1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_core.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/imgact.h> 43 #include <sys/imgact_elf.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mman.h> 49 #include <sys/namei.h> 50 #include <sys/pioctl.h> 51 #include <sys/proc.h> 52 #include <sys/procfs.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sbuf.h> 57 #include <sys/sf_buf.h> 58 #include <sys/smp.h> 59 #include <sys/systm.h> 60 #include <sys/signalvar.h> 61 #include <sys/stat.h> 62 #include <sys/sx.h> 63 #include <sys/syscall.h> 64 #include <sys/sysctl.h> 65 #include <sys/sysent.h> 66 #include <sys/vnode.h> 67 #include <sys/syslog.h> 68 #include <sys/eventhandler.h> 69 #include <sys/user.h> 70 71 #include <net/zlib.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #ifdef COMPRESS_USER_CORES 108 static int compress_core(gzFile, char *, char *, unsigned int, 109 struct thread * td); 110 #endif 111 #define CORE_BUF_SIZE (16 * 1024) 112 113 int __elfN(fallback_brand) = -1; 114 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 115 fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0, 116 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 117 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand", 118 &__elfN(fallback_brand)); 119 120 static int elf_legacy_coredump = 0; 121 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 122 &elf_legacy_coredump, 0, ""); 123 124 int __elfN(nxstack) = 125 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ 126 1; 127 #else 128 0; 129 #endif 130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 131 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 132 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 133 134 #if __ELF_WORD_SIZE == 32 135 #if defined(__amd64__) || defined(__ia64__) 136 int i386_read_exec = 0; 137 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 138 "enable execution from readable segments"); 139 #endif 140 #endif 141 142 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 143 144 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 145 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 146 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 147 148 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 149 150 Elf_Brandnote __elfN(freebsd_brandnote) = { 151 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 152 .hdr.n_descsz = sizeof(int32_t), 153 .hdr.n_type = 1, 154 .vendor = FREEBSD_ABI_VENDOR, 155 .flags = BN_TRANSLATE_OSREL, 156 .trans_osrel = __elfN(freebsd_trans_osrel) 157 }; 158 159 static boolean_t 160 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 161 { 162 uintptr_t p; 163 164 p = (uintptr_t)(note + 1); 165 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 166 *osrel = *(const int32_t *)(p); 167 168 return (TRUE); 169 } 170 171 static const char GNU_ABI_VENDOR[] = "GNU"; 172 static int GNU_KFREEBSD_ABI_DESC = 3; 173 174 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 175 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 176 .hdr.n_descsz = 16, /* XXX at least 16 */ 177 .hdr.n_type = 1, 178 .vendor = GNU_ABI_VENDOR, 179 .flags = BN_TRANSLATE_OSREL, 180 .trans_osrel = kfreebsd_trans_osrel 181 }; 182 183 static boolean_t 184 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 185 { 186 const Elf32_Word *desc; 187 uintptr_t p; 188 189 p = (uintptr_t)(note + 1); 190 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 191 192 desc = (const Elf32_Word *)p; 193 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 194 return (FALSE); 195 196 /* 197 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 198 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 199 */ 200 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 201 202 return (TRUE); 203 } 204 205 int 206 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 207 { 208 int i; 209 210 for (i = 0; i < MAX_BRANDS; i++) { 211 if (elf_brand_list[i] == NULL) { 212 elf_brand_list[i] = entry; 213 break; 214 } 215 } 216 if (i == MAX_BRANDS) { 217 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 218 __func__, entry); 219 return (-1); 220 } 221 return (0); 222 } 223 224 int 225 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 226 { 227 int i; 228 229 for (i = 0; i < MAX_BRANDS; i++) { 230 if (elf_brand_list[i] == entry) { 231 elf_brand_list[i] = NULL; 232 break; 233 } 234 } 235 if (i == MAX_BRANDS) 236 return (-1); 237 return (0); 238 } 239 240 int 241 __elfN(brand_inuse)(Elf_Brandinfo *entry) 242 { 243 struct proc *p; 244 int rval = FALSE; 245 246 sx_slock(&allproc_lock); 247 FOREACH_PROC_IN_SYSTEM(p) { 248 if (p->p_sysent == entry->sysvec) { 249 rval = TRUE; 250 break; 251 } 252 } 253 sx_sunlock(&allproc_lock); 254 255 return (rval); 256 } 257 258 static Elf_Brandinfo * 259 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 260 int interp_name_len, int32_t *osrel) 261 { 262 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 263 Elf_Brandinfo *bi; 264 const char *fname_name, *interp_brand_name; 265 int fname_len, interp_len; 266 boolean_t ret; 267 int i; 268 269 /* 270 * We support four types of branding -- (1) the ELF EI_OSABI field 271 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 272 * branding w/in the ELF header, (3) path of the `interp_path' 273 * field, and (4) the ".note.ABI-tag" ELF section. 274 */ 275 276 /* Look for an ".note.ABI-tag" ELF section */ 277 for (i = 0; i < MAX_BRANDS; i++) { 278 bi = elf_brand_list[i]; 279 if (bi == NULL) 280 continue; 281 if (hdr->e_machine == bi->machine && (bi->flags & 282 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 283 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 284 if (ret) 285 return (bi); 286 } 287 } 288 289 /* If the executable has a brand, search for it in the brand list. */ 290 for (i = 0; i < MAX_BRANDS; i++) { 291 bi = elf_brand_list[i]; 292 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 293 continue; 294 if (hdr->e_machine == bi->machine && 295 (hdr->e_ident[EI_OSABI] == bi->brand || 296 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 297 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 298 return (bi); 299 } 300 301 /* Lacking a known brand, search for a recognized interpreter. */ 302 if (interp != NULL) { 303 for (i = 0; i < MAX_BRANDS; i++) { 304 bi = elf_brand_list[i]; 305 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 306 continue; 307 if (hdr->e_machine == bi->machine && 308 /* ELF image p_filesz includes terminating zero */ 309 strlen(bi->interp_path) + 1 == interp_name_len && 310 strncmp(interp, bi->interp_path, interp_name_len) 311 == 0) 312 return (bi); 313 } 314 } 315 316 /* Some ABI allows to run the interpreter itself. */ 317 for (i = 0; i < MAX_BRANDS; i++) { 318 bi = elf_brand_list[i]; 319 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 320 continue; 321 if (hdr->e_machine != bi->machine || 322 (bi->flags & BI_CAN_EXEC_INTERP) == 0) 323 continue; 324 /* 325 * Compare the interpreter name not the path to allow run it 326 * from everywhere. 