc->phdr; 1694 1695 phc->offset = round_page(phc->offset); 1696 1697 phdr->p_type = PT_LOAD; 1698 phdr->p_offset = phc->offset; 1699 phdr->p_vaddr = entry->start; 1700 phdr->p_paddr = 0; 1701 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1702 phdr->p_align = PAGE_SIZE; 1703 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1704 1705 phc->offset += phdr->p_filesz; 1706 phc->phdr++; 1707 } 1708 1709 /* 1710 * A callback for each_dumpable_segment() to gather information about 1711 * the number of segments and their total size. 1712 */ 1713 static void 1714 cb_size_segment(vm_map_entry_t entry, void *closure) 1715 { 1716 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1717 1718 ssc->count++; 1719 ssc->size += entry->end - entry->start; 1720 } 1721 1722 /* 1723 * For each writable segment in the process's memory map, call the given 1724 * function with a pointer to the map entry and some arbitrary 1725 * caller-supplied data. 1726 */ 1727 static void 1728 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1729 { 1730 struct proc *p = td->td_proc; 1731 vm_map_t map = &p->p_vmspace->vm_map; 1732 vm_map_entry_t entry; 1733 vm_object_t backing_object, object; 1734 boolean_t ignore_entry; 1735 1736 vm_map_lock_read(map); 1737 for (entry = map->header.next; entry != &map->header; 1738 entry = entry->next) { 1739 /* 1740 * Don't dump inaccessible mappings, deal with legacy 1741 * coredump mode. 1742 * 1743 * Note that read-only segments related to the elf binary 1744 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1745 * need to arbitrarily ignore such segments. 1746 */ 1747 if (elf_legacy_coredump) { 1748 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1749 continue; 1750 } else { 1751 if ((entry->protection & VM_PROT_ALL) == 0) 1752 continue; 1753 } 1754 1755 /* 1756 * Dont include memory segment in the coredump if 1757 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1758 * madvise(2). Do not dump submaps (i.e. parts of the 1759 * kernel map). 1760 */ 1761 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1762 continue; 1763 1764 if ((object = entry->object.vm_object) == NULL) 1765 continue; 1766 1767 /* Ignore memory-mapped devices and such things. */ 1768 VM_OBJECT_RLOCK(object); 1769 while ((backing_object = object->backing_object) != NULL) { 1770 VM_OBJECT_RLOCK(backing_object); 1771 VM_OBJECT_RUNLOCK(object); 1772 object = backing_object; 1773 } 1774 ignore_entry = object->type != OBJT_DEFAULT && 1775 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1776 object->type != OBJT_PHYS; 1777 VM_OBJECT_RUNLOCK(object); 1778 if (ignore_entry) 1779 continue; 1780 1781 (*func)(entry, closure); 1782 } 1783 vm_map_unlock_read(map); 1784 } 1785 1786 /* 1787 * Write the core file header to the file, including padding up to 1788 * the page boundary. 1789 */ 1790 static int 1791 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1792 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1793 { 1794 struct note_info *ninfo; 1795 struct sbuf *sb; 1796 int error; 1797 1798 /* Fill in the header. */ 1799 bzero(hdr, hdrsize); 1800 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1801 1802 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1803 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1804 sbuf_start_section(sb, NULL); 1805 sbuf_bcat(sb, hdr, hdrsize); 1806 TAILQ_FOREACH(ninfo, notelst, link) 1807 __elfN(putnote)(ninfo, sb); 1808 /* Align up to a page boundary for the program segments. */ 1809 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1810 error = sbuf_finish(sb); 1811 sbuf_delete(sb); 1812 1813 return (error); 1814 } 1815 1816 static void 1817 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1818 size_t *sizep) 1819 { 1820 struct proc *p; 1821 struct thread *thr; 1822 size_t size; 1823 1824 p = td->td_proc; 1825 size = 0; 1826 1827 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1828 1829 /* 1830 * To have the debugger select the right thread (LWP) as the initial 1831 * thread, we dump the state of the thread passed to us in td first. 