1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_gzio.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/gzio.h> 43 #include <sys/imgact.h> 44 #include <sys/imgact_elf.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/mman.h> 51 #include <sys/namei.h> 52 #include <sys/pioctl.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/racct.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sf_buf.h> 60 #include <sys/smp.h> 61 #include <sys/systm.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/sx.h> 65 #include <sys/syscall.h> 66 #include <sys/sysctl.h> 67 #include <sys/sysent.h> 68 #include <sys/vnode.h> 69 #include <sys/syslog.h> 70 #include <sys/eventhandler.h> 71 #include <sys/user.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #define CORE_BUF_SIZE (16 * 1024) 108 109 int __elfN(fallback_brand) = -1; 110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 111 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 112 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 113 114 static int elf_legacy_coredump = 0; 115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 116 &elf_legacy_coredump, 0, 117 "include all and only RW pages in core dumps"); 118 119 int __elfN(nxstack) = 120 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 121 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) 122 1; 123 #else 124 0; 125 #endif 126 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 127 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 128 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 129 130 #if __ELF_WORD_SIZE == 32 131 #if defined(__amd64__) 132 int i386_read_exec = 0; 133 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 134 "enable execution from readable segments"); 135 #endif 136 #endif 137 138 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 139 140 #define trunc_page_ps(va, ps) rounddown2(va, ps) 141 #define round_page_ps(va, ps) roundup2(va, ps) 142 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 143 144 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 145 146 Elf_Brandnote __elfN(freebsd_brandnote) = { 147 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 148 .hdr.n_descsz = sizeof(int32_t), 149 .hdr.n_type = NT_FREEBSD_ABI_TAG, 150 .vendor = FREEBSD_ABI_VENDOR, 151 .flags = BN_TRANSLATE_OSREL, 152 .trans_osrel = __elfN(freebsd_trans_osrel) 153 }; 154 155 static boolean_t 156 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 157 { 158 uintptr_t p; 159 160 p = (uintptr_t)(note + 1); 161 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 162 *osrel = *(const int32_t *)(p); 163 164 return (TRUE); 165 } 166 167 static const char GNU_ABI_VENDOR[] = "GNU"; 168 static int GNU_KFREEBSD_ABI_DESC = 3; 169 170 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 171 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 172 .hdr.n_descsz = 16, /* XXX at least 16 */ 173 .hdr.n_type = 1, 174 .vendor = GNU_ABI_VENDOR, 175 .flags = BN_TRANSLATE_OSREL, 176 .trans_osrel = kfreebsd_trans_osrel 177 }; 178 179 static boolean_t 180 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 181 { 182 const Elf32_Word *desc; 183 uintptr_t p; 184 185 p = (uintptr_t)(note + 1); 186 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 187 188 desc = (const Elf32_Word *)p; 189 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 190 return (FALSE); 191 192 /* 193 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 194 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 195 */ 196 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 197 198 return (TRUE); 199 } 200 201 int 202 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 203 { 204 int i; 205 206 for (i = 0; i < MAX_BRANDS; i++) { 207 if (elf_brand_list[i] == NULL) { 208 elf_brand_list[i] = entry; 209 break; 210 } 211 } 212 if (i == MAX_BRANDS) { 213 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 214 __func__, entry); 215 return (-1); 216 } 217 return (0); 218 } 219 220 int 221 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 222 { 223 int i; 224 225 for (i = 0; i < MAX_BRANDS; i++) { 226 if (elf_brand_list[i] == entry) { 227 elf_brand_list[i] = NULL; 228 break; 229 } 230 } 231 if (i == MAX_BRANDS) 232 return (-1); 233 return (0); 234 } 235 236 int 237 __elfN(brand_inuse)(Elf_Brandinfo *entry) 238 { 239 struct proc *p; 240 int rval = FALSE; 241 242 sx_slock(&allproc_lock); 243 FOREACH_PROC_IN_SYSTEM(p) { 244 if (p->p_sysent == entry->sysvec) { 245 rval = TRUE; 246 break; 247 } 248 } 249 sx_sunlock(&allproc_lock); 250 251 return (rval); 252 } 253 254 static Elf_Brandinfo * 255 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 256 int interp_name_len, int32_t *osrel) 257 { 258 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 259 Elf_Brandinfo *bi, *bi_m; 260 boolean_t ret; 261 int i; 262 263 /* 264 * We support four types of branding -- (1) the ELF EI_OSABI field 265 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 266 * branding w/in the ELF header, (3) path of the `interp_path' 267 * field, and (4) the ".note.ABI-tag" ELF section. 268 */ 269 270 /* Look for an ".note.ABI-tag" ELF section */ 271 bi_m = NULL; 272 for (i = 0; i < MAX_BRANDS; i++) { 273 bi = elf_brand_list[i]; 274 if (bi == NULL) 275 continue; 276 if (hdr->e_machine == bi->machine && (bi->flags & 277 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 278 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 279 /* Give brand a chance to veto check_note's guess */ 280 if (ret && bi->header_supported) 281 ret = bi->header_supported(imgp); 282 /* 283 * If note checker claimed the binary, but the 284 * interpreter path in the image does not 285 * match default one for the brand, try to 286 * search for other brands with the same 287 * interpreter. Either there is better brand 288 * with the right interpreter, or, failing 289 * this, we return first brand which accepted 290 * our note and, optionally, header. 291 */ 292 if (ret && bi_m == NULL && (strlen(bi->interp_path) + 293 1 != interp_name_len || strncmp(interp, 294 bi->interp_path, interp_name_len) != 0)) { 295 bi_m = bi; 296 ret = 0; 297 } 298 if (ret) 299 return (bi); 300 } 301 } 302 if (bi_m != NULL) 303 return (bi_m); 304 305 /* If the executable has a brand, search for it in the brand list. */ 306 for (i = 0; i < MAX_BRANDS; i++) { 307 bi = elf_brand_list[i]; 308 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 309 continue; 310 if (hdr->e_machine == bi->machine && 311 (hdr->e_ident[EI_OSABI] == bi->brand || 312 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 313 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) { 314 /* Looks good, but give brand a chance to veto */ 315 if (!bi->header_supported || bi->header_supported(imgp)) 316 return (bi); 317 } 318 } 319 320 /* No known brand, see if the header is recognized by any brand */ 321 for (i = 0; i < MAX_BRANDS; i++) { 322 bi = elf_brand_list[i]; 323 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 324 bi->header_supported == NULL) 325 continue; 326 if (hdr->e_machine == bi->machine) { 327 ret = bi->header_supported(imgp); 328 if (ret) 329 return (bi); 330 } 331 } 332 333 /* Lacking a known brand, search for a recognized interpreter. */ 334 if (interp != NULL) { 335 for (i = 0; i < MAX_BRANDS; i++) { 336 bi = elf_brand_list[i]; 337 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 338 continue; 339 if (hdr->e_machine == bi->machine && 340 /* ELF image p_filesz includes terminating zero */ 341 strlen(bi->interp_path) + 1 == interp_name_len && 342 strncmp(interp, bi->interp_path, interp_name_len) 343 == 0) 344 return (bi); 345 } 346 } 347 348 /* Lacking a recognized interpreter, try the default brand */ 349 for (i = 0; i < MAX_BRANDS; i++) { 350 bi = elf_brand_list[i]; 351 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 352 continue; 353 if (hdr->e_machine == bi->machine && 354 __elfN(fallback_brand) == bi->brand) 355 return (bi); 356 } 357 return (NULL); 358 } 359 360 static int 361 __elfN(check_header)(const Elf_Ehdr *hdr) 362 { 363 Elf_Brandinfo *bi; 364 int i; 365 366 if (!IS_ELF(*hdr) || 367 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 368 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 369 hdr->e_ident[EI_VERSION] != EV_CURRENT || 370 hdr->e_phentsize != sizeof(Elf_Phdr) || 371 hdr->e_version != ELF_TARG_VER) 372 return (ENOEXEC); 373 374 /* 375 * Make sure we have at least one brand for this machine. 