327 */ 328 interp_brand_name = strrchr(bi->interp_path, '/'); 329 if (interp_brand_name == NULL) 330 interp_brand_name = bi->interp_path; 331 interp_len = strlen(interp_brand_name); 332 fname_name = strrchr(imgp->args->fname, '/'); 333 if (fname_name == NULL) 334 fname_name = imgp->args->fname; 335 fname_len = strlen(fname_name); 336 if (fname_len < interp_len) 337 continue; 338 ret = strncmp(fname_name, interp_brand_name, interp_len); 339 if (ret == 0) 340 return (bi); 341 } 342 343 /* Lacking a recognized interpreter, try the default brand */ 344 for (i = 0; i < MAX_BRANDS; i++) { 345 bi = elf_brand_list[i]; 346 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 347 continue; 348 if (hdr->e_machine == bi->machine && 349 __elfN(fallback_brand) == bi->brand) 350 return (bi); 351 } 352 return (NULL); 353 } 354 355 static int 356 __elfN(check_header)(const Elf_Ehdr *hdr) 357 { 358 Elf_Brandinfo *bi; 359 int i; 360 361 if (!IS_ELF(*hdr) || 362 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 363 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 364 hdr->e_ident[EI_VERSION] != EV_CURRENT || 365 hdr->e_phentsize != sizeof(Elf_Phdr) || 366 hdr->e_version != ELF_TARG_VER) 367 return (ENOEXEC); 368 369 /* 370 * Make sure we have at least one brand for this machine. 371 */ 372 373 for (i = 0; i < MAX_BRANDS; i++) { 374 bi = elf_brand_list[i]; 375 if (bi != NULL && bi->machine == hdr->e_machine) 376 break; 377 } 378 if (i == MAX_BRANDS) 379 return (ENOEXEC); 380 381 return (0); 382 } 383 384 static int 385 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 386 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 387 { 388 struct sf_buf *sf; 389 int error; 390 vm_offset_t off; 391 392 /* 393 * Create the page if it doesn't exist yet. Ignore errors. 394 */ 395 vm_map_lock(map); 396 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 397 VM_PROT_ALL, VM_PROT_ALL, 0); 398 vm_map_unlock(map); 399 400 /* 401 * Find the page from the underlying object. 402 */ 403 if (object) { 404 sf = vm_imgact_map_page(object, offset); 405 if (sf == NULL) 406 return (KERN_FAILURE); 407 off = offset - trunc_page(offset); 408 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 409 end - start); 410 vm_imgact_unmap_page(sf); 411 if (error) { 412 return (KERN_FAILURE); 413 } 414 } 415 416 return (KERN_SUCCESS); 417 } 418 419 static int 420 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 421 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 422 { 423 struct sf_buf *sf; 424 vm_offset_t off; 425 vm_size_t sz; 426 int error, rv; 427 428 if (start != trunc_page(start)) { 429 rv = __elfN(map_partial)(map, object, offset, start, 430 round_page(start), prot); 431 if (rv) 432 return (rv); 433 offset += round_page(start) - start; 434 start = round_page(start); 435 } 436 if (end != round_page(end)) { 437 rv = __elfN(map_partial)(map, object, offset + 438 trunc_page(end) - start, trunc_page(end), end, prot); 439 if (rv) 440 return (rv); 441 end = trunc_page(end); 442 } 443 if (end > start) { 444 if (offset & PAGE_MASK) { 445 /* 446 * The mapping is not page aligned. This means we have 447 * to copy the data. Sigh. 448 */ 449 rv = vm_map_find(map, NULL, 0, &start, end - start, 0, 450 VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL, 451 0); 452 if (rv) 453 return (rv); 454 if (object == NULL) 455 return (KERN_SUCCESS); 456 for (; start < end; start += sz) { 457 sf = vm_imgact_map_page(object, offset); 458 if (sf == NULL) 459 return (KERN_FAILURE); 460 off = offset - trunc_page(offset); 461 sz = end - start; 462 if (sz > PAGE_SIZE - off) 463 sz = PAGE_SIZE - off; 464 error = copyout((caddr_t)sf_buf_kva(sf) + off, 465 (caddr_t)start, sz); 466 vm_imgact_unmap_page(sf); 467 if (error) { 468 return (KERN_FAILURE); 469 } 470 offset += sz; 471 } 472 rv = KERN_SUCCESS; 473 } else { 474 vm_object_reference(object); 475 vm_map_lock(map); 476 rv = vm_map_insert(map, object, offset, start, end, 477 prot, VM_PROT_ALL, cow); 478 vm_map_unlock(map); 479 if (rv != KERN_SUCCESS) 480 vm_object_deallocate(object); 481 } 482 return (rv); 483 } else { 484 return (KERN_SUCCESS); 485 } 486 } 487 488 static int 489 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 490 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 491 size_t pagesize) 492 { 493 struct sf_buf *sf; 494 size_t map_len; 495 vm_map_t map; 496 vm_object_t object; 497 vm_offset_t map_addr; 498 int error, rv, cow; 499 size_t copy_len; 500 vm_offset_t file_addr; 501 502 /* 503 * It's necessary to fail if the filsz + offset taken from the 504 * header is greater than the actual file pager object's size. 505 * If we were to allow this, then the vm_map_find() below would 506 * walk right off the end of the file object and into the ether. 507 * 508 * While I'm here, might as well check for something else that 509 * is invalid: filsz cannot be greater than memsz. 510 */ 511 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 512 uprintf("elf_load_section: truncated ELF file\n"); 513 return (ENOEXEC); 514 } 515 516 object = imgp->object; 517 map = &imgp->proc->p_vmspace->vm_map; 518 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 519 file_addr = trunc_page_ps(offset, pagesize); 520 521 /* 522 * We have two choices. We can either clear the data in the last page 523 * of an oversized mapping, or we can start the anon mapping a page 524 * early and copy the initialized data into that first page. We 525 * choose the second.. 526 */ 527 if (memsz > filsz) 528 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 529 else 530 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 531 532 if (map_len != 0) { 533 /* cow flags: don't dump readonly sections in core */ 534 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 535 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 536 537 rv = __elfN(map_insert)(map, 538 object, 539 file_addr, /* file offset */ 540 map_addr, /* virtual start */ 541 map_addr + map_len,/* virtual end */ 542 prot, 543 cow); 544 if (rv != KERN_SUCCESS) 545 return (EINVAL); 546 547 /* we can stop now if we've covered it all */ 548 if (memsz == filsz) { 549 return (0); 550 } 551 } 552 553 554 /* 555 * We have to get the remaining bit of the file into the first part 556 * of the oversized map segment. This is normally because the .data 557 * segment in the file is extended to provide bss. It's a neat idea 558 * to try and save a page, but it's a pain in the behind to implement. 559 */ 560 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 561 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 562 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 563 map_addr; 564 565 /* This had damn well better be true! */ 566 if (map_len != 0) { 567 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr + 568 map_len, VM_PROT_ALL, 0); 569 if (rv != KERN_SUCCESS) { 570 return (EINVAL); 571 } 572 } 573 574 if (copy_len != 0) { 575 vm_offset_t off; 576 577 sf = vm_imgact_map_page(object, offset + filsz); 578 if (sf == NULL) 579 return (EIO); 580 581 /* send the page fragment to user space */ 582 off = trunc_page_ps(offset + filsz, pagesize) - 583 trunc_page(offset + filsz); 584 error = copyout((caddr_t)sf_buf_kva(sf) + off, 585 (caddr_t)map_addr, copy_len); 586 vm_imgact_unmap_page(sf); 587 if (error) { 588 return (error); 589 } 590 } 591 592 /* 593 * set it to the specified protection. 594 * XXX had better undo the damage from pasting over the cracks here! 595 */ 596 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 597 map_len), prot, FALSE); 598 599 return (0); 600 } 601 602 /* 603 * Load the file "file" into memory. It may be either a shared object 604 * or an executable. 605 * 606 * The "addr" reference parameter is in/out. On entry, it specifies 607 * the address where a shared object should be loaded. If the file is 608 * an executable, this value is ignored. On exit, "addr" specifies 609 * where the file was actually loaded. 