1832 * This is the thread that causes the core dump and thus likely to 1833 * be the right thread one wants to have selected in the debugger. 1834 */ 1835 thr = td; 1836 while (thr != NULL) { 1837 size += register_note(list, NT_PRSTATUS, 1838 __elfN(note_prstatus), thr); 1839 size += register_note(list, NT_FPREGSET, 1840 __elfN(note_fpregset), thr); 1841 size += register_note(list, NT_THRMISC, 1842 __elfN(note_thrmisc), thr); 1843 size += register_note(list, NT_PTLWPINFO, 1844 __elfN(note_ptlwpinfo), thr); 1845 size += register_note(list, -1, 1846 __elfN(note_threadmd), thr); 1847 1848 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1849 TAILQ_NEXT(thr, td_plist); 1850 if (thr == td) 1851 thr = TAILQ_NEXT(thr, td_plist); 1852 } 1853 1854 size += register_note(list, NT_PROCSTAT_PROC, 1855 __elfN(note_procstat_proc), p); 1856 size += register_note(list, NT_PROCSTAT_FILES, 1857 note_procstat_files, p); 1858 size += register_note(list, NT_PROCSTAT_VMMAP, 1859 note_procstat_vmmap, p); 1860 size += register_note(list, NT_PROCSTAT_GROUPS, 1861 note_procstat_groups, p); 1862 size += register_note(list, NT_PROCSTAT_UMASK, 1863 note_procstat_umask, p); 1864 size += register_note(list, NT_PROCSTAT_RLIMIT, 1865 note_procstat_rlimit, p); 1866 size += register_note(list, NT_PROCSTAT_OSREL, 1867 note_procstat_osrel, p); 1868 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1869 __elfN(note_procstat_psstrings), p); 1870 size += register_note(list, NT_PROCSTAT_AUXV, 1871 __elfN(note_procstat_auxv), p); 1872 1873 *sizep = size; 1874 } 1875 1876 static void 1877 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1878 size_t notesz) 1879 { 1880 Elf_Ehdr *ehdr; 1881 Elf_Phdr *phdr; 1882 Elf_Shdr *shdr; 1883 struct phdr_closure phc; 1884 1885 ehdr = (Elf_Ehdr *)hdr; 1886 1887 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1888 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1889 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1890 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1891 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1892 ehdr->e_ident[EI_DATA] = ELF_DATA; 1893 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1894 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1895 ehdr->e_ident[EI_ABIVERSION] = 0; 1896 ehdr->e_ident[EI_PAD] = 0; 1897 ehdr->e_type = ET_CORE; 1898 ehdr->e_machine = td->td_proc->p_elf_machine; 1899 ehdr->e_version = EV_CURRENT; 1900 ehdr->e_entry = 0; 1901 ehdr->e_phoff = sizeof(Elf_Ehdr); 1902 ehdr->e_flags = td->td_proc->p_elf_flags; 1903 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1904 ehdr->e_phentsize = sizeof(Elf_Phdr); 1905 ehdr->e_shentsize = sizeof(Elf_Shdr); 1906 ehdr->e_shstrndx = SHN_UNDEF; 1907 if (numsegs + 1 < PN_XNUM) { 1908 ehdr->e_phnum = numsegs + 1; 1909 ehdr->e_shnum = 0; 1910 } else { 1911 ehdr->e_phnum = PN_XNUM; 1912 ehdr->e_shnum = 1; 1913 1914 ehdr->e_shoff = ehdr->e_phoff + 1915 (numsegs + 1) * ehdr->e_phentsize; 1916 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1917 ("e_shoff: %zu, hdrsize - shdr: %zu", 1918 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1919 1920 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1921 memset(shdr, 0, sizeof(*shdr)); 1922 /* 1923 * A special first section is used to hold large segment and 1924 * section counts. This was proposed by Sun Microsystems in 1925 * Solaris and has been adopted by Linux; the standard ELF 1926 * tools are already familiar with the technique. 1927 * 1928 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1929 * (or 12-7 depending on the version of the document) for more 1930 * details. 