xref: /freebsd/sys/kern/imgact_elf.c (revision d38c30c092828f4882ce13b08d0bd3fd6dc7afb5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/pioctl.h>
54 #include <sys/proc.h>
55 #include <sys/procfs.h>
56 #include <sys/ptrace.h>
57 #include <sys/racct.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static boolean_t __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0);
102 static vm_prot_t __elfN(trans_prot)(Elf_Word);
103 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104 
105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
106     "");
107 
108 #define	CORE_BUF_SIZE	(16 * 1024)
109 
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114 
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117     &elf_legacy_coredump, 0,
118     "include all and only RW pages in core dumps");
119 
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
123     defined(__riscv)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
131 
132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
133 int i386_read_exec = 0;
134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
135     "enable execution from readable segments");
136 #endif
137 
138 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
139 static int
140 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
141 {
142 	u_long val;
143 	int error;
144 
145 	val = __elfN(pie_base);
146 	error = sysctl_handle_long(oidp, &val, 0, req);
147 	if (error != 0 || req->newptr == NULL)
148 		return (error);
149 	if ((val & PAGE_MASK) != 0)
150 		return (EINVAL);
151 	__elfN(pie_base) = val;
152 	return (0);
153 }
154 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
155     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
156     sysctl_pie_base, "LU",
157     "PIE load base without randomization");
158 
159 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0,
160     "");
161 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
162 
163 static int __elfN(aslr_enabled) = 0;
164 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
165     &__elfN(aslr_enabled), 0,
166     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
167     ": enable address map randomization");
168 
169 static int __elfN(pie_aslr_enabled) = 0;
170 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
171     &__elfN(pie_aslr_enabled), 0,
172     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
173     ": enable address map randomization for PIE binaries");
174 
175 static int __elfN(aslr_honor_sbrk) = 1;
176 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
177     &__elfN(aslr_honor_sbrk), 0,
178     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
179 
180 static int __elfN(aslr_stack_gap) = 3;
181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW,
182     &__elfN(aslr_stack_gap), 0,
183     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
184     ": maximum percentage of main stack to waste on a random gap");
185 
186 static int __elfN(sigfastblock) = 1;
187 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
188     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
189     "enable sigfastblock for new processes");
190 
191 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
192 
193 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
194 
195 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
196 
197 Elf_Brandnote __elfN(freebsd_brandnote) = {
198 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
199 	.hdr.n_descsz	= sizeof(int32_t),
200 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
201 	.vendor		= FREEBSD_ABI_VENDOR,
202 	.flags		= BN_TRANSLATE_OSREL,
203 	.trans_osrel	= __elfN(freebsd_trans_osrel)
204 };
205 
206 static bool
207 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
208 {
209 	uintptr_t p;
210 
211 	p = (uintptr_t)(note + 1);
212 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
213 	*osrel = *(const int32_t *)(p);
214 
215 	return (true);
216 }
217 
218 static const char GNU_ABI_VENDOR[] = "GNU";
219 static int GNU_KFREEBSD_ABI_DESC = 3;
220 
221 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
222 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
223 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
224 	.hdr.n_type	= 1,
225 	.vendor		= GNU_ABI_VENDOR,
226 	.flags		= BN_TRANSLATE_OSREL,
227 	.trans_osrel	= kfreebsd_trans_osrel
228 };
229 
230 static bool
231 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
232 {
233 	const Elf32_Word *desc;
234 	uintptr_t p;
235 
236 	p = (uintptr_t)(note + 1);
237 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
238 
239 	desc = (const Elf32_Word *)p;
240 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
241 		return (false);
242 
243 	/*
244 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
245 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
246 	 */
247 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
248 
249 	return (true);
250 }
251 
252 int
253 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
254 {
255 	int i;
256 
257 	for (i = 0; i < MAX_BRANDS; i++) {
258 		if (elf_brand_list[i] == NULL) {
259 			elf_brand_list[i] = entry;
260 			break;
261 		}
262 	}
263 	if (i == MAX_BRANDS) {
264 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
265 			__func__, entry);
266 		return (-1);
267 	}
268 	return (0);
269 }
270 
271 int
272 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
273 {
274 	int i;
275 
276 	for (i = 0; i < MAX_BRANDS; i++) {
277 		if (elf_brand_list[i] == entry) {
278 			elf_brand_list[i] = NULL;
279 			break;
280 		}
281 	}
282 	if (i == MAX_BRANDS)
283 		return (-1);
284 	return (0);
285 }
286 
287 int
288 __elfN(brand_inuse)(Elf_Brandinfo *entry)
289 {
290 	struct proc *p;
291 	int rval = FALSE;
292 
293 	sx_slock(&allproc_lock);
294 	FOREACH_PROC_IN_SYSTEM(p) {
295 		if (p->p_sysent == entry->sysvec) {
296 			rval = TRUE;
297 			break;
298 		}
299 	}
300 	sx_sunlock(&allproc_lock);
301 
302 	return (rval);
303 }
304 
305 static Elf_Brandinfo *
306 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
307     int32_t *osrel, uint32_t *fctl0)
308 {
309 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
310 	Elf_Brandinfo *bi, *bi_m;
311 	boolean_t ret;
312 	int i, interp_name_len;
313 
314 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
315 
316 	/*
317 	 * We support four types of branding -- (1) the ELF EI_OSABI field
318 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
319 	 * branding w/in the ELF header, (3) path of the `interp_path'
320 	 * field, and (4) the ".note.ABI-tag" ELF section.
321 	 */
322 
323 	/* Look for an ".note.ABI-tag" ELF section */
324 	bi_m = NULL;
325 	for (i = 0; i < MAX_BRANDS; i++) {
326 		bi = elf_brand_list[i];
327 		if (bi == NULL)
328 			continue;
329 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
330 			continue;
331 		if (hdr->e_machine == bi->machine && (bi->flags &
332 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
333 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
334 			    fctl0);
335 			/* Give brand a chance to veto check_note's guess */
336 			if (ret && bi->header_supported)
337 				ret = bi->header_supported(imgp);
338 			/*
339 			 * If note checker claimed the binary, but the
340 			 * interpreter path in the image does not
341 			 * match default one for the brand, try to
342 			 * search for other brands with the same
343 			 * interpreter.  Either there is better brand
344 			 * with the right interpreter, or, failing
345 			 * this, we return first brand which accepted
346 			 * our note and, optionally, header.
347 			 */
348 			if (ret && bi_m == NULL && interp != NULL &&
349 			    (bi->interp_path == NULL ||
350 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
351 			    strncmp(interp, bi->interp_path, interp_name_len)
352 			    != 0))) {
353 				bi_m = bi;
354 				ret = 0;
355 			}
356 			if (ret)
357 				return (bi);
358 		}
359 	}
360 	if (bi_m != NULL)
361 		return (bi_m);
362 
363 	/* If the executable has a brand, search for it in the brand list. */
364 	for (i = 0; i < MAX_BRANDS; i++) {
365 		bi = elf_brand_list[i];
366 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
367 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
368 			continue;
369 		if (hdr->e_machine == bi->machine &&
370 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
371 		    (bi->compat_3_brand != NULL &&
372 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
373 		    bi->compat_3_brand) == 0))) {
374 			/* Looks good, but give brand a chance to veto */
375 			if (bi->header_supported == NULL ||
376 			    bi->header_supported(imgp)) {
377 				/*
378 				 * Again, prefer strictly matching
379 				 * interpreter path.
380 				 */
381 				if (interp_name_len == 0 &&
382 				    bi->interp_path == NULL)
383 					return (bi);
384 				if (bi->interp_path != NULL &&
385 				    strlen(bi->interp_path) + 1 ==
386 				    interp_name_len && strncmp(interp,
387 				    bi->interp_path, interp_name_len) == 0)
388 					return (bi);
389 				if (bi_m == NULL)
390 					bi_m = bi;
391 			}
392 		}
393 	}
394 	if (bi_m != NULL)
395 		return (bi_m);
396 
397 	/* No known brand, see if the header is recognized by any brand */
398 	for (i = 0; i < MAX_BRANDS; i++) {
399 		bi = elf_brand_list[i];
400 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
401 		    bi->header_supported == NULL)
402 			continue;
403 		if (hdr->e_machine == bi->machine) {
404 			ret = bi->header_supported(imgp);
405 			if (ret)
406 				return (bi);
407 		}
408 	}
409 
410 	/* Lacking a known brand, search for a recognized interpreter. */
411 	if (interp != NULL) {
412 		for (i = 0; i < MAX_BRANDS; i++) {
413 			bi = elf_brand_list[i];
414 			if (bi == NULL || (bi->flags &
415 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
416 			    != 0)
417 				continue;
418 			if (hdr->e_machine == bi->machine &&
419 			    bi->interp_path != NULL &&
420 			    /* ELF image p_filesz includes terminating zero */
421 			    strlen(bi->interp_path) + 1 == interp_name_len &&
422 			    strncmp(interp, bi->interp_path, interp_name_len)
423 			    == 0 && (bi->header_supported == NULL ||
424 			    bi->header_supported(imgp)))
425 				return (bi);
426 		}
427 	}
428 
429 	/* Lacking a recognized interpreter, try the default brand */
430 	for (i = 0; i < MAX_BRANDS; i++) {
431 		bi = elf_brand_list[i];
432 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
433 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
434 			continue;
435 		if (hdr->e_machine == bi->machine &&
436 		    __elfN(fallback_brand) == bi->brand &&
437 		    (bi->header_supported == NULL ||
438 		    bi->header_supported(imgp)))
439 			return (bi);
440 	}
441 	return (NULL);
442 }
443 
444 static int
445 __elfN(check_header)(const Elf_Ehdr *hdr)
446 {
447 	Elf_Brandinfo *bi;
448 	int i;
449 
450 	if (!IS_ELF(*hdr) ||
451 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
452 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
453 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
454 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
455 	    hdr->e_version != ELF_TARG_VER)
456 		return (ENOEXEC);
457 
458 	/*
459 	 * Make sure we have at least one brand for this machine.