610 * 611 * The "entry" reference parameter is out only. On exit, it specifies 612 * the entry point for the loaded file. 613 */ 614 static int 615 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 616 u_long *entry, size_t pagesize) 617 { 618 struct { 619 struct nameidata nd; 620 struct vattr attr; 621 struct image_params image_params; 622 } *tempdata; 623 const Elf_Ehdr *hdr = NULL; 624 const Elf_Phdr *phdr = NULL; 625 struct nameidata *nd; 626 struct vattr *attr; 627 struct image_params *imgp; 628 vm_prot_t prot; 629 u_long rbase; 630 u_long base_addr = 0; 631 int error, i, numsegs; 632 633 #ifdef CAPABILITY_MODE 634 /* 635 * XXXJA: This check can go away once we are sufficiently confident 636 * that the checks in namei() are correct. 637 */ 638 if (IN_CAPABILITY_MODE(curthread)) 639 return (ECAPMODE); 640 #endif 641 642 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 643 nd = &tempdata->nd; 644 attr = &tempdata->attr; 645 imgp = &tempdata->image_params; 646 647 /* 648 * Initialize part of the common data 649 */ 650 imgp->proc = p; 651 imgp->attr = attr; 652 imgp->firstpage = NULL; 653 imgp->image_header = NULL; 654 imgp->object = NULL; 655 imgp->execlabel = NULL; 656 657 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 658 if ((error = namei(nd)) != 0) { 659 nd->ni_vp = NULL; 660 goto fail; 661 } 662 NDFREE(nd, NDF_ONLY_PNBUF); 663 imgp->vp = nd->ni_vp; 664 665 /* 666 * Check permissions, modes, uid, etc on the file, and "open" it. 667 */ 668 error = exec_check_permissions(imgp); 669 if (error) 670 goto fail; 671 672 error = exec_map_first_page(imgp); 673 if (error) 674 goto fail; 675 676 /* 677 * Also make certain that the interpreter stays the same, so set 678 * its VV_TEXT flag, too. 679 */ 680 VOP_SET_TEXT(nd->ni_vp); 681 682 imgp->object = nd->ni_vp->v_object; 683 684 hdr = (const Elf_Ehdr *)imgp->image_header; 685 if ((error = __elfN(check_header)(hdr)) != 0) 686 goto fail; 687 if (hdr->e_type == ET_DYN) 688 rbase = *addr; 689 else if (hdr->e_type == ET_EXEC) 690 rbase = 0; 691 else { 692 error = ENOEXEC; 693 goto fail; 694 } 695 696 /* Only support headers that fit within first page for now */ 697 if ((hdr->e_phoff > PAGE_SIZE) || 698 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 699 error = ENOEXEC; 700 goto fail; 701 } 702 703 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 704 if (!aligned(phdr, Elf_Addr)) { 705 error = ENOEXEC; 706 goto fail; 707 } 708 709 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 710 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 711 /* Loadable segment */ 712 prot = __elfN(trans_prot)(phdr[i].p_flags); 713 error = __elfN(load_section)(imgp, phdr[i].p_offset, 714 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 715 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 716 if (error != 0) 717 goto fail; 718 /* 719 * Establish the base address if this is the 720 * first segment. 721 */ 722 if (numsegs == 0) 723 base_addr = trunc_page(phdr[i].p_vaddr + 724 rbase); 725 numsegs++; 726 } 727 } 728 *addr = base_addr; 729 *entry = (unsigned long)hdr->e_entry + rbase; 730 731 fail: 732 if (imgp->firstpage) 733 exec_unmap_first_page(imgp); 734 735 if (nd->ni_vp) 736 vput(nd->ni_vp); 737 738 free(tempdata, M_TEMP); 739 740 return (error); 741 } 742 743 static int 744 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 745 { 746 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 747 const Elf_Phdr *phdr; 748 Elf_Auxargs *elf_auxargs; 749 struct vmspace *vmspace; 750 vm_prot_t prot; 751 u_long text_size = 0, data_size = 0, total_size = 0; 752 u_long text_addr = 0, data_addr = 0; 753 u_long seg_size, seg_addr; 754 u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; 755 int32_t osrel = 0; 756 int error = 0, i, n, interp_name_len = 0; 757 const char *interp = NULL, *newinterp = NULL; 758 Elf_Brandinfo *brand_info; 759 char *path; 760 struct sysentvec *sv; 761 762 /* 763 * Do we have a valid ELF header ? 764 * 765 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 766 * if particular brand doesn't support it. 767 */ 768 if (__elfN(check_header)(hdr) != 0 || 769 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 770 return (-1); 771 772 /* 773 * From here on down, we return an errno, not -1, as we've 774 * detected an ELF file. 775 */ 776 777 if ((hdr->e_phoff > PAGE_SIZE) || 778 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 779 /* Only support headers in first page for now */ 780 return (ENOEXEC); 781 } 782 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 783 if (!aligned(phdr, Elf_Addr)) 784 return (ENOEXEC); 785 n = 0; 786 baddr = 0; 787 for (i = 0; i < hdr->e_phnum; i++) { 788 switch (phdr[i].p_type) { 789 case PT_LOAD: 790 if (n == 0) 791 baddr = phdr[i].p_vaddr; 792 n++; 793 break; 794 case PT_INTERP: 795 /* Path to interpreter */ 796 if (phdr[i].p_filesz > MAXPATHLEN || 797 phdr[i].p_offset > PAGE_SIZE || 798 phdr[i].p_filesz > PAGE_SIZE - phdr[i].p_offset) 799 return (ENOEXEC); 800 interp = imgp->image_header + phdr[i].p_offset; 801 interp_name_len = phdr[i].p_filesz; 802 break; 803 case PT_GNU_STACK: 804 if (__elfN(nxstack)) 805 imgp->stack_prot = 806 __elfN(trans_prot)(phdr[i].p_flags); 807 break; 808 } 809 } 810 811 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 812 &osrel); 813 if (brand_info == NULL) { 814 uprintf("ELF binary type \"%u\" not known.\n", 815 hdr->e_ident[EI_OSABI]); 816 return (ENOEXEC); 817 } 818 if (hdr->e_type == ET_DYN) { 819 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) 820 return (ENOEXEC); 821 /* 822 * Honour the base load address from the dso if it is 823 * non-zero for some reason. 824 */ 825 if (baddr == 0) 826 et_dyn_addr = ET_DYN_LOAD_ADDR; 827 else 828 et_dyn_addr = 0; 829 } else 830 et_dyn_addr = 0; 831 sv = brand_info->sysvec; 832 if (interp != NULL && brand_info->interp_newpath != NULL) 833 newinterp = brand_info->interp_newpath; 834 835 /* 836 * Avoid a possible deadlock if the current address space is destroyed 837 * and that address space maps the locked vnode. In the common case, 838 * the locked vnode's v_usecount is decremented but remains greater 839 * than zero. Consequently, the vnode lock is not needed by vrele(). 840 * However, in cases where the vnode lock is external, such as nullfs, 841 * v_usecount may become zero. 842 * 843 * The VV_TEXT flag prevents modifications to the executable while 844 * the vnode is unlocked. 845 */ 846 VOP_UNLOCK(imgp->vp, 0); 847 848 error = exec_new_vmspace(imgp, sv); 849 imgp->proc->p_sysent = sv; 850 851 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 852 if (error) 853 return (error); 854 855 for (i = 0; i < hdr->e_phnum; i++) { 856 switch (phdr[i].p_type) { 857 case PT_LOAD: /* Loadable segment */ 858 if (phdr[i].p_memsz == 0) 859 break; 860 prot = __elfN(trans_prot)(phdr[i].p_flags); 861 error = __elfN(load_section)(imgp, phdr[i].p_offset, 862 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 863 phdr[i].p_memsz, phdr[i].p_filesz, prot, 864 sv->sv_pagesize); 865 if (error != 0) 866 return (error); 867 868 /* 869 * If this segment contains the program headers, 870 * remember their virtual address for the AT_PHDR 871 * aux entry. Static binaries don't usually include 872 * a PT_PHDR entry. 