1931 */ 1932 shdr->sh_type = SHT_NULL; 1933 shdr->sh_size = ehdr->e_shnum; 1934 shdr->sh_link = ehdr->e_shstrndx; 1935 shdr->sh_info = numsegs + 1; 1936 } 1937 1938 /* 1939 * Fill in the program header entries. 1940 */ 1941 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1942 1943 /* The note segement. */ 1944 phdr->p_type = PT_NOTE; 1945 phdr->p_offset = hdrsize; 1946 phdr->p_vaddr = 0; 1947 phdr->p_paddr = 0; 1948 phdr->p_filesz = notesz; 1949 phdr->p_memsz = 0; 1950 phdr->p_flags = PF_R; 1951 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1952 phdr++; 1953 1954 /* All the writable segments from the program. */ 1955 phc.phdr = phdr; 1956 phc.offset = round_page(hdrsize + notesz); 1957 each_dumpable_segment(td, cb_put_phdr, &phc); 1958 } 1959 1960 static size_t 1961 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1962 { 1963 struct note_info *ninfo; 1964 size_t size, notesize; 1965 1966 size = 0; 1967 out(arg, NULL, &size); 1968 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1969 ninfo->type = type; 1970 ninfo->outfunc = out; 1971 ninfo->outarg = arg; 1972 ninfo->outsize = size; 1973 TAILQ_INSERT_TAIL(list, ninfo, link); 1974 1975 if (type == -1) 1976 return (size); 1977 1978 notesize = sizeof(Elf_Note) + /* note header */ 1979 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1980 /* note name */ 1981 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1982 1983 return (notesize); 1984 } 1985 1986 static size_t 1987 append_note_data(const void *src, void *dst, size_t len) 1988 { 1989 size_t padded_len; 1990 1991 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1992 if (dst != NULL) { 1993 bcopy(src, dst, len); 1994 bzero((char *)dst + len, padded_len - len); 1995 } 1996 return (padded_len); 1997 } 1998 1999 size_t 2000 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2001 { 2002 Elf_Note *note; 2003 char *buf; 2004 size_t notesize; 2005 2006 buf = dst; 2007 if (buf != NULL) { 2008 note = (Elf_Note *)buf; 2009 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2010 note->n_descsz = size; 2011 note->n_type = type; 2012 buf += sizeof(*note); 2013 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2014 sizeof(FREEBSD_ABI_VENDOR)); 2015 append_note_data(src, buf, size); 2016 if (descp != NULL) 2017 *descp = buf; 2018 } 2019 2020 notesize = sizeof(Elf_Note) + /* note header */ 2021 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2022 /* note name */ 2023 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2024 2025 return (notesize); 2026 } 2027 2028 static void 2029 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2030 { 2031 Elf_Note note; 2032 ssize_t old_len, sect_len; 2033 size_t new_len, descsz, i; 2034 2035 if (ninfo->type == -1) { 2036 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2037 return; 2038 } 2039 2040 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2041 note.n_descsz = ninfo->outsize; 2042 note.n_type = ninfo->type; 2043 2044 sbuf_bcat(sb, ¬e, sizeof(note)); 2045 sbuf_start_section(sb, &old_len); 2046 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2047 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2048 if (note.n_descsz == 0) 2049 return; 2050 sbuf_start_section(sb, &old_len); 2051 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2052 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2053 if (sect_len < 0) 2054 return; 2055 2056 new_len = (size_t)sect_len; 2057 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2058 if (new_len < descsz) { 2059 /* 2060 * It is expected that individual note emitters will correctly 2061 * predict their expected output size and fill up to that size 2062 * themselves, padding in a format-specific way if needed. 2063 * However, in case they don't, just do it here with zeros. 2064 */ 2065 for (i = 0; i < descsz - new_len; i++) 2066 sbuf_putc(sb, 0); 2067 } else if (new_len > descsz) { 2068 /* 2069 * We can't always truncate sb -- we may have drained some 2070 * of it already. 