1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/resourcevar.h> 58 #include <sys/rwlock.h> 59 #include <sys/sbuf.h> 60 #include <sys/sf_buf.h> 61 #include <sys/smp.h> 62 #include <sys/systm.h> 63 #include <sys/signalvar.h> 64 #include <sys/stat.h> 65 #include <sys/sx.h> 66 #include <sys/syscall.h> 67 #include <sys/sysctl.h> 68 #include <sys/sysent.h> 69 #include <sys/vnode.h> 70 #include <sys/syslog.h> 71 #include <sys/eventhandler.h> 72 #include <sys/user.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_kern.h> 76 #include <vm/vm_param.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_extern.h> 81 82 #include <machine/elf.h> 83 #include <machine/md_var.h> 84 85 #define ELF_NOTE_ROUNDSIZE 4 86 #define OLD_EI_BRAND 8 87 88 static int __elfN(check_header)(const Elf_Ehdr *hdr); 89 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 90 const char *interp, int32_t *osrel, uint32_t *fctl0); 91 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 92 u_long *entry); 93 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 94 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 105 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 106 ""); 107 108 #define CORE_BUF_SIZE (16 * 1024) 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 139 static int 140 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 141 { 142 u_long val; 143 int error; 144 145 val = __elfN(pie_base); 146 error = sysctl_handle_long(oidp, &val, 0, req); 147 if (error != 0 || req->newptr == NULL) 148 return (error); 149 if ((val & PAGE_MASK) != 0) 150 return (EINVAL); 151 __elfN(pie_base) = val; 152 return (0); 153 } 154 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 155 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 156 sysctl_pie_base, "LU", 157 "PIE load base without randomization"); 158 159 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 160 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 161 ""); 162 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 163 164 static int __elfN(aslr_enabled) = 0; 165 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 166 &__elfN(aslr_enabled), 0, 167 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 168 ": enable address map randomization"); 169 170 static int __elfN(pie_aslr_enabled) = 0; 171 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 172 &__elfN(pie_aslr_enabled), 0, 173 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 174 ": enable address map randomization for PIE binaries"); 175 176 static int __elfN(aslr_honor_sbrk) = 1; 177 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 178 &__elfN(aslr_honor_sbrk), 0, 179 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 180 181 static int __elfN(aslr_stack_gap) = 3; 182 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 183 &__elfN(aslr_stack_gap), 0, 184 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 185 ": maximum percentage of main stack to waste on a random gap"); 186 187 static int __elfN(sigfastblock) = 1; 188 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 189 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 190 "enable sigfastblock for new processes"); 191 192 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 193 194 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 195 196 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 197 198 Elf_Brandnote __elfN(freebsd_brandnote) = { 199 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 200 .hdr.n_descsz = sizeof(int32_t), 201 .hdr.n_type = NT_FREEBSD_ABI_TAG, 202 .vendor = FREEBSD_ABI_VENDOR, 203 .flags = BN_TRANSLATE_OSREL, 204 .trans_osrel = __elfN(freebsd_trans_osrel) 205 }; 206 207 static bool 208 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 209 { 210 uintptr_t p; 211 212 p = (uintptr_t)(note + 1); 213 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 214 *osrel = *(const int32_t *)(p); 215 216 return (true); 217 } 218 219 static const char GNU_ABI_VENDOR[] = "GNU"; 220 static int GNU_KFREEBSD_ABI_DESC = 3; 221 222 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 223 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 224 .hdr.n_descsz = 16, /* XXX at least 16 */ 225 .hdr.n_type = 1, 226 .vendor = GNU_ABI_VENDOR, 227 .flags = BN_TRANSLATE_OSREL, 228 .trans_osrel = kfreebsd_trans_osrel 229 }; 230 231 static bool 232 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 233 { 234 const Elf32_Word *desc; 235 uintptr_t p; 236 237 p = (uintptr_t)(note + 1); 238 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 239 240 desc = (const Elf32_Word *)p; 241 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 242 return (false); 243 244 /* 245 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 246 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 247 */ 248 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 249 250 return (true); 251 } 252 253 int 254 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 255 { 256 int i; 257 258 for (i = 0; i < MAX_BRANDS; i++) { 259 if (elf_brand_list[i] == NULL) { 260 elf_brand_list[i] = entry; 261 break; 262 } 263 } 264 if (i == MAX_BRANDS) { 265 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 266 __func__, entry); 267 return (-1); 268 } 269 return (0); 270 } 271 272 int 273 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 274 { 275 int i; 276 277 for (i = 0; i < MAX_BRANDS; i++) { 278 if (elf_brand_list[i] == entry) { 279 elf_brand_list[i] = NULL; 280 break; 281 } 282 } 283 if (i == MAX_BRANDS) 284 return (-1); 285 return (0); 286 } 287 288 int 289 __elfN(brand_inuse)(Elf_Brandinfo *entry) 290 { 291 struct proc *p; 292 int rval = FALSE; 293 294 sx_slock(&allproc_lock); 295 FOREACH_PROC_IN_SYSTEM(p) { 296 if (p->p_sysent == entry->sysvec) { 297 rval = TRUE; 298 break; 299 } 300 } 301 sx_sunlock(&allproc_lock); 302 303 return (rval); 304 } 305 306 static Elf_Brandinfo * 307 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 308 int32_t *osrel, uint32_t *fctl0) 309 { 310 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 311 Elf_Brandinfo *bi, *bi_m; 312 boolean_t ret; 313 int i, interp_name_len; 314 315 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 316 317 /* 318 * We support four types of branding -- (1) the ELF EI_OSABI field 319 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 320 * branding w/in the ELF header, (3) path of the `interp_path' 321 * field, and (4) the ".note.ABI-tag" ELF section. 322 */ 323 324 /* Look for an ".note.ABI-tag" ELF section */ 325 bi_m = NULL; 326 for (i = 0; i < MAX_BRANDS; i++) { 327 bi = elf_brand_list[i]; 328 if (bi == NULL) 329 continue; 330 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 331 continue; 332 if (hdr->e_machine == bi->machine && (bi->flags & 333 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 334 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 335 fctl0); 336 /* Give brand a chance to veto check_note's guess */ 337 if (ret && bi->header_supported) 338 ret = bi->header_supported(imgp); 339 /* 340 * If note checker claimed the binary, but the 341 * interpreter path in the image does not 342 * match default one for the brand, try to 343 * search for other brands with the same 344 * interpreter. Either there is better brand 345 * with the right interpreter, or, failing 346 * this, we return first brand which accepted 347 * our note and, optionally, header. 348 */ 349 if (ret && bi_m == NULL && interp != NULL && 350 (bi->interp_path == NULL || 351 (strlen(bi->interp_path) + 1 != interp_name_len || 352 strncmp(interp, bi->interp_path, interp_name_len) 353 != 0))) { 354 bi_m = bi; 355 ret = 0; 356 } 357 if (ret) 358 return (bi); 359 } 360 } 361 if (bi_m != NULL) 362 return (bi_m); 363 364 /* If the executable has a brand, search for it in the brand list. */ 365 for (i = 0; i < MAX_BRANDS; i++) { 366 bi = elf_brand_list[i]; 367 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 368 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 369 continue; 370 if (hdr->e_machine == bi->machine && 371 (hdr->e_ident[EI_OSABI] == bi->brand || 372 (bi->compat_3_brand != NULL && 373 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 374 bi->compat_3_brand) == 0))) { 375 /* Looks good, but give brand a chance to veto */ 376 if (bi->header_supported == NULL || 377 bi->header_supported(imgp)) { 378 /* 379 * Again, prefer strictly matching 380 * interpreter path. 381 */ 382 if (interp_name_len == 0 && 383 bi->interp_path == NULL) 384 return (bi); 385 if (bi->interp_path != NULL && 386 strlen(bi->interp_path) + 1 == 387 interp_name_len && strncmp(interp, 388 bi->interp_path, interp_name_len) == 0) 389 return (bi); 390 if (bi_m == NULL) 391 bi_m = bi; 392 } 393 } 394 } 395 if (bi_m != NULL) 396 return (bi_m); 397 398 /* No known brand, see if the header is recognized by any brand */ 399 for (i = 0; i < MAX_BRANDS; i++) { 400 bi = elf_brand_list[i]; 401 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 402 bi->header_supported == NULL) 403 continue; 404 if (hdr->e_machine == bi->machine) { 405 ret = bi->header_supported(imgp); 406 if (ret) 407 return (bi); 408 } 409 } 410 411 /* Lacking a known brand, search for a recognized interpreter. */ 412 if (interp != NULL) { 413 for (i = 0; i < MAX_BRANDS; i++) { 414 bi = elf_brand_list[i]; 415 if (bi == NULL || (bi->flags & 416 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 417 != 0) 418 continue; 419 if (hdr->e_machine == bi->machine && 420 bi->interp_path != NULL && 421 /* ELF image p_filesz includes terminating zero */ 422 strlen(bi->interp_path) + 1 == interp_name_len && 423 strncmp(interp, bi->interp_path, interp_name_len) 424 == 0 && (bi->header_supported == NULL || 425 bi->header_supported(imgp))) 426 return (bi); 427 } 428 } 429 430 /* Lacking a recognized interpreter, try the default brand */ 431 for (i = 0; i < MAX_BRANDS; i++) { 432 bi = elf_brand_list[i]; 433 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 434 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 435 continue; 436 if (hdr->e_machine == bi->machine && 437 __elfN(fallback_brand) == bi->brand && 438 (bi->header_supported == NULL || 439 bi->header_supported(imgp))) 440 return (bi); 441 } 442 return (NULL); 443 } 444 445 static int 446 __elfN(check_header)(const Elf_Ehdr *hdr) 447 { 448 Elf_Brandinfo *bi; 449 int i; 450 451 if (!IS_ELF(*hdr) || 452 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 453 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 454 hdr->e_ident[EI_VERSION] != EV_CURRENT || 455 hdr->e_phentsize != sizeof(Elf_Phdr) || 456 hdr->e_version != ELF_TARG_VER) 457 return (ENOEXEC); 458 459 /* 460 * Make sure we have at least one brand for this machine. 