376 */ 377 378 for (i = 0; i < MAX_BRANDS; i++) { 379 bi = elf_brand_list[i]; 380 if (bi != NULL && bi->machine == hdr->e_machine) 381 break; 382 } 383 if (i == MAX_BRANDS) 384 return (ENOEXEC); 385 386 return (0); 387 } 388 389 static int 390 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 391 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 392 { 393 struct sf_buf *sf; 394 int error; 395 vm_offset_t off; 396 397 /* 398 * Create the page if it doesn't exist yet. Ignore errors. 399 */ 400 vm_map_lock(map); 401 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 402 VM_PROT_ALL, VM_PROT_ALL, 0); 403 vm_map_unlock(map); 404 405 /* 406 * Find the page from the underlying object. 407 */ 408 if (object) { 409 sf = vm_imgact_map_page(object, offset); 410 if (sf == NULL) 411 return (KERN_FAILURE); 412 off = offset - trunc_page(offset); 413 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 414 end - start); 415 vm_imgact_unmap_page(sf); 416 if (error) { 417 return (KERN_FAILURE); 418 } 419 } 420 421 return (KERN_SUCCESS); 422 } 423 424 static int 425 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 426 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 427 { 428 struct sf_buf *sf; 429 vm_offset_t off; 430 vm_size_t sz; 431 int error, rv; 432 433 if (start != trunc_page(start)) { 434 rv = __elfN(map_partial)(map, object, offset, start, 435 round_page(start), prot); 436 if (rv) 437 return (rv); 438 offset += round_page(start) - start; 439 start = round_page(start); 440 } 441 if (end != round_page(end)) { 442 rv = __elfN(map_partial)(map, object, offset + 443 trunc_page(end) - start, trunc_page(end), end, prot); 444 if (rv) 445 return (rv); 446 end = trunc_page(end); 447 } 448 if (end > start) { 449 if (offset & PAGE_MASK) { 450 /* 451 * The mapping is not page aligned. This means we have 452 * to copy the data. Sigh. 453 */ 454 rv = vm_map_find(map, NULL, 0, &start, end - start, 0, 455 VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL, 456 0); 457 if (rv) 458 return (rv); 459 if (object == NULL) 460 return (KERN_SUCCESS); 461 for (; start < end; start += sz) { 462 sf = vm_imgact_map_page(object, offset); 463 if (sf == NULL) 464 return (KERN_FAILURE); 465 off = offset - trunc_page(offset); 466 sz = end - start; 467 if (sz > PAGE_SIZE - off) 468 sz = PAGE_SIZE - off; 469 error = copyout((caddr_t)sf_buf_kva(sf) + off, 470 (caddr_t)start, sz); 471 vm_imgact_unmap_page(sf); 472 if (error) { 473 return (KERN_FAILURE); 474 } 475 offset += sz; 476 } 477 rv = KERN_SUCCESS; 478 } else { 479 vm_object_reference(object); 480 vm_map_lock(map); 481 rv = vm_map_insert(map, object, offset, start, end, 482 prot, VM_PROT_ALL, cow); 483 vm_map_unlock(map); 484 if (rv != KERN_SUCCESS) 485 vm_object_deallocate(object); 486 } 487 return (rv); 488 } else { 489 return (KERN_SUCCESS); 490 } 491 } 492 493 static int 494 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 495 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 496 size_t pagesize) 497 { 498 struct sf_buf *sf; 499 size_t map_len; 500 vm_map_t map; 501 vm_object_t object; 502 vm_offset_t map_addr; 503 int error, rv, cow; 504 size_t copy_len; 505 vm_offset_t file_addr; 506 507 /* 508 * It's necessary to fail if the filsz + offset taken from the 509 * header is greater than the actual file pager object's size. 510 * If we were to allow this, then the vm_map_find() below would 511 * walk right off the end of the file object and into the ether. 512 * 513 * While I'm here, might as well check for something else that 514 * is invalid: filsz cannot be greater than memsz. 515 */ 516 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 517 uprintf("elf_load_section: truncated ELF file\n"); 518 return (ENOEXEC); 519 } 520 521 object = imgp->object; 522 map = &imgp->proc->p_vmspace->vm_map; 523 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 524 file_addr = trunc_page_ps(offset, pagesize); 525 526 /* 527 * We have two choices. We can either clear the data in the last page 528 * of an oversized mapping, or we can start the anon mapping a page 529 * early and copy the initialized data into that first page. We 530 * choose the second.. 531 */ 532 if (memsz > filsz) 533 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 534 else 535 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 536 537 if (map_len != 0) { 538 /* cow flags: don't dump readonly sections in core */ 539 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 540 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 541 542 rv = __elfN(map_insert)(map, 543 object, 544 file_addr, /* file offset */ 545 map_addr, /* virtual start */ 546 map_addr + map_len,/* virtual end */ 547 prot, 548 cow); 549 if (rv != KERN_SUCCESS) 550 return (EINVAL); 551 552 /* we can stop now if we've covered it all */ 553 if (memsz == filsz) { 554 return (0); 555 } 556 } 557 558 559 /* 560 * We have to get the remaining bit of the file into the first part 561 * of the oversized map segment. This is normally because the .data 562 * segment in the file is extended to provide bss. It's a neat idea 563 * to try and save a page, but it's a pain in the behind to implement. 564 */ 565 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 566 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 567 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 568 map_addr; 569 570 /* This had damn well better be true! */ 571 if (map_len != 0) { 572 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr + 573 map_len, VM_PROT_ALL, 0); 574 if (rv != KERN_SUCCESS) { 575 return (EINVAL); 576 } 577 } 578 579 if (copy_len != 0) { 580 vm_offset_t off; 581 582 sf = vm_imgact_map_page(object, offset + filsz); 583 if (sf == NULL) 584 return (EIO); 585 586 /* send the page fragment to user space */ 587 off = trunc_page_ps(offset + filsz, pagesize) - 588 trunc_page(offset + filsz); 589 error = copyout((caddr_t)sf_buf_kva(sf) + off, 590 (caddr_t)map_addr, copy_len); 591 vm_imgact_unmap_page(sf); 592 if (error) { 593 return (error); 594 } 595 } 596 597 /* 598 * set it to the specified protection. 599 * XXX had better undo the damage from pasting over the cracks here! 600 */ 601 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 602 map_len), prot, FALSE); 603 604 return (0); 605 } 606 607 /* 608 * Load the file "file" into memory. It may be either a shared object 609 * or an executable. 610 * 611 * The "addr" reference parameter is in/out. On entry, it specifies 612 * the address where a shared object should be loaded. If the file is 613 * an executable, this value is ignored. On exit, "addr" specifies 614 * where the file was actually loaded. 615 * 616 * The "entry" reference parameter is out only. On exit, it specifies 617 * the entry point for the loaded file. 618 */ 619 static int 620 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 621 u_long *entry, size_t pagesize) 622 { 623 struct { 624 struct nameidata nd; 625 struct vattr attr; 626 struct image_params image_params; 627 } *tempdata; 628 const Elf_Ehdr *hdr = NULL; 629 const Elf_Phdr *phdr = NULL; 630 struct nameidata *nd; 631 struct vattr *attr; 632 struct image_params *imgp; 633 vm_prot_t prot; 634 u_long rbase; 635 u_long base_addr = 0; 636 int error, i, numsegs; 637 638 #ifdef CAPABILITY_MODE 639 /* 640 * XXXJA: This check can go away once we are sufficiently confident 641 * that the checks in namei() are correct. 