460 	 */
461 
462 	for (i = 0; i < MAX_BRANDS; i++) {
463 		bi = elf_brand_list[i];
464 		if (bi != NULL && bi->machine == hdr->e_machine)
465 			break;
466 	}
467 	if (i == MAX_BRANDS)
468 		return (ENOEXEC);
469 
470 	return (0);
471 }
472 
473 static int
474 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
475     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
476 {
477 	struct sf_buf *sf;
478 	int error;
479 	vm_offset_t off;
480 
481 	/*
482 	 * Create the page if it doesn't exist yet. Ignore errors.
483 	 */
484 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
485 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
486 
487 	/*
488 	 * Find the page from the underlying object.
489 	 */
490 	if (object != NULL) {
491 		sf = vm_imgact_map_page(object, offset);
492 		if (sf == NULL)
493 			return (KERN_FAILURE);
494 		off = offset - trunc_page(offset);
495 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
496 		    end - start);
497 		vm_imgact_unmap_page(sf);
498 		if (error != 0)
499 			return (KERN_FAILURE);
500 	}
501 
502 	return (KERN_SUCCESS);
503 }
504 
505 static int
506 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
507     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
508     int cow)
509 {
510 	struct sf_buf *sf;
511 	vm_offset_t off;
512 	vm_size_t sz;
513 	int error, locked, rv;
514 
515 	if (start != trunc_page(start)) {
516 		rv = __elfN(map_partial)(map, object, offset, start,
517 		    round_page(start), prot);
518 		if (rv != KERN_SUCCESS)
519 			return (rv);
520 		offset += round_page(start) - start;
521 		start = round_page(start);
522 	}
523 	if (end != round_page(end)) {
524 		rv = __elfN(map_partial)(map, object, offset +
525 		    trunc_page(end) - start, trunc_page(end), end, prot);
526 		if (rv != KERN_SUCCESS)
527 			return (rv);
528 		end = trunc_page(end);
529 	}
530 	if (start >= end)
531 		return (KERN_SUCCESS);
532 	if ((offset & PAGE_MASK) != 0) {
533 		/*
534 		 * The mapping is not page aligned.  This means that we have
535 		 * to copy the data.
536 		 */
537 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
538 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
539 		if (rv != KERN_SUCCESS)
540 			return (rv);
541 		if (object == NULL)
542 			return (KERN_SUCCESS);
543 		for (; start < end; start += sz) {
544 			sf = vm_imgact_map_page(object, offset);
545 			if (sf == NULL)
546 				return (KERN_FAILURE);
547 			off = offset - trunc_page(offset);
548 			sz = end - start;
549 			if (sz > PAGE_SIZE - off)
550 				sz = PAGE_SIZE - off;
551 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
552 			    (caddr_t)start, sz);
553 			vm_imgact_unmap_page(sf);
554 			if (error != 0)
555 				return (KERN_FAILURE);
556 			offset += sz;
557 		}
558 	} else {
559 		vm_object_reference(object);
560 		rv = vm_map_fixed(map, object, offset, start, end - start,
561 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
562 		    (object != NULL ? MAP_VN_EXEC : 0));
563 		if (rv != KERN_SUCCESS) {
564 			locked = VOP_ISLOCKED(imgp->vp);
565 			VOP_UNLOCK(imgp->vp);
566 			vm_object_deallocate(object);
567 			vn_lock(imgp->vp, locked | LK_RETRY);
568 			return (rv);
569 		} else if (object != NULL) {
570 			MPASS(imgp->vp->v_object == object);
571 			VOP_SET_TEXT_CHECKED(imgp->vp);
572 		}
573 	}
574 	return (KERN_SUCCESS);
575 }
576 
577 static int
578 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
579     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
580 {
581 	struct sf_buf *sf;
582 	size_t map_len;
583 	vm_map_t map;
584 	vm_object_t object;
585 	vm_offset_t map_addr;
586 	int error, rv, cow;
587 	size_t copy_len;
588 	vm_ooffset_t file_addr;
589 
590 	/*
591 	 * It's necessary to fail if the filsz + offset taken from the
592 	 * header is greater than the actual file pager object's size.
593 	 * If we were to allow this, then the vm_map_find() below would
594 	 * walk right off the end of the file object and into the ether.
595 	 *
596 	 * While I'm here, might as well check for something else that
597 	 * is invalid: filsz cannot be greater than memsz.
598 	 */
599 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
600 	    filsz > memsz) {
601 		uprintf("elf_load_section: truncated ELF file\n");
602 		return (ENOEXEC);
603 	}
604 
605 	object = imgp->object;
606 	map = &imgp->proc->p_vmspace->vm_map;
607 	map_addr = trunc_page((vm_offset_t)vmaddr);
608 	file_addr = trunc_page(offset);
609 
610 	/*
611 	 * We have two choices.  We can either clear the data in the last page
612 	 * of an oversized mapping, or we can start the anon mapping a page
613 	 * early and copy the initialized data into that first page.  We
614 	 * choose the second.
615 	 */
616 	if (filsz == 0)
617 		map_len = 0;
618 	else if (memsz > filsz)
619 		map_len = trunc_page(offset + filsz) - file_addr;
620 	else
621 		map_len = round_page(offset + filsz) - file_addr;
622 
623 	if (map_len != 0) {
624 		/* cow flags: don't dump readonly sections in core */
625 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
626 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
627 
628 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
629 		    map_addr, map_addr + map_len, prot, cow);
630 		if (rv != KERN_SUCCESS)
631 			return (EINVAL);
632 
633 		/* we can stop now if we've covered it all */
634 		if (memsz == filsz)
635 			return (0);
636 	}
637 
638 	/*
639 	 * We have to get the remaining bit of the file into the first part
640 	 * of the oversized map segment.  This is normally because the .data
641 	 * segment in the file is extended to provide bss.  It's a neat idea
642 	 * to try and save a page, but it's a pain in the behind to implement.
643 	 */
644 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
645 	    filsz);
646 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
647 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
648 
649 	/* This had damn well better be true! */
650 	if (map_len != 0) {
651 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
652 		    map_addr + map_len, prot, 0);
653 		if (rv != KERN_SUCCESS)
654 			return (EINVAL);
655 	}
656 
657 	if (copy_len != 0) {
658 		sf = vm_imgact_map_page(object, offset + filsz);
659 		if (sf == NULL)
660 			return (EIO);
661 
662 		/* send the page fragment to user space */
663 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
664 		    copy_len);
665 		vm_imgact_unmap_page(sf);
666 		if (error != 0)
667 			return (error);
668 	}
669 
670 	/*
671 	 * Remove write access to the page if it was only granted by map_insert
672 	 * to allow copyout.
673 	 */
674 	if ((prot & VM_PROT_WRITE) == 0)
675 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
676 		    map_len), prot, FALSE);
677 
678 	return (0);
679 }
680 
681 static int
682 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
683     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
684 {
685 	vm_prot_t prot;
686 	u_long base_addr;
687 	bool first;
688 	int error, i;
689 
690 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
691 
692 	base_addr = 0;
693 	first = true;
694 
695 	for (i = 0; i < hdr->e_phnum; i++) {
696 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
697 			continue;
698 
699 		/* Loadable segment */
700 		prot = __elfN(trans_prot)(phdr[i].p_flags);
701 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
702 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
703 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
704 		if (error != 0)
705 			return (error);
706 
707 		/*
708 		 * Establish the base address if this is the first segment.
709 		 */
710 		if (first) {
711   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
712 			first = false;
713 		}
714 	}
715 
716 	if (base_addrp != NULL)
717 		*base_addrp = base_addr;
718 
719 	return (0);
720 }
721 
722 /*
723  * Load the file "file" into memory.  It may be either a shared object
724  * or an executable.
725  *
726  * The "addr" reference parameter is in/out.  On entry, it specifies
727  * the address where a shared object should be loaded.  If the file is
728  * an executable, this value is ignored.  On exit, "addr" specifies
729  * where the file was actually loaded.
730  *
731  * The "entry" reference parameter is out only.  On exit, it specifies
732  * the entry point for the loaded file.
733  */
734 static int
735 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
736 	u_long *entry)
737 {
738 	struct {
739 		struct nameidata nd;
740 		struct vattr attr;
741 		struct image_params image_params;
742 	} *tempdata;
743 	const Elf_Ehdr *hdr = NULL;
744 	const Elf_Phdr *phdr = NULL;
745 	struct nameidata *nd;
746 	struct vattr *attr;
747 	struct image_params *imgp;
748 	u_long rbase;
749 	u_long base_addr = 0;
750 	int error;
751 
752 #ifdef CAPABILITY_MODE
753 	/*
754 	 * XXXJA: This check can go away once we are sufficiently confident
755 	 * that the checks in namei() are correct.
756 	 */
757 	if (IN_CAPABILITY_MODE(curthread))
758 		return (ECAPMODE);
759 #endif
760 
761 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
762 	nd = &tempdata->nd;
763 	attr = &tempdata->attr;
764 	imgp = &tempdata->image_params;
765 
766 	/*
767 	 * Initialize part of the common data
768 	 */
769 	imgp->proc = p;
770 	imgp->attr = attr;
771 
772 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
773 	    UIO_SYSSPACE, file, curthread);
774 	if ((error = namei(nd)) != 0) {
775 		nd->ni_vp = NULL;
776 		goto fail;
777 	}
778 	NDFREE(nd, NDF_ONLY_PNBUF);
779 	imgp->vp = nd->ni_vp;
780 
781 	/*
782 	 * Check permissions, modes, uid, etc on the file, and "open" it.