461 */ 462 463 for (i = 0; i < MAX_BRANDS; i++) { 464 bi = elf_brand_list[i]; 465 if (bi != NULL && bi->machine == hdr->e_machine) 466 break; 467 } 468 if (i == MAX_BRANDS) 469 return (ENOEXEC); 470 471 return (0); 472 } 473 474 static int 475 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 476 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 477 { 478 struct sf_buf *sf; 479 int error; 480 vm_offset_t off; 481 482 /* 483 * Create the page if it doesn't exist yet. Ignore errors. 484 */ 485 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 486 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 487 488 /* 489 * Find the page from the underlying object. 490 */ 491 if (object != NULL) { 492 sf = vm_imgact_map_page(object, offset); 493 if (sf == NULL) 494 return (KERN_FAILURE); 495 off = offset - trunc_page(offset); 496 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 497 end - start); 498 vm_imgact_unmap_page(sf); 499 if (error != 0) 500 return (KERN_FAILURE); 501 } 502 503 return (KERN_SUCCESS); 504 } 505 506 static int 507 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 508 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 509 int cow) 510 { 511 struct sf_buf *sf; 512 vm_offset_t off; 513 vm_size_t sz; 514 int error, locked, rv; 515 516 if (start != trunc_page(start)) { 517 rv = __elfN(map_partial)(map, object, offset, start, 518 round_page(start), prot); 519 if (rv != KERN_SUCCESS) 520 return (rv); 521 offset += round_page(start) - start; 522 start = round_page(start); 523 } 524 if (end != round_page(end)) { 525 rv = __elfN(map_partial)(map, object, offset + 526 trunc_page(end) - start, trunc_page(end), end, prot); 527 if (rv != KERN_SUCCESS) 528 return (rv); 529 end = trunc_page(end); 530 } 531 if (start >= end) 532 return (KERN_SUCCESS); 533 if ((offset & PAGE_MASK) != 0) { 534 /* 535 * The mapping is not page aligned. This means that we have 536 * to copy the data. 537 */ 538 rv = vm_map_fixed(map, NULL, 0, start, end - start, 539 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 540 if (rv != KERN_SUCCESS) 541 return (rv); 542 if (object == NULL) 543 return (KERN_SUCCESS); 544 for (; start < end; start += sz) { 545 sf = vm_imgact_map_page(object, offset); 546 if (sf == NULL) 547 return (KERN_FAILURE); 548 off = offset - trunc_page(offset); 549 sz = end - start; 550 if (sz > PAGE_SIZE - off) 551 sz = PAGE_SIZE - off; 552 error = copyout((caddr_t)sf_buf_kva(sf) + off, 553 (caddr_t)start, sz); 554 vm_imgact_unmap_page(sf); 555 if (error != 0) 556 return (KERN_FAILURE); 557 offset += sz; 558 } 559 } else { 560 vm_object_reference(object); 561 rv = vm_map_fixed(map, object, offset, start, end - start, 562 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 563 (object != NULL ? MAP_VN_EXEC : 0)); 564 if (rv != KERN_SUCCESS) { 565 locked = VOP_ISLOCKED(imgp->vp); 566 VOP_UNLOCK(imgp->vp); 567 vm_object_deallocate(object); 568 vn_lock(imgp->vp, locked | LK_RETRY); 569 return (rv); 570 } else if (object != NULL) { 571 MPASS(imgp->vp->v_object == object); 572 VOP_SET_TEXT_CHECKED(imgp->vp); 573 } 574 } 575 return (KERN_SUCCESS); 576 } 577 578 static int 579 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 580 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 581 { 582 struct sf_buf *sf; 583 size_t map_len; 584 vm_map_t map; 585 vm_object_t object; 586 vm_offset_t map_addr; 587 int error, rv, cow; 588 size_t copy_len; 589 vm_ooffset_t file_addr; 590 591 /* 592 * It's necessary to fail if the filsz + offset taken from the 593 * header is greater than the actual file pager object's size. 594 * If we were to allow this, then the vm_map_find() below would 595 * walk right off the end of the file object and into the ether. 596 * 597 * While I'm here, might as well check for something else that 598 * is invalid: filsz cannot be greater than memsz. 599 */ 600 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 601 filsz > memsz) { 602 uprintf("elf_load_section: truncated ELF file\n"); 603 return (ENOEXEC); 604 } 605 606 object = imgp->object; 607 map = &imgp->proc->p_vmspace->vm_map; 608 map_addr = trunc_page((vm_offset_t)vmaddr); 609 file_addr = trunc_page(offset); 610 611 /* 612 * We have two choices. We can either clear the data in the last page 613 * of an oversized mapping, or we can start the anon mapping a page 614 * early and copy the initialized data into that first page. We 615 * choose the second. 616 */ 617 if (filsz == 0) 618 map_len = 0; 619 else if (memsz > filsz) 620 map_len = trunc_page(offset + filsz) - file_addr; 621 else 622 map_len = round_page(offset + filsz) - file_addr; 623 624 if (map_len != 0) { 625 /* cow flags: don't dump readonly sections in core */ 626 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 627 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 628 629 rv = __elfN(map_insert)(imgp, map, object, file_addr, 630 map_addr, map_addr + map_len, prot, cow); 631 if (rv != KERN_SUCCESS) 632 return (EINVAL); 633 634 /* we can stop now if we've covered it all */ 635 if (memsz == filsz) 636 return (0); 637 } 638 639 /* 640 * We have to get the remaining bit of the file into the first part 641 * of the oversized map segment. This is normally because the .data 642 * segment in the file is extended to provide bss. It's a neat idea 643 * to try and save a page, but it's a pain in the behind to implement. 644 */ 645 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 646 filsz); 647 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 648 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 649 650 /* This had damn well better be true! */ 651 if (map_len != 0) { 652 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 653 map_addr + map_len, prot, 0); 654 if (rv != KERN_SUCCESS) 655 return (EINVAL); 656 } 657 658 if (copy_len != 0) { 659 sf = vm_imgact_map_page(object, offset + filsz); 660 if (sf == NULL) 661 return (EIO); 662 663 /* send the page fragment to user space */ 664 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 665 copy_len); 666 vm_imgact_unmap_page(sf); 667 if (error != 0) 668 return (error); 669 } 670 671 /* 672 * Remove write access to the page if it was only granted by map_insert 673 * to allow copyout. 674 */ 675 if ((prot & VM_PROT_WRITE) == 0) 676 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 677 map_len), prot, FALSE); 678 679 return (0); 680 } 681 682 static int 683 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 684 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 685 { 686 vm_prot_t prot; 687 u_long base_addr; 688 bool first; 689 int error, i; 690 691 ASSERT_VOP_LOCKED(imgp->vp, __func__); 692 693 base_addr = 0; 694 first = true; 695 696 for (i = 0; i < hdr->e_phnum; i++) { 697 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 698 continue; 699 700 /* Loadable segment */ 701 prot = __elfN(trans_prot)(phdr[i].p_flags); 702 error = __elfN(load_section)(imgp, phdr[i].p_offset, 703 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 704 phdr[i].p_memsz, phdr[i].p_filesz, prot); 705 if (error != 0) 706 return (error); 707 708 /* 709 * Establish the base address if this is the first segment. 710 */ 711 if (first) { 712 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 713 first = false; 714 } 715 } 716 717 if (base_addrp != NULL) 718 *base_addrp = base_addr; 719 720 return (0); 721 } 722 723 /* 724 * Load the file "file" into memory. It may be either a shared object 725 * or an executable. 726 * 727 * The "addr" reference parameter is in/out. On entry, it specifies 728 * the address where a shared object should be loaded. If the file is 729 * an executable, this value is ignored. On exit, "addr" specifies 730 * where the file was actually loaded. 731 * 732 * The "entry" reference parameter is out only. On exit, it specifies 733 * the entry point for the loaded file. 734 */ 735 static int 736 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 737 u_long *entry) 738 { 739 struct { 740 struct nameidata nd; 741 struct vattr attr; 742 struct image_params image_params; 743 } *tempdata; 744 const Elf_Ehdr *hdr = NULL; 745 const Elf_Phdr *phdr = NULL; 746 struct nameidata *nd; 747 struct vattr *attr; 748 struct image_params *imgp; 749 u_long rbase; 750 u_long base_addr = 0; 751 int error; 752 753 #ifdef CAPABILITY_MODE 754 /* 755 * XXXJA: This check can go away once we are sufficiently confident 756 * that the checks in namei() are correct. 