642 */ 643 if (IN_CAPABILITY_MODE(curthread)) 644 return (ECAPMODE); 645 #endif 646 647 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 648 nd = &tempdata->nd; 649 attr = &tempdata->attr; 650 imgp = &tempdata->image_params; 651 652 /* 653 * Initialize part of the common data 654 */ 655 imgp->proc = p; 656 imgp->attr = attr; 657 imgp->firstpage = NULL; 658 imgp->image_header = NULL; 659 imgp->object = NULL; 660 imgp->execlabel = NULL; 661 662 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 663 if ((error = namei(nd)) != 0) { 664 nd->ni_vp = NULL; 665 goto fail; 666 } 667 NDFREE(nd, NDF_ONLY_PNBUF); 668 imgp->vp = nd->ni_vp; 669 670 /* 671 * Check permissions, modes, uid, etc on the file, and "open" it. 672 */ 673 error = exec_check_permissions(imgp); 674 if (error) 675 goto fail; 676 677 error = exec_map_first_page(imgp); 678 if (error) 679 goto fail; 680 681 /* 682 * Also make certain that the interpreter stays the same, so set 683 * its VV_TEXT flag, too. 684 */ 685 VOP_SET_TEXT(nd->ni_vp); 686 687 imgp->object = nd->ni_vp->v_object; 688 689 hdr = (const Elf_Ehdr *)imgp->image_header; 690 if ((error = __elfN(check_header)(hdr)) != 0) 691 goto fail; 692 if (hdr->e_type == ET_DYN) 693 rbase = *addr; 694 else if (hdr->e_type == ET_EXEC) 695 rbase = 0; 696 else { 697 error = ENOEXEC; 698 goto fail; 699 } 700 701 /* Only support headers that fit within first page for now */ 702 if ((hdr->e_phoff > PAGE_SIZE) || 703 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 704 error = ENOEXEC; 705 goto fail; 706 } 707 708 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 709 if (!aligned(phdr, Elf_Addr)) { 710 error = ENOEXEC; 711 goto fail; 712 } 713 714 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 715 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 716 /* Loadable segment */ 717 prot = __elfN(trans_prot)(phdr[i].p_flags); 718 error = __elfN(load_section)(imgp, phdr[i].p_offset, 719 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 720 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 721 if (error != 0) 722 goto fail; 723 /* 724 * Establish the base address if this is the 725 * first segment. 726 */ 727 if (numsegs == 0) 728 base_addr = trunc_page(phdr[i].p_vaddr + 729 rbase); 730 numsegs++; 731 } 732 } 733 *addr = base_addr; 734 *entry = (unsigned long)hdr->e_entry + rbase; 735 736 fail: 737 if (imgp->firstpage) 738 exec_unmap_first_page(imgp); 739 740 if (nd->ni_vp) 741 vput(nd->ni_vp); 742 743 free(tempdata, M_TEMP); 744 745 return (error); 746 } 747 748 static int 749 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 750 { 751 struct thread *td; 752 const Elf_Ehdr *hdr; 753 const Elf_Phdr *phdr; 754 Elf_Auxargs *elf_auxargs; 755 struct vmspace *vmspace; 756 const char *err_str, *newinterp; 757 char *interp, *interp_buf, *path; 758 Elf_Brandinfo *brand_info; 759 struct sysentvec *sv; 760 vm_prot_t prot; 761 u_long text_size, data_size, total_size, text_addr, data_addr; 762 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 763 int32_t osrel; 764 int error, i, n, interp_name_len, have_interp; 765 766 hdr = (const Elf_Ehdr *)imgp->image_header; 767 768 /* 769 * Do we have a valid ELF header ? 770 * 771 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 772 * if particular brand doesn't support it. 773 */ 774 if (__elfN(check_header)(hdr) != 0 || 775 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 776 return (-1); 777 778 /* 779 * From here on down, we return an errno, not -1, as we've 780 * detected an ELF file. 781 */ 782 783 if ((hdr->e_phoff > PAGE_SIZE) || 784 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 785 /* Only support headers in first page for now */ 786 uprintf("Program headers not in the first page\n"); 787 return (ENOEXEC); 788 } 789 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 790 if (!aligned(phdr, Elf_Addr)) { 791 uprintf("Unaligned program headers\n"); 792 return (ENOEXEC); 793 } 794 795 n = error = 0; 796 baddr = 0; 797 osrel = 0; 798 text_size = data_size = total_size = text_addr = data_addr = 0; 799 entry = proghdr = 0; 800 interp_name_len = 0; 801 err_str = newinterp = NULL; 802 interp = interp_buf = NULL; 803 td = curthread; 804 805 for (i = 0; i < hdr->e_phnum; i++) { 806 switch (phdr[i].p_type) { 807 case PT_LOAD: 808 if (n == 0) 809 baddr = phdr[i].p_vaddr; 810 n++; 811 break; 812 case PT_INTERP: 813 /* Path to interpreter */ 814 if (phdr[i].p_filesz > MAXPATHLEN) { 815 uprintf("Invalid PT_INTERP\n"); 816 error = ENOEXEC; 817 goto ret; 818 } 819 if (interp != NULL) { 820 uprintf("Multiple PT_INTERP headers\n"); 821 error = ENOEXEC; 822 goto ret; 823 } 824 interp_name_len = phdr[i].p_filesz; 825 if (phdr[i].p_offset > PAGE_SIZE || 826 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 827 VOP_UNLOCK(imgp->vp, 0); 828 interp_buf = malloc(interp_name_len + 1, M_TEMP, 829 M_WAITOK); 830 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 831 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 832 interp_name_len, phdr[i].p_offset, 833 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 834 NOCRED, NULL, td); 835 if (error != 0) { 836 uprintf("i/o error PT_INTERP\n"); 837 goto ret; 838 } 839 interp_buf[interp_name_len] = '\0'; 840 interp = interp_buf; 841 } else { 842 interp = __DECONST(char *, imgp->image_header) + 843 phdr[i].p_offset; 844 } 845 break; 846 case PT_GNU_STACK: 847 if (__elfN(nxstack)) 848 imgp->stack_prot = 849 __elfN(trans_prot)(phdr[i].p_flags); 850 imgp->stack_sz = phdr[i].p_memsz; 851 break; 852 } 853 } 854 855 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 856 &osrel); 857 if (brand_info == NULL) { 858 uprintf("ELF binary type \"%u\" not known.\n", 859 hdr->e_ident[EI_OSABI]); 860 error = ENOEXEC; 861 goto ret; 862 } 863 if (hdr->e_type == ET_DYN) { 864 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 865 uprintf("Cannot execute shared object\n"); 866 error = ENOEXEC; 867 goto ret; 868 } 869 /* 870 * Honour the base load address from the dso if it is 871 * non-zero for some reason. 872 */ 873 if (baddr == 0) 874 et_dyn_addr = ET_DYN_LOAD_ADDR; 875 else 876 et_dyn_addr = 0; 877 } else 878 et_dyn_addr = 0; 879 sv = brand_info->sysvec; 880 if (interp != NULL && brand_info->interp_newpath != NULL) 881 newinterp = brand_info->interp_newpath; 882 883 /* 884 * Avoid a possible deadlock if the current address space is destroyed 885 * and that address space maps the locked vnode. In the common case, 886 * the locked vnode's v_usecount is decremented but remains greater 887 * than zero. Consequently, the vnode lock is not needed by vrele(). 888 * However, in cases where the vnode lock is external, such as nullfs, 889 * v_usecount may become zero. 890 * 891 * The VV_TEXT flag prevents modifications to the executable while 892 * the vnode is unlocked. 893 */ 894 VOP_UNLOCK(imgp->vp, 0); 895 896 error = exec_new_vmspace(imgp, sv); 897 imgp->proc->p_sysent = sv; 898 899 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 900 if (error != 0) 901 goto ret; 902 903 for (i = 0; i < hdr->e_phnum; i++) { 904 switch (phdr[i].p_type) { 905 case PT_LOAD: /* Loadable segment */ 906 if (phdr[i].p_memsz == 0) 907 break; 908 prot = __elfN(trans_prot)(phdr[i].p_flags); 909 error = __elfN(load_section)(imgp, phdr[i].p_offset, 910 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 911 phdr[i].p_memsz, phdr[i].p_filesz, prot, 912 sv->sv_pagesize); 913 if (error != 0) 914 goto ret; 915 916 /* 917 * If this segment contains the program headers, 918 * remember their virtual address for the AT_PHDR 919 * aux entry. Static binaries don't usually include 920 * a PT_PHDR entry. 921 */ 922 if (phdr[i].p_offset == 0 && 923 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 924 <= phdr[i].p_filesz) 925 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 926 et_dyn_addr; 927 928 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 929 seg_size = round_page(phdr[i].p_memsz + 930 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 931 932 /* 933 * Make the largest executable segment the official 934 * text segment and all others data. 935 * 936 * Note that obreak() assumes that data_addr + 937 * data_size == end of data load area, and the ELF 938 * file format expects segments to be sorted by 939 * address. If multiple data segments exist, the 940 * last one will be used. 941 */ 942 943 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 944 text_size = seg_size; 945 text_addr = seg_addr; 946 } else { 947 data_size = seg_size; 948 data_addr = seg_addr; 949 } 950 total_size += seg_size; 951 break; 952 case PT_PHDR: /* Program header table info */ 953 proghdr = phdr[i].p_vaddr + et_dyn_addr; 954 break; 955 default: 956 break; 957 } 958 } 959 960 if (data_addr == 0 && data_size == 0) { 961 data_addr = text_addr; 962 data_size = text_size; 963 } 964 965 entry = (u_long)hdr->e_entry + et_dyn_addr; 966 967 /* 968 * Check limits. It should be safe to check the 969 * limits after loading the segments since we do 970 * not actually fault in all the segments pages. 