873 */ 874 if (phdr[i].p_offset == 0 && 875 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 876 <= phdr[i].p_filesz) 877 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 878 et_dyn_addr; 879 880 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 881 seg_size = round_page(phdr[i].p_memsz + 882 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 883 884 /* 885 * Make the largest executable segment the official 886 * text segment and all others data. 887 * 888 * Note that obreak() assumes that data_addr + 889 * data_size == end of data load area, and the ELF 890 * file format expects segments to be sorted by 891 * address. If multiple data segments exist, the 892 * last one will be used. 893 */ 894 895 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 896 text_size = seg_size; 897 text_addr = seg_addr; 898 } else { 899 data_size = seg_size; 900 data_addr = seg_addr; 901 } 902 total_size += seg_size; 903 break; 904 case PT_PHDR: /* Program header table info */ 905 proghdr = phdr[i].p_vaddr + et_dyn_addr; 906 break; 907 default: 908 break; 909 } 910 } 911 912 if (data_addr == 0 && data_size == 0) { 913 data_addr = text_addr; 914 data_size = text_size; 915 } 916 917 entry = (u_long)hdr->e_entry + et_dyn_addr; 918 919 /* 920 * Check limits. It should be safe to check the 921 * limits after loading the segments since we do 922 * not actually fault in all the segments pages. 923 */ 924 PROC_LOCK(imgp->proc); 925 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 926 text_size > maxtsiz || 927 total_size > lim_cur(imgp->proc, RLIMIT_VMEM) || 928 racct_set(imgp->proc, RACCT_DATA, data_size) != 0 || 929 racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) { 930 PROC_UNLOCK(imgp->proc); 931 return (ENOMEM); 932 } 933 934 vmspace = imgp->proc->p_vmspace; 935 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 936 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 937 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 938 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 939 940 /* 941 * We load the dynamic linker where a userland call 942 * to mmap(0, ...) would put it. The rationale behind this 943 * calculation is that it leaves room for the heap to grow to 944 * its maximum allowed size. 945 */ 946 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc, 947 RLIMIT_DATA)); 948 PROC_UNLOCK(imgp->proc); 949 950 imgp->entry_addr = entry; 951 952 if (interp != NULL) { 953 int have_interp = FALSE; 954 VOP_UNLOCK(imgp->vp, 0); 955 if (brand_info->emul_path != NULL && 956 brand_info->emul_path[0] != '\0') { 957 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 958 snprintf(path, MAXPATHLEN, "%s%s", 959 brand_info->emul_path, interp); 960 error = __elfN(load_file)(imgp->proc, path, &addr, 961 &imgp->entry_addr, sv->sv_pagesize); 962 free(path, M_TEMP); 963 if (error == 0) 964 have_interp = TRUE; 965 } 966 if (!have_interp && newinterp != NULL) { 967 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 968 &imgp->entry_addr, sv->sv_pagesize); 969 if (error == 0) 970 have_interp = TRUE; 971 } 972 if (!have_interp) { 973 error = __elfN(load_file)(imgp->proc, interp, &addr, 974 &imgp->entry_addr, sv->sv_pagesize); 975 } 976 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 977 if (error != 0) { 978 uprintf("ELF interpreter %s not found\n", interp); 979 return (error); 980 } 981 } else 982 addr = et_dyn_addr; 983 984 /* 985 * Construct auxargs table (used by the fixup routine) 986 */ 987 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 988 elf_auxargs->execfd = -1; 989 elf_auxargs->phdr = proghdr; 990 elf_auxargs->phent = hdr->e_phentsize; 991 elf_auxargs->phnum = hdr->e_phnum; 992 elf_auxargs->pagesz = PAGE_SIZE; 993 elf_auxargs->base = addr; 994 elf_auxargs->flags = 0; 995 elf_auxargs->entry = entry; 996 997 imgp->auxargs = elf_auxargs; 998 imgp->interpreted = 0; 999 imgp->reloc_base = addr; 1000 imgp->proc->p_osrel = osrel; 1001 1002 return (error); 1003 } 1004 1005 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1006 1007 int 1008 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1009 { 1010 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1011 Elf_Addr *base; 1012 Elf_Addr *pos; 1013 1014 base = (Elf_Addr *)*stack_base; 1015 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1016 1017 if (args->execfd != -1) 1018 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1019 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1020 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1021 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1022 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1023 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1024 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1025 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1026 if (imgp->execpathp != 0) 1027 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1028 AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate); 1029 if (imgp->canary != 0) { 1030 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1031 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1032 } 1033 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1034 if (imgp->pagesizes != 0) { 1035 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1036 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1037 } 1038 if (imgp->sysent->sv_timekeep_base != 0) { 1039 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1040 imgp->sysent->sv_timekeep_base); 1041 } 1042 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1043 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1044 imgp->sysent->sv_stackprot); 1045 AUXARGS_ENTRY(pos, AT_NULL, 0); 1046 1047 free(imgp->auxargs, M_TEMP); 1048 imgp->auxargs = NULL; 1049 1050 base--; 1051 suword(base, (long)imgp->args->argc); 1052 *stack_base = (register_t *)base; 1053 return (0); 1054 } 1055 1056 /* 1057 * Code for generating ELF core dumps. 1058 */ 1059 1060 typedef void (*segment_callback)(vm_map_entry_t, void *); 1061 1062 /* Closure for cb_put_phdr(). */ 1063 struct phdr_closure { 1064 Elf_Phdr *phdr; /* Program header to fill in */ 1065 Elf_Off offset; /* Offset of segment in core file */ 1066 }; 1067 1068 /* Closure for cb_size_segment(). */ 1069 struct sseg_closure { 1070 int count; /* Count of writable segments. */ 1071 size_t size; /* Total size of all writable segments. */ 1072 }; 1073 1074 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1075 1076 struct note_info { 1077 int type; /* Note type. */ 1078 outfunc_t outfunc; /* Output function. */ 1079 void *outarg; /* Argument for the output function. */ 1080 size_t outsize; /* Output size. */ 1081 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1082 }; 1083 1084 TAILQ_HEAD(note_info_list, note_info); 1085 1086 static void cb_put_phdr(vm_map_entry_t, void *); 1087 static void cb_size_segment(vm_map_entry_t, void *); 1088 static void each_writable_segment(struct thread *, segment_callback, void *); 1089 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *, 1090 int, void *, size_t, struct note_info_list *, size_t, gzFile); 1091 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1092 size_t *); 1093 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1094 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1095 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1096 static int sbuf_drain_core_output(void *, const char *, int); 1097 static int sbuf_drain_count(void *arg, const char *data, int len); 1098 1099 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1100 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1101 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1102 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1103 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1104 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1105 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1106 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1107 static void note_procstat_files(void *, struct sbuf *, size_t *); 1108 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1109 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1110 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1111 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1112 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1113 1114 #ifdef