757 */ 758 if (IN_CAPABILITY_MODE(curthread)) 759 return (ECAPMODE); 760 #endif 761 762 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 763 nd = &tempdata->nd; 764 attr = &tempdata->attr; 765 imgp = &tempdata->image_params; 766 767 /* 768 * Initialize part of the common data 769 */ 770 imgp->proc = p; 771 imgp->attr = attr; 772 773 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 774 UIO_SYSSPACE, file, curthread); 775 if ((error = namei(nd)) != 0) { 776 nd->ni_vp = NULL; 777 goto fail; 778 } 779 NDFREE(nd, NDF_ONLY_PNBUF); 780 imgp->vp = nd->ni_vp; 781 782 /* 783 * Check permissions, modes, uid, etc on the file, and "open" it. 784 */ 785 error = exec_check_permissions(imgp); 786 if (error) 787 goto fail; 788 789 error = exec_map_first_page(imgp); 790 if (error) 791 goto fail; 792 793 imgp->object = nd->ni_vp->v_object; 794 795 hdr = (const Elf_Ehdr *)imgp->image_header; 796 if ((error = __elfN(check_header)(hdr)) != 0) 797 goto fail; 798 if (hdr->e_type == ET_DYN) 799 rbase = *addr; 800 else if (hdr->e_type == ET_EXEC) 801 rbase = 0; 802 else { 803 error = ENOEXEC; 804 goto fail; 805 } 806 807 /* Only support headers that fit within first page for now */ 808 if ((hdr->e_phoff > PAGE_SIZE) || 809 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 810 error = ENOEXEC; 811 goto fail; 812 } 813 814 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 815 if (!aligned(phdr, Elf_Addr)) { 816 error = ENOEXEC; 817 goto fail; 818 } 819 820 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 821 if (error != 0) 822 goto fail; 823 824 *addr = base_addr; 825 *entry = (unsigned long)hdr->e_entry + rbase; 826 827 fail: 828 if (imgp->firstpage) 829 exec_unmap_first_page(imgp); 830 831 if (nd->ni_vp) { 832 if (imgp->textset) 833 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 834 vput(nd->ni_vp); 835 } 836 free(tempdata, M_TEMP); 837 838 return (error); 839 } 840 841 static u_long 842 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 843 u_int align) 844 { 845 u_long rbase, res; 846 847 MPASS(vm_map_min(map) <= minv); 848 MPASS(maxv <= vm_map_max(map)); 849 MPASS(minv < maxv); 850 MPASS(minv + align < maxv); 851 arc4rand(&rbase, sizeof(rbase), 0); 852 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 853 res &= ~((u_long)align - 1); 854 if (res >= maxv) 855 res -= align; 856 KASSERT(res >= minv, 857 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 858 res, minv, maxv, rbase)); 859 KASSERT(res < maxv, 860 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 861 res, maxv, minv, rbase)); 862 return (res); 863 } 864 865 static int 866 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 867 const Elf_Phdr *phdr, u_long et_dyn_addr) 868 { 869 struct vmspace *vmspace; 870 const char *err_str; 871 u_long text_size, data_size, total_size, text_addr, data_addr; 872 u_long seg_size, seg_addr; 873 int i; 874 875 err_str = NULL; 876 text_size = data_size = total_size = text_addr = data_addr = 0; 877 878 for (i = 0; i < hdr->e_phnum; i++) { 879 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 880 continue; 881 882 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 883 seg_size = round_page(phdr[i].p_memsz + 884 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 885 886 /* 887 * Make the largest executable segment the official 888 * text segment and all others data. 889 * 890 * Note that obreak() assumes that data_addr + data_size == end 891 * of data load area, and the ELF file format expects segments 892 * to be sorted by address. If multiple data segments exist, 893 * the last one will be used. 894 */ 895 896 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 897 text_size = seg_size; 898 text_addr = seg_addr; 899 } else { 900 data_size = seg_size; 901 data_addr = seg_addr; 902 } 903 total_size += seg_size; 904 } 905 906 if (data_addr == 0 && data_size == 0) { 907 data_addr = text_addr; 908 data_size = text_size; 909 } 910 911 /* 912 * Check limits. It should be safe to check the 913 * limits after loading the segments since we do 914 * not actually fault in all the segments pages. 915 */ 916 PROC_LOCK(imgp->proc); 917 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 918 err_str = "Data segment size exceeds process limit"; 919 else if (text_size > maxtsiz) 920 err_str = "Text segment size exceeds system limit"; 921 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 922 err_str = "Total segment size exceeds process limit"; 923 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 924 err_str = "Data segment size exceeds resource limit"; 925 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 926 err_str = "Total segment size exceeds resource limit"; 927 PROC_UNLOCK(imgp->proc); 928 if (err_str != NULL) { 929 uprintf("%s\n", err_str); 930 return (ENOMEM); 931 } 932 933 vmspace = imgp->proc->p_vmspace; 934 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 935 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 936 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 937 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 938 939 return (0); 940 } 941 942 static int 943 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 944 char **interpp, bool *free_interpp) 945 { 946 struct thread *td; 947 char *interp; 948 int error, interp_name_len; 949 950 KASSERT(phdr->p_type == PT_INTERP, 951 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 952 ASSERT_VOP_LOCKED(imgp->vp, __func__); 953 954 td = curthread; 955 956 /* Path to interpreter */ 957 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 958 uprintf("Invalid PT_INTERP\n"); 959 return (ENOEXEC); 960 } 961 962 interp_name_len = phdr->p_filesz; 963 if (phdr->p_offset > PAGE_SIZE || 964 interp_name_len > PAGE_SIZE - phdr->p_offset) { 965 /* 966 * The vnode lock might be needed by the pagedaemon to 967 * clean pages owned by the vnode. Do not allow sleep 968 * waiting for memory with the vnode locked, instead 969 * try non-sleepable allocation first, and if it 970 * fails, go to the slow path were we drop the lock 971 * and do M_WAITOK. A text reference prevents 972 * modifications to the vnode content. 973 */ 974 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 975 if (interp == NULL) { 976 VOP_UNLOCK(imgp->vp); 977 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 978 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 979 } 980 981 error = vn_rdwr(UIO_READ, imgp->vp, interp, 982 interp_name_len, phdr->p_offset, 983 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 984 NOCRED, NULL, td); 985 if (error != 0) { 986 free(interp, M_TEMP); 987 uprintf("i/o error PT_INTERP %d\n", error); 988 return (error); 989 } 990 interp[interp_name_len] = '\0'; 991 992 *interpp = interp; 993 *free_interpp = true; 994 return (0); 995 } 996 997 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 998 if (interp[interp_name_len - 1] != '\0') { 999 uprintf("Invalid PT_INTERP\n"); 1000 return (ENOEXEC); 1001 } 1002 1003 *interpp = interp; 1004 *free_interpp = false; 1005 return (0); 1006 } 1007 1008 static int 1009 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1010 const char *interp, u_long *addr, u_long *entry) 1011 { 1012 char *path; 1013 int error; 1014 1015 if (brand_info->emul_path != NULL && 1016 brand_info->emul_path[0] != '\0') { 1017 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1018 snprintf(path, MAXPATHLEN, "%s%s", 1019 brand_info->emul_path, interp); 1020 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1021 free(path, M_TEMP); 1022 if (error == 0) 1023 return (0); 1024 } 1025 1026 if (brand_info->interp_newpath != NULL && 1027 (brand_info->interp_path == NULL || 1028 strcmp(interp, brand_info->interp_path) == 0)) { 1029 error = __elfN(load_file)(imgp->proc, 1030 brand_info->interp_newpath, addr, entry); 1031 if (error == 0) 1032 return (0); 1033 } 1034 1035 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1036 if (error == 0) 1037 return (0); 1038 1039 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1040 return (error); 1041 } 1042 1043 /* 1044 * Impossible et_dyn_addr initial value indicating that the real base 1045 * must be calculated later with some randomization applied. 1046 */ 1047 #define ET_DYN_ADDR_RAND 1 1048 1049 static int 1050 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1051 { 1052 struct thread *td; 1053 const Elf_Ehdr *hdr; 1054 const Elf_Phdr *phdr; 1055 Elf_Auxargs *elf_auxargs; 1056 struct vmspace *vmspace; 1057 vm_map_t map; 1058 char *interp; 1059 Elf_Brandinfo *brand_info; 1060 struct sysentvec *sv; 1061 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1062 u_long maxalign, mapsz, maxv, maxv1; 1063 uint32_t fctl0; 1064 int32_t osrel; 1065 bool free_interp; 1066 int error, i, n; 1067 1068 hdr = (const Elf_Ehdr *)imgp->image_header; 1069 1070 /* 1071 * Do we have a valid ELF header ? 1072 * 1073 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1074 * if particular brand doesn't support it. 1075 */ 1076 if (__elfN(check_header)(hdr) != 0 || 1077 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1078 return (-1); 1079 1080 /* 1081 * From here on down, we return an errno, not -1, as we've 1082 * detected an ELF file. 1083 */ 1084 1085 if ((hdr->e_phoff > PAGE_SIZE) || 1086 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 1087 /* Only support headers in first page for now */ 1088 uprintf("Program headers not in the first page\n"); 1089 return (ENOEXEC); 1090 } 1091 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1092 if (!aligned(phdr, Elf_Addr)) { 1093 uprintf("Unaligned program headers\n"); 1094 return (ENOEXEC); 1095 } 1096 1097 n = error = 0; 1098 baddr = 0; 1099 osrel = 0; 1100 fctl0 = 0; 1101 entry = proghdr = 0; 1102 interp = NULL; 1103 free_interp = false; 1104 td = curthread; 1105 maxalign = PAGE_SIZE; 1106 mapsz = 0; 1107 1108 for (i = 0; i < hdr->e_phnum; i++) { 1109 switch (phdr[i].p_type) { 1110 case PT_LOAD: 1111 if (n == 0) 1112 baddr = phdr[i].p_vaddr; 1113 if (phdr[i].p_align > maxalign) 1114 maxalign = phdr[i].p_align; 1115 mapsz += phdr[i].p_memsz; 1116 n++; 1117 1118 /* 1119 * If this segment contains the program headers, 1120 * remember their virtual address for the AT_PHDR 1121 * aux entry. Static binaries don't usually include 1122 * a PT_PHDR entry. 1123 */ 1124 if (phdr[i].p_offset == 0 && 1125 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1126 <= phdr[i].p_filesz) 1127 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1128 break; 1129 case PT_INTERP: 1130 /* Path to interpreter */ 1131 if (interp != NULL) { 1132 uprintf("Multiple PT_INTERP headers\n"); 1133 error = ENOEXEC; 1134 goto ret; 1135 } 1136 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1137 &free_interp); 1138 if (error != 0) 1139 goto ret; 1140 break; 1141 case PT_GNU_STACK: 1142 if (__elfN(nxstack)) 1143 imgp->stack_prot = 1144 __elfN(trans_prot)(phdr[i].p_flags); 1145 imgp->stack_sz = phdr[i].p_memsz; 1146 break; 1147 case PT_PHDR: /* Program header table info */ 1148 proghdr = phdr[i].p_vaddr; 1149 break; 1150 } 1151 } 1152 1153 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1154 if (brand_info == NULL) { 1155 uprintf("ELF binary type \"%u\" not known.