783 	 */
784 	error = exec_check_permissions(imgp);
785 	if (error)
786 		goto fail;
787 
788 	error = exec_map_first_page(imgp);
789 	if (error)
790 		goto fail;
791 
792 	imgp->object = nd->ni_vp->v_object;
793 
794 	hdr = (const Elf_Ehdr *)imgp->image_header;
795 	if ((error = __elfN(check_header)(hdr)) != 0)
796 		goto fail;
797 	if (hdr->e_type == ET_DYN)
798 		rbase = *addr;
799 	else if (hdr->e_type == ET_EXEC)
800 		rbase = 0;
801 	else {
802 		error = ENOEXEC;
803 		goto fail;
804 	}
805 
806 	/* Only support headers that fit within first page for now      */
807 	if ((hdr->e_phoff > PAGE_SIZE) ||
808 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
809 		error = ENOEXEC;
810 		goto fail;
811 	}
812 
813 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
814 	if (!aligned(phdr, Elf_Addr)) {
815 		error = ENOEXEC;
816 		goto fail;
817 	}
818 
819 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
820 	if (error != 0)
821 		goto fail;
822 
823 	*addr = base_addr;
824 	*entry = (unsigned long)hdr->e_entry + rbase;
825 
826 fail:
827 	if (imgp->firstpage)
828 		exec_unmap_first_page(imgp);
829 
830 	if (nd->ni_vp) {
831 		if (imgp->textset)
832 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
833 		vput(nd->ni_vp);
834 	}
835 	free(tempdata, M_TEMP);
836 
837 	return (error);
838 }
839 
840 static u_long
841 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv,
842     u_int align)
843 {
844 	u_long rbase, res;
845 
846 	MPASS(vm_map_min(map) <= minv);
847 	MPASS(maxv <= vm_map_max(map));
848 	MPASS(minv < maxv);
849 	MPASS(minv + align < maxv);
850 	arc4rand(&rbase, sizeof(rbase), 0);
851 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
852 	res &= ~((u_long)align - 1);
853 	if (res >= maxv)
854 		res -= align;
855 	KASSERT(res >= minv,
856 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
857 	    res, minv, maxv, rbase));
858 	KASSERT(res < maxv,
859 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
860 	    res, maxv, minv, rbase));
861 	return (res);
862 }
863 
864 static int
865 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
866     const Elf_Phdr *phdr, u_long et_dyn_addr)
867 {
868 	struct vmspace *vmspace;
869 	const char *err_str;
870 	u_long text_size, data_size, total_size, text_addr, data_addr;
871 	u_long seg_size, seg_addr;
872 	int i;
873 
874 	err_str = NULL;
875 	text_size = data_size = total_size = text_addr = data_addr = 0;
876 
877 	for (i = 0; i < hdr->e_phnum; i++) {
878 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
879 			continue;
880 
881 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
882 		seg_size = round_page(phdr[i].p_memsz +
883 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
884 
885 		/*
886 		 * Make the largest executable segment the official
887 		 * text segment and all others data.
888 		 *
889 		 * Note that obreak() assumes that data_addr + data_size == end
890 		 * of data load area, and the ELF file format expects segments
891 		 * to be sorted by address.  If multiple data segments exist,
892 		 * the last one will be used.
893 		 */
894 
895 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
896 			text_size = seg_size;
897 			text_addr = seg_addr;
898 		} else {
899 			data_size = seg_size;
900 			data_addr = seg_addr;
901 		}
902 		total_size += seg_size;
903 	}
904 
905 	if (data_addr == 0 && data_size == 0) {
906 		data_addr = text_addr;
907 		data_size = text_size;
908 	}
909 
910 	/*
911 	 * Check limits.  It should be safe to check the
912 	 * limits after loading the segments since we do
913 	 * not actually fault in all the segments pages.
914 	 */
915 	PROC_LOCK(imgp->proc);
916 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
917 		err_str = "Data segment size exceeds process limit";
918 	else if (text_size > maxtsiz)
919 		err_str = "Text segment size exceeds system limit";
920 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
921 		err_str = "Total segment size exceeds process limit";
922 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
923 		err_str = "Data segment size exceeds resource limit";
924 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
925 		err_str = "Total segment size exceeds resource limit";
926 	PROC_UNLOCK(imgp->proc);
927 	if (err_str != NULL) {
928 		uprintf("%s\n", err_str);
929 		return (ENOMEM);
930 	}
931 
932 	vmspace = imgp->proc->p_vmspace;
933 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
934 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
935 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
936 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
937 
938 	return (0);
939 }
940 
941 static int
942 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
943     char **interpp, bool *free_interpp)
944 {
945 	struct thread *td;
946 	char *interp;
947 	int error, interp_name_len;
948 
949 	KASSERT(phdr->p_type == PT_INTERP,
950 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
951 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
952 
953 	td = curthread;
954 
955 	/* Path to interpreter */
956 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
957 		uprintf("Invalid PT_INTERP\n");
958 		return (ENOEXEC);
959 	}
960 
961 	interp_name_len = phdr->p_filesz;
962 	if (phdr->p_offset > PAGE_SIZE ||
963 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
964 		/*
965 		 * The vnode lock might be needed by the pagedaemon to
966 		 * clean pages owned by the vnode.  Do not allow sleep
967 		 * waiting for memory with the vnode locked, instead
968 		 * try non-sleepable allocation first, and if it
969 		 * fails, go to the slow path were we drop the lock
970 		 * and do M_WAITOK.  A text reference prevents
971 		 * modifications to the vnode content.
972 		 */
973 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
974 		if (interp == NULL) {
975 			VOP_UNLOCK(imgp->vp);
976 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
977 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
978 		}
979 
980 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
981 		    interp_name_len, phdr->p_offset,
982 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
983 		    NOCRED, NULL, td);
984 		if (error != 0) {
985 			free(interp, M_TEMP);
986 			uprintf("i/o error PT_INTERP %d\n", error);
987 			return (error);
988 		}
989 		interp[interp_name_len] = '\0';
990 
991 		*interpp = interp;
992 		*free_interpp = true;
993 		return (0);
994 	}
995 
996 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
997 	if (interp[interp_name_len - 1] != '\0') {
998 		uprintf("Invalid PT_INTERP\n");
999 		return (ENOEXEC);
1000 	}
1001 
1002 	*interpp = interp;
1003 	*free_interpp = false;
1004 	return (0);
1005 }
1006 
1007 static int
1008 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1009     const char *interp, u_long *addr, u_long *entry)
1010 {
1011 	char *path;
1012 	int error;
1013 
1014 	if (brand_info->emul_path != NULL &&
1015 	    brand_info->emul_path[0] != '\0') {
1016 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1017 		snprintf(path, MAXPATHLEN, "%s%s",
1018 		    brand_info->emul_path, interp);
1019 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1020 		free(path, M_TEMP);
1021 		if (error == 0)
1022 			return (0);
1023 	}
1024 
1025 	if (brand_info->interp_newpath != NULL &&
1026 	    (brand_info->interp_path == NULL ||
1027 	    strcmp(interp, brand_info->interp_path) == 0)) {
1028 		error = __elfN(load_file)(imgp->proc,
1029 		    brand_info->interp_newpath, addr, entry);
1030 		if (error == 0)
1031 			return (0);
1032 	}
1033 
1034 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1035 	if (error == 0)
1036 		return (0);
1037 
1038 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1039 	return (error);
1040 }
1041 
1042 /*
1043  * Impossible et_dyn_addr initial value indicating that the real base
1044  * must be calculated later with some randomization applied.
1045  */
1046 #define	ET_DYN_ADDR_RAND	1
1047 
1048 static int
1049 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1050 {
1051 	struct thread *td;
1052 	const Elf_Ehdr *hdr;
1053 	const Elf_Phdr *phdr;
1054 	Elf_Auxargs *elf_auxargs;
1055 	struct vmspace *vmspace;
1056 	vm_map_t map;
1057 	char *interp;
1058 	Elf_Brandinfo *brand_info;
1059 	struct sysentvec *sv;
1060 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1061 	u_long maxalign, mapsz, maxv, maxv1;
1062 	uint32_t fctl0;
1063 	int32_t osrel;
1064 	bool free_interp;
1065 	int error, i, n;
1066 
1067 	hdr = (const Elf_Ehdr *)imgp->image_header;
1068 
1069 	/*
1070 	 * Do we have a valid ELF header ?
1071 	 *
1072 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1073 	 * if particular brand doesn't support it.
1074 	 */
1075 	if (__elfN(check_header)(hdr) != 0 ||
1076 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1077 		return (-1);
1078 
1079 	/*
1080 	 * From here on down, we return an errno, not -1, as we've
1081 	 * detected an ELF file.
1082 	 */
1083 
1084 	if ((hdr->e_phoff > PAGE_SIZE) ||
1085 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
1086 		/* Only support headers in first page for now */
1087 		uprintf("Program headers not in the first page\n");
1088 		return (ENOEXEC);
1089 	}
1090 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1091 	if (!aligned(phdr, Elf_Addr)) {
1092 		uprintf("Unaligned program headers\n");
1093 		return (ENOEXEC);
1094 	}
1095 
1096 	n = error = 0;
1097 	baddr = 0;
1098 	osrel = 0;
1099 	fctl0 = 0;
1100 	entry = proghdr = 0;
1101 	interp = NULL;
1102 	free_interp = false;
1103 	td = curthread;
1104 	maxalign = PAGE_SIZE;
1105 	mapsz = 0;
1106 
1107 	for (i = 0; i < hdr->e_phnum; i++) {
1108 		switch (phdr[i].p_type) {
1109 		case PT_LOAD:
1110 			if (n == 0)
1111 				baddr = phdr[i].p_vaddr;
1112 			if (phdr[i].p_align > maxalign)
1113 				maxalign = phdr[i].p_align;
1114 			mapsz += phdr[i].p_memsz;
1115 			n++;
1116 
1117 			/*
1118 			 * If this segment contains the program headers,
1119 			 * remember their virtual address for the AT_PHDR
1120 			 * aux entry. Static binaries don't usually include
1121 			 * a PT_PHDR entry.
1122 			 */
1123 			if (phdr[i].p_offset == 0 &&
1124 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
1125 				<= phdr[i].p_filesz)
1126 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1127 			break;
1128 		case PT_INTERP:
1129 			/* Path to interpreter */
1130 			if (interp != NULL) {
1131 				uprintf("Multiple PT_INTERP headers\n");
1132 				error = ENOEXEC;
1133 				goto ret;
1134 			}
1135 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1136 			    &free_interp);
1137 			if (error != 0)
1138 				goto ret;
1139 			break;
1140 		case PT_GNU_STACK:
1141 			if (__elfN(nxstack))
1142 				imgp->stack_prot =
1143 				    __elfN(trans_prot)(phdr[i].p_flags);
1144 			imgp->stack_sz = phdr[i].p_memsz;
1145 			break;
1146 		case PT_PHDR: 	/* Program header table info */
1147 			proghdr = phdr[i].p_vaddr;
1148 			break;
1149 		}
1150 	}
1151 
1152 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1153 	if (brand_info == NULL) {
1154 		uprintf("ELF binary type \"%u\" not known.\n",
1155 		    hdr->e_ident[EI_OSABI]);
1156 		error = ENOEXEC;
1157 		goto ret;
1158 	}
1159 	sv = brand_info->sysvec;
1160 	et_dyn_addr = 0;
1161 	if (hdr->e_type == ET_DYN) {
1162 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1163 			uprintf("Cannot execute shared object\n");
1164 			error = ENOEXEC;
1165 			goto ret;
1166 		}
1167 		/*
1168 		 * Honour the base load address from the dso if it is
1169 		 * non-zero for some reason.