COMPRESS_USER_CORES 1115 extern int compress_user_cores; 1116 extern int compress_user_cores_gzlevel; 1117 #endif 1118 1119 static int 1120 core_output(struct vnode *vp, void *base, size_t len, off_t offset, 1121 struct ucred *active_cred, struct ucred *file_cred, 1122 struct thread *td, char *core_buf, gzFile gzfile) { 1123 1124 int error; 1125 if (gzfile) { 1126 #ifdef COMPRESS_USER_CORES 1127 error = compress_core(gzfile, base, core_buf, len, td); 1128 #else 1129 panic("shouldn't be here"); 1130 #endif 1131 } else { 1132 error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset, 1133 UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred, 1134 NULL, td); 1135 } 1136 return (error); 1137 } 1138 1139 /* Coredump output parameters for sbuf drain routine. */ 1140 struct sbuf_drain_core_params { 1141 off_t offset; 1142 struct ucred *active_cred; 1143 struct ucred *file_cred; 1144 struct thread *td; 1145 struct vnode *vp; 1146 #ifdef COMPRESS_USER_CORES 1147 gzFile gzfile; 1148 #endif 1149 }; 1150 1151 /* 1152 * Drain into a core file. 1153 */ 1154 static int 1155 sbuf_drain_core_output(void *arg, const char *data, int len) 1156 { 1157 struct sbuf_drain_core_params *p; 1158 int error, locked; 1159 1160 p = (struct sbuf_drain_core_params *)arg; 1161 1162 /* 1163 * Some kern_proc out routines that print to this sbuf may 1164 * call us with the process lock held. Draining with the 1165 * non-sleepable lock held is unsafe. The lock is needed for 1166 * those routines when dumping a live process. In our case we 1167 * can safely release the lock before draining and acquire 1168 * again after. 1169 */ 1170 locked = PROC_LOCKED(p->td->td_proc); 1171 if (locked) 1172 PROC_UNLOCK(p->td->td_proc); 1173 #ifdef COMPRESS_USER_CORES 1174 if (p->gzfile != Z_NULL) 1175 error = compress_core(p->gzfile, NULL, __DECONST(char *, data), 1176 len, p->td); 1177 else 1178 #endif 1179 error = vn_rdwr_inchunks(UIO_WRITE, p->vp, 1180 __DECONST(void *, data), len, p->offset, UIO_SYSSPACE, 1181 IO_UNIT | IO_DIRECT, p->active_cred, p->file_cred, NULL, 1182 p->td); 1183 if (locked) 1184 PROC_LOCK(p->td->td_proc); 1185 if (error != 0) 1186 return (-error); 1187 p->offset += len; 1188 return (len); 1189 } 1190 1191 /* 1192 * Drain into a counter. 1193 */ 1194 static int 1195 sbuf_drain_count(void *arg, const char *data __unused, int len) 1196 { 1197 size_t *sizep; 1198 1199 sizep = (size_t *)arg; 1200 *sizep += len; 1201 return (len); 1202 } 1203 1204 int 1205 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1206 { 1207 struct ucred *cred = td->td_ucred; 1208 int error = 0; 1209 struct sseg_closure seginfo; 1210 struct note_info_list notelst; 1211 struct note_info *ninfo; 1212 void *hdr; 1213 size_t hdrsize, notesz, coresize; 1214 1215 gzFile gzfile = Z_NULL; 1216 char *core_buf = NULL; 1217 #ifdef COMPRESS_USER_CORES 1218 char gzopen_flags[8]; 1219 char *p; 1220 int doing_compress = flags & IMGACT_CORE_COMPRESS; 1221 #endif 1222 1223 hdr = NULL; 1224 TAILQ_INIT(¬elst); 1225 1226 #ifdef COMPRESS_USER_CORES 1227 if (doing_compress) { 1228 p = gzopen_flags; 1229 *p++ = 'w'; 1230 if (compress_user_cores_gzlevel >= 0 && 1231 compress_user_cores_gzlevel <= 9) 1232 *p++ = '0' + compress_user_cores_gzlevel; 1233 *p = 0; 1234 gzfile = gz_open("", gzopen_flags, vp); 1235 if (gzfile == Z_NULL) { 1236 error = EFAULT; 1237 goto done; 1238 } 1239 core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1240 if (!core_buf) { 1241 error = ENOMEM; 1242 goto done; 1243 } 1244 } 1245 #endif 1246 1247 /* Size the program segments. */ 1248 seginfo.count = 0; 1249 seginfo.size = 0; 1250 each_writable_segment(td, cb_size_segment, &seginfo); 1251 1252 /* 1253 * Collect info about the core file header area. 1254 */ 1255 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1256 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1257 coresize = round_page(hdrsize + notesz) + seginfo.size; 1258 1259 #ifdef RACCT 1260 PROC_LOCK(td->td_proc); 1261 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1262 PROC_UNLOCK(td->td_proc); 1263 if (error != 0) { 1264 error = EFAULT; 1265 goto done; 1266 } 1267 #endif 1268 if (coresize >= limit) { 1269 error = EFAULT; 1270 goto done; 1271 } 1272 1273 /* 1274 * Allocate memory for building the header, fill it up, 1275 * and write it out following the notes. 1276 */ 1277 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1278 if (hdr == NULL) { 1279 error = EINVAL; 1280 goto done; 1281 } 1282 error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize, 1283 ¬elst, notesz, gzfile); 1284 1285 /* Write the contents of all of the writable segments. */ 1286 if (error == 0) { 1287 Elf_Phdr *php; 1288 off_t offset; 1289 int i; 1290 1291 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1292 offset = round_page(hdrsize + notesz); 1293 for (i = 0; i < seginfo.count; i++) { 1294 error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr, 1295 php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile); 1296 if (error != 0) 1297 break; 1298 offset += php->p_filesz; 1299 php++; 1300 } 1301 } 1302 if (error) { 1303 log(LOG_WARNING, 1304 "Failed to write core file for process %s (error %d)\n", 1305 curproc->p_comm, error); 1306 } 1307 1308 done: 1309 #ifdef COMPRESS_USER_CORES 1310 if (core_buf) 1311 free(core_buf, M_TEMP); 1312 if (gzfile) 1313 gzclose(gzfile); 1314 #endif 1315 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1316 TAILQ_REMOVE(¬elst, ninfo, link); 1317 free(ninfo, M_TEMP); 1318 } 1319 if (hdr != NULL) 1320 free(hdr, M_TEMP); 1321 1322 return (error); 1323 } 1324 1325 /* 1326 * A callback for each_writable_segment() to write out the segment's 1327 * program header entry. 1328 */ 1329 static void 1330 cb_put_phdr(entry, closure) 1331 vm_map_entry_t entry; 1332 void *closure; 1333 { 1334 struct phdr_closure *phc = (struct phdr_closure *)closure; 1335 Elf_Phdr *phdr = phc->phdr; 1336 1337 phc->offset = round_page(phc->offset); 1338 1339 phdr->p_type = PT_LOAD; 1340 phdr->p_offset = phc->offset; 1341 phdr->p_vaddr = entry->start; 1342 phdr->p_paddr = 0; 1343 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1344 phdr->p_align = PAGE_SIZE; 1345 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1346 1347 phc->offset += phdr->p_filesz; 1348 phc->phdr++; 1349 } 1350 1351 /* 1352 * A callback for each_writable_segment() to gather information about 1353 * the number of segments and their total size. 1354 */ 1355 static void 1356 cb_size_segment(entry, closure) 1357 vm_map_entry_t entry; 1358 void *closure; 1359 { 1360 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1361 1362 ssc->count++; 1363 ssc->size += entry->end - entry->start; 1364 } 1365 1366 /* 1367 * For each writable segment in the process's memory map, call the given 1368 * function with a pointer to the map entry and some arbitrary 1369 * caller-supplied data. 1370 */ 1371 static void 1372 each_writable_segment(td, func, closure) 1373 struct thread *td; 1374 segment_callback func; 1375 void *closure; 1376 { 1377 struct proc *p = td->td_proc; 1378 vm_map_t map = &p->p_vmspace->vm_map; 1379 vm_map_entry_t entry; 1380 vm_object_t backing_object, object; 1381 boolean_t ignore_entry; 1382 1383 vm_map_lock_read(map); 1384 for (entry = map->header.next; entry != &map->header; 1385 entry = entry->next) { 1386 /* 1387 * Don't dump inaccessible mappings, deal with legacy 1388 * coredump mode. 1389 * 1390 * Note that read-only segments related to the elf binary 1391 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1392 * need to arbitrarily ignore such segments. 