\n", 1156 hdr->e_ident[EI_OSABI]); 1157 error = ENOEXEC; 1158 goto ret; 1159 } 1160 sv = brand_info->sysvec; 1161 et_dyn_addr = 0; 1162 if (hdr->e_type == ET_DYN) { 1163 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1164 uprintf("Cannot execute shared object\n"); 1165 error = ENOEXEC; 1166 goto ret; 1167 } 1168 /* 1169 * Honour the base load address from the dso if it is 1170 * non-zero for some reason. 1171 */ 1172 if (baddr == 0) { 1173 if ((sv->sv_flags & SV_ASLR) == 0 || 1174 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1175 et_dyn_addr = __elfN(pie_base); 1176 else if ((__elfN(pie_aslr_enabled) && 1177 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1178 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1179 et_dyn_addr = ET_DYN_ADDR_RAND; 1180 else 1181 et_dyn_addr = __elfN(pie_base); 1182 } 1183 } 1184 1185 /* 1186 * Avoid a possible deadlock if the current address space is destroyed 1187 * and that address space maps the locked vnode. In the common case, 1188 * the locked vnode's v_usecount is decremented but remains greater 1189 * than zero. Consequently, the vnode lock is not needed by vrele(). 1190 * However, in cases where the vnode lock is external, such as nullfs, 1191 * v_usecount may become zero. 1192 * 1193 * The VV_TEXT flag prevents modifications to the executable while 1194 * the vnode is unlocked. 1195 */ 1196 VOP_UNLOCK(imgp->vp); 1197 1198 /* 1199 * Decide whether to enable randomization of user mappings. 1200 * First, reset user preferences for the setid binaries. 1201 * Then, account for the support of the randomization by the 1202 * ABI, by user preferences, and make special treatment for 1203 * PIE binaries. 1204 */ 1205 if (imgp->credential_setid) { 1206 PROC_LOCK(imgp->proc); 1207 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1208 PROC_UNLOCK(imgp->proc); 1209 } 1210 if ((sv->sv_flags & SV_ASLR) == 0 || 1211 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1212 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1213 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1214 ("et_dyn_addr == RAND and !ASLR")); 1215 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1216 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1217 et_dyn_addr == ET_DYN_ADDR_RAND) { 1218 imgp->map_flags |= MAP_ASLR; 1219 /* 1220 * If user does not care about sbrk, utilize the bss 1221 * grow region for mappings as well. We can select 1222 * the base for the image anywere and still not suffer 1223 * from the fragmentation. 1224 */ 1225 if (!__elfN(aslr_honor_sbrk) || 1226 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1227 imgp->map_flags |= MAP_ASLR_IGNSTART; 1228 } 1229 1230 error = exec_new_vmspace(imgp, sv); 1231 vmspace = imgp->proc->p_vmspace; 1232 map = &vmspace->vm_map; 1233 1234 imgp->proc->p_sysent = sv; 1235 1236 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1237 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1238 KASSERT((map->flags & MAP_ASLR) != 0, 1239 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1240 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1241 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1242 /* reserve half of the address space to interpreter */ 1243 maxv / 2, 1UL << flsl(maxalign)); 1244 } 1245 1246 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1247 if (error != 0) 1248 goto ret; 1249 1250 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1251 if (error != 0) 1252 goto ret; 1253 1254 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1255 if (error != 0) 1256 goto ret; 1257 1258 entry = (u_long)hdr->e_entry + et_dyn_addr; 1259 1260 /* 1261 * We load the dynamic linker where a userland call 1262 * to mmap(0, ...) would put it. The rationale behind this 1263 * calculation is that it leaves room for the heap to grow to 1264 * its maximum allowed size. 1265 */ 1266 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1267 RLIMIT_DATA)); 1268 if ((map->flags & MAP_ASLR) != 0) { 1269 maxv1 = maxv / 2 + addr / 2; 1270 MPASS(maxv1 >= addr); /* No overflow */ 1271 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1272 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1273 } else { 1274 map->anon_loc = addr; 1275 } 1276 1277 imgp->entry_addr = entry; 1278 1279 if (interp != NULL) { 1280 VOP_UNLOCK(imgp->vp); 1281 if ((map->flags & MAP_ASLR) != 0) { 1282 /* Assume that interpeter fits into 1/4 of AS */ 1283 maxv1 = maxv / 2 + addr / 2; 1284 MPASS(maxv1 >= addr); /* No overflow */ 1285 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1286 maxv1, PAGE_SIZE); 1287 } 1288 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1289 &imgp->entry_addr); 1290 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1291 if (error != 0) 1292 goto ret; 1293 } else 1294 addr = et_dyn_addr; 1295 1296 /* 1297 * Construct auxargs table (used by the copyout_auxargs routine) 1298 */ 1299 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1300 if (elf_auxargs == NULL) { 1301 VOP_UNLOCK(imgp->vp); 1302 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1303 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1304 } 1305 elf_auxargs->execfd = -1; 1306 elf_auxargs->phdr = proghdr + et_dyn_addr; 1307 elf_auxargs->phent = hdr->e_phentsize; 1308 elf_auxargs->phnum = hdr->e_phnum; 1309 elf_auxargs->pagesz = PAGE_SIZE; 1310 elf_auxargs->base = addr; 1311 elf_auxargs->flags = 0; 1312 elf_auxargs->entry = entry; 1313 elf_auxargs->hdr_eflags = hdr->e_flags; 1314 1315 imgp->auxargs = elf_auxargs; 1316 imgp->interpreted = 0; 1317 imgp->reloc_base = addr; 1318 imgp->proc->p_osrel = osrel; 1319 imgp->proc->p_fctl0 = fctl0; 1320 imgp->proc->p_elf_machine = hdr->e_machine; 1321 imgp->proc->p_elf_flags = hdr->e_flags; 1322 1323 ret: 1324 if (free_interp) 1325 free(interp, M_TEMP); 1326 return (error); 1327 } 1328 1329 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1330 1331 int 1332 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1333 { 1334 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1335 Elf_Auxinfo *argarray, *pos; 1336 int error; 1337 1338 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1339 M_WAITOK | M_ZERO); 1340 1341 if (args->execfd != -1) 1342 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1343 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1344 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1345 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1346 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1347 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1348 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1349 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1350 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1351 if (imgp->execpathp != 0) 1352 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1353 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1354 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1355 if (imgp->canary != 0) { 1356 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1357 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1358 } 1359 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1360 if (imgp->pagesizes != 0) { 1361 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1362 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1363 } 1364 if (imgp->sysent->sv_timekeep_base != 0) { 1365 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1366 imgp->sysent->sv_timekeep_base); 1367 } 1368 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1369 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1370 imgp->sysent->sv_stackprot); 1371 if (imgp->sysent->sv_hwcap != NULL) 1372 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1373 if (imgp->sysent->sv_hwcap2 != NULL) 1374 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1375 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1376 ELF_BSDF_SIGFASTBLK : 0); 1377 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1378 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1379 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1380 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1381 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1382 AUXARGS_ENTRY(pos, AT_NULL, 0); 1383 1384 free(imgp->auxargs, M_TEMP); 1385 imgp->auxargs = NULL; 1386 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1387 1388 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1389 free(argarray, M_TEMP); 1390 return (error); 1391 } 1392 1393 int 1394 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1395 { 1396 Elf_Addr *base; 1397 1398 base = (Elf_Addr *)*stack_base; 1399 base--; 1400 if (suword(base, imgp->args->argc) == -1) 1401 return (EFAULT); 1402 *stack_base = (uintptr_t)base; 1403 return (0); 1404 } 1405 1406 /* 1407 * Code for generating ELF core dumps. 