2071 */ 2072 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2073 "read it (%zu > %zu). Since it is longer than " 2074 "expected, this coredump's notes are corrupt. THIS " 2075 "IS A BUG in the note_procstat routine for type %u.\n", 2076 __func__, (unsigned)note.n_type, new_len, descsz, 2077 (unsigned)note.n_type)); 2078 } 2079 } 2080 2081 /* 2082 * Miscellaneous note out functions. 2083 */ 2084 2085 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2086 #include <compat/freebsd32/freebsd32.h> 2087 #include <compat/freebsd32/freebsd32_signal.h> 2088 2089 typedef struct prstatus32 elf_prstatus_t; 2090 typedef struct prpsinfo32 elf_prpsinfo_t; 2091 typedef struct fpreg32 elf_prfpregset_t; 2092 typedef struct fpreg32 elf_fpregset_t; 2093 typedef struct reg32 elf_gregset_t; 2094 typedef struct thrmisc32 elf_thrmisc_t; 2095 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2096 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2097 typedef uint32_t elf_ps_strings_t; 2098 #else 2099 typedef prstatus_t elf_prstatus_t; 2100 typedef prpsinfo_t elf_prpsinfo_t; 2101 typedef prfpregset_t elf_prfpregset_t; 2102 typedef prfpregset_t elf_fpregset_t; 2103 typedef gregset_t elf_gregset_t; 2104 typedef thrmisc_t elf_thrmisc_t; 2105 #define ELF_KERN_PROC_MASK 0 2106 typedef struct kinfo_proc elf_kinfo_proc_t; 2107 typedef vm_offset_t elf_ps_strings_t; 2108 #endif 2109 2110 static void 2111 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2112 { 2113 struct sbuf sbarg; 2114 size_t len; 2115 char *cp, *end; 2116 struct proc *p; 2117 elf_prpsinfo_t *psinfo; 2118 int error; 2119 2120 p = (struct proc *)arg; 2121 if (sb != NULL) { 2122 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2123 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2124 psinfo->pr_version = PRPSINFO_VERSION; 2125 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2126 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2127 PROC_LOCK(p); 2128 if (p->p_args != NULL) { 2129 len = sizeof(psinfo->pr_psargs) - 1; 2130 if (len > p->p_args->ar_length) 2131 len = p->p_args->ar_length; 2132 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2133 PROC_UNLOCK(p); 2134 error = 0; 2135 } else { 2136 _PHOLD(p); 2137 PROC_UNLOCK(p); 2138 sbuf_new(&sbarg, psinfo->pr_psargs, 2139 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2140 error = proc_getargv(curthread, p, &sbarg); 2141 PRELE(p); 2142 if (sbuf_finish(&sbarg) == 0) 2143 len = sbuf_len(&sbarg) - 1; 2144 else 2145 len = sizeof(psinfo->pr_psargs) - 1; 2146 sbuf_delete(&sbarg); 2147 } 2148 if (error || len == 0) 2149 strlcpy(psinfo->pr_psargs, p->p_comm, 2150 sizeof(psinfo->pr_psargs)); 2151 else { 2152 KASSERT(len < sizeof(psinfo->pr_psargs), 2153 ("len is too long: %zu vs %zu", len, 2154 sizeof(psinfo->pr_psargs))); 2155 cp = psinfo->pr_psargs; 2156 end = cp + len - 1; 2157 for (;;) { 2158 cp = memchr(cp, '\0', end - cp); 2159 if (cp == NULL) 2160 break; 2161 *cp = ' '; 2162 } 2163 } 2164 psinfo->pr_pid = p->p_pid; 2165 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2166 free(psinfo, M_TEMP); 2167 } 2168 *sizep = sizeof(*psinfo); 2169 } 2170 2171 static void 2172 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2173 { 2174 struct thread *td; 2175 elf_prstatus_t *status; 2176 2177 td = (struct thread *)arg; 2178 if (sb != NULL) { 2179 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2180 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2181 status->pr_version = PRSTATUS_VERSION; 2182 status->pr_statussz = sizeof(elf_prstatus_t); 2183 status->pr_gregsetsz = sizeof(elf_gregset_t); 2184 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2185 status->pr_osreldate = osreldate; 2186 status->pr_cursig = td->td_proc->p_sig; 2187 status->pr_pid = td->td_tid; 2188 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2189 