971 */ 972 PROC_LOCK(imgp->proc); 973 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 974 err_str = "Data segment size exceeds process limit"; 975 else if (text_size > maxtsiz) 976 err_str = "Text segment size exceeds system limit"; 977 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 978 err_str = "Total segment size exceeds process limit"; 979 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 980 err_str = "Data segment size exceeds resource limit"; 981 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 982 err_str = "Total segment size exceeds resource limit"; 983 if (err_str != NULL) { 984 PROC_UNLOCK(imgp->proc); 985 uprintf("%s\n", err_str); 986 error = ENOMEM; 987 goto ret; 988 } 989 990 vmspace = imgp->proc->p_vmspace; 991 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 992 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 993 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 994 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 995 996 /* 997 * We load the dynamic linker where a userland call 998 * to mmap(0, ...) would put it. The rationale behind this 999 * calculation is that it leaves room for the heap to grow to 1000 * its maximum allowed size. 1001 */ 1002 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1003 RLIMIT_DATA)); 1004 PROC_UNLOCK(imgp->proc); 1005 1006 imgp->entry_addr = entry; 1007 1008 if (interp != NULL) { 1009 have_interp = FALSE; 1010 VOP_UNLOCK(imgp->vp, 0); 1011 if (brand_info->emul_path != NULL && 1012 brand_info->emul_path[0] != '\0') { 1013 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1014 snprintf(path, MAXPATHLEN, "%s%s", 1015 brand_info->emul_path, interp); 1016 error = __elfN(load_file)(imgp->proc, path, &addr, 1017 &imgp->entry_addr, sv->sv_pagesize); 1018 free(path, M_TEMP); 1019 if (error == 0) 1020 have_interp = TRUE; 1021 } 1022 if (!have_interp && newinterp != NULL && 1023 (brand_info->interp_path == NULL || 1024 strcmp(interp, brand_info->interp_path) == 0)) { 1025 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1026 &imgp->entry_addr, sv->sv_pagesize); 1027 if (error == 0) 1028 have_interp = TRUE; 1029 } 1030 if (!have_interp) { 1031 error = __elfN(load_file)(imgp->proc, interp, &addr, 1032 &imgp->entry_addr, sv->sv_pagesize); 1033 } 1034 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1035 if (error != 0) { 1036 uprintf("ELF interpreter %s not found, error %d\n", 1037 interp, error); 1038 goto ret; 1039 } 1040 } else 1041 addr = et_dyn_addr; 1042 1043 /* 1044 * Construct auxargs table (used by the fixup routine) 1045 */ 1046 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1047 elf_auxargs->execfd = -1; 1048 elf_auxargs->phdr = proghdr; 1049 elf_auxargs->phent = hdr->e_phentsize; 1050 elf_auxargs->phnum = hdr->e_phnum; 1051 elf_auxargs->pagesz = PAGE_SIZE; 1052 elf_auxargs->base = addr; 1053 elf_auxargs->flags = 0; 1054 elf_auxargs->entry = entry; 1055 elf_auxargs->hdr_eflags = hdr->e_flags; 1056 1057 imgp->auxargs = elf_auxargs; 1058 imgp->interpreted = 0; 1059 imgp->reloc_base = addr; 1060 imgp->proc->p_osrel = osrel; 1061 1062 ret: 1063 free(interp_buf, M_TEMP); 1064 return (error); 1065 } 1066 1067 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1068 1069 int 1070 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1071 { 1072 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1073 Elf_Addr *base; 1074 Elf_Addr *pos; 1075 1076 base = (Elf_Addr *)*stack_base; 1077 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1078 1079 if (args->execfd != -1) 1080 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1081 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1082 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1083 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1084 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1085 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1086 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1087 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1088 #ifdef AT_EHDRFLAGS 1089 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1090 #endif 1091 if (imgp->execpathp != 0) 1092 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1093 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1094 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1095 if (imgp->canary != 0) { 1096 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1097 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1098 } 1099 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1100 if (imgp->pagesizes != 0) { 1101 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1102 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1103 } 1104 if (imgp->sysent->sv_timekeep_base != 0) { 1105 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1106 imgp->sysent->sv_timekeep_base); 1107 } 1108 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1109 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1110 imgp->sysent->sv_stackprot); 1111 AUXARGS_ENTRY(pos, AT_NULL, 0); 1112 1113 free(imgp->auxargs, M_TEMP); 1114 imgp->auxargs = NULL; 1115 1116 base--; 1117 suword(base, (long)imgp->args->argc); 1118 *stack_base = (register_t *)base; 1119 return (0); 1120 } 1121 1122 /* 1123 * Code for generating ELF core dumps. 1124 */ 1125 1126 typedef void (*segment_callback)(vm_map_entry_t, void *); 1127 1128 /* Closure for cb_put_phdr(). */ 1129 struct phdr_closure { 1130 Elf_Phdr *phdr; /* Program header to fill in */ 1131 Elf_Off offset; /* Offset of segment in core file */ 1132 }; 1133 1134 /* Closure for cb_size_segment(). */ 1135 struct sseg_closure { 1136 int count; /* Count of writable segments. */ 1137 size_t size; /* Total size of all writable segments. */ 1138 }; 1139 1140 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1141 1142 struct note_info { 1143 int type; /* Note type. */ 1144 outfunc_t outfunc; /* Output function. */ 1145 void *outarg; /* Argument for the output function. */ 1146 size_t outsize; /* Output size. */ 1147 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1148 }; 1149 1150 TAILQ_HEAD(note_info_list, note_info); 1151 1152 /* Coredump output parameters. */ 1153 struct coredump_params { 1154 off_t offset; 1155 struct ucred *active_cred; 1156 struct ucred *file_cred; 1157 struct thread *td; 1158 struct vnode *vp; 1159 struct gzio_stream *gzs; 1160 }; 1161 1162 static void cb_put_phdr(vm_map_entry_t, void *); 1163 static void cb_size_segment(vm_map_entry_t, void *); 1164 static int core_write(struct coredump_params *, void *, size_t, off_t, 1165 enum uio_seg); 1166 static void each_writable_segment(struct thread *, segment_callback, void *); 1167 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1168 struct note_info_list *, size_t); 1169 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1170 size_t *); 1171 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1172 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1173 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1174 static int sbuf_drain_core_output(void *, const char *, int); 1175 static int sbuf_drain_count(void *arg, const char *data, int len); 1176 1177 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1178 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1179 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1180 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1181 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1182 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1183 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1184 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1185 static void note_procstat_files(void *, struct sbuf *, size_t *); 1186 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1187 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1188 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1189 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1190 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1191 1192 #ifdef GZIO 1193 extern int compress_user_cores_gzlevel; 1194 1195 /* 1196 * Write out a core segment to the compression stream. 