1408 */ 1409 1410 typedef void (*segment_callback)(vm_map_entry_t, void *); 1411 1412 /* Closure for cb_put_phdr(). */ 1413 struct phdr_closure { 1414 Elf_Phdr *phdr; /* Program header to fill in */ 1415 Elf_Off offset; /* Offset of segment in core file */ 1416 }; 1417 1418 /* Closure for cb_size_segment(). */ 1419 struct sseg_closure { 1420 int count; /* Count of writable segments. */ 1421 size_t size; /* Total size of all writable segments. */ 1422 }; 1423 1424 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1425 1426 struct note_info { 1427 int type; /* Note type. */ 1428 outfunc_t outfunc; /* Output function. */ 1429 void *outarg; /* Argument for the output function. */ 1430 size_t outsize; /* Output size. */ 1431 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1432 }; 1433 1434 TAILQ_HEAD(note_info_list, note_info); 1435 1436 /* Coredump output parameters. */ 1437 struct coredump_params { 1438 off_t offset; 1439 struct ucred *active_cred; 1440 struct ucred *file_cred; 1441 struct thread *td; 1442 struct vnode *vp; 1443 struct compressor *comp; 1444 }; 1445 1446 extern int compress_user_cores; 1447 extern int compress_user_cores_level; 1448 1449 static void cb_put_phdr(vm_map_entry_t, void *); 1450 static void cb_size_segment(vm_map_entry_t, void *); 1451 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1452 enum uio_seg); 1453 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1454 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1455 struct note_info_list *, size_t); 1456 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1457 size_t *); 1458 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1459 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1460 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1461 static int sbuf_drain_core_output(void *, const char *, int); 1462 1463 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1464 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1465 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1466 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1467 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1468 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1469 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1470 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1471 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1472 static void note_procstat_files(void *, struct sbuf *, size_t *); 1473 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1474 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1475 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1476 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1477 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1478 1479 /* 1480 * Write out a core segment to the compression stream. 1481 */ 1482 static int 1483 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1484 { 1485 u_int chunk_len; 1486 int error; 1487 1488 while (len > 0) { 1489 chunk_len = MIN(len, CORE_BUF_SIZE); 1490 1491 /* 1492 * We can get EFAULT error here. 1493 * In that case zero out the current chunk of the segment. 1494 */ 1495 error = copyin(base, buf, chunk_len); 1496 if (error != 0) 1497 bzero(buf, chunk_len); 1498 error = compressor_write(p->comp, buf, chunk_len); 1499 if (error != 0) 1500 break; 1501 base += chunk_len; 1502 len -= chunk_len; 1503 } 1504 return (error); 1505 } 1506 1507 static int 1508 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1509 { 1510 1511 return (core_write((struct coredump_params *)arg, base, len, offset, 1512 UIO_SYSSPACE)); 1513 } 1514 1515 static int 1516 core_write(struct coredump_params *p, const void *base, size_t len, 1517 off_t offset, enum uio_seg seg) 1518 { 1519 1520 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1521 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1522 p->active_cred, p->file_cred, NULL, p->td)); 1523 } 1524 1525 static int 1526 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1527 void *tmpbuf) 1528 { 1529 int error; 1530 1531 if (p->comp != NULL) 1532 return (compress_chunk(p, base, tmpbuf, len)); 1533 1534 /* 1535 * EFAULT is a non-fatal error that we can get, for example, 1536 * if the segment is backed by a file but extends beyond its 1537 * end. 1538 */ 1539 error = core_write(p, base, len, offset, UIO_USERSPACE); 1540 if (error == EFAULT) { 1541 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1542 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1543 "for process %s\n", base, len, offset, curproc->p_comm); 1544 1545 /* 1546 * Write a "real" zero byte at the end of the target region 1547 * in the case this is the last segment. 1548 * The intermediate space will be implicitly zero-filled. 1549 */ 1550 error = core_write(p, zero_region, 1, offset + len - 1, 1551 UIO_SYSSPACE); 1552 } 1553 return (error); 1554 } 1555 1556 /* 1557 * Drain into a core file. 1558 */ 1559 static int 1560 sbuf_drain_core_output(void *arg, const char *data, int len) 1561 { 1562 struct coredump_params *p; 1563 int error, locked; 1564 1565 p = (struct coredump_params *)arg; 1566 1567 /* 1568 * Some kern_proc out routines that print to this sbuf may 1569 * call us with the process lock held. Draining with the 1570 * non-sleepable lock held is unsafe. The lock is needed for 1571 * those routines when dumping a live process. In our case we 1572 * can safely release the lock before draining and acquire 1573 * again after. 1574 */ 1575 locked = PROC_LOCKED(p->td->td_proc); 1576 if (locked) 1577 PROC_UNLOCK(p->td->td_proc); 1578 if (p->comp != NULL) 1579 error = compressor_write(p->comp, __DECONST(char *, data), len); 1580 else 1581 error = core_write(p, __DECONST(void *, data), len, p->offset, 1582 UIO_SYSSPACE); 1583 if (locked) 1584 PROC_LOCK(p->td->td_proc); 1585 if (error != 0) 1586 return (-error); 1587 p->offset += len; 1588 return (len); 1589 } 1590 1591 int 1592 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1593 { 1594 struct ucred *cred = td->td_ucred; 1595 int error = 0; 1596 struct sseg_closure seginfo; 1597 struct note_info_list notelst; 1598 struct coredump_params params; 1599 struct note_info *ninfo; 1600 void *hdr, *tmpbuf; 1601 size_t hdrsize, notesz, coresize; 1602 1603 hdr = NULL; 1604 tmpbuf = NULL; 1605 TAILQ_INIT(¬elst); 1606 1607 /* Size the program segments. */ 1608 seginfo.count = 0; 1609 seginfo.size = 0; 1610 each_dumpable_segment(td, cb_size_segment, &seginfo); 1611 1612 /* 1613 * Collect info about the core file header area. 1614 */ 1615 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1616 if (seginfo.count + 1 >= PN_XNUM) 1617 hdrsize += sizeof(Elf_Shdr); 1618 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1619 coresize = round_page(hdrsize + notesz) + seginfo.size; 1620 1621 /* Set up core dump parameters. */ 1622 params.offset = 0; 1623 params.active_cred = cred; 1624 params.file_cred = NOCRED; 1625 params.td = td; 1626 params.vp = vp; 1627 params.comp = NULL; 1628 1629 #ifdef RACCT 1630 if (racct_enable) { 1631 PROC_LOCK(td->td_proc); 1632 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1633 PROC_UNLOCK(td->td_proc); 1634 if (error != 0) { 1635 error = EFAULT; 1636 goto done; 1637 } 1638 } 1639 #endif 1640 if (coresize >= limit) { 1641 error = EFAULT; 1642 goto done; 1643 } 1644 1645 /* Create a compression stream if necessary. */ 1646 if (compress_user_cores != 0) { 1647 params.comp = compressor_init(core_compressed_write, 1648 compress_user_cores, CORE_BUF_SIZE, 1649 compress_user_cores_level, ¶ms); 1650 if (params.comp == NULL) { 1651 error = EFAULT; 1652 goto done; 1653 } 1654 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1655 } 1656 1657 /* 1658 * Allocate memory for building the header, fill it up, 1659 * and write it out following the notes. 1660 */ 1661 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1662 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1663 notesz); 1664 1665 /* Write the contents of all of the writable segments. */ 1666 if (error == 0) { 1667 Elf_Phdr *php; 1668 off_t offset; 1669 int i; 1670 1671 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1672 offset = round_page(hdrsize + notesz); 1673 for (i = 0; i < seginfo.count; i++) { 1674 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1675 php->p_filesz, offset, ¶ms, tmpbuf); 1676 if (error != 0) 1677 break; 1678 offset += php->p_filesz; 1679 php++; 1680 } 1681 if (error == 0 && params.comp != NULL) 1682 error = compressor_flush(params.comp); 1683 } 1684 if (error) { 1685 log(LOG_WARNING, 1686 "Failed to write core file for process %s (error %d)\n", 1687 curproc->p_comm, error); 1688 } 1689 1690 done: 1691 free(tmpbuf, M_TEMP); 1692 if (params.comp != NULL) 1693 compressor_fini(params.comp); 1694 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1695 TAILQ_REMOVE(¬elst, ninfo, link); 1696 free(ninfo, M_TEMP); 1697 } 1698 if (hdr != NULL) 1699 free(hdr, M_TEMP); 1700 1701 return (error); 1702 } 1703 1704 /* 1705 * A callback for each_dumpable_segment() to write out the segment's 1706 * program header entry. 1707 */ 1708 static void 1709 cb_put_phdr(vm_map_entry_t entry, void *closure) 1710 { 1711 struct phdr_closure *phc = (struct phdr_closure *)closure; 1712 Elf_Phdr *phdr = phc->phdr; 1713 1714 phc->offset = round_page(phc->offset); 1715 1716 phdr->p_type = PT_LOAD; 1717 phdr->p_offset = phc->offset; 1718 phdr->p_vaddr = entry->start; 1719 phdr->p_paddr = 0; 1720 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1721 phdr->p_align = PAGE_SIZE; 1722 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1723 1724 phc->offset += phdr->p_filesz; 1725 phc->phdr++; 1726 } 1727 1728 /* 1729 * A callback for each_dumpable_segment() to gather information about 1730 * the number of segments and their total size. 1731 */ 1732 static void 1733 cb_size_segment(vm_map_entry_t entry, void *closure) 1734 { 1735 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1736 1737 ssc->count++; 1738 ssc->size += entry->end - entry->start; 1739 } 1740 1741 /* 1742 * For each writable segment in the process's memory map, call the given 1743 * function with a pointer to the map entry and some arbitrary 1744 * caller-supplied data. 1745 */ 1746 static void 1747 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1748 { 1749 struct proc *p = td->td_proc; 1750 vm_map_t map = &p->p_vmspace->vm_map; 1751 vm_map_entry_t entry; 1752 vm_object_t backing_object, object; 1753 boolean_t ignore_entry; 1754 1755 vm_map_lock_read(map); 1756 VM_MAP_ENTRY_FOREACH(entry, map) { 1757 /* 1758 * Don't dump inaccessible mappings, deal with legacy 1759 * coredump mode. 1760 * 1761 * Note that read-only segments related to the elf binary 1762 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1763 * need to arbitrarily ignore such segments. 