fill_regs32(td, &status->pr_reg); 2190 #else 2191 fill_regs(td, &status->pr_reg); 2192 #endif 2193 sbuf_bcat(sb, status, sizeof(*status)); 2194 free(status, M_TEMP); 2195 } 2196 *sizep = sizeof(*status); 2197 } 2198 2199 static void 2200 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2201 { 2202 struct thread *td; 2203 elf_prfpregset_t *fpregset; 2204 2205 td = (struct thread *)arg; 2206 if (sb != NULL) { 2207 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2208 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2209 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2210 fill_fpregs32(td, fpregset); 2211 #else 2212 fill_fpregs(td, fpregset); 2213 #endif 2214 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2215 free(fpregset, M_TEMP); 2216 } 2217 *sizep = sizeof(*fpregset); 2218 } 2219 2220 static void 2221 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2222 { 2223 struct thread *td; 2224 elf_thrmisc_t thrmisc; 2225 2226 td = (struct thread *)arg; 2227 if (sb != NULL) { 2228 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2229 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2230 strcpy(thrmisc.pr_tname, td->td_name); 2231 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2232 } 2233 *sizep = sizeof(thrmisc); 2234 } 2235 2236 static void 2237 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2238 { 2239 struct thread *td; 2240 size_t size; 2241 int structsize; 2242 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2243 struct ptrace_lwpinfo32 pl; 2244 #else 2245 struct ptrace_lwpinfo pl; 2246 #endif 2247 2248 td = (struct thread *)arg; 2249 size = sizeof(structsize) + sizeof(pl); 2250 if (sb != NULL) { 2251 KASSERT(*sizep == size, ("invalid size")); 2252 structsize = sizeof(pl); 2253 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2254 bzero(&pl, sizeof(pl)); 2255 pl.pl_lwpid = td->td_tid; 2256 pl.pl_event = PL_EVENT_NONE; 2257 pl.pl_sigmask = td->td_sigmask; 2258 pl.pl_siglist = td->td_siglist; 2259 if (td->td_si.si_signo != 0) { 2260 pl.pl_event = PL_EVENT_SIGNAL; 2261 pl.pl_flags |= PL_FLAG_SI; 2262 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2263 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2264 #else 2265 pl.pl_siginfo = td->td_si; 2266 #endif 2267 } 2268 strcpy(pl.pl_tdname, td->td_name); 2269 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2270 sbuf_bcat(sb, &pl, sizeof(pl)); 2271 } 2272 *sizep = size; 2273 } 2274 2275 /* 2276 * Allow for MD specific notes, as well as any MD 2277 * specific preparations for writing MI notes. 2278 */ 2279 static void 2280 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2281 { 2282 struct thread *td; 2283 void *buf; 2284 size_t size; 2285 2286 td = (struct thread *)arg; 2287 size = *sizep; 2288 if (size != 0 && sb != NULL) 2289 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2290 else 2291 buf = NULL; 2292 size = 0; 2293 __elfN(dump_thread)(td, buf, &size); 2294 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2295 if (size != 0 && sb != NULL) 2296 sbuf_bcat(sb, buf, size); 2297 free(buf, M_TEMP); 2298 *sizep = size; 2299 } 2300 2301 #ifdef KINFO_PROC_SIZE 2302 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2303 #endif 2304 2305 static void 2306 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2307 { 2308 struct proc *p; 2309 size_t size; 2310 int structsize; 2311 2312 p = (struct proc *)arg; 2313 size = sizeof(structsize) + p->p_numthreads * 2314 sizeof(elf_kinfo_proc_t); 2315 2316 if (sb != NULL) { 2317 KASSERT(*sizep == size, ("invalid size")); 2318 structsize = sizeof(elf_kinfo_proc_t); 2319 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2320 PROC_LOCK(p); 2321 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2322 } 2323 *sizep = size; 2324 } 2325 2326 #ifdef KINFO_FILE_SIZE 2327 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2328 #endif 2329 2330 static void 2331 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2332 { 2333 struct proc *p; 2334 size_t size, sect_sz, i; 2335 ssize_t start_len, sect_len; 2336 int structsize, filedesc_flags; 2337 2338 if (coredump_pack_fileinfo) 2339 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2340 else 2341 filedesc_flags = 0; 2342 2343 p = (struct proc *)arg; 2344 structsize = sizeof(struct kinfo_file); 2345 if (sb == NULL) { 2346 size = 0; 2347 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2348 sbuf_set_drain(sb, sbuf_drain_count, &size); 2349 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2350 PROC_LOCK(p); 2351 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2352 sbuf_finish(sb); 2353 sbuf_delete(sb); 2354 *sizep = size; 2355 } else { 2356 sbuf_start_section(sb, &start_len); 2357 2358 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2359 PROC_LOCK(p); 2360 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2361 filedesc_flags); 2362 2363 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2364 if (sect_len < 0) 2365 return; 2366 sect_sz = sect_len; 2367 2368 KASSERT(sect_sz <= *sizep, 2369 ("kern_proc_filedesc_out did not respect maxlen; " 2370 "requested %zu, got %zu", *sizep - sizeof(structsize), 2371 sect_sz - sizeof(structsize))); 2372 2373 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2374 sbuf_putc(sb, 0); 2375 } 2376 } 2377 2378 #ifdef KINFO_VMENTRY_SIZE 2379 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2380 #endif 2381 2382 static void 2383 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2384 { 2385 struct proc *p; 2386 size_t size; 2387 int structsize, vmmap_flags; 2388 2389 if (coredump_pack_vmmapinfo) 2390 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2391 else 2392 vmmap_flags = 0; 2393 2394 p = (struct proc *)arg; 2395 structsize = sizeof(struct kinfo_vmentry); 2396 if (sb == NULL) { 2397 size = 0; 2398 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2399 sbuf_set_drain(sb, sbuf_drain_count, &size); 2400 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2401 PROC_LOCK(p); 2402 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2403 sbuf_finish(sb); 2404 sbuf_delete(sb); 2405 *sizep = size; 2406 } else { 2407 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2408 PROC_LOCK(p); 2409 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2410 vmmap_flags); 2411 } 2412 } 2413 2414 static void 2415 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2416 { 2417 struct proc *p; 2418 size_t size; 2419 int structsize; 2420 2421 p = (struct proc *)arg; 2422 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2423 if (sb != NULL) { 2424 KASSERT(*sizep == size, ("invalid size")); 2425 structsize = sizeof(gid_t); 2426 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2427 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2428 sizeof(gid_t)); 2429 } 2430 *sizep = size; 2431 } 2432 2433 static void 2434 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2435 { 2436 struct proc *p; 2437 size_t size; 2438 int structsize; 2439 2440 p = (struct proc *)arg; 2441 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2442 if (sb != NULL) { 2443 KASSERT(*sizep == size, ("invalid size")); 2444 structsize = sizeof(p->p_fd->fd_cmask); 2445 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2446 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2447 } 2448 *sizep = size; 2449 } 2450 2451 static void 2452 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2453 { 2454 struct proc *p; 2455 struct rlimit rlim[RLIM_NLIMITS]; 2456 size_t size; 2457 int structsize, i; 2458 2459 p = (struct proc *)arg; 2460 size = sizeof(structsize) + sizeof(rlim); 2461 if (sb != NULL) { 2462 KASSERT(*sizep == size, ("invalid size")); 2463 structsize = sizeof(rlim); 2464 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2465 