1170 		 */
1171 		if (baddr == 0) {
1172 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1173 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1174 				et_dyn_addr = __elfN(pie_base);
1175 			else if ((__elfN(pie_aslr_enabled) &&
1176 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1177 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1178 				et_dyn_addr = ET_DYN_ADDR_RAND;
1179 			else
1180 				et_dyn_addr = __elfN(pie_base);
1181 		}
1182 	}
1183 
1184 	/*
1185 	 * Avoid a possible deadlock if the current address space is destroyed
1186 	 * and that address space maps the locked vnode.  In the common case,
1187 	 * the locked vnode's v_usecount is decremented but remains greater
1188 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1189 	 * However, in cases where the vnode lock is external, such as nullfs,
1190 	 * v_usecount may become zero.
1191 	 *
1192 	 * The VV_TEXT flag prevents modifications to the executable while
1193 	 * the vnode is unlocked.
1194 	 */
1195 	VOP_UNLOCK(imgp->vp);
1196 
1197 	/*
1198 	 * Decide whether to enable randomization of user mappings.
1199 	 * First, reset user preferences for the setid binaries.
1200 	 * Then, account for the support of the randomization by the
1201 	 * ABI, by user preferences, and make special treatment for
1202 	 * PIE binaries.
1203 	 */
1204 	if (imgp->credential_setid) {
1205 		PROC_LOCK(imgp->proc);
1206 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
1207 		PROC_UNLOCK(imgp->proc);
1208 	}
1209 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1210 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1211 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1212 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1213 		    ("et_dyn_addr == RAND and !ASLR"));
1214 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1215 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1216 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1217 		imgp->map_flags |= MAP_ASLR;
1218 		/*
1219 		 * If user does not care about sbrk, utilize the bss
1220 		 * grow region for mappings as well.  We can select
1221 		 * the base for the image anywere and still not suffer
1222 		 * from the fragmentation.
1223 		 */
1224 		if (!__elfN(aslr_honor_sbrk) ||
1225 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1226 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1227 	}
1228 
1229 	error = exec_new_vmspace(imgp, sv);
1230 	vmspace = imgp->proc->p_vmspace;
1231 	map = &vmspace->vm_map;
1232 
1233 	imgp->proc->p_sysent = sv;
1234 
1235 	maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK);
1236 	if (et_dyn_addr == ET_DYN_ADDR_RAND) {
1237 		KASSERT((map->flags & MAP_ASLR) != 0,
1238 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1239 		et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map,
1240 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1241 		    /* reserve half of the address space to interpreter */
1242 		    maxv / 2, 1UL << flsl(maxalign));
1243 	}
1244 
1245 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1246 	if (error != 0)
1247 		goto ret;
1248 
1249 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1250 	if (error != 0)
1251 		goto ret;
1252 
1253 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1254 	if (error != 0)
1255 		goto ret;
1256 
1257 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1258 
1259 	/*
1260 	 * We load the dynamic linker where a userland call
1261 	 * to mmap(0, ...) would put it.  The rationale behind this
1262 	 * calculation is that it leaves room for the heap to grow to
1263 	 * its maximum allowed size.
1264 	 */
1265 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1266 	    RLIMIT_DATA));
1267 	if ((map->flags & MAP_ASLR) != 0) {
1268 		maxv1 = maxv / 2 + addr / 2;
1269 		MPASS(maxv1 >= addr);	/* No overflow */
1270 		map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1271 		    MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]);
1272 	} else {
1273 		map->anon_loc = addr;
1274 	}
1275 
1276 	imgp->entry_addr = entry;
1277 
1278 	if (interp != NULL) {
1279 		VOP_UNLOCK(imgp->vp);
1280 		if ((map->flags & MAP_ASLR) != 0) {
1281 			/* Assume that interpeter fits into 1/4 of AS */
1282 			maxv1 = maxv / 2 + addr / 2;
1283 			MPASS(maxv1 >= addr);	/* No overflow */
1284 			addr = __CONCAT(rnd_, __elfN(base))(map, addr,
1285 			    maxv1, PAGE_SIZE);
1286 		}
1287 		error = __elfN(load_interp)(imgp, brand_info, interp, &addr,
1288 		    &imgp->entry_addr);
1289 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1290 		if (error != 0)
1291 			goto ret;
1292 	} else
1293 		addr = et_dyn_addr;
1294 
1295 	/*
1296 	 * Construct auxargs table (used by the copyout_auxargs routine)
1297 	 */
1298 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1299 	if (elf_auxargs == NULL) {
1300 		VOP_UNLOCK(imgp->vp);
1301 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1302 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1303 	}
1304 	elf_auxargs->execfd = -1;
1305 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1306 	elf_auxargs->phent = hdr->e_phentsize;
1307 	elf_auxargs->phnum = hdr->e_phnum;
1308 	elf_auxargs->pagesz = PAGE_SIZE;
1309 	elf_auxargs->base = addr;
1310 	elf_auxargs->flags = 0;
1311 	elf_auxargs->entry = entry;
1312 	elf_auxargs->hdr_eflags = hdr->e_flags;
1313 
1314 	imgp->auxargs = elf_auxargs;
1315 	imgp->interpreted = 0;
1316 	imgp->reloc_base = addr;
1317 	imgp->proc->p_osrel = osrel;
1318 	imgp->proc->p_fctl0 = fctl0;
1319 	imgp->proc->p_elf_machine = hdr->e_machine;
1320 	imgp->proc->p_elf_flags = hdr->e_flags;
1321 
1322 ret:
1323 	if (free_interp)
1324 		free(interp, M_TEMP);
1325 	return (error);
1326 }
1327 
1328 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1329 
1330 int
1331 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1332 {
1333 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1334 	Elf_Auxinfo *argarray, *pos;
1335 	int error;
1336 
1337 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1338 	    M_WAITOK | M_ZERO);
1339 
1340 	if (args->execfd != -1)
1341 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1342 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1343 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1344 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1345 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1346 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1347 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1348 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1349 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1350 	if (imgp->execpathp != 0)
1351 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1352 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1353 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1354 	if (imgp->canary != 0) {
1355 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1356 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1357 	}
1358 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1359 	if (imgp->pagesizes != 0) {
1360 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1361 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1362 	}
1363 	if (imgp->sysent->sv_timekeep_base != 0) {
1364 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1365 		    imgp->sysent->sv_timekeep_base);
1366 	}
1367 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1368 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1369 	    imgp->sysent->sv_stackprot);
1370 	if (imgp->sysent->sv_hwcap != NULL)
1371 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1372 	if (imgp->sysent->sv_hwcap2 != NULL)
1373 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1374 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ?
1375 	    ELF_BSDF_SIGFASTBLK : 0);
1376 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1377 
1378 	free(imgp->auxargs, M_TEMP);
1379 	imgp->auxargs = NULL;
1380 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1381 
1382 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1383 	free(argarray, M_TEMP);
1384 	return (error);
1385 }
1386 
1387 int
1388 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1389 {
1390 	Elf_Addr *base;
1391 
1392 	base = (Elf_Addr *)*stack_base;
1393 	base--;
1394 	if (suword(base, imgp->args->argc) == -1)
1395 		return (EFAULT);
1396 	*stack_base = (uintptr_t)base;
1397 	return (0);
1398 }
1399 
1400 /*
1401  * Code for generating ELF core dumps.
1402  */
1403 
1404 typedef void (*segment_callback)(vm_map_entry_t, void *);
1405 
1406 /* Closure for cb_put_phdr(). */
1407 struct phdr_closure {
1408 	Elf_Phdr *phdr;		/* Program header to fill in */
1409 	Elf_Off offset;		/* Offset of segment in core file */
1410 };
1411 
1412 /* Closure for cb_size_segment(). */
1413 struct sseg_closure {
1414 	int count;		/* Count of writable segments. */
1415 	size_t size;		/* Total size of all writable segments. */
1416 };
1417 
1418 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1419 
1420 struct note_info {
1421 	int		type;		/* Note type. */
1422 	outfunc_t 	outfunc; 	/* Output function. */
1423 	void		*outarg;	/* Argument for the output function. */
1424 	size_t		outsize;	/* Output size. */
1425 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1426 };
1427 
1428 TAILQ_HEAD(note_info_list, note_info);
1429 
1430 /* Coredump output parameters. */
1431 struct coredump_params {
1432 	off_t		offset;
1433 	struct ucred	*active_cred;
1434 	struct ucred	*file_cred;
1435 	struct thread	*td;
1436 	struct vnode	*vp;
1437 	struct compressor *comp;
1438 };
1439 
1440 extern int compress_user_cores;
1441 extern int compress_user_cores_level;
1442 
1443 static void cb_put_phdr(vm_map_entry_t, void *);
1444 static void cb_size_segment(vm_map_entry_t, void *);
1445 static int core_write(struct coredump_params *, const void *, size_t, off_t,
1446     enum uio_seg);
1447 static void each_dumpable_segment(struct thread *, segment_callback, void *);
1448 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1449     struct note_info_list *, size_t);
1450 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1451     size_t *);
1452 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1453 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1454 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1455 static int sbuf_drain_core_output(void *, const char *, int);
1456 
1457 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1458 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1459 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1460 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1461 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1462 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
1463 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1464 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1465 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1466 static void note_procstat_files(void *, struct sbuf *, size_t *);
1467 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1468 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1469 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1470 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1471 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1472 
1473 /*
1474  * Write out a core segment to the compression stream.