1197 */ 1198 static int 1199 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1200 { 1201 u_int chunk_len; 1202 int error; 1203 1204 while (len > 0) { 1205 chunk_len = MIN(len, CORE_BUF_SIZE); 1206 copyin(base, buf, chunk_len); 1207 error = gzio_write(p->gzs, buf, chunk_len); 1208 if (error != 0) 1209 break; 1210 base += chunk_len; 1211 len -= chunk_len; 1212 } 1213 return (error); 1214 } 1215 1216 static int 1217 core_gz_write(void *base, size_t len, off_t offset, void *arg) 1218 { 1219 1220 return (core_write((struct coredump_params *)arg, base, len, offset, 1221 UIO_SYSSPACE)); 1222 } 1223 #endif /* GZIO */ 1224 1225 static int 1226 core_write(struct coredump_params *p, void *base, size_t len, off_t offset, 1227 enum uio_seg seg) 1228 { 1229 1230 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, base, len, offset, 1231 seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1232 p->active_cred, p->file_cred, NULL, p->td)); 1233 } 1234 1235 static int 1236 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1237 void *tmpbuf) 1238 { 1239 1240 #ifdef GZIO 1241 if (p->gzs != NULL) 1242 return (compress_chunk(p, base, tmpbuf, len)); 1243 #endif 1244 return (core_write(p, base, len, offset, UIO_USERSPACE)); 1245 } 1246 1247 /* 1248 * Drain into a core file. 1249 */ 1250 static int 1251 sbuf_drain_core_output(void *arg, const char *data, int len) 1252 { 1253 struct coredump_params *p; 1254 int error, locked; 1255 1256 p = (struct coredump_params *)arg; 1257 1258 /* 1259 * Some kern_proc out routines that print to this sbuf may 1260 * call us with the process lock held. Draining with the 1261 * non-sleepable lock held is unsafe. The lock is needed for 1262 * those routines when dumping a live process. In our case we 1263 * can safely release the lock before draining and acquire 1264 * again after. 1265 */ 1266 locked = PROC_LOCKED(p->td->td_proc); 1267 if (locked) 1268 PROC_UNLOCK(p->td->td_proc); 1269 #ifdef GZIO 1270 if (p->gzs != NULL) 1271 error = gzio_write(p->gzs, __DECONST(char *, data), len); 1272 else 1273 #endif 1274 error = core_write(p, __DECONST(void *, data), len, p->offset, 1275 UIO_SYSSPACE); 1276 if (locked) 1277 PROC_LOCK(p->td->td_proc); 1278 if (error != 0) 1279 return (-error); 1280 p->offset += len; 1281 return (len); 1282 } 1283 1284 /* 1285 * Drain into a counter. 1286 */ 1287 static int 1288 sbuf_drain_count(void *arg, const char *data __unused, int len) 1289 { 1290 size_t *sizep; 1291 1292 sizep = (size_t *)arg; 1293 *sizep += len; 1294 return (len); 1295 } 1296 1297 int 1298 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1299 { 1300 struct ucred *cred = td->td_ucred; 1301 int error = 0; 1302 struct sseg_closure seginfo; 1303 struct note_info_list notelst; 1304 struct coredump_params params; 1305 struct note_info *ninfo; 1306 void *hdr, *tmpbuf; 1307 size_t hdrsize, notesz, coresize; 1308 #ifdef GZIO 1309 boolean_t compress; 1310 1311 compress = (flags & IMGACT_CORE_COMPRESS) != 0; 1312 #endif 1313 hdr = NULL; 1314 tmpbuf = NULL; 1315 TAILQ_INIT(¬elst); 1316 1317 /* Size the program segments. */ 1318 seginfo.count = 0; 1319 seginfo.size = 0; 1320 each_writable_segment(td, cb_size_segment, &seginfo); 1321 1322 /* 1323 * Collect info about the core file header area. 1324 */ 1325 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1326 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1327 coresize = round_page(hdrsize + notesz) + seginfo.size; 1328 1329 /* Set up core dump parameters. */ 1330 params.offset = 0; 1331 params.active_cred = cred; 1332 params.file_cred = NOCRED; 1333 params.td = td; 1334 params.vp = vp; 1335 params.gzs = NULL; 1336 1337 #ifdef RACCT 1338 if (racct_enable) { 1339 PROC_LOCK(td->td_proc); 1340 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1341 PROC_UNLOCK(td->td_proc); 1342 if (error != 0) { 1343 error = EFAULT; 1344 goto done; 1345 } 1346 } 1347 #endif 1348 if (coresize >= limit) { 1349 error = EFAULT; 1350 goto done; 1351 } 1352 1353 #ifdef GZIO 1354 /* Create a compression stream if necessary. */ 1355 if (compress) { 1356 params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE, 1357 CORE_BUF_SIZE, compress_user_cores_gzlevel, ¶ms); 1358 if (params.gzs == NULL) { 1359 error = EFAULT; 1360 goto done; 1361 } 1362 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1363 } 1364 #endif 1365 1366 /* 1367 * Allocate memory for building the header, fill it up, 1368 * and write it out following the notes. 1369 */ 1370 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1371 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1372 notesz); 1373 1374 /* Write the contents of all of the writable segments. */ 1375 if (error == 0) { 1376 Elf_Phdr *php; 1377 off_t offset; 1378 int i; 1379 1380 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1381 offset = round_page(hdrsize + notesz); 1382 for (i = 0; i < seginfo.count; i++) { 1383 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1384 php->p_filesz, offset, ¶ms, tmpbuf); 1385 if (error != 0) 1386 break; 1387 offset += php->p_filesz; 1388 php++; 1389 } 1390 #ifdef GZIO 1391 if (error == 0 && compress) 1392 error = gzio_flush(params.gzs); 1393 #endif 1394 } 1395 if (error) { 1396 log(LOG_WARNING, 1397 "Failed to write core file for process %s (error %d)\n", 1398 curproc->p_comm, error); 1399 } 1400 1401 done: 1402 #ifdef GZIO 1403 if (compress) { 1404 free(tmpbuf, M_TEMP); 1405 if (params.gzs != NULL) 1406 gzio_fini(params.gzs); 1407 } 1408 #endif 1409 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1410 TAILQ_REMOVE(¬elst, ninfo, link); 1411 free(ninfo, M_TEMP); 1412 } 1413 if (hdr != NULL) 1414 free(hdr, M_TEMP); 1415 1416 return (error); 1417 } 1418 1419 /* 1420 * A callback for each_writable_segment() to write out the segment's 1421 * program header entry. 1422 */ 1423 static void 1424 cb_put_phdr(entry, closure) 1425 vm_map_entry_t entry; 1426 void *closure; 1427 { 1428 struct phdr_closure *phc = (struct phdr_closure *)closure; 1429 Elf_Phdr *phdr = phc->phdr; 1430 1431 phc->offset = round_page(phc->offset); 1432 1433 phdr->p_type = PT_LOAD; 1434 phdr->p_offset = phc->offset; 1435 phdr->p_vaddr = entry->start; 1436 phdr->p_paddr = 0; 1437 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1438 phdr->p_align = PAGE_SIZE; 1439 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1440 1441 phc->offset += phdr->p_filesz; 1442 phc->phdr++; 1443 } 1444 1445 /* 1446 * A callback for each_writable_segment() to gather information about 1447 * the number of segments and their total size. 1448 */ 1449 static void 1450 cb_size_segment(entry, closure) 1451 vm_map_entry_t entry; 1452 void *closure; 1453 { 1454 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1455 1456 ssc->count++; 1457 ssc->size += entry->end - entry->start; 1458 } 1459 1460 /* 1461 * For each writable segment in the process's memory map, call the given 1462 * function with a pointer to the map entry and some arbitrary 1463 * caller-supplied data. 1464 */ 1465 static void 1466 each_writable_segment(td, func, closure) 1467 struct thread *td; 1468 segment_callback func; 1469 void *closure; 1470 { 1471 struct proc *p = td->td_proc; 1472 vm_map_t map = &p->p_vmspace->vm_map; 1473 vm_map_entry_t entry; 1474 vm_object_t backing_object, object; 1475 boolean_t ignore_entry; 1476 1477 vm_map_lock_read(map); 1478 for (entry = map->header.next; entry != &map->header; 1479 entry = entry->next) { 1480 /* 1481 * Don't dump inaccessible mappings, deal with legacy 1482 * coredump mode. 1483 * 1484 * Note that read-only segments related to the elf binary 1485 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1486 * need to arbitrarily ignore such segments. 1487 */ 1488 if (elf_legacy_coredump) { 1489 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1490 continue; 1491 } else { 1492 if ((entry->protection & VM_PROT_ALL) == 0) 1493 continue; 1494 } 1495 1496 /* 1497 * Dont include memory segment in the coredump if 1498 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1499 * madvise(2). Do not dump submaps (i.e. parts of the 1500 * kernel map). 1501 */ 1502 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1503 continue; 1504 1505 if ((object = entry->object.vm_object) == NULL) 1506 continue; 1507 1508 /* Ignore memory-mapped devices and such things. */ 1509 VM_OBJECT_RLOCK(object); 1510 while ((backing_object = object->backing_object) != NULL) { 1511 VM_OBJECT_RLOCK(backing_object); 1512 VM_OBJECT_RUNLOCK(object); 1513 object = backing_object; 1514 } 1515 ignore_entry = object->type != OBJT_DEFAULT && 1516 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1517 object->type != OBJT_PHYS; 1518 VM_OBJECT_RUNLOCK(object); 1519 if (ignore_entry) 1520 continue; 1521 1522 (*func)(entry, closure); 1523 } 1524 vm_map_unlock_read(map); 1525 } 1526 1527 /* 1528 * Write the core file header to the file, including padding up to 1529 * the page boundary. 