1393 */ 1394 if (elf_legacy_coredump) { 1395 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1396 continue; 1397 } else { 1398 if ((entry->protection & VM_PROT_ALL) == 0) 1399 continue; 1400 } 1401 1402 /* 1403 * Dont include memory segment in the coredump if 1404 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1405 * madvise(2). Do not dump submaps (i.e. parts of the 1406 * kernel map). 1407 */ 1408 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1409 continue; 1410 1411 if ((object = entry->object.vm_object) == NULL) 1412 continue; 1413 1414 /* Ignore memory-mapped devices and such things. */ 1415 VM_OBJECT_RLOCK(object); 1416 while ((backing_object = object->backing_object) != NULL) { 1417 VM_OBJECT_RLOCK(backing_object); 1418 VM_OBJECT_RUNLOCK(object); 1419 object = backing_object; 1420 } 1421 ignore_entry = object->type != OBJT_DEFAULT && 1422 object->type != OBJT_SWAP && object->type != OBJT_VNODE; 1423 VM_OBJECT_RUNLOCK(object); 1424 if (ignore_entry) 1425 continue; 1426 1427 (*func)(entry, closure); 1428 } 1429 vm_map_unlock_read(map); 1430 } 1431 1432 /* 1433 * Write the core file header to the file, including padding up to 1434 * the page boundary. 1435 */ 1436 static int 1437 __elfN(corehdr)(struct thread *td, struct vnode *vp, struct ucred *cred, 1438 int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst, 1439 size_t notesz, gzFile gzfile) 1440 { 1441 struct sbuf_drain_core_params params; 1442 struct note_info *ninfo; 1443 struct sbuf *sb; 1444 int error; 1445 1446 /* Fill in the header. */ 1447 bzero(hdr, hdrsize); 1448 __elfN(puthdr)(td, hdr, hdrsize, numsegs, notesz); 1449 1450 params.offset = 0; 1451 params.active_cred = cred; 1452 params.file_cred = NOCRED; 1453 params.td = td; 1454 params.vp = vp; 1455 #ifdef COMPRESS_USER_CORES 1456 params.gzfile = gzfile; 1457 #endif 1458 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1459 sbuf_set_drain(sb, sbuf_drain_core_output, ¶ms); 1460 sbuf_start_section(sb, NULL); 1461 sbuf_bcat(sb, hdr, hdrsize); 1462 TAILQ_FOREACH(ninfo, notelst, link) 1463 __elfN(putnote)(ninfo, sb); 1464 /* Align up to a page boundary for the program segments. */ 1465 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1466 error = sbuf_finish(sb); 1467 sbuf_delete(sb); 1468 1469 return (error); 1470 } 1471 1472 static void 1473 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1474 size_t *sizep) 1475 { 1476 struct proc *p; 1477 struct thread *thr; 1478 size_t size; 1479 1480 p = td->td_proc; 1481 size = 0; 1482 1483 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1484 1485 /* 1486 * To have the debugger select the right thread (LWP) as the initial 1487 * thread, we dump the state of the thread passed to us in td first. 1488 * This is the thread that causes the core dump and thus likely to 1489 * be the right thread one wants to have selected in the debugger. 1490 */ 1491 thr = td; 1492 while (thr != NULL) { 1493 size += register_note(list, NT_PRSTATUS, 1494 __elfN(note_prstatus), thr); 1495 size += register_note(list, NT_FPREGSET, 1496 __elfN(note_fpregset), thr); 1497 size += register_note(list, NT_THRMISC, 1498 __elfN(note_thrmisc), thr); 1499 size += register_note(list, -1, 1500 __elfN(note_threadmd), thr); 1501 1502 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1503 TAILQ_NEXT(thr, td_plist); 1504 if (thr == td) 1505 thr = TAILQ_NEXT(thr, td_plist); 1506 } 1507 1508 size += register_note(list, NT_PROCSTAT_PROC, 1509 __elfN(note_procstat_proc), p); 1510 size += register_note(list, NT_PROCSTAT_FILES, 1511 note_procstat_files, p); 1512 size += register_note(list, NT_PROCSTAT_VMMAP, 1513 note_procstat_vmmap, p); 1514 size += register_note(list, NT_PROCSTAT_GROUPS, 1515 note_procstat_groups, p); 1516 size += register_note(list, NT_PROCSTAT_UMASK, 1517 note_procstat_umask, p); 1518 size += register_note(list, NT_PROCSTAT_RLIMIT, 1519 note_procstat_rlimit, p); 1520 size += register_note(list, NT_PROCSTAT_OSREL, 1521 note_procstat_osrel, p); 1522 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1523 __elfN(note_procstat_psstrings), p); 1524 size += register_note(list, NT_PROCSTAT_AUXV, 1525 __elfN(note_procstat_auxv), p); 1526 1527 *sizep = size; 1528 } 1529 1530 static void 1531 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1532 size_t notesz) 1533 { 1534 Elf_Ehdr *ehdr; 1535 Elf_Phdr *phdr; 1536 struct phdr_closure phc; 1537 1538 ehdr = (Elf_Ehdr *)hdr; 1539 phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)); 1540 1541 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1542 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1543 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1544 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1545 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1546 ehdr->e_ident[EI_DATA] = ELF_DATA; 1547 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1548 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1549 ehdr->e_ident[EI_ABIVERSION] = 0; 1550 ehdr->e_ident[EI_PAD] = 0; 1551 ehdr->e_type = ET_CORE; 1552 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1553 ehdr->e_machine = ELF_ARCH32; 1554 #else 1555 ehdr->e_machine = ELF_ARCH; 1556 #endif 1557 ehdr->e_version = EV_CURRENT; 1558 ehdr->e_entry = 0; 1559 ehdr->e_phoff = sizeof(Elf_Ehdr); 1560 ehdr->e_flags = 0; 1561 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1562 ehdr->e_phentsize = sizeof(Elf_Phdr); 1563 ehdr->e_phnum = numsegs + 1; 1564 ehdr->e_shentsize = sizeof(Elf_Shdr); 1565 ehdr->e_shnum = 0; 1566 ehdr->e_shstrndx = SHN_UNDEF; 1567 1568 /* 1569 * Fill in the program header entries. 1570 */ 1571 1572 /* The note segement. */ 1573 phdr->p_type = PT_NOTE; 1574 phdr->p_offset = hdrsize; 1575 phdr->p_vaddr = 0; 1576 phdr->p_paddr = 0; 1577 phdr->p_filesz = notesz; 1578 phdr->p_memsz = 0; 1579 phdr->p_flags = PF_R; 1580 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1581 phdr++; 1582 1583 /* All the writable segments from the program. */ 1584 phc.phdr = phdr; 1585 phc.offset = round_page(hdrsize + notesz); 1586 each_writable_segment(td, cb_put_phdr, &phc); 1587 } 1588 1589 static size_t 1590 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1591 { 1592 struct note_info *ninfo; 1593 size_t size, notesize; 1594 1595 size = 0; 1596 out(arg, NULL, &size); 1597 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1598 ninfo->type = type; 1599 ninfo->outfunc = out; 1600 ninfo->outarg = arg; 1601 ninfo->outsize = size; 1602 TAILQ_INSERT_TAIL(list, ninfo, link); 1603 1604 if (type == -1) 1605 return (size); 1606 1607 notesize = sizeof(Elf_Note) + /* note header */ 1608 roundup2(8, ELF_NOTE_ROUNDSIZE) + /* note name ("FreeBSD") */ 1609 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1610 1611 return (notesize); 1612 } 1613 1614 static void 1615 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1616 { 1617 Elf_Note note; 1618 ssize_t old_len; 1619 1620 if (ninfo->type == -1) { 1621 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1622 return; 1623 } 1624 1625 note.n_namesz = 8; /* strlen("FreeBSD") + 1 */ 1626 note.n_descsz = ninfo->outsize; 1627 note.n_type = ninfo->type; 1628 1629 sbuf_bcat(sb, ¬e, sizeof(note)); 1630 sbuf_start_section(sb, &old_len); 1631 sbuf_bcat(sb, "FreeBSD", note.n_namesz); 1632 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1633 if (note.n_descsz == 0) 1634 return; 1635 sbuf_start_section(sb, &old_len); 1636 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1637 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1638 } 1639 1640 /* 1641 * Miscellaneous note out functions. 