1475  */
1476 static int
1477 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1478 {
1479 	u_int chunk_len;
1480 	int error;
1481 
1482 	while (len > 0) {
1483 		chunk_len = MIN(len, CORE_BUF_SIZE);
1484 
1485 		/*
1486 		 * We can get EFAULT error here.
1487 		 * In that case zero out the current chunk of the segment.
1488 		 */
1489 		error = copyin(base, buf, chunk_len);
1490 		if (error != 0)
1491 			bzero(buf, chunk_len);
1492 		error = compressor_write(p->comp, buf, chunk_len);
1493 		if (error != 0)
1494 			break;
1495 		base += chunk_len;
1496 		len -= chunk_len;
1497 	}
1498 	return (error);
1499 }
1500 
1501 static int
1502 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1503 {
1504 
1505 	return (core_write((struct coredump_params *)arg, base, len, offset,
1506 	    UIO_SYSSPACE));
1507 }
1508 
1509 static int
1510 core_write(struct coredump_params *p, const void *base, size_t len,
1511     off_t offset, enum uio_seg seg)
1512 {
1513 
1514 	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1515 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1516 	    p->active_cred, p->file_cred, NULL, p->td));
1517 }
1518 
1519 static int
1520 core_output(void *base, size_t len, off_t offset, struct coredump_params *p,
1521     void *tmpbuf)
1522 {
1523 	int error;
1524 
1525 	if (p->comp != NULL)
1526 		return (compress_chunk(p, base, tmpbuf, len));
1527 
1528 	/*
1529 	 * EFAULT is a non-fatal error that we can get, for example,
1530 	 * if the segment is backed by a file but extends beyond its
1531 	 * end.
1532 	 */
1533 	error = core_write(p, base, len, offset, UIO_USERSPACE);
1534 	if (error == EFAULT) {
1535 		log(LOG_WARNING, "Failed to fully fault in a core file segment "
1536 		    "at VA %p with size 0x%zx to be written at offset 0x%jx "
1537 		    "for process %s\n", base, len, offset, curproc->p_comm);
1538 
1539 		/*
1540 		 * Write a "real" zero byte at the end of the target region
1541 		 * in the case this is the last segment.
1542 		 * The intermediate space will be implicitly zero-filled.
1543 		 */
1544 		error = core_write(p, zero_region, 1, offset + len - 1,
1545 		    UIO_SYSSPACE);
1546 	}
1547 	return (error);
1548 }
1549 
1550 /*
1551  * Drain into a core file.
1552  */
1553 static int
1554 sbuf_drain_core_output(void *arg, const char *data, int len)
1555 {
1556 	struct coredump_params *p;
1557 	int error, locked;
1558 
1559 	p = (struct coredump_params *)arg;
1560 
1561 	/*
1562 	 * Some kern_proc out routines that print to this sbuf may
1563 	 * call us with the process lock held. Draining with the
1564 	 * non-sleepable lock held is unsafe. The lock is needed for
1565 	 * those routines when dumping a live process. In our case we
1566 	 * can safely release the lock before draining and acquire
1567 	 * again after.
1568 	 */
1569 	locked = PROC_LOCKED(p->td->td_proc);
1570 	if (locked)
1571 		PROC_UNLOCK(p->td->td_proc);
1572 	if (p->comp != NULL)
1573 		error = compressor_write(p->comp, __DECONST(char *, data), len);
1574 	else
1575 		error = core_write(p, __DECONST(void *, data), len, p->offset,
1576 		    UIO_SYSSPACE);
1577 	if (locked)
1578 		PROC_LOCK(p->td->td_proc);
1579 	if (error != 0)
1580 		return (-error);
1581 	p->offset += len;
1582 	return (len);
1583 }
1584 
1585 int
1586 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1587 {
1588 	struct ucred *cred = td->td_ucred;
1589 	int error = 0;
1590 	struct sseg_closure seginfo;
1591 	struct note_info_list notelst;
1592 	struct coredump_params params;
1593 	struct note_info *ninfo;
1594 	void *hdr, *tmpbuf;
1595 	size_t hdrsize, notesz, coresize;
1596 
1597 	hdr = NULL;
1598 	tmpbuf = NULL;
1599 	TAILQ_INIT(&notelst);
1600 
1601 	/* Size the program segments. */
1602 	seginfo.count = 0;
1603 	seginfo.size = 0;
1604 	each_dumpable_segment(td, cb_size_segment, &seginfo);
1605 
1606 	/*
1607 	 * Collect info about the core file header area.
1608 	 */
1609 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1610 	if (seginfo.count + 1 >= PN_XNUM)
1611 		hdrsize += sizeof(Elf_Shdr);
1612 	__elfN(prepare_notes)(td, &notelst, &notesz);
1613 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1614 
1615 	/* Set up core dump parameters. */
1616 	params.offset = 0;
1617 	params.active_cred = cred;
1618 	params.file_cred = NOCRED;
1619 	params.td = td;
1620 	params.vp = vp;
1621 	params.comp = NULL;
1622 
1623 #ifdef RACCT
1624 	if (racct_enable) {
1625 		PROC_LOCK(td->td_proc);
1626 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1627 		PROC_UNLOCK(td->td_proc);
1628 		if (error != 0) {
1629 			error = EFAULT;
1630 			goto done;
1631 		}
1632 	}
1633 #endif
1634 	if (coresize >= limit) {
1635 		error = EFAULT;
1636 		goto done;
1637 	}
1638 
1639 	/* Create a compression stream if necessary. */
1640 	if (compress_user_cores != 0) {
1641 		params.comp = compressor_init(core_compressed_write,
1642 		    compress_user_cores, CORE_BUF_SIZE,
1643 		    compress_user_cores_level, &params);
1644 		if (params.comp == NULL) {
1645 			error = EFAULT;
1646 			goto done;
1647 		}
1648 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1649         }
1650 
1651 	/*
1652 	 * Allocate memory for building the header, fill it up,
1653 	 * and write it out following the notes.
1654 	 */
1655 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1656 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1657 	    notesz);
1658 
1659 	/* Write the contents of all of the writable segments. */
1660 	if (error == 0) {
1661 		Elf_Phdr *php;
1662 		off_t offset;
1663 		int i;
1664 
1665 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1666 		offset = round_page(hdrsize + notesz);
1667 		for (i = 0; i < seginfo.count; i++) {
1668 			error = core_output((caddr_t)(uintptr_t)php->p_vaddr,
1669 			    php->p_filesz, offset, &params, tmpbuf);
1670 			if (error != 0)
1671 				break;
1672 			offset += php->p_filesz;
1673 			php++;
1674 		}
1675 		if (error == 0 && params.comp != NULL)
1676 			error = compressor_flush(params.comp);
1677 	}
1678 	if (error) {
1679 		log(LOG_WARNING,
1680 		    "Failed to write core file for process %s (error %d)\n",
1681 		    curproc->p_comm, error);
1682 	}
1683 
1684 done:
1685 	free(tmpbuf, M_TEMP);
1686 	if (params.comp != NULL)
1687 		compressor_fini(params.comp);
1688 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1689 		TAILQ_REMOVE(&notelst, ninfo, link);
1690 		free(ninfo, M_TEMP);
1691 	}
1692 	if (hdr != NULL)
1693 		free(hdr, M_TEMP);
1694 
1695 	return (error);
1696 }
1697 
1698 /*
1699  * A callback for each_dumpable_segment() to write out the segment's
1700  * program header entry.
1701  */
1702 static void
1703 cb_put_phdr(vm_map_entry_t entry, void *closure)
1704 {
1705 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1706 	Elf_Phdr *phdr = phc->phdr;
1707 
1708 	phc->offset = round_page(phc->offset);
1709 
1710 	phdr->p_type = PT_LOAD;
1711 	phdr->p_offset = phc->offset;
1712 	phdr->p_vaddr = entry->start;
1713 	phdr->p_paddr = 0;
1714 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1715 	phdr->p_align = PAGE_SIZE;
1716 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1717 
1718 	phc->offset += phdr->p_filesz;
1719 	phc->phdr++;
1720 }
1721 
1722 /*
1723  * A callback for each_dumpable_segment() to gather information about
1724  * the number of segments and their total size.
1725  */
1726 static void
1727 cb_size_segment(vm_map_entry_t entry, void *closure)
1728 {
1729 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1730 
1731 	ssc->count++;
1732 	ssc->size += entry->end - entry->start;
1733 }
1734 
1735 /*
1736  * For each writable segment in the process's memory map, call the given
1737  * function with a pointer to the map entry and some arbitrary
1738  * caller-supplied data.
1739  */
1740 static void
1741 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
1742 {
1743 	struct proc *p = td->td_proc;
1744 	vm_map_t map = &p->p_vmspace->vm_map;
1745 	vm_map_entry_t entry;
1746 	vm_object_t backing_object, object;
1747 	boolean_t ignore_entry;
1748 
1749 	vm_map_lock_read(map);
1750 	VM_MAP_ENTRY_FOREACH(entry, map) {
1751 		/*
1752 		 * Don't dump inaccessible mappings, deal with legacy
1753 		 * coredump mode.
1754 		 *
1755 		 * Note that read-only segments related to the elf binary
1756 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1757 		 * need to arbitrarily ignore such segments.
1758 		 */
1759 		if (elf_legacy_coredump) {
1760 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1761 				continue;
1762 		} else {
1763 			if ((entry->protection & VM_PROT_ALL) == 0)
1764 				continue;
1765 		}
1766 
1767 		/*
1768 		 * Dont include memory segment in the coredump if
1769 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1770 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1771 		 * kernel map).
1772 		 */
1773 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1774 			continue;
1775 
1776 		if ((object = entry->object.vm_object) == NULL)
1777 			continue;
1778 
1779 		/* Ignore memory-mapped devices and such things. */
1780 		VM_OBJECT_RLOCK(object);
1781 		while ((backing_object = object->backing_object) != NULL) {
1782 			VM_OBJECT_RLOCK(backing_object);
1783 			VM_OBJECT_RUNLOCK(object);
1784 			object = backing_object;
1785 		}
1786 		ignore_entry = object->type != OBJT_DEFAULT &&
1787 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1788 		    object->type != OBJT_PHYS;
1789 		VM_OBJECT_RUNLOCK(object);
1790 		if (ignore_entry)
1791 			continue;
1792 
1793 		(*func)(entry, closure);
1794 	}
1795 	vm_map_unlock_read(map);
1796 }
1797 
1798 /*
1799  * Write the core file header to the file, including padding up to
1800  * the page boundary.