1530 */ 1531 static int 1532 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1533 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1534 { 1535 struct note_info *ninfo; 1536 struct sbuf *sb; 1537 int error; 1538 1539 /* Fill in the header. */ 1540 bzero(hdr, hdrsize); 1541 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1542 1543 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1544 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1545 sbuf_start_section(sb, NULL); 1546 sbuf_bcat(sb, hdr, hdrsize); 1547 TAILQ_FOREACH(ninfo, notelst, link) 1548 __elfN(putnote)(ninfo, sb); 1549 /* Align up to a page boundary for the program segments. */ 1550 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1551 error = sbuf_finish(sb); 1552 sbuf_delete(sb); 1553 1554 return (error); 1555 } 1556 1557 static void 1558 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1559 size_t *sizep) 1560 { 1561 struct proc *p; 1562 struct thread *thr; 1563 size_t size; 1564 1565 p = td->td_proc; 1566 size = 0; 1567 1568 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1569 1570 /* 1571 * To have the debugger select the right thread (LWP) as the initial 1572 * thread, we dump the state of the thread passed to us in td first. 1573 * This is the thread that causes the core dump and thus likely to 1574 * be the right thread one wants to have selected in the debugger. 1575 */ 1576 thr = td; 1577 while (thr != NULL) { 1578 size += register_note(list, NT_PRSTATUS, 1579 __elfN(note_prstatus), thr); 1580 size += register_note(list, NT_FPREGSET, 1581 __elfN(note_fpregset), thr); 1582 size += register_note(list, NT_THRMISC, 1583 __elfN(note_thrmisc), thr); 1584 size += register_note(list, -1, 1585 __elfN(note_threadmd), thr); 1586 1587 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1588 TAILQ_NEXT(thr, td_plist); 1589 if (thr == td) 1590 thr = TAILQ_NEXT(thr, td_plist); 1591 } 1592 1593 size += register_note(list, NT_PROCSTAT_PROC, 1594 __elfN(note_procstat_proc), p); 1595 size += register_note(list, NT_PROCSTAT_FILES, 1596 note_procstat_files, p); 1597 size += register_note(list, NT_PROCSTAT_VMMAP, 1598 note_procstat_vmmap, p); 1599 size += register_note(list, NT_PROCSTAT_GROUPS, 1600 note_procstat_groups, p); 1601 size += register_note(list, NT_PROCSTAT_UMASK, 1602 note_procstat_umask, p); 1603 size += register_note(list, NT_PROCSTAT_RLIMIT, 1604 note_procstat_rlimit, p); 1605 size += register_note(list, NT_PROCSTAT_OSREL, 1606 note_procstat_osrel, p); 1607 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1608 __elfN(note_procstat_psstrings), p); 1609 size += register_note(list, NT_PROCSTAT_AUXV, 1610 __elfN(note_procstat_auxv), p); 1611 1612 *sizep = size; 1613 } 1614 1615 static void 1616 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1617 size_t notesz) 1618 { 1619 Elf_Ehdr *ehdr; 1620 Elf_Phdr *phdr; 1621 struct phdr_closure phc; 1622 1623 ehdr = (Elf_Ehdr *)hdr; 1624 phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)); 1625 1626 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1627 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1628 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1629 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1630 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1631 ehdr->e_ident[EI_DATA] = ELF_DATA; 1632 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1633 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1634 ehdr->e_ident[EI_ABIVERSION] = 0; 1635 ehdr->e_ident[EI_PAD] = 0; 1636 ehdr->e_type = ET_CORE; 1637 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1638 ehdr->e_machine = ELF_ARCH32; 1639 #else 1640 ehdr->e_machine = ELF_ARCH; 1641 #endif 1642 ehdr->e_version = EV_CURRENT; 1643 ehdr->e_entry = 0; 1644 ehdr->e_phoff = sizeof(Elf_Ehdr); 1645 ehdr->e_flags = 0; 1646 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1647 ehdr->e_phentsize = sizeof(Elf_Phdr); 1648 ehdr->e_phnum = numsegs + 1; 1649 ehdr->e_shentsize = sizeof(Elf_Shdr); 1650 ehdr->e_shnum = 0; 1651 ehdr->e_shstrndx = SHN_UNDEF; 1652 1653 /* 1654 * Fill in the program header entries. 1655 */ 1656 1657 /* The note segement. */ 1658 phdr->p_type = PT_NOTE; 1659 phdr->p_offset = hdrsize; 1660 phdr->p_vaddr = 0; 1661 phdr->p_paddr = 0; 1662 phdr->p_filesz = notesz; 1663 phdr->p_memsz = 0; 1664 phdr->p_flags = PF_R; 1665 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1666 phdr++; 1667 1668 /* All the writable segments from the program. */ 1669 phc.phdr = phdr; 1670 phc.offset = round_page(hdrsize + notesz); 1671 each_writable_segment(td, cb_put_phdr, &phc); 1672 } 1673 1674 static size_t 1675 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1676 { 1677 struct note_info *ninfo; 1678 size_t size, notesize; 1679 1680 size = 0; 1681 out(arg, NULL, &size); 1682 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1683 ninfo->type = type; 1684 ninfo->outfunc = out; 1685 ninfo->outarg = arg; 1686 ninfo->outsize = size; 1687 TAILQ_INSERT_TAIL(list, ninfo, link); 1688 1689 if (type == -1) 1690 return (size); 1691 1692 notesize = sizeof(Elf_Note) + /* note header */ 1693 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1694 /* note name */ 1695 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1696 1697 return (notesize); 1698 } 1699 1700 static size_t 1701 append_note_data(const void *src, void *dst, size_t len) 1702 { 1703 size_t padded_len; 1704 1705 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1706 if (dst != NULL) { 1707 bcopy(src, dst, len); 1708 bzero((char *)dst + len, padded_len - len); 1709 } 1710 return (padded_len); 1711 } 1712 1713 size_t 1714 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1715 { 1716 Elf_Note *note; 1717 char *buf; 1718 size_t notesize; 1719 1720 buf = dst; 1721 if (buf != NULL) { 1722 note = (Elf_Note *)buf; 1723 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1724 note->n_descsz = size; 1725 note->n_type = type; 1726 buf += sizeof(*note); 1727 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1728 sizeof(FREEBSD_ABI_VENDOR)); 1729 append_note_data(src, buf, size); 1730 if (descp != NULL) 1731 *descp = buf; 1732 } 1733 1734 notesize = sizeof(Elf_Note) + /* note header */ 1735 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1736 /* note name */ 1737 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1738 1739 return (notesize); 1740 } 1741 1742 static void 1743 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1744 { 1745 Elf_Note note; 1746 ssize_t old_len, sect_len; 1747 size_t new_len, descsz, i; 1748 1749 if (ninfo->type == -1) { 1750 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1751 return; 1752 } 1753 1754 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1755 note.n_descsz = ninfo->outsize; 1756 note.n_type = ninfo->type; 1757 1758 sbuf_bcat(sb, ¬e, sizeof(note)); 1759 sbuf_start_section(sb, &old_len); 1760 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1761 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1762 if (note.n_descsz == 0) 1763 return; 1764 sbuf_start_section(sb, &old_len); 1765 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1766 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1767 if (sect_len < 0) 1768 return; 1769 1770 new_len = (size_t)sect_len; 1771 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1772 if (new_len < descsz) { 1773 /* 1774 * It is expected that individual note emitters will correctly 1775 * predict their expected output size and fill up to that size 1776 * themselves, padding in a format-specific way if needed. 1777 * However, in case they don't, just do it here with zeros. 1778 */ 1779 for (i = 0; i < descsz - new_len; i++) 1780 sbuf_putc(sb, 0); 1781 } else if (new_len > descsz) { 1782 /* 1783 * We can't always truncate sb -- we may have drained some 1784 * of it already. 1785 */ 1786 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1787 "read it (%zu > %zu). Since it is longer than " 1788 "expected, this coredump's notes are corrupt. THIS " 1789 "IS A BUG in the note_procstat routine for type %u.