1642 */ 1643 1644 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1645 #include <compat/freebsd32/freebsd32.h> 1646 1647 typedef struct prstatus32 elf_prstatus_t; 1648 typedef struct prpsinfo32 elf_prpsinfo_t; 1649 typedef struct fpreg32 elf_prfpregset_t; 1650 typedef struct fpreg32 elf_fpregset_t; 1651 typedef struct reg32 elf_gregset_t; 1652 typedef struct thrmisc32 elf_thrmisc_t; 1653 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1654 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1655 typedef uint32_t elf_ps_strings_t; 1656 #else 1657 typedef prstatus_t elf_prstatus_t; 1658 typedef prpsinfo_t elf_prpsinfo_t; 1659 typedef prfpregset_t elf_prfpregset_t; 1660 typedef prfpregset_t elf_fpregset_t; 1661 typedef gregset_t elf_gregset_t; 1662 typedef thrmisc_t elf_thrmisc_t; 1663 #define ELF_KERN_PROC_MASK 0 1664 typedef struct kinfo_proc elf_kinfo_proc_t; 1665 typedef vm_offset_t elf_ps_strings_t; 1666 #endif 1667 1668 static void 1669 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1670 { 1671 struct proc *p; 1672 elf_prpsinfo_t *psinfo; 1673 1674 p = (struct proc *)arg; 1675 if (sb != NULL) { 1676 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1677 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1678 psinfo->pr_version = PRPSINFO_VERSION; 1679 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1680 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1681 /* 1682 * XXX - We don't fill in the command line arguments properly 1683 * yet. 1684 */ 1685 strlcpy(psinfo->pr_psargs, p->p_comm, 1686 sizeof(psinfo->pr_psargs)); 1687 1688 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1689 free(psinfo, M_TEMP); 1690 } 1691 *sizep = sizeof(*psinfo); 1692 } 1693 1694 static void 1695 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1696 { 1697 struct thread *td; 1698 elf_prstatus_t *status; 1699 1700 td = (struct thread *)arg; 1701 if (sb != NULL) { 1702 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1703 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1704 status->pr_version = PRSTATUS_VERSION; 1705 status->pr_statussz = sizeof(elf_prstatus_t); 1706 status->pr_gregsetsz = sizeof(elf_gregset_t); 1707 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1708 status->pr_osreldate = osreldate; 1709 status->pr_cursig = td->td_proc->p_sig; 1710 status->pr_pid = td->td_tid; 1711 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1712 fill_regs32(td, &status->pr_reg); 1713 #else 1714 fill_regs(td, &status->pr_reg); 1715 #endif 1716 sbuf_bcat(sb, status, sizeof(*status)); 1717 free(status, M_TEMP); 1718 } 1719 *sizep = sizeof(*status); 1720 } 1721 1722 static void 1723 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1724 { 1725 struct thread *td; 1726 elf_prfpregset_t *fpregset; 1727 1728 td = (struct thread *)arg; 1729 if (sb != NULL) { 1730 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1731 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1732 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1733 fill_fpregs32(td, fpregset); 1734 #else 1735 fill_fpregs(td, fpregset); 1736 #endif 1737 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1738 free(fpregset, M_TEMP); 1739 } 1740 *sizep = sizeof(*fpregset); 1741 } 1742 1743 static void 1744 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1745 { 1746 struct thread *td; 1747 elf_thrmisc_t thrmisc; 1748 1749 td = (struct thread *)arg; 1750 if (sb != NULL) { 1751 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1752 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1753 strcpy(thrmisc.pr_tname, td->td_name); 1754 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1755 } 1756 *sizep = sizeof(thrmisc); 1757 } 1758 1759 /* 1760 * Allow for MD specific notes, as well as any MD 1761 * specific preparations for writing MI notes. 1762 */ 1763 static void 1764 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 1765 { 1766 struct thread *td; 1767 void *buf; 1768 size_t size; 1769 1770 td = (struct thread *)arg; 1771 size = *sizep; 1772 if (size != 0 && sb != NULL) 1773 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 1774 else 1775 buf = NULL; 1776 size = 0; 1777 __elfN(dump_thread)(td, buf, &size); 1778 KASSERT(*sizep == size, ("invalid size")); 1779 if (size != 0 && sb != NULL) 1780 sbuf_bcat(sb, buf, size); 1781 free(buf, M_TEMP); 1782 *sizep = size; 1783 } 1784 1785 #ifdef KINFO_PROC_SIZE 1786 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 1787 #endif 1788 1789 static void 1790 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 1791 { 1792 struct proc *p; 1793 size_t size; 1794 int structsize; 1795 1796 p = (struct proc *)arg; 1797 size = sizeof(structsize) + p->p_numthreads * 1798 sizeof(elf_kinfo_proc_t); 1799 1800 if (sb != NULL) { 1801 KASSERT(*sizep == size, ("invalid size")); 1802 structsize = sizeof(elf_kinfo_proc_t); 1803 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1804 PROC_LOCK(p); 1805 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 1806 } 1807 *sizep = size; 1808 } 1809 1810 #ifdef KINFO_FILE_SIZE 1811 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 1812 #endif 1813 1814 static void 1815 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 1816 { 1817 struct proc *p; 1818 size_t size; 1819 int structsize; 1820 1821 p = (struct proc *)arg; 1822 if (sb == NULL) { 1823 size = 0; 1824 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1825 sbuf_set_drain(sb, sbuf_drain_count, &size); 1826 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1827 PROC_LOCK(p); 1828 kern_proc_filedesc_out(p, sb, -1); 1829 sbuf_finish(sb); 1830 sbuf_delete(sb); 1831 *sizep = size; 1832 } else { 1833 structsize = sizeof(struct kinfo_file); 1834 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1835 PROC_LOCK(p); 1836 kern_proc_filedesc_out(p, sb, -1); 1837 } 1838 } 1839 1840 #ifdef KINFO_VMENTRY_SIZE 1841 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1842 #endif 1843 1844 static void 1845 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 1846 { 1847 struct proc *p; 1848 size_t size; 1849 int structsize; 1850 1851 p = (struct proc *)arg; 1852 if (sb == NULL) { 1853 size = 0; 1854 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1855 sbuf_set_drain(sb, sbuf_drain_count, &size); 1856 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1857 PROC_LOCK(p); 1858 kern_proc_vmmap_out(p, sb); 1859 sbuf_finish(sb); 1860 sbuf_delete(sb); 1861 *sizep = size; 1862 } else { 1863 structsize = sizeof(struct kinfo_vmentry); 1864 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1865 PROC_LOCK(p); 1866 kern_proc_vmmap_out(p, sb); 1867 } 1868 } 1869 1870 static void 1871 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 1872 { 1873 struct proc *p; 1874 size_t size; 1875 int structsize; 1876 1877 p = (struct proc *)arg; 1878 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 1879 if (sb != NULL) { 1880 KASSERT(*sizep == size, ("invalid size")); 1881 structsize = sizeof(gid_t); 1882 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1883 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 1884 sizeof(gid_t)); 1885 } 1886 *sizep = size; 1887 } 1888 1889 static void 1890 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 1891 { 1892 struct proc *p; 1893 size_t size; 1894 int structsize; 1895 1896 p = (struct proc *)arg; 1897 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 1898 if (sb != NULL) { 1899 KASSERT(*sizep == size, ("invalid size")); 1900 structsize = sizeof(p->p_fd->fd_cmask); 1901 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1902 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 1903 } 1904 *sizep = size; 1905 } 1906 1907 static void 1908 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 1909 { 1910 