1801  */
1802 static int
1803 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1804     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
1805 {
1806 	struct note_info *ninfo;
1807 	struct sbuf *sb;
1808 	int error;
1809 
1810 	/* Fill in the header. */
1811 	bzero(hdr, hdrsize);
1812 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
1813 
1814 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1815 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1816 	sbuf_start_section(sb, NULL);
1817 	sbuf_bcat(sb, hdr, hdrsize);
1818 	TAILQ_FOREACH(ninfo, notelst, link)
1819 	    __elfN(putnote)(ninfo, sb);
1820 	/* Align up to a page boundary for the program segments. */
1821 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1822 	error = sbuf_finish(sb);
1823 	sbuf_delete(sb);
1824 
1825 	return (error);
1826 }
1827 
1828 static void
1829 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1830     size_t *sizep)
1831 {
1832 	struct proc *p;
1833 	struct thread *thr;
1834 	size_t size;
1835 
1836 	p = td->td_proc;
1837 	size = 0;
1838 
1839 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1840 
1841 	/*
1842 	 * To have the debugger select the right thread (LWP) as the initial
1843 	 * thread, we dump the state of the thread passed to us in td first.
1844 	 * This is the thread that causes the core dump and thus likely to
1845 	 * be the right thread one wants to have selected in the debugger.
1846 	 */
1847 	thr = td;
1848 	while (thr != NULL) {
1849 		size += register_note(list, NT_PRSTATUS,
1850 		    __elfN(note_prstatus), thr);
1851 		size += register_note(list, NT_FPREGSET,
1852 		    __elfN(note_fpregset), thr);
1853 		size += register_note(list, NT_THRMISC,
1854 		    __elfN(note_thrmisc), thr);
1855 		size += register_note(list, NT_PTLWPINFO,
1856 		    __elfN(note_ptlwpinfo), thr);
1857 		size += register_note(list, -1,
1858 		    __elfN(note_threadmd), thr);
1859 
1860 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1861 		    TAILQ_NEXT(thr, td_plist);
1862 		if (thr == td)
1863 			thr = TAILQ_NEXT(thr, td_plist);
1864 	}
1865 
1866 	size += register_note(list, NT_PROCSTAT_PROC,
1867 	    __elfN(note_procstat_proc), p);
1868 	size += register_note(list, NT_PROCSTAT_FILES,
1869 	    note_procstat_files, p);
1870 	size += register_note(list, NT_PROCSTAT_VMMAP,
1871 	    note_procstat_vmmap, p);
1872 	size += register_note(list, NT_PROCSTAT_GROUPS,
1873 	    note_procstat_groups, p);
1874 	size += register_note(list, NT_PROCSTAT_UMASK,
1875 	    note_procstat_umask, p);
1876 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1877 	    note_procstat_rlimit, p);
1878 	size += register_note(list, NT_PROCSTAT_OSREL,
1879 	    note_procstat_osrel, p);
1880 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1881 	    __elfN(note_procstat_psstrings), p);
1882 	size += register_note(list, NT_PROCSTAT_AUXV,
1883 	    __elfN(note_procstat_auxv), p);
1884 
1885 	*sizep = size;
1886 }
1887 
1888 static void
1889 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1890     size_t notesz)
1891 {
1892 	Elf_Ehdr *ehdr;
1893 	Elf_Phdr *phdr;
1894 	Elf_Shdr *shdr;
1895 	struct phdr_closure phc;
1896 
1897 	ehdr = (Elf_Ehdr *)hdr;
1898 
1899 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1900 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1901 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1902 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1903 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1904 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1905 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1906 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1907 	ehdr->e_ident[EI_ABIVERSION] = 0;
1908 	ehdr->e_ident[EI_PAD] = 0;
1909 	ehdr->e_type = ET_CORE;
1910 	ehdr->e_machine = td->td_proc->p_elf_machine;
1911 	ehdr->e_version = EV_CURRENT;
1912 	ehdr->e_entry = 0;
1913 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1914 	ehdr->e_flags = td->td_proc->p_elf_flags;
1915 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1916 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1917 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1918 	ehdr->e_shstrndx = SHN_UNDEF;
1919 	if (numsegs + 1 < PN_XNUM) {
1920 		ehdr->e_phnum = numsegs + 1;
1921 		ehdr->e_shnum = 0;
1922 	} else {
1923 		ehdr->e_phnum = PN_XNUM;
1924 		ehdr->e_shnum = 1;
1925 
1926 		ehdr->e_shoff = ehdr->e_phoff +
1927 		    (numsegs + 1) * ehdr->e_phentsize;
1928 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1929 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1930 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1931 
1932 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1933 		memset(shdr, 0, sizeof(*shdr));
1934 		/*
1935 		 * A special first section is used to hold large segment and
1936 		 * section counts.  This was proposed by Sun Microsystems in
1937 		 * Solaris and has been adopted by Linux; the standard ELF
1938 		 * tools are already familiar with the technique.
1939 		 *
1940 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1941 		 * (or 12-7 depending on the version of the document) for more
1942 		 * details.
1943 		 */
1944 		shdr->sh_type = SHT_NULL;
1945 		shdr->sh_size = ehdr->e_shnum;
1946 		shdr->sh_link = ehdr->e_shstrndx;
1947 		shdr->sh_info = numsegs + 1;
1948 	}
1949 
1950 	/*
1951 	 * Fill in the program header entries.
1952 	 */
1953 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1954 
1955 	/* The note segement. */
1956 	phdr->p_type = PT_NOTE;
1957 	phdr->p_offset = hdrsize;
1958 	phdr->p_vaddr = 0;
1959 	phdr->p_paddr = 0;
1960 	phdr->p_filesz = notesz;
1961 	phdr->p_memsz = 0;
1962 	phdr->p_flags = PF_R;
1963 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1964 	phdr++;
1965 
1966 	/* All the writable segments from the program. */
1967 	phc.phdr = phdr;
1968 	phc.offset = round_page(hdrsize + notesz);
1969 	each_dumpable_segment(td, cb_put_phdr, &phc);
1970 }
1971 
1972 static size_t
1973 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1974 {
1975 	struct note_info *ninfo;
1976 	size_t size, notesize;
1977 
1978 	size = 0;
1979 	out(arg, NULL, &size);
1980 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1981 	ninfo->type = type;
1982 	ninfo->outfunc = out;
1983 	ninfo->outarg = arg;
1984 	ninfo->outsize = size;
1985 	TAILQ_INSERT_TAIL(list, ninfo, link);
1986 
1987 	if (type == -1)
1988 		return (size);
1989 
1990 	notesize = sizeof(Elf_Note) +		/* note header */
1991 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1992 						/* note name */
1993 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1994 
1995 	return (notesize);
1996 }
1997 
1998 static size_t
1999 append_note_data(const void *src, void *dst, size_t len)
2000 {
2001 	size_t padded_len;
2002 
2003 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2004 	if (dst != NULL) {
2005 		bcopy(src, dst, len);
2006 		bzero((char *)dst + len, padded_len - len);
2007 	}
2008 	return (padded_len);
2009 }
2010 
2011 size_t
2012 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2013 {
2014 	Elf_Note *note;
2015 	char *buf;
2016 	size_t notesize;
2017 
2018 	buf = dst;
2019 	if (buf != NULL) {
2020 		note = (Elf_Note *)buf;
2021 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2022 		note->n_descsz = size;
2023 		note->n_type = type;
2024 		buf += sizeof(*note);
2025 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2026 		    sizeof(FREEBSD_ABI_VENDOR));
2027 		append_note_data(src, buf, size);
2028 		if (descp != NULL)
2029 			*descp = buf;
2030 	}
2031 
2032 	notesize = sizeof(Elf_Note) +		/* note header */
2033 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2034 						/* note name */
2035 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2036 
2037 	return (notesize);
2038 }
2039 
2040 static void
2041 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
2042 {
2043 	Elf_Note note;
2044 	ssize_t old_len, sect_len;
2045 	size_t new_len, descsz, i;
2046 
2047 	if (ninfo->type == -1) {
2048 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2049 		return;
2050 	}
2051 
2052 	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2053 	note.n_descsz = ninfo->outsize;
2054 	note.n_type = ninfo->type;
2055 
2056 	sbuf_bcat(sb, &note, sizeof(note));
2057 	sbuf_start_section(sb, &old_len);
2058 	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
2059 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2060 	if (note.n_descsz == 0)
2061 		return;
2062 	sbuf_start_section(sb, &old_len);
2063 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2064 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2065 	if (sect_len < 0)
2066 		return;
2067 
2068 	new_len = (size_t)sect_len;
2069 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2070 	if (new_len < descsz) {
2071 		/*
2072 		 * It is expected that individual note emitters will correctly
2073 		 * predict their expected output size and fill up to that size
2074 		 * themselves, padding in a format-specific way if needed.
2075 		 * However, in case they don't, just do it here with zeros.
2076 		 */
2077 		for (i = 0; i < descsz - new_len; i++)
2078 			sbuf_putc(sb, 0);
2079 	} else if (new_len > descsz) {
2080 		/*
2081 		 * We can't always truncate sb -- we may have drained some
2082 		 * of it already.
2083 		 */
2084 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2085 		    "read it (%zu > %zu).  Since it is longer than "
2086 		    "expected, this coredump's notes are corrupt.  THIS "
2087 		    "IS A BUG in the note_procstat routine for type %u.\n",
2088 		    __func__, (unsigned)note.n_type, new_len, descsz,
2089 		    (unsigned)note.n_type));
2090 	}
2091 }
2092 
2093 /*
2094  * Miscellaneous note out functions.