1764 */ 1765 if (elf_legacy_coredump) { 1766 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1767 continue; 1768 } else { 1769 if ((entry->protection & VM_PROT_ALL) == 0) 1770 continue; 1771 } 1772 1773 /* 1774 * Dont include memory segment in the coredump if 1775 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1776 * madvise(2). Do not dump submaps (i.e. parts of the 1777 * kernel map). 1778 */ 1779 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1780 continue; 1781 1782 if ((object = entry->object.vm_object) == NULL) 1783 continue; 1784 1785 /* Ignore memory-mapped devices and such things. */ 1786 VM_OBJECT_RLOCK(object); 1787 while ((backing_object = object->backing_object) != NULL) { 1788 VM_OBJECT_RLOCK(backing_object); 1789 VM_OBJECT_RUNLOCK(object); 1790 object = backing_object; 1791 } 1792 ignore_entry = object->type != OBJT_DEFAULT && 1793 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1794 object->type != OBJT_PHYS; 1795 VM_OBJECT_RUNLOCK(object); 1796 if (ignore_entry) 1797 continue; 1798 1799 (*func)(entry, closure); 1800 } 1801 vm_map_unlock_read(map); 1802 } 1803 1804 /* 1805 * Write the core file header to the file, including padding up to 1806 * the page boundary. 1807 */ 1808 static int 1809 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1810 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1811 { 1812 struct note_info *ninfo; 1813 struct sbuf *sb; 1814 int error; 1815 1816 /* Fill in the header. */ 1817 bzero(hdr, hdrsize); 1818 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1819 1820 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1821 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1822 sbuf_start_section(sb, NULL); 1823 sbuf_bcat(sb, hdr, hdrsize); 1824 TAILQ_FOREACH(ninfo, notelst, link) 1825 __elfN(putnote)(ninfo, sb); 1826 /* Align up to a page boundary for the program segments. */ 1827 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1828 error = sbuf_finish(sb); 1829 sbuf_delete(sb); 1830 1831 return (error); 1832 } 1833 1834 static void 1835 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1836 size_t *sizep) 1837 { 1838 struct proc *p; 1839 struct thread *thr; 1840 size_t size; 1841 1842 p = td->td_proc; 1843 size = 0; 1844 1845 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1846 1847 /* 1848 * To have the debugger select the right thread (LWP) as the initial 1849 * thread, we dump the state of the thread passed to us in td first. 1850 * This is the thread that causes the core dump and thus likely to 1851 * be the right thread one wants to have selected in the debugger. 1852 */ 1853 thr = td; 1854 while (thr != NULL) { 1855 size += register_note(list, NT_PRSTATUS, 1856 __elfN(note_prstatus), thr); 1857 size += register_note(list, NT_FPREGSET, 1858 __elfN(note_fpregset), thr); 1859 size += register_note(list, NT_THRMISC, 1860 __elfN(note_thrmisc), thr); 1861 size += register_note(list, NT_PTLWPINFO, 1862 __elfN(note_ptlwpinfo), thr); 1863 size += register_note(list, -1, 1864 __elfN(note_threadmd), thr); 1865 1866 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1867 TAILQ_NEXT(thr, td_plist); 1868 if (thr == td) 1869 thr = TAILQ_NEXT(thr, td_plist); 1870 } 1871 1872 size += register_note(list, NT_PROCSTAT_PROC, 1873 __elfN(note_procstat_proc), p); 1874 size += register_note(list, NT_PROCSTAT_FILES, 1875 note_procstat_files, p); 1876 size += register_note(list, NT_PROCSTAT_VMMAP, 1877 note_procstat_vmmap, p); 1878 size += register_note(list, NT_PROCSTAT_GROUPS, 1879 note_procstat_groups, p); 1880 size += register_note(list, NT_PROCSTAT_UMASK, 1881 note_procstat_umask, p); 1882 size += register_note(list, NT_PROCSTAT_RLIMIT, 1883 note_procstat_rlimit, p); 1884 size += register_note(list, NT_PROCSTAT_OSREL, 1885 note_procstat_osrel, p); 1886 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1887 __elfN(note_procstat_psstrings), p); 1888 size += register_note(list, NT_PROCSTAT_AUXV, 1889 __elfN(note_procstat_auxv), p); 1890 1891 *sizep = size; 1892 } 1893 1894 static void 1895 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1896 size_t notesz) 1897 { 1898 Elf_Ehdr *ehdr; 1899 Elf_Phdr *phdr; 1900 Elf_Shdr *shdr; 1901 struct phdr_closure phc; 1902 1903 ehdr = (Elf_Ehdr *)hdr; 1904 1905 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1906 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1907 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1908 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1909 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1910 ehdr->e_ident[EI_DATA] = ELF_DATA; 1911 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1912 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1913 ehdr->e_ident[EI_ABIVERSION] = 0; 1914 ehdr->e_ident[EI_PAD] = 0; 1915 ehdr->e_type = ET_CORE; 1916 ehdr->e_machine = td->td_proc->p_elf_machine; 1917 ehdr->e_version = EV_CURRENT; 1918 ehdr->e_entry = 0; 1919 ehdr->e_phoff = sizeof(Elf_Ehdr); 1920 ehdr->e_flags = td->td_proc->p_elf_flags; 1921 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1922 ehdr->e_phentsize = sizeof(Elf_Phdr); 1923 ehdr->e_shentsize = sizeof(Elf_Shdr); 1924 ehdr->e_shstrndx = SHN_UNDEF; 1925 if (numsegs + 1 < PN_XNUM) { 1926 ehdr->e_phnum = numsegs + 1; 1927 ehdr->e_shnum = 0; 1928 } else { 1929 ehdr->e_phnum = PN_XNUM; 1930 ehdr->e_shnum = 1; 1931 1932 ehdr->e_shoff = ehdr->e_phoff + 1933 (numsegs + 1) * ehdr->e_phentsize; 1934 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1935 ("e_shoff: %zu, hdrsize - shdr: %zu", 1936 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1937 1938 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1939 memset(shdr, 0, sizeof(*shdr)); 1940 /* 1941 * A special first section is used to hold large segment and 1942 * section counts. This was proposed by Sun Microsystems in 1943 * Solaris and has been adopted by Linux; the standard ELF 1944 * tools are already familiar with the technique. 1945 * 1946 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1947 * (or 12-7 depending on the version of the document) for more 1948 * details. 1949 */ 1950 shdr->sh_type = SHT_NULL; 1951 shdr->sh_size = ehdr->e_shnum; 1952 shdr->sh_link = ehdr->e_shstrndx; 1953 shdr->sh_info = numsegs + 1; 1954 } 1955 1956 /* 1957 * Fill in the program header entries. 1958 */ 1959 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1960 1961 /* The note segement. */ 1962 phdr->p_type = PT_NOTE; 1963 phdr->p_offset = hdrsize; 1964 phdr->p_vaddr = 0; 1965 phdr->p_paddr = 0; 1966 phdr->p_filesz = notesz; 1967 phdr->p_memsz = 0; 1968 phdr->p_flags = PF_R; 1969 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1970 phdr++; 1971 1972 /* All the writable segments from the program. */ 1973 phc.phdr = phdr; 1974 phc.offset = round_page(hdrsize + notesz); 1975 each_dumpable_segment(td, cb_put_phdr, &phc); 1976 } 1977 1978 static size_t 1979 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1980 { 1981 struct note_info *ninfo; 1982 size_t size, notesize; 1983 1984 size = 0; 1985 out(arg, NULL, &size); 1986 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1987 ninfo->type = type; 1988 ninfo->outfunc = out; 1989 ninfo->outarg = arg; 1990 ninfo->outsize = size; 1991 TAILQ_INSERT_TAIL(list, ninfo, link); 1992 1993 if (type == -1) 1994 return (size); 1995 1996 notesize = sizeof(Elf_Note) + /* note header */ 1997 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1998 /* note name */ 1999 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2000 2001 return (notesize); 2002 } 2003 2004 static size_t 2005 append_note_data(const void *src, void *dst, size_t len) 2006 { 2007 size_t padded_len; 2008 2009 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2010 if (dst != NULL) { 2011 bcopy(src, dst, len); 2012 bzero((char *)dst + len, padded_len - len); 2013 } 2014 return (padded_len); 2015 } 2016 2017 size_t 2018 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2019 { 2020 Elf_Note *note; 2021 char *buf; 2022 size_t notesize; 2023 2024 buf = dst; 2025 if (buf != NULL) { 2026 note = (Elf_Note *)buf; 2027 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2028 note->n_descsz = size; 2029 note->n_type = type; 2030 buf += sizeof(*note); 2031 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2032 sizeof(FREEBSD_ABI_VENDOR)); 2033 append_note_data(src, buf, size); 2034 if (descp != NULL) 2035 *descp = buf; 2036 } 2037 2038 notesize = sizeof(Elf_Note) + /* note header */ 2039 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2040 /* note name */ 2041 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2042 2043 return (notesize); 2044 } 2045 2046 static void 2047 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2048 { 2049 Elf_Note note; 2050 ssize_t old_len, sect_len; 2051 size_t new_len, descsz, i; 2052 2053 if (ninfo->type == -1) { 2054 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2055 return; 2056 } 2057 2058 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2059 note.n_descsz = ninfo->outsize; 2060 note.n_type = ninfo->type; 2061 2062 sbuf_bcat(sb, ¬e, sizeof(note)); 2063 sbuf_start_section(sb, &old_len); 2064 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2065 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2066 if (note.n_descsz == 0) 2067 return; 2068 sbuf_start_section(sb, &old_len); 2069 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2070 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2071 if (sect_len < 0) 2072 return; 2073 2074 new_len = (size_t)sect_len; 2075 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2076 if (new_len < descsz) { 2077 /* 2078 * It is expected that individual note emitters will correctly 2079 * predict their expected output size and fill up to that size 2080 * themselves, padding in a format-specific way if needed. 2081 * However, in case they don't, just do it here with zeros. 