PROC_LOCK(p); 2466 for (i = 0; i < RLIM_NLIMITS; i++) 2467 lim_rlimit_proc(p, i, &rlim[i]); 2468 PROC_UNLOCK(p); 2469 sbuf_bcat(sb, rlim, sizeof(rlim)); 2470 } 2471 *sizep = size; 2472 } 2473 2474 static void 2475 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2476 { 2477 struct proc *p; 2478 size_t size; 2479 int structsize; 2480 2481 p = (struct proc *)arg; 2482 size = sizeof(structsize) + sizeof(p->p_osrel); 2483 if (sb != NULL) { 2484 KASSERT(*sizep == size, ("invalid size")); 2485 structsize = sizeof(p->p_osrel); 2486 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2487 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2488 } 2489 *sizep = size; 2490 } 2491 2492 static void 2493 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2494 { 2495 struct proc *p; 2496 elf_ps_strings_t ps_strings; 2497 size_t size; 2498 int structsize; 2499 2500 p = (struct proc *)arg; 2501 size = sizeof(structsize) + sizeof(ps_strings); 2502 if (sb != NULL) { 2503 KASSERT(*sizep == size, ("invalid size")); 2504 structsize = sizeof(ps_strings); 2505 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2506 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2507 #else 2508 ps_strings = p->p_sysent->sv_psstrings; 2509 #endif 2510 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2511 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2512 } 2513 *sizep = size; 2514 } 2515 2516 static void 2517 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2518 { 2519 struct proc *p; 2520 size_t size; 2521 int structsize; 2522 2523 p = (struct proc *)arg; 2524 if (sb == NULL) { 2525 size = 0; 2526 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2527 sbuf_set_drain(sb, sbuf_drain_count, &size); 2528 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2529 PHOLD(p); 2530 proc_getauxv(curthread, p, sb); 2531 PRELE(p); 2532 sbuf_finish(sb); 2533 sbuf_delete(sb); 2534 *sizep = size; 2535 } else { 2536 structsize = sizeof(Elf_Auxinfo); 2537 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2538 PHOLD(p); 2539 proc_getauxv(curthread, p, sb); 2540 PRELE(p); 2541 } 2542 } 2543 2544 static boolean_t 2545 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2546 const char *note_vendor, const Elf_Phdr *pnote, 2547 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2548 { 2549 const Elf_Note *note, *note0, *note_end; 2550 const char *note_name; 2551 char *buf; 2552 int i, error; 2553 boolean_t res; 2554 2555 /* We need some limit, might as well use PAGE_SIZE. */ 2556 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2557 return (FALSE); 2558 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2559 if (pnote->p_offset > PAGE_SIZE || 2560 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2561 VOP_UNLOCK(imgp->vp, 0); 2562 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2563 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2564 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2565 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2566 curthread->td_ucred, NOCRED, NULL, curthread); 2567 if (error != 0) { 2568 uprintf("i/o error PT_NOTE\n"); 2569 goto retf; 2570 } 2571 note = note0 = (const Elf_Note *)buf; 2572 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2573 } else { 2574 note = note0 = (const Elf_Note *)(imgp->image_header + 2575 pnote->p_offset); 2576 note_end = (const Elf_Note *)(imgp->image_header + 2577 pnote->p_offset + pnote->p_filesz); 2578 buf = NULL; 2579 } 2580 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2581 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2582 (const char *)note < sizeof(Elf_Note)) { 2583 goto retf; 2584 } 2585 if (note->n_namesz != checknote->n_namesz || 2586 note->n_descsz != checknote->n_descsz || 2587 note->n_type != checknote->n_type) 2588 goto nextnote; 2589 note_name = (const char *)(note + 1); 2590 if (note_name + checknote->n_namesz >= 2591 (const char *)note_end || strncmp(note_vendor, 2592 note_name, checknote->n_namesz) != 0) 2593 goto nextnote; 2594 2595 if (cb(note, cb_arg, &res)) 2596 goto ret; 2597 nextnote: 2598 note = (const Elf_Note *)((const char *)(note + 1) + 2599 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2600 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2601 } 2602 retf: 2603 res = FALSE; 2604 ret: 2605 free(buf, M_TEMP); 2606 return (res); 2607 } 2608 2609 struct brandnote_cb_arg { 2610 Elf_Brandnote *brandnote; 2611 int32_t *osrel; 2612 }; 2613 2614 static boolean_t 2615 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2616 { 2617 struct brandnote_cb_arg *arg; 2618 2619 arg = arg0; 2620 2621 /* 2622 * Fetch the osreldate for binary from the ELF OSABI-note if 2623 * necessary. 2624 */ 2625 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2626 arg->brandnote->trans_osrel != NULL ? 2627 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2628 2629 return (TRUE); 2630 } 2631 2632 static Elf_Note fctl_note = { 2633 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2634 .n_descsz = sizeof(uint32_t), 2635 .n_type = NT_FREEBSD_FEATURE_CTL, 2636 }; 2637 2638 struct fctl_cb_arg { 2639 uint32_t *fctl0; 2640 }; 2641 2642 static boolean_t 2643 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2644 { 2645 struct fctl_cb_arg *arg; 2646 const Elf32_Word *desc; 2647 uintptr_t p; 2648 2649 arg = arg0; 2650 p = (uintptr_t)(note + 1); 2651 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2652 desc = (const Elf32_Word *)p; 2653 *arg->fctl0 = desc[0]; 2654 return (TRUE); 2655 } 2656 2657 /* 2658 * Try to find the appropriate ABI-note section for checknote, fetch 2659 * the osreldate and feature control flags for binary from the ELF 2660 * OSABI-note. Only the first page of the image is searched, the same 2661 * as for headers. 2662 */ 2663 static boolean_t 2664 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2665 int32_t *osrel, uint32_t *fctl0) 2666 { 2667 const Elf_Phdr *phdr; 2668 const Elf_Ehdr *hdr; 2669 struct brandnote_cb_arg b_arg; 2670 struct fctl_cb_arg f_arg; 2671 int i, j; 2672 2673 hdr = (const Elf_Ehdr *)imgp->image_header; 2674 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2675 b_arg.brandnote = brandnote; 2676 b_arg.osrel = osrel; 2677 f_arg.fctl0 = fctl0; 2678 2679 for (i = 0; i < hdr->e_phnum; i++) { 2680 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2681 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2682 &b_arg)) { 2683 for (j = 0; j < hdr->e_phnum; j++) { 2684 if (phdr[j].p_type == PT_NOTE && 2685 __elfN(parse_notes)(imgp, &fctl_note, 2686 FREEBSD_ABI_VENDOR, &phdr[j], 2687 note_fctl_cb, &f_arg)) 2688 break; 2689 } 2690 return (TRUE); 2691 } 2692 } 2693 return (FALSE); 2694 2695 } 2696 2697 /* 2698 * Tell kern_execve.c about it, with a little help from the linker. 2699 */ 2700 static struct execsw __elfN(execsw) = { 2701 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2702 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2703 }; 2704 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2705 2706 static vm_prot_t 2707 __elfN(trans_prot)(Elf_Word flags) 2708 { 2709 vm_prot_t prot; 2710 2711 prot = 0; 2712 if (flags & PF_X) 2713 prot |= VM_PROT_EXECUTE; 2714 if (flags & PF_W) 2715 prot |= VM_PROT_WRITE; 2716 if (flags & PF_R) 2717 prot |= VM_PROT_READ; 2718 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2719 if (i386_read_exec && (flags & PF_R)) 2720 prot |= VM_PROT_EXECUTE; 2721 #endif 2722 return (prot); 2723 } 2724 2725 static Elf_Word 2726 __elfN(untrans_prot)(vm_prot_t prot) 2727 { 2728 Elf_Word flags; 2729 2730 flags = 0; 2731 if (prot & VM_PROT_EXECUTE) 2732 flags |= PF_X; 2733 if (prot & VM_PROT_READ) 2734 flags |= PF_R; 2735 if (prot & VM_PROT_WRITE) 2736 flags |= PF_W; 2737 return (flags); 2738 } 2739