2095  */
2096 
2097 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2098 #include <compat/freebsd32/freebsd32.h>
2099 #include <compat/freebsd32/freebsd32_signal.h>
2100 
2101 typedef struct prstatus32 elf_prstatus_t;
2102 typedef struct prpsinfo32 elf_prpsinfo_t;
2103 typedef struct fpreg32 elf_prfpregset_t;
2104 typedef struct fpreg32 elf_fpregset_t;
2105 typedef struct reg32 elf_gregset_t;
2106 typedef struct thrmisc32 elf_thrmisc_t;
2107 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2108 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2109 typedef uint32_t elf_ps_strings_t;
2110 #else
2111 typedef prstatus_t elf_prstatus_t;
2112 typedef prpsinfo_t elf_prpsinfo_t;
2113 typedef prfpregset_t elf_prfpregset_t;
2114 typedef prfpregset_t elf_fpregset_t;
2115 typedef gregset_t elf_gregset_t;
2116 typedef thrmisc_t elf_thrmisc_t;
2117 #define ELF_KERN_PROC_MASK	0
2118 typedef struct kinfo_proc elf_kinfo_proc_t;
2119 typedef vm_offset_t elf_ps_strings_t;
2120 #endif
2121 
2122 static void
2123 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2124 {
2125 	struct sbuf sbarg;
2126 	size_t len;
2127 	char *cp, *end;
2128 	struct proc *p;
2129 	elf_prpsinfo_t *psinfo;
2130 	int error;
2131 
2132 	p = (struct proc *)arg;
2133 	if (sb != NULL) {
2134 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2135 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2136 		psinfo->pr_version = PRPSINFO_VERSION;
2137 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2138 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2139 		PROC_LOCK(p);
2140 		if (p->p_args != NULL) {
2141 			len = sizeof(psinfo->pr_psargs) - 1;
2142 			if (len > p->p_args->ar_length)
2143 				len = p->p_args->ar_length;
2144 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2145 			PROC_UNLOCK(p);
2146 			error = 0;
2147 		} else {
2148 			_PHOLD(p);
2149 			PROC_UNLOCK(p);
2150 			sbuf_new(&sbarg, psinfo->pr_psargs,
2151 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2152 			error = proc_getargv(curthread, p, &sbarg);
2153 			PRELE(p);
2154 			if (sbuf_finish(&sbarg) == 0)
2155 				len = sbuf_len(&sbarg) - 1;
2156 			else
2157 				len = sizeof(psinfo->pr_psargs) - 1;
2158 			sbuf_delete(&sbarg);
2159 		}
2160 		if (error || len == 0)
2161 			strlcpy(psinfo->pr_psargs, p->p_comm,
2162 			    sizeof(psinfo->pr_psargs));
2163 		else {
2164 			KASSERT(len < sizeof(psinfo->pr_psargs),
2165 			    ("len is too long: %zu vs %zu", len,
2166 			    sizeof(psinfo->pr_psargs)));
2167 			cp = psinfo->pr_psargs;
2168 			end = cp + len - 1;
2169 			for (;;) {
2170 				cp = memchr(cp, '\0', end - cp);
2171 				if (cp == NULL)
2172 					break;
2173 				*cp = ' ';
2174 			}
2175 		}
2176 		psinfo->pr_pid = p->p_pid;
2177 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2178 		free(psinfo, M_TEMP);
2179 	}
2180 	*sizep = sizeof(*psinfo);
2181 }
2182 
2183 static void
2184 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
2185 {
2186 	struct thread *td;
2187 	elf_prstatus_t *status;
2188 
2189 	td = (struct thread *)arg;
2190 	if (sb != NULL) {
2191 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
2192 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
2193 		status->pr_version = PRSTATUS_VERSION;
2194 		status->pr_statussz = sizeof(elf_prstatus_t);
2195 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2196 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2197 		status->pr_osreldate = osreldate;
2198 		status->pr_cursig = td->td_proc->p_sig;
2199 		status->pr_pid = td->td_tid;
2200 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2201 		fill_regs32(td, &status->pr_reg);
2202 #else
2203 		fill_regs(td, &status->pr_reg);
2204 #endif
2205 		sbuf_bcat(sb, status, sizeof(*status));
2206 		free(status, M_TEMP);
2207 	}
2208 	*sizep = sizeof(*status);
2209 }
2210 
2211 static void
2212 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
2213 {
2214 	struct thread *td;
2215 	elf_prfpregset_t *fpregset;
2216 
2217 	td = (struct thread *)arg;
2218 	if (sb != NULL) {
2219 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
2220 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
2221 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2222 		fill_fpregs32(td, fpregset);
2223 #else
2224 		fill_fpregs(td, fpregset);
2225 #endif
2226 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
2227 		free(fpregset, M_TEMP);
2228 	}
2229 	*sizep = sizeof(*fpregset);
2230 }
2231 
2232 static void
2233 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2234 {
2235 	struct thread *td;
2236 	elf_thrmisc_t thrmisc;
2237 
2238 	td = (struct thread *)arg;
2239 	if (sb != NULL) {
2240 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2241 		bzero(&thrmisc, sizeof(thrmisc));
2242 		strcpy(thrmisc.pr_tname, td->td_name);
2243 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2244 	}
2245 	*sizep = sizeof(thrmisc);
2246 }
2247 
2248 static void
2249 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2250 {
2251 	struct thread *td;
2252 	size_t size;
2253 	int structsize;
2254 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2255 	struct ptrace_lwpinfo32 pl;
2256 #else
2257 	struct ptrace_lwpinfo pl;
2258 #endif
2259 
2260 	td = (struct thread *)arg;
2261 	size = sizeof(structsize) + sizeof(pl);
2262 	if (sb != NULL) {
2263 		KASSERT(*sizep == size, ("invalid size"));
2264 		structsize = sizeof(pl);
2265 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2266 		bzero(&pl, sizeof(pl));
2267 		pl.pl_lwpid = td->td_tid;
2268 		pl.pl_event = PL_EVENT_NONE;
2269 		pl.pl_sigmask = td->td_sigmask;
2270 		pl.pl_siglist = td->td_siglist;
2271 		if (td->td_si.si_signo != 0) {
2272 			pl.pl_event = PL_EVENT_SIGNAL;
2273 			pl.pl_flags |= PL_FLAG_SI;
2274 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2275 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2276 #else
2277 			pl.pl_siginfo = td->td_si;
2278 #endif
2279 		}
2280 		strcpy(pl.pl_tdname, td->td_name);
2281 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2282 		sbuf_bcat(sb, &pl, sizeof(pl));
2283 	}
2284 	*sizep = size;
2285 }
2286 
2287 /*
2288  * Allow for MD specific notes, as well as any MD
2289  * specific preparations for writing MI notes.
2290  */
2291 static void
2292 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2293 {
2294 	struct thread *td;
2295 	void *buf;
2296 	size_t size;
2297 
2298 	td = (struct thread *)arg;
2299 	size = *sizep;
2300 	if (size != 0 && sb != NULL)
2301 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2302 	else
2303 		buf = NULL;
2304 	size = 0;
2305 	__elfN(dump_thread)(td, buf, &size);
2306 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2307 	if (size != 0 && sb != NULL)
2308 		sbuf_bcat(sb, buf, size);
2309 	free(buf, M_TEMP);
2310 	*sizep = size;
2311 }
2312 
2313 #ifdef KINFO_PROC_SIZE
2314 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2315 #endif
2316 
2317 static void
2318 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2319 {
2320 	struct proc *p;
2321 	size_t size;
2322 	int structsize;
2323 
2324 	p = (struct proc *)arg;
2325 	size = sizeof(structsize) + p->p_numthreads *
2326 	    sizeof(elf_kinfo_proc_t);
2327 
2328 	if (sb != NULL) {
2329 		KASSERT(*sizep == size, ("invalid size"));
2330 		structsize = sizeof(elf_kinfo_proc_t);
2331 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2332 		PROC_LOCK(p);
2333 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2334 	}
2335 	*sizep = size;
2336 }
2337 
2338 #ifdef KINFO_FILE_SIZE
2339 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2340 #endif
2341 
2342 static void
2343 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2344 {
2345 	struct proc *p;
2346 	size_t size, sect_sz, i;
2347 	ssize_t start_len, sect_len;
2348 	int structsize, filedesc_flags;
2349 
2350 	if (coredump_pack_fileinfo)
2351 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2352 	else
2353 		filedesc_flags = 0;
2354 
2355 	p = (struct proc *)arg;
2356 	structsize = sizeof(struct kinfo_file);
2357 	if (sb == NULL) {
2358 		size = 0;
2359 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2360 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2361 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2362 		PROC_LOCK(p);
2363 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2364 		sbuf_finish(sb);
2365 		sbuf_delete(sb);
2366 		*sizep = size;
2367 	} else {
2368 		sbuf_start_section(sb, &start_len);
2369 
2370 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2371 		PROC_LOCK(p);
2372 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2373 		    filedesc_flags);
2374 
2375 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2376 		if (sect_len < 0)
2377 			return;
2378 		sect_sz = sect_len;
2379 
2380 		KASSERT(sect_sz <= *sizep,
2381 		    ("kern_proc_filedesc_out did not respect maxlen; "
2382 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2383 		     sect_sz - sizeof(structsize)));
2384 
2385 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2386 			sbuf_putc(sb, 0);
2387 	}
2388 }
2389 
2390 #ifdef KINFO_VMENTRY_SIZE
2391 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2392 #endif
2393 
2394 static void
2395 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2396 {
2397 	struct proc *p;
2398 	size_t size;
2399 	int structsize, vmmap_flags;
2400 
2401 	if (coredump_pack_vmmapinfo)
2402 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2403 	else
2404 		vmmap_flags = 0;
2405 
2406 	p = (struct proc *)arg;
2407 	structsize = sizeof(struct kinfo_vmentry);
2408 	if (sb == NULL) {
2409 		size = 0;
2410 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2411 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2412 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2413 		PROC_LOCK(p);
2414 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2415 		sbuf_finish(sb);
2416 		sbuf_delete(sb);
2417 		*sizep = size;
2418 	} else {
2419 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2420 		PROC_LOCK(p);
2421 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2422 		    vmmap_flags);
2423 	}
2424 }
2425 
2426 static void