2082 */ 2083 for (i = 0; i < descsz - new_len; i++) 2084 sbuf_putc(sb, 0); 2085 } else if (new_len > descsz) { 2086 /* 2087 * We can't always truncate sb -- we may have drained some 2088 * of it already. 2089 */ 2090 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2091 "read it (%zu > %zu). Since it is longer than " 2092 "expected, this coredump's notes are corrupt. THIS " 2093 "IS A BUG in the note_procstat routine for type %u.\n", 2094 __func__, (unsigned)note.n_type, new_len, descsz, 2095 (unsigned)note.n_type)); 2096 } 2097 } 2098 2099 /* 2100 * Miscellaneous note out functions. 2101 */ 2102 2103 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2104 #include <compat/freebsd32/freebsd32.h> 2105 #include <compat/freebsd32/freebsd32_signal.h> 2106 2107 typedef struct prstatus32 elf_prstatus_t; 2108 typedef struct prpsinfo32 elf_prpsinfo_t; 2109 typedef struct fpreg32 elf_prfpregset_t; 2110 typedef struct fpreg32 elf_fpregset_t; 2111 typedef struct reg32 elf_gregset_t; 2112 typedef struct thrmisc32 elf_thrmisc_t; 2113 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2114 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2115 typedef uint32_t elf_ps_strings_t; 2116 #else 2117 typedef prstatus_t elf_prstatus_t; 2118 typedef prpsinfo_t elf_prpsinfo_t; 2119 typedef prfpregset_t elf_prfpregset_t; 2120 typedef prfpregset_t elf_fpregset_t; 2121 typedef gregset_t elf_gregset_t; 2122 typedef thrmisc_t elf_thrmisc_t; 2123 #define ELF_KERN_PROC_MASK 0 2124 typedef struct kinfo_proc elf_kinfo_proc_t; 2125 typedef vm_offset_t elf_ps_strings_t; 2126 #endif 2127 2128 static void 2129 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2130 { 2131 struct sbuf sbarg; 2132 size_t len; 2133 char *cp, *end; 2134 struct proc *p; 2135 elf_prpsinfo_t *psinfo; 2136 int error; 2137 2138 p = (struct proc *)arg; 2139 if (sb != NULL) { 2140 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2141 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2142 psinfo->pr_version = PRPSINFO_VERSION; 2143 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2144 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2145 PROC_LOCK(p); 2146 if (p->p_args != NULL) { 2147 len = sizeof(psinfo->pr_psargs) - 1; 2148 if (len > p->p_args->ar_length) 2149 len = p->p_args->ar_length; 2150 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2151 PROC_UNLOCK(p); 2152 error = 0; 2153 } else { 2154 _PHOLD(p); 2155 PROC_UNLOCK(p); 2156 sbuf_new(&sbarg, psinfo->pr_psargs, 2157 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2158 error = proc_getargv(curthread, p, &sbarg); 2159 PRELE(p); 2160 if (sbuf_finish(&sbarg) == 0) 2161 len = sbuf_len(&sbarg) - 1; 2162 else 2163 len = sizeof(psinfo->pr_psargs) - 1; 2164 sbuf_delete(&sbarg); 2165 } 2166 if (error || len == 0) 2167 strlcpy(psinfo->pr_psargs, p->p_comm, 2168 sizeof(psinfo->pr_psargs)); 2169 else { 2170 KASSERT(len < sizeof(psinfo->pr_psargs), 2171 ("len is too long: %zu vs %zu", len, 2172 sizeof(psinfo->pr_psargs))); 2173 cp = psinfo->pr_psargs; 2174 end = cp + len - 1; 2175 for (;;) { 2176 cp = memchr(cp, '\0', end - cp); 2177 if (cp == NULL) 2178 break; 2179 *cp = ' '; 2180 } 2181 } 2182 psinfo->pr_pid = p->p_pid; 2183 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2184 free(psinfo, M_TEMP); 2185 } 2186 *sizep = sizeof(*psinfo); 2187 } 2188 2189 static void 2190 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2191 { 2192 struct thread *td; 2193 elf_prstatus_t *status; 2194 2195 td = (struct thread *)arg; 2196 if (sb != NULL) { 2197 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2198 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2199 status->pr_version = PRSTATUS_VERSION; 2200 status->pr_statussz = sizeof(elf_prstatus_t); 2201 status->pr_gregsetsz = sizeof(elf_gregset_t); 2202 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2203 status->pr_osreldate = osreldate; 2204 status->pr_cursig = td->td_proc->p_sig; 2205 status->pr_pid = td->td_tid; 2206 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2207 fill_regs32(td, &status->pr_reg); 2208 #else 2209 fill_regs(td, &status->pr_reg); 2210 #endif 2211 sbuf_bcat(sb, status, sizeof(*status)); 2212 free(status, M_TEMP); 2213 } 2214 *sizep = sizeof(*status); 2215 } 2216 2217 static void 2218 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2219 { 2220 struct thread *td; 2221 elf_prfpregset_t *fpregset; 2222 2223 td = (struct thread *)arg; 2224 if (sb != NULL) { 2225 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2226 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2227 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2228 fill_fpregs32(td, fpregset); 2229 #else 2230 fill_fpregs(td, fpregset); 2231 #endif 2232 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2233 free(fpregset, M_TEMP); 2234 } 2235 *sizep = sizeof(*fpregset); 2236 } 2237 2238 static void 2239 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2240 { 2241 struct thread *td; 2242 elf_thrmisc_t thrmisc; 2243 2244 td = (struct thread *)arg; 2245 if (sb != NULL) { 2246 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2247 bzero(&thrmisc, sizeof(thrmisc)); 2248 strcpy(thrmisc.pr_tname, td->td_name); 2249 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2250 } 2251 *sizep = sizeof(thrmisc); 2252 } 2253 2254 static void 2255 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2256 { 2257 struct thread *td; 2258 size_t size; 2259 int structsize; 2260 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2261 struct ptrace_lwpinfo32 pl; 2262 #else 2263 struct ptrace_lwpinfo pl; 2264 #endif 2265 2266 td = (struct thread *)arg; 2267 size = sizeof(structsize) + sizeof(pl); 2268 if (sb != NULL) { 2269 KASSERT(*sizep == size, ("invalid size")); 2270 structsize = sizeof(pl); 2271 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2272 bzero(&pl, sizeof(pl)); 2273 pl.pl_lwpid = td->td_tid; 2274 pl.pl_event = PL_EVENT_NONE; 2275 pl.pl_sigmask = td->td_sigmask; 2276 pl.pl_siglist = td->td_siglist; 2277 if (td->td_si.si_signo != 0) { 2278 pl.pl_event = PL_EVENT_SIGNAL; 2279 pl.pl_flags |= PL_FLAG_SI; 2280 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2281 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2282 #else 2283 pl.pl_siginfo = td->td_si; 2284 #endif 2285 } 2286 strcpy(pl.pl_tdname, td->td_name); 2287 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2288 sbuf_bcat(sb, &pl, sizeof(pl)); 2289 } 2290 *sizep = size; 2291 } 2292 2293 /* 2294 * Allow for MD specific notes, as well as any MD 2295 * specific preparations for writing MI notes. 2296 */ 2297 static void 2298 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2299 { 2300 struct thread *td; 2301 void *buf; 2302 size_t size; 2303 2304 td = (struct thread *)arg; 2305 size = *sizep; 2306 if (size != 0 && sb != NULL) 2307 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2308 else 2309 buf = NULL; 2310 size = 0; 2311 __elfN(dump_thread)(td, buf, &size); 2312 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2313 if (size != 0 && sb != NULL) 2314 sbuf_bcat(sb, buf, size); 2315 free(buf, M_TEMP); 2316 *sizep = size; 2317 } 2318 2319 #ifdef KINFO_PROC_SIZE 2320 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2321 #endif 2322 2323 static void 2324 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2325 { 2326 struct proc *p; 2327 size_t size; 2328 int structsize; 2329 2330 p = (struct proc *)arg; 2331 size = sizeof(structsize) + p->p_numthreads * 2332 sizeof(elf_kinfo_proc_t); 2333 2334 if (sb != NULL) { 2335 KASSERT(*sizep == size, ("invalid size")); 2336 structsize = sizeof(elf_kinfo_proc_t); 2337 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2338 PROC_LOCK(p); 2339 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2340 } 2341 *sizep = size; 2342 } 2343 2344 #ifdef KINFO_FILE_SIZE 2345 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2346 #endif 2347 2348 static void 2349 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2350 { 2351 struct proc *p; 2352 size_t size, sect_sz, i; 2353 ssize_t start_len, sect_len; 2354 int structsize, filedesc_flags; 2355 2356 if (coredump_pack_fileinfo) 2357 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2358 else 2359 filedesc_flags = 0; 2360 2361 p = (struct proc *)arg; 2362 structsize = sizeof(struct kinfo_file); 2363 if (sb == NULL) { 2364 size = 0; 2365 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2366 sbuf_set_drain(sb, sbuf_count_drain, &size); 2367 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2368 PROC_LOCK(p); 2369 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2370 sbuf_finish(sb); 2371 sbuf_delete(sb); 2372 *sizep = size; 2373 } else { 2374 sbuf_start_section(sb, &start_len); 2375 2376 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2377 PROC_LOCK(p); 2378 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2379 filedesc_flags); 2380 2381 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2382 if (sect_len < 0) 2383 return; 2384 sect_sz = sect_len; 2385 2386 KASSERT(sect_sz <= *sizep, 2387 ("kern_proc_filedesc_out did not respect maxlen; " 2388 "requested %zu, got %zu", *sizep - sizeof(structsize), 2389 sect_sz - sizeof(structsize))); 2390 2391 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2392 sbuf_putc(sb, 0); 2393 } 2394 } 2395 2396 #ifdef KINFO_VMENTRY_SIZE 2397 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2398 #endif 2399 2400 static void 2401 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2402 { 2403 struct proc *p; 2404 size_t size; 2405 int structsize, vmmap_flags; 2406 2407 if (coredump_pack_vmmapinfo) 2408 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2409 else 2410 vmmap_flags = 0; 2411 2412 p = (struct proc *)arg; 2413 structsize = sizeof(struct kinfo_vmentry); 2414 if (sb == NULL) { 2415 size = 0; 2416 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2417 sbuf_set_drain(sb, sbuf_count_drain, &size); 2418 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2419 PROC_LOCK(p); 2420 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2421 sbuf_finish(sb); 