\n", 1790 __func__, (unsigned)note.n_type, new_len, descsz, 1791 (unsigned)note.n_type)); 1792 } 1793 } 1794 1795 /* 1796 * Miscellaneous note out functions. 1797 */ 1798 1799 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1800 #include <compat/freebsd32/freebsd32.h> 1801 1802 typedef struct prstatus32 elf_prstatus_t; 1803 typedef struct prpsinfo32 elf_prpsinfo_t; 1804 typedef struct fpreg32 elf_prfpregset_t; 1805 typedef struct fpreg32 elf_fpregset_t; 1806 typedef struct reg32 elf_gregset_t; 1807 typedef struct thrmisc32 elf_thrmisc_t; 1808 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1809 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1810 typedef uint32_t elf_ps_strings_t; 1811 #else 1812 typedef prstatus_t elf_prstatus_t; 1813 typedef prpsinfo_t elf_prpsinfo_t; 1814 typedef prfpregset_t elf_prfpregset_t; 1815 typedef prfpregset_t elf_fpregset_t; 1816 typedef gregset_t elf_gregset_t; 1817 typedef thrmisc_t elf_thrmisc_t; 1818 #define ELF_KERN_PROC_MASK 0 1819 typedef struct kinfo_proc elf_kinfo_proc_t; 1820 typedef vm_offset_t elf_ps_strings_t; 1821 #endif 1822 1823 static void 1824 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1825 { 1826 struct sbuf sbarg; 1827 size_t len; 1828 char *cp, *end; 1829 struct proc *p; 1830 elf_prpsinfo_t *psinfo; 1831 int error; 1832 1833 p = (struct proc *)arg; 1834 if (sb != NULL) { 1835 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1836 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1837 psinfo->pr_version = PRPSINFO_VERSION; 1838 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1839 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1840 PROC_LOCK(p); 1841 if (p->p_args != NULL) { 1842 len = sizeof(psinfo->pr_psargs) - 1; 1843 if (len > p->p_args->ar_length) 1844 len = p->p_args->ar_length; 1845 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 1846 PROC_UNLOCK(p); 1847 error = 0; 1848 } else { 1849 _PHOLD(p); 1850 PROC_UNLOCK(p); 1851 sbuf_new(&sbarg, psinfo->pr_psargs, 1852 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 1853 error = proc_getargv(curthread, p, &sbarg); 1854 PRELE(p); 1855 if (sbuf_finish(&sbarg) == 0) 1856 len = sbuf_len(&sbarg) - 1; 1857 else 1858 len = sizeof(psinfo->pr_psargs) - 1; 1859 sbuf_delete(&sbarg); 1860 } 1861 if (error || len == 0) 1862 strlcpy(psinfo->pr_psargs, p->p_comm, 1863 sizeof(psinfo->pr_psargs)); 1864 else { 1865 KASSERT(len < sizeof(psinfo->pr_psargs), 1866 ("len is too long: %zu vs %zu", len, 1867 sizeof(psinfo->pr_psargs))); 1868 cp = psinfo->pr_psargs; 1869 end = cp + len - 1; 1870 for (;;) { 1871 cp = memchr(cp, '\0', end - cp); 1872 if (cp == NULL) 1873 break; 1874 *cp = ' '; 1875 } 1876 } 1877 psinfo->pr_pid = p->p_pid; 1878 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1879 free(psinfo, M_TEMP); 1880 } 1881 *sizep = sizeof(*psinfo); 1882 } 1883 1884 static void 1885 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1886 { 1887 struct thread *td; 1888 elf_prstatus_t *status; 1889 1890 td = (struct thread *)arg; 1891 if (sb != NULL) { 1892 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1893 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1894 status->pr_version = PRSTATUS_VERSION; 1895 status->pr_statussz = sizeof(elf_prstatus_t); 1896 status->pr_gregsetsz = sizeof(elf_gregset_t); 1897 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1898 status->pr_osreldate = osreldate; 1899 status->pr_cursig = td->td_proc->p_sig; 1900 status->pr_pid = td->td_tid; 1901 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1902 fill_regs32(td, &status->pr_reg); 1903 #else 1904 fill_regs(td, &status->pr_reg); 1905 #endif 1906 sbuf_bcat(sb, status, sizeof(*status)); 1907 free(status, M_TEMP); 1908 } 1909 *sizep = sizeof(*status); 1910 } 1911 1912 static void 1913 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1914 { 1915 struct thread *td; 1916 elf_prfpregset_t *fpregset; 1917 1918 td = (struct thread *)arg; 1919 if (sb != NULL) { 1920 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1921 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1922 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1923 fill_fpregs32(td, fpregset); 1924 #else 1925 fill_fpregs(td, fpregset); 1926 #endif 1927 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1928 free(fpregset, M_TEMP); 1929 } 1930 *sizep = sizeof(*fpregset); 1931 } 1932 1933 static void 1934 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1935 { 1936 struct thread *td; 1937 elf_thrmisc_t thrmisc; 1938 1939 td = (struct thread *)arg; 1940 if (sb != NULL) { 1941 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1942 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1943 strcpy(thrmisc.pr_tname, td->td_name); 1944 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1945 } 1946 *sizep = sizeof(thrmisc); 1947 } 1948 1949 /* 1950 * Allow for MD specific notes, as well as any MD 1951 * specific preparations for writing MI notes. 1952 */ 1953 static void 1954 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 1955 { 1956 struct thread *td; 1957 void *buf; 1958 size_t size; 1959 1960 td = (struct thread *)arg; 1961 size = *sizep; 1962 if (size != 0 && sb != NULL) 1963 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 1964 else 1965 buf = NULL; 1966 size = 0; 1967 __elfN(dump_thread)(td, buf, &size); 1968 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 1969 if (size != 0 && sb != NULL) 1970 sbuf_bcat(sb, buf, size); 1971 free(buf, M_TEMP); 1972 *sizep = size; 1973 } 1974 1975 #ifdef KINFO_PROC_SIZE 1976 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 1977 #endif 1978 1979 static void 1980 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 1981 { 1982 struct proc *p; 1983 size_t size; 1984 int structsize; 1985 1986 p = (struct proc *)arg; 1987 size = sizeof(structsize) + p->p_numthreads * 1988 sizeof(elf_kinfo_proc_t); 1989 1990 if (sb != NULL) { 1991 KASSERT(*sizep == size, ("invalid size")); 1992 structsize = sizeof(elf_kinfo_proc_t); 1993 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1994 sx_slock(&proctree_lock); 1995 PROC_LOCK(p); 1996 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 1997 sx_sunlock(&proctree_lock); 1998 } 1999 *sizep = size; 2000 } 2001 2002 #ifdef KINFO_FILE_SIZE 2003 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2004 #endif 2005 2006 static void 2007 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2008 { 2009 struct proc *p; 2010 size_t size, sect_sz, i; 2011 ssize_t start_len, sect_len; 2012 int structsize, filedesc_flags; 2013 2014 if (coredump_pack_fileinfo) 2015 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2016 else 2017 filedesc_flags = 0; 2018 2019 p = (struct proc *)arg; 2020 structsize = sizeof(struct kinfo_file); 2021 if (sb == NULL) { 2022 size = 0; 2023 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2024 sbuf_set_drain(sb, sbuf_drain_count, &size); 2025 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2026 PROC_LOCK(p); 2027 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2028 sbuf_finish(sb); 2029 sbuf_delete(sb); 2030 *sizep = size; 2031 } else { 2032 sbuf_start_section(sb, &start_len); 2033 2034 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2035 PROC_LOCK(p); 2036 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2037 filedesc_flags); 2038 2039 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2040 if (sect_len < 0) 2041 return; 2042 sect_sz = sect_len; 2043 2044 KASSERT(sect_sz <= *sizep, 2045 ("kern_proc_filedesc_out did not respect maxlen; " 2046 "requested %zu, got %zu", *sizep - sizeof(structsize), 2047 sect_sz - sizeof(structsize))); 2048 2049 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2050 sbuf_putc(sb, 0); 2051 } 2052 } 2053 2054 #ifdef KINFO_VMENTRY_SIZE 2055 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2056 #endif 2057 2058 static void 2059 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2060 { 2061 struct proc *p; 2062 size_t size; 2063 int structsize, vmmap_flags; 2064 2065 if (coredump_pack_vmmapinfo) 2066 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2067 else 2068 vmmap_flags = 0; 2069 2070 p = (struct proc *)arg; 2071 structsize = sizeof(struct kinfo_vmentry); 2072 if (sb == NULL) { 2073 size = 0; 2074 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2075 sbuf_set_drain(sb, sbuf_drain_count, &size); 2076 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2077 PROC_LOCK(p); 2078 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2079 sbuf_finish(sb); 2080 sbuf_delete(sb); 2081 *sizep = size; 2082 } else { 2083 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2084 PROC_LOCK(p); 2085 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2086 vmmap_flags); 2087 } 2088 } 2089 2090 static void 2091 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2092 { 2093 struct proc *p; 2094 size_t size; 2095 int structsize; 2096 2097 p = (struct proc *)arg; 2098 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2099 if (sb != NULL) { 2100 KASSERT(*sizep == size, ("invalid size")); 2101 structsize = sizeof(gid_t); 2102 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2103 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2104 sizeof(gid_t)); 2105 } 2106 *sizep = size; 2107 } 2108 2109 static void 2110 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2111 { 2112 struct proc *p; 2113 size_t size; 2114 int structsize; 2115 2116 p = (struct proc *)arg; 2117 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2118 if (sb != NULL) { 2119 KASSERT(*sizep == size, ("invalid size")); 2120 structsize = sizeof(p->p_fd->fd_cmask); 2121 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2122 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2123 } 2124 *sizep = size; 2125 } 2126 2127 static void 2128 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2129 { 2130 struct proc *p; 2131 struct rlimit rlim[RLIM_NLIMITS]; 2132 size_t size; 2133 int structsize, i; 2134 2135 p = (struct proc *)arg; 2136 size = sizeof(structsize) + sizeof(rlim); 2137 if (sb != NULL) { 2138 KASSERT(*sizep == size, ("invalid size")); 2139 structsize = sizeof(rlim); 2140 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2141 PROC_LOCK(p); 2142 for (i = 0; i < RLIM_NLIMITS; i++) 2143 lim_rlimit_proc(p, i, &rlim[i]); 2144 PROC_UNLOCK(p); 2145 sbuf_bcat(sb, rlim, sizeof(rlim)); 2146 } 2147 *sizep = size; 2148 } 2149 2150 static void 2151 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2152 { 2153 struct proc *p; 2154 size_t size; 2155 int structsize; 2156 2157 p = (struct proc *)arg; 2158 size = sizeof(structsize) + sizeof(p->p_osrel); 2159 if (sb != NULL) { 2160 KASSERT(*sizep == size, ("invalid size")); 2161 structsize = sizeof(p->p_osrel); 2162 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2163 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2164 } 2165 *sizep = size; 2166 } 2167 2168 static void 2169 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2170 { 2171 struct proc *p; 2172 elf_ps_strings_t ps_strings; 2173 size_t size; 2174 int structsize; 2175 2176 p = (struct proc *)arg; 2177 size = sizeof(structsize) + sizeof(ps_strings); 2178 if (sb != NULL) { 2179 KASSERT(*sizep == size, ("invalid size")); 2180 structsize = sizeof(ps_strings); 2181 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2182 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2183 #else 2184 ps_strings = p->p_sysent->sv_psstrings; 2185 #endif 2186 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2187 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2188 } 2189 *sizep = size; 2190 } 2191 2192 static void 2193 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2194 { 2195 struct proc *p; 2196 size_t size; 2197 int structsize; 2198 2199 p = (struct proc *)arg; 2200 if (sb == NULL) { 2201 size = 0; 2202 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2203 sbuf_set_drain(sb, sbuf_drain_count, &size); 2204 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2205 PHOLD(p); 2206 proc_getauxv(curthread, p, sb); 2207 PRELE(p); 2208 sbuf_finish(sb); 2209 sbuf_delete(sb); 2210 *sizep = size; 2211 } else { 2212 structsize = sizeof(Elf_Auxinfo); 2213 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2214 PHOLD(p); 2215 proc_getauxv(curthread, p, sb); 2216 PRELE(p); 2217 } 2218 } 2219 2220 static boolean_t 2221 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2222 int32_t *osrel, const Elf_Phdr *pnote) 2223 { 2224 const Elf_Note *note, *note0, *note_end; 2225 const char *note_name; 2226 char *buf; 2227 int i, error; 2228 boolean_t res; 2229 2230 /* We need some limit, might as well use PAGE_SIZE. */ 2231 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2232 return (FALSE); 2233 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2234 if (pnote->p_offset > PAGE_SIZE || 2235 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2236 VOP_UNLOCK(imgp->vp, 0); 2237 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2238 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2239 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2240 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2241 curthread->td_ucred, NOCRED, NULL, curthread); 2242 if (error != 0) { 2243 uprintf("i/o error PT_NOTE\n"); 2244 res = FALSE; 2245 goto ret; 2246 } 2247 note = note0 = (const Elf_Note *)buf; 2248 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2249 } else { 2250 note = note0 = (const Elf_Note *)(imgp->image_header + 2251 pnote->p_offset); 2252 note_end = (const Elf_Note *)(imgp->image_header + 2253 pnote->p_offset + pnote->p_filesz); 2254 buf = NULL; 2255 } 2256 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2257 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2258 (const char *)note < sizeof(Elf_Note)) { 2259 res = FALSE; 2260 goto ret; 2261 } 2262 if (note->n_namesz != checknote->hdr.n_namesz || 2263 note->n_descsz != checknote->hdr.n_descsz || 2264 note->n_type != checknote->hdr.n_type) 2265 goto nextnote; 2266 note_name = (const char *)(note + 1); 2267 if (note_name + checknote->hdr.n_namesz >= 2268 (const char *)note_end || strncmp(checknote->vendor, 2269 note_name, checknote->hdr.n_namesz) != 0) 2270 goto nextnote; 2271 2272 /* 2273 * Fetch the osreldate for binary 2274 * from the ELF OSABI-note if necessary. 2275 */ 2276 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2277 checknote->trans_osrel != NULL) { 2278 res = checknote->trans_osrel(note, osrel); 2279 goto ret; 2280 } 2281 res = TRUE; 2282 goto ret; 2283 nextnote: 2284 note = (const Elf_Note *)((const char *)(note + 1) + 2285 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2286 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2287 } 2288 res = FALSE; 2289 ret: 2290 free(buf, M_TEMP); 2291 return (res); 2292 } 2293 2294 /* 2295 * Try to find the appropriate ABI-note section for checknote, 2296 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2297 * first page of the image is searched, the same as for headers. 2298 */ 2299 static boolean_t 2300 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2301 int32_t *osrel) 2302 { 2303 const Elf_Phdr *phdr; 2304 const Elf_Ehdr *hdr; 2305 int i; 2306 2307 hdr = (const Elf_Ehdr *)imgp->image_header; 2308 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2309 2310 for (i = 0; i < hdr->e_phnum; i++) { 2311 if (phdr[i].p_type == PT_NOTE && 2312 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2313 return (TRUE); 2314 } 2315 return (FALSE); 2316 2317 } 2318 2319 /* 2320 * Tell kern_execve.c about it, with a little help from the linker. 2321 */ 2322 static struct execsw __elfN(execsw) = { 2323 __CONCAT(exec_, __elfN(imgact)), 2324 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2325 }; 2326 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2327 2328 static vm_prot_t 2329 __elfN(trans_prot)(Elf_Word flags) 2330 { 2331 vm_prot_t prot; 2332 2333 prot = 0; 2334 if (flags & PF_X) 2335 prot |= VM_PROT_EXECUTE; 2336 if (flags & PF_W) 2337 prot |= VM_PROT_WRITE; 2338 if (flags & PF_R) 2339 prot |= VM_PROT_READ; 2340 #if __ELF_WORD_SIZE == 32 2341 #if defined(__amd64__) 2342 if (i386_read_exec && (flags & PF_R)) 2343 prot |= VM_PROT_EXECUTE; 2344 #endif 2345 #endif 2346 return (prot); 2347 } 2348 2349 static Elf_Word 2350 __elfN(untrans_prot)(vm_prot_t prot) 2351 { 2352 Elf_Word flags; 2353 2354 flags = 0; 2355 if (prot & VM_PROT_EXECUTE) 2356 flags |= PF_X; 2357 if (prot & VM_PROT_READ) 2358 flags |= PF_R; 2359 if (prot & VM_PROT_WRITE) 2360 flags |= PF_W; 2361 return (flags); 2362 } 2363