2427 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2428 {
2429 	struct proc *p;
2430 	size_t size;
2431 	int structsize;
2432 
2433 	p = (struct proc *)arg;
2434 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2435 	if (sb != NULL) {
2436 		KASSERT(*sizep == size, ("invalid size"));
2437 		structsize = sizeof(gid_t);
2438 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2439 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2440 		    sizeof(gid_t));
2441 	}
2442 	*sizep = size;
2443 }
2444 
2445 static void
2446 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2447 {
2448 	struct proc *p;
2449 	size_t size;
2450 	int structsize;
2451 
2452 	p = (struct proc *)arg;
2453 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2454 	if (sb != NULL) {
2455 		KASSERT(*sizep == size, ("invalid size"));
2456 		structsize = sizeof(p->p_fd->fd_cmask);
2457 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2458 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2459 	}
2460 	*sizep = size;
2461 }
2462 
2463 static void
2464 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2465 {
2466 	struct proc *p;
2467 	struct rlimit rlim[RLIM_NLIMITS];
2468 	size_t size;
2469 	int structsize, i;
2470 
2471 	p = (struct proc *)arg;
2472 	size = sizeof(structsize) + sizeof(rlim);
2473 	if (sb != NULL) {
2474 		KASSERT(*sizep == size, ("invalid size"));
2475 		structsize = sizeof(rlim);
2476 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2477 		PROC_LOCK(p);
2478 		for (i = 0; i < RLIM_NLIMITS; i++)
2479 			lim_rlimit_proc(p, i, &rlim[i]);
2480 		PROC_UNLOCK(p);
2481 		sbuf_bcat(sb, rlim, sizeof(rlim));
2482 	}
2483 	*sizep = size;
2484 }
2485 
2486 static void
2487 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2488 {
2489 	struct proc *p;
2490 	size_t size;
2491 	int structsize;
2492 
2493 	p = (struct proc *)arg;
2494 	size = sizeof(structsize) + sizeof(p->p_osrel);
2495 	if (sb != NULL) {
2496 		KASSERT(*sizep == size, ("invalid size"));
2497 		structsize = sizeof(p->p_osrel);
2498 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2499 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2500 	}
2501 	*sizep = size;
2502 }
2503 
2504 static void
2505 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2506 {
2507 	struct proc *p;
2508 	elf_ps_strings_t ps_strings;
2509 	size_t size;
2510 	int structsize;
2511 
2512 	p = (struct proc *)arg;
2513 	size = sizeof(structsize) + sizeof(ps_strings);
2514 	if (sb != NULL) {
2515 		KASSERT(*sizep == size, ("invalid size"));
2516 		structsize = sizeof(ps_strings);
2517 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2518 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2519 #else
2520 		ps_strings = p->p_sysent->sv_psstrings;
2521 #endif
2522 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2523 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2524 	}
2525 	*sizep = size;
2526 }
2527 
2528 static void
2529 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2530 {
2531 	struct proc *p;
2532 	size_t size;
2533 	int structsize;
2534 
2535 	p = (struct proc *)arg;
2536 	if (sb == NULL) {
2537 		size = 0;
2538 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2539 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2540 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2541 		PHOLD(p);
2542 		proc_getauxv(curthread, p, sb);
2543 		PRELE(p);
2544 		sbuf_finish(sb);
2545 		sbuf_delete(sb);
2546 		*sizep = size;
2547 	} else {
2548 		structsize = sizeof(Elf_Auxinfo);
2549 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2550 		PHOLD(p);
2551 		proc_getauxv(curthread, p, sb);
2552 		PRELE(p);
2553 	}
2554 }
2555 
2556 static boolean_t
2557 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2558     const char *note_vendor, const Elf_Phdr *pnote,
2559     boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg)
2560 {
2561 	const Elf_Note *note, *note0, *note_end;
2562 	const char *note_name;
2563 	char *buf;
2564 	int i, error;
2565 	boolean_t res;
2566 
2567 	/* We need some limit, might as well use PAGE_SIZE. */
2568 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2569 		return (FALSE);
2570 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2571 	if (pnote->p_offset > PAGE_SIZE ||
2572 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2573 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2574 		if (buf == NULL) {
2575 			VOP_UNLOCK(imgp->vp);
2576 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2577 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2578 		}
2579 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2580 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2581 		    curthread->td_ucred, NOCRED, NULL, curthread);
2582 		if (error != 0) {
2583 			uprintf("i/o error PT_NOTE\n");
2584 			goto retf;
2585 		}
2586 		note = note0 = (const Elf_Note *)buf;
2587 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2588 	} else {
2589 		note = note0 = (const Elf_Note *)(imgp->image_header +
2590 		    pnote->p_offset);
2591 		note_end = (const Elf_Note *)(imgp->image_header +
2592 		    pnote->p_offset + pnote->p_filesz);
2593 		buf = NULL;
2594 	}
2595 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2596 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2597 		    (const char *)note < sizeof(Elf_Note)) {
2598 			goto retf;
2599 		}
2600 		if (note->n_namesz != checknote->n_namesz ||
2601 		    note->n_descsz != checknote->n_descsz ||
2602 		    note->n_type != checknote->n_type)
2603 			goto nextnote;
2604 		note_name = (const char *)(note + 1);
2605 		if (note_name + checknote->n_namesz >=
2606 		    (const char *)note_end || strncmp(note_vendor,
2607 		    note_name, checknote->n_namesz) != 0)
2608 			goto nextnote;
2609 
2610 		if (cb(note, cb_arg, &res))
2611 			goto ret;
2612 nextnote:
2613 		note = (const Elf_Note *)((const char *)(note + 1) +
2614 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2615 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2616 	}
2617 retf:
2618 	res = FALSE;
2619 ret:
2620 	free(buf, M_TEMP);
2621 	return (res);
2622 }
2623 
2624 struct brandnote_cb_arg {
2625 	Elf_Brandnote *brandnote;
2626 	int32_t *osrel;
2627 };
2628 
2629 static boolean_t
2630 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2631 {
2632 	struct brandnote_cb_arg *arg;
2633 
2634 	arg = arg0;
2635 
2636 	/*
2637 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2638 	 * necessary.
2639 	 */
2640 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2641 	    arg->brandnote->trans_osrel != NULL ?
2642 	    arg->brandnote->trans_osrel(note, arg->osrel) : TRUE;
2643 
2644 	return (TRUE);
2645 }
2646 
2647 static Elf_Note fctl_note = {
2648 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2649 	.n_descsz = sizeof(uint32_t),
2650 	.n_type = NT_FREEBSD_FEATURE_CTL,
2651 };
2652 
2653 struct fctl_cb_arg {
2654 	uint32_t *fctl0;
2655 };
2656 
2657 static boolean_t
2658 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2659 {
2660 	struct fctl_cb_arg *arg;
2661 	const Elf32_Word *desc;
2662 	uintptr_t p;
2663 
2664 	arg = arg0;
2665 	p = (uintptr_t)(note + 1);
2666 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2667 	desc = (const Elf32_Word *)p;
2668 	*arg->fctl0 = desc[0];
2669 	return (TRUE);
2670 }
2671 
2672 /*
2673  * Try to find the appropriate ABI-note section for checknote, fetch
2674  * the osreldate and feature control flags for binary from the ELF
2675  * OSABI-note.  Only the first page of the image is searched, the same
2676  * as for headers.
2677  */
2678 static boolean_t
2679 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2680     int32_t *osrel, uint32_t *fctl0)
2681 {
2682 	const Elf_Phdr *phdr;
2683 	const Elf_Ehdr *hdr;
2684 	struct brandnote_cb_arg b_arg;
2685 	struct fctl_cb_arg f_arg;
2686 	int i, j;
2687 
2688 	hdr = (const Elf_Ehdr *)imgp->image_header;
2689 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2690 	b_arg.brandnote = brandnote;
2691 	b_arg.osrel = osrel;
2692 	f_arg.fctl0 = fctl0;
2693 
2694 	for (i = 0; i < hdr->e_phnum; i++) {
2695 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2696 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2697 		    &b_arg)) {
2698 			for (j = 0; j < hdr->e_phnum; j++) {
2699 				if (phdr[j].p_type == PT_NOTE &&
2700 				    __elfN(parse_notes)(imgp, &fctl_note,
2701 				    FREEBSD_ABI_VENDOR, &phdr[j],
2702 				    note_fctl_cb, &f_arg))
2703 					break;
2704 			}
2705 			return (TRUE);
2706 		}
2707 	}
2708 	return (FALSE);
2709 
2710 }
2711 
2712 /*
2713  * Tell kern_execve.c about it, with a little help from the linker.
2714  */
2715 static struct execsw __elfN(execsw) = {
2716 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2717 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2718 };
2719 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2720 
2721 static vm_prot_t
2722 __elfN(trans_prot)(Elf_Word flags)
2723 {
2724 	vm_prot_t prot;
2725 
2726 	prot = 0;
2727 	if (flags & PF_X)
2728 		prot |= VM_PROT_EXECUTE;
2729 	if (flags & PF_W)
2730 		prot |= VM_PROT_WRITE;
2731 	if (flags & PF_R)
2732 		prot |= VM_PROT_READ;
2733 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2734 	if (i386_read_exec && (flags & PF_R))
2735 		prot |= VM_PROT_EXECUTE;
2736 #endif
2737 	return (prot);
2738 }
2739 
2740 static Elf_Word
2741 __elfN(untrans_prot)(vm_prot_t prot)
2742 {
2743 	Elf_Word flags;
2744 
2745 	flags = 0;
2746 	if (prot & VM_PROT_EXECUTE)
2747 		flags |= PF_X;
2748 	if (prot & VM_PROT_READ)
2749 		flags |= PF_R;
2750 	if (prot & VM_PROT_WRITE)
2751 		flags |= PF_W;
2752 	return (flags);
2753 }
2754 
2755 void
2756 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base)
2757 {
2758 	uintptr_t range, rbase, gap;
2759 	int pct;
2760 
2761 	if ((imgp->map_flags & MAP_ASLR) == 0)
2762 		return;
2763 	pct = __elfN(aslr_stack_gap);
2764 	if (pct == 0)
2765 		return;
2766 	if (pct > 50)
2767 		pct = 50;
2768 	range = imgp->eff_stack_sz * pct / 100;
2769 	arc4rand(&rbase, sizeof(rbase), 0);
2770 	gap = rbase % range;
2771 	gap &= ~(sizeof(u_long) - 1);
2772 	*stack_base -= gap;
2773 }
2774