2422 sbuf_delete(sb); 2423 *sizep = size; 2424 } else { 2425 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2426 PROC_LOCK(p); 2427 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2428 vmmap_flags); 2429 } 2430 } 2431 2432 static void 2433 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2434 { 2435 struct proc *p; 2436 size_t size; 2437 int structsize; 2438 2439 p = (struct proc *)arg; 2440 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2441 if (sb != NULL) { 2442 KASSERT(*sizep == size, ("invalid size")); 2443 structsize = sizeof(gid_t); 2444 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2445 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2446 sizeof(gid_t)); 2447 } 2448 *sizep = size; 2449 } 2450 2451 static void 2452 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2453 { 2454 struct proc *p; 2455 size_t size; 2456 int structsize; 2457 2458 p = (struct proc *)arg; 2459 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2460 if (sb != NULL) { 2461 KASSERT(*sizep == size, ("invalid size")); 2462 structsize = sizeof(p->p_fd->fd_cmask); 2463 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2464 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2465 } 2466 *sizep = size; 2467 } 2468 2469 static void 2470 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2471 { 2472 struct proc *p; 2473 struct rlimit rlim[RLIM_NLIMITS]; 2474 size_t size; 2475 int structsize, i; 2476 2477 p = (struct proc *)arg; 2478 size = sizeof(structsize) + sizeof(rlim); 2479 if (sb != NULL) { 2480 KASSERT(*sizep == size, ("invalid size")); 2481 structsize = sizeof(rlim); 2482 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2483 PROC_LOCK(p); 2484 for (i = 0; i < RLIM_NLIMITS; i++) 2485 lim_rlimit_proc(p, i, &rlim[i]); 2486 PROC_UNLOCK(p); 2487 sbuf_bcat(sb, rlim, sizeof(rlim)); 2488 } 2489 *sizep = size; 2490 } 2491 2492 static void 2493 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2494 { 2495 struct proc *p; 2496 size_t size; 2497 int structsize; 2498 2499 p = (struct proc *)arg; 2500 size = sizeof(structsize) + sizeof(p->p_osrel); 2501 if (sb != NULL) { 2502 KASSERT(*sizep == size, ("invalid size")); 2503 structsize = sizeof(p->p_osrel); 2504 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2505 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2506 } 2507 *sizep = size; 2508 } 2509 2510 static void 2511 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2512 { 2513 struct proc *p; 2514 elf_ps_strings_t ps_strings; 2515 size_t size; 2516 int structsize; 2517 2518 p = (struct proc *)arg; 2519 size = sizeof(structsize) + sizeof(ps_strings); 2520 if (sb != NULL) { 2521 KASSERT(*sizep == size, ("invalid size")); 2522 structsize = sizeof(ps_strings); 2523 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2524 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2525 #else 2526 ps_strings = p->p_sysent->sv_psstrings; 2527 #endif 2528 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2529 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2530 } 2531 *sizep = size; 2532 } 2533 2534 static void 2535 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2536 { 2537 struct proc *p; 2538 size_t size; 2539 int structsize; 2540 2541 p = (struct proc *)arg; 2542 if (sb == NULL) { 2543 size = 0; 2544 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2545 sbuf_set_drain(sb, sbuf_count_drain, &size); 2546 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2547 PHOLD(p); 2548 proc_getauxv(curthread, p, sb); 2549 PRELE(p); 2550 sbuf_finish(sb); 2551 sbuf_delete(sb); 2552 *sizep = size; 2553 } else { 2554 structsize = sizeof(Elf_Auxinfo); 2555 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2556 PHOLD(p); 2557 proc_getauxv(curthread, p, sb); 2558 PRELE(p); 2559 } 2560 } 2561 2562 static boolean_t 2563 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2564 const char *note_vendor, const Elf_Phdr *pnote, 2565 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2566 { 2567 const Elf_Note *note, *note0, *note_end; 2568 const char *note_name; 2569 char *buf; 2570 int i, error; 2571 boolean_t res; 2572 2573 /* We need some limit, might as well use PAGE_SIZE. */ 2574 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2575 return (FALSE); 2576 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2577 if (pnote->p_offset > PAGE_SIZE || 2578 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2579 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2580 if (buf == NULL) { 2581 VOP_UNLOCK(imgp->vp); 2582 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2583 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2584 } 2585 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2586 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2587 curthread->td_ucred, NOCRED, NULL, curthread); 2588 if (error != 0) { 2589 uprintf("i/o error PT_NOTE\n"); 2590 goto retf; 2591 } 2592 note = note0 = (const Elf_Note *)buf; 2593 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2594 } else { 2595 note = note0 = (const Elf_Note *)(imgp->image_header + 2596 pnote->p_offset); 2597 note_end = (const Elf_Note *)(imgp->image_header + 2598 pnote->p_offset + pnote->p_filesz); 2599 buf = NULL; 2600 } 2601 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2602 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2603 (const char *)note < sizeof(Elf_Note)) { 2604 goto retf; 2605 } 2606 if (note->n_namesz != checknote->n_namesz || 2607 note->n_descsz != checknote->n_descsz || 2608 note->n_type != checknote->n_type) 2609 goto nextnote; 2610 note_name = (const char *)(note + 1); 2611 if (note_name + checknote->n_namesz >= 2612 (const char *)note_end || strncmp(note_vendor, 2613 note_name, checknote->n_namesz) != 0) 2614 goto nextnote; 2615 2616 if (cb(note, cb_arg, &res)) 2617 goto ret; 2618 nextnote: 2619 note = (const Elf_Note *)((const char *)(note + 1) + 2620 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2621 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2622 } 2623 retf: 2624 res = FALSE; 2625 ret: 2626 free(buf, M_TEMP); 2627 return (res); 2628 } 2629 2630 struct brandnote_cb_arg { 2631 Elf_Brandnote *brandnote; 2632 int32_t *osrel; 2633 }; 2634 2635 static boolean_t 2636 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2637 { 2638 struct brandnote_cb_arg *arg; 2639 2640 arg = arg0; 2641 2642 /* 2643 * Fetch the osreldate for binary from the ELF OSABI-note if 2644 * necessary. 2645 */ 2646 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2647 arg->brandnote->trans_osrel != NULL ? 2648 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2649 2650 return (TRUE); 2651 } 2652 2653 static Elf_Note fctl_note = { 2654 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2655 .n_descsz = sizeof(uint32_t), 2656 .n_type = NT_FREEBSD_FEATURE_CTL, 2657 }; 2658 2659 struct fctl_cb_arg { 2660 uint32_t *fctl0; 2661 }; 2662 2663 static boolean_t 2664 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2665 { 2666 struct fctl_cb_arg *arg; 2667 const Elf32_Word *desc; 2668 uintptr_t p; 2669 2670 arg = arg0; 2671 p = (uintptr_t)(note + 1); 2672 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2673 desc = (const Elf32_Word *)p; 2674 *arg->fctl0 = desc[0]; 2675 return (TRUE); 2676 } 2677 2678 /* 2679 * Try to find the appropriate ABI-note section for checknote, fetch 2680 * the osreldate and feature control flags for binary from the ELF 2681 * OSABI-note. Only the first page of the image is searched, the same 2682 * as for headers. 2683 */ 2684 static boolean_t 2685 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2686 int32_t *osrel, uint32_t *fctl0) 2687 { 2688 const Elf_Phdr *phdr; 2689 const Elf_Ehdr *hdr; 2690 struct brandnote_cb_arg b_arg; 2691 struct fctl_cb_arg f_arg; 2692 int i, j; 2693 2694 hdr = (const Elf_Ehdr *)imgp->image_header; 2695 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2696 b_arg.brandnote = brandnote; 2697 b_arg.osrel = osrel; 2698 f_arg.fctl0 = fctl0; 2699 2700 for (i = 0; i < hdr->e_phnum; i++) { 2701 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2702 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2703 &b_arg)) { 2704 for (j = 0; j < hdr->e_phnum; j++) { 2705 if (phdr[j].p_type == PT_NOTE && 2706 __elfN(parse_notes)(imgp, &fctl_note, 2707 FREEBSD_ABI_VENDOR, &phdr[j], 2708 note_fctl_cb, &f_arg)) 2709 break; 2710 } 2711 return (TRUE); 2712 } 2713 } 2714 return (FALSE); 2715 2716 } 2717 2718 /* 2719 * Tell kern_execve.c about it, with a little help from the linker. 2720 */ 2721 static struct execsw __elfN(execsw) = { 2722 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2723 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2724 }; 2725 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2726 2727 static vm_prot_t 2728 __elfN(trans_prot)(Elf_Word flags) 2729 { 2730 vm_prot_t prot; 2731 2732 prot = 0; 2733 if (flags & PF_X) 2734 prot |= VM_PROT_EXECUTE; 2735 if (flags & PF_W) 2736 prot |= VM_PROT_WRITE; 2737 if (flags & PF_R) 2738 prot |= VM_PROT_READ; 2739 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2740 if (i386_read_exec && (flags & PF_R)) 2741 prot |= VM_PROT_EXECUTE; 2742 #endif 2743 return (prot); 2744 } 2745 2746 static Elf_Word 2747 __elfN(untrans_prot)(vm_prot_t prot) 2748 { 2749 Elf_Word flags; 2750 2751 flags = 0; 2752 if (prot & VM_PROT_EXECUTE) 2753 flags |= PF_X; 2754 if (prot & VM_PROT_READ) 2755 flags |= PF_R; 2756 if (prot & VM_PROT_WRITE) 2757 flags |= PF_W; 2758 return (flags); 2759 } 2760 2761 void 2762 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) 2763 { 2764 uintptr_t range, rbase, gap; 2765 int pct; 2766 2767 if ((imgp->map_flags & MAP_ASLR) == 0) 2768 return; 2769 pct = __elfN(aslr_stack_gap); 2770 if (pct == 0) 2771 return; 2772 if (pct > 50) 2773 pct = 50; 2774 range = imgp->eff_stack_sz * pct / 100; 2775 arc4rand(&rbase, sizeof(rbase), 0); 2776 gap = rbase % range; 2777 gap &= ~(sizeof(u_long) - 1); 2778 *stack_base -= gap; 2779 } 2780