struct proc *p; 1911 struct rlimit rlim[RLIM_NLIMITS]; 1912 size_t size; 1913 int structsize, i; 1914 1915 p = (struct proc *)arg; 1916 size = sizeof(structsize) + sizeof(rlim); 1917 if (sb != NULL) { 1918 KASSERT(*sizep == size, ("invalid size")); 1919 structsize = sizeof(rlim); 1920 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1921 PROC_LOCK(p); 1922 for (i = 0; i < RLIM_NLIMITS; i++) 1923 lim_rlimit(p, i, &rlim[i]); 1924 PROC_UNLOCK(p); 1925 sbuf_bcat(sb, rlim, sizeof(rlim)); 1926 } 1927 *sizep = size; 1928 } 1929 1930 static void 1931 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 1932 { 1933 struct proc *p; 1934 size_t size; 1935 int structsize; 1936 1937 p = (struct proc *)arg; 1938 size = sizeof(structsize) + sizeof(p->p_osrel); 1939 if (sb != NULL) { 1940 KASSERT(*sizep == size, ("invalid size")); 1941 structsize = sizeof(p->p_osrel); 1942 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1943 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 1944 } 1945 *sizep = size; 1946 } 1947 1948 static void 1949 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 1950 { 1951 struct proc *p; 1952 elf_ps_strings_t ps_strings; 1953 size_t size; 1954 int structsize; 1955 1956 p = (struct proc *)arg; 1957 size = sizeof(structsize) + sizeof(ps_strings); 1958 if (sb != NULL) { 1959 KASSERT(*sizep == size, ("invalid size")); 1960 structsize = sizeof(ps_strings); 1961 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1962 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 1963 #else 1964 ps_strings = p->p_sysent->sv_psstrings; 1965 #endif 1966 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1967 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 1968 } 1969 *sizep = size; 1970 } 1971 1972 static void 1973 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 1974 { 1975 struct proc *p; 1976 size_t size; 1977 int structsize; 1978 1979 p = (struct proc *)arg; 1980 if (sb == NULL) { 1981 size = 0; 1982 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1983 sbuf_set_drain(sb, sbuf_drain_count, &size); 1984 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1985 PHOLD(p); 1986 proc_getauxv(curthread, p, sb); 1987 PRELE(p); 1988 sbuf_finish(sb); 1989 sbuf_delete(sb); 1990 *sizep = size; 1991 } else { 1992 structsize = sizeof(Elf_Auxinfo); 1993 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1994 PHOLD(p); 1995 proc_getauxv(curthread, p, sb); 1996 PRELE(p); 1997 } 1998 } 1999 2000 static boolean_t 2001 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2002 int32_t *osrel, const Elf_Phdr *pnote) 2003 { 2004 const Elf_Note *note, *note0, *note_end; 2005 const char *note_name; 2006 int i; 2007 2008 if (pnote == NULL || pnote->p_offset > PAGE_SIZE || 2009 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) 2010 return (FALSE); 2011 2012 note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); 2013 note_end = (const Elf_Note *)(imgp->image_header + 2014 pnote->p_offset + pnote->p_filesz); 2015 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2016 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2017 (const char *)note < sizeof(Elf_Note)) 2018 return (FALSE); 2019 if (note->n_namesz != checknote->hdr.n_namesz || 2020 note->n_descsz != checknote->hdr.n_descsz || 2021 note->n_type != checknote->hdr.n_type) 2022 goto nextnote; 2023 note_name = (const char *)(note + 1); 2024 if (note_name + checknote->hdr.n_namesz >= 2025 (const char *)note_end || strncmp(checknote->vendor, 2026 note_name, checknote->hdr.n_namesz) != 0) 2027 goto nextnote; 2028 2029 /* 2030 * Fetch the osreldate for binary 2031 * from the ELF OSABI-note if necessary. 2032 */ 2033 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2034 checknote->trans_osrel != NULL) 2035 return (checknote->trans_osrel(note, osrel)); 2036 return (TRUE); 2037 2038 nextnote: 2039 note = (const Elf_Note *)((const char *)(note + 1) + 2040 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2041 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2042 } 2043 2044 return (FALSE); 2045 } 2046 2047 /* 2048 * Try to find the appropriate ABI-note section for checknote, 2049 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2050 * first page of the image is searched, the same as for headers. 2051 */ 2052 static boolean_t 2053 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2054 int32_t *osrel) 2055 { 2056 const Elf_Phdr *phdr; 2057 const Elf_Ehdr *hdr; 2058 int i; 2059 2060 hdr = (const Elf_Ehdr *)imgp->image_header; 2061 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2062 2063 for (i = 0; i < hdr->e_phnum; i++) { 2064 if (phdr[i].p_type == PT_NOTE && 2065 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2066 return (TRUE); 2067 } 2068 return (FALSE); 2069 2070 } 2071 2072 /* 2073 * Tell kern_execve.c about it, with a little help from the linker. 2074 */ 2075 static struct execsw __elfN(execsw) = { 2076 __CONCAT(exec_, __elfN(imgact)), 2077 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2078 }; 2079 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2080 2081 #ifdef COMPRESS_USER_CORES 2082 /* 2083 * Compress and write out a core segment for a user process. 2084 * 2085 * 'inbuf' is the starting address of a VM segment in the process' address 2086 * space that is to be compressed and written out to the core file. 'dest_buf' 2087 * is a buffer in the kernel's address space. The segment is copied from 2088 * 'inbuf' to 'dest_buf' first before being processed by the compression 2089 * routine gzwrite(). This copying is necessary because the content of the VM 2090 * segment may change between the compression pass and the crc-computation pass 2091 * in gzwrite(). This is because realtime threads may preempt the UNIX kernel. 2092 * 2093 * If inbuf is NULL it is assumed that data is already copied to 'dest_buf'. 2094 */ 2095 static int 2096 compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len, 2097 struct thread *td) 2098 { 2099 int len_compressed; 2100 int error = 0; 2101 unsigned int chunk_len; 2102 2103 while (len) { 2104 if (inbuf != NULL) { 2105 chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len; 2106 copyin(inbuf, dest_buf, chunk_len); 2107 inbuf += chunk_len; 2108 } else { 2109 chunk_len = len; 2110 } 2111 len_compressed = gzwrite(file, dest_buf, chunk_len); 2112 2113 EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed); 2114 2115 if ((unsigned int)len_compressed != chunk_len) { 2116 log(LOG_WARNING, 2117 "compress_core: length mismatch (0x%x returned, " 2118 "0x%x expected)\n", len_compressed, chunk_len); 2119 EVENTHANDLER_INVOKE(app_coredump_error, td, 2120 "compress_core: length mismatch %x -> %x", 2121 chunk_len, len_compressed); 2122 error = EFAULT; 2123 break; 2124 } 2125 len -= chunk_len; 2126 maybe_yield(); 2127 } 2128 2129 return (error); 2130 } 2131 #endif /* COMPRESS_USER_CORES */ 2132 2133 static vm_prot_t 2134 __elfN(trans_prot)(Elf_Word flags) 2135 { 2136 vm_prot_t prot; 2137 2138 prot = 0; 2139 if (flags & PF_X) 2140 prot |= VM_PROT_EXECUTE; 2141 if (flags & PF_W) 2142 prot |= VM_PROT_WRITE; 2143 if (flags & PF_R) 2144 prot |= VM_PROT_READ; 2145 #if __ELF_WORD_SIZE == 32 2146 #if defined(__amd64__) || defined(__ia64__) 2147 if (i386_read_exec && (flags & PF_R)) 2148 prot |= VM_PROT_EXECUTE; 2149 #endif 2150 #endif 2151 return (prot); 2152 } 2153 2154 static Elf_Word 2155 __elfN(untrans_prot)(vm_prot_t prot) 2156 { 2157 Elf_Word flags; 2158 2159 flags = 0; 2160 if (prot & VM_PROT_EXECUTE) 2161 flags |= PF_X; 2162 if (prot & VM_PROT_READ) 2163 flags |= PF_R; 2164 if (prot & VM_PROT_WRITE) 2165 flags |= PF_W; 2166 return (flags); 2167 } 2168