1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_gzio.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/gzio.h> 43 #include <sys/imgact.h> 44 #include <sys/imgact_elf.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/mman.h> 51 #include <sys/namei.h> 52 #include <sys/pioctl.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/racct.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sf_buf.h> 60 #include <sys/smp.h> 61 #include <sys/systm.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/sx.h> 65 #include <sys/syscall.h> 66 #include <sys/sysctl.h> 67 #include <sys/sysent.h> 68 #include <sys/vnode.h> 69 #include <sys/syslog.h> 70 #include <sys/eventhandler.h> 71 #include <sys/user.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #define CORE_BUF_SIZE (16 * 1024) 108 109 int __elfN(fallback_brand) = -1; 110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 111 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 112 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 113 114 static int elf_legacy_coredump = 0; 115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 116 &elf_legacy_coredump, 0, 117 "include all and only RW pages in core dumps"); 118 119 int __elfN(nxstack) = 120 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 121 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) 122 1; 123 #else 124 0; 125 #endif 126 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 127 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 128 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 129 130 #if __ELF_WORD_SIZE == 32 131 #if defined(__amd64__) 132 int i386_read_exec = 0; 133 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 134 "enable execution from readable segments"); 135 #endif 136 #endif 137 138 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 139 140 #define trunc_page_ps(va, ps) rounddown2(va, ps) 141 #define round_page_ps(va, ps) roundup2(va, ps) 142 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 143 144 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 145 146 Elf_Brandnote __elfN(freebsd_brandnote) = { 147 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 148 .hdr.n_descsz = sizeof(int32_t), 149 .hdr.n_type = NT_FREEBSD_ABI_TAG, 150 .vendor = FREEBSD_ABI_VENDOR, 151 .flags = BN_TRANSLATE_OSREL, 152 .trans_osrel = __elfN(freebsd_trans_osrel) 153 }; 154 155 static boolean_t 156 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 157 { 158 uintptr_t p; 159 160 p = (uintptr_t)(note + 1); 161 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 162 *osrel = *(const int32_t *)(p); 163 164 return (TRUE); 165 } 166 167 static const char GNU_ABI_VENDOR[] = "GNU"; 168 static int GNU_KFREEBSD_ABI_DESC = 3; 169 170 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 171 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 172 .hdr.n_descsz = 16, /* XXX at least 16 */ 173 .hdr.n_type = 1, 174 .vendor = GNU_ABI_VENDOR, 175 .flags = BN_TRANSLATE_OSREL, 176 .trans_osrel = kfreebsd_trans_osrel 177 }; 178 179 static boolean_t 180 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 181 { 182 const Elf32_Word *desc; 183 uintptr_t p; 184 185 p = (uintptr_t)(note + 1); 186 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 187 188 desc = (const Elf32_Word *)p; 189 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 190 return (FALSE); 191 192 /* 193 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 194 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 195 */ 196 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 197 198 return (TRUE); 199 } 200 201 int 202 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 203 { 204 int i; 205 206 for (i = 0; i < MAX_BRANDS; i++) { 207 if (elf_brand_list[i] == NULL) { 208 elf_brand_list[i] = entry; 209 break; 210 } 211 } 212 if (i == MAX_BRANDS) { 213 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 214 __func__, entry); 215 return (-1); 216 } 217 return (0); 218 } 219 220 int 221 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 222 { 223 int i; 224 225 for (i = 0; i < MAX_BRANDS; i++) { 226 if (elf_brand_list[i] == entry) { 227 elf_brand_list[i] = NULL; 228 break; 229 } 230 } 231 if (i == MAX_BRANDS) 232 return (-1); 233 return (0); 234 } 235 236 int 237 __elfN(brand_inuse)(Elf_Brandinfo *entry) 238 { 239 struct proc *p; 240 int rval = FALSE; 241 242 sx_slock(&allproc_lock); 243 FOREACH_PROC_IN_SYSTEM(p) { 244 if (p->p_sysent == entry->sysvec) { 245 rval = TRUE; 246 break; 247 } 248 } 249 sx_sunlock(&allproc_lock); 250 251 return (rval); 252 } 253 254 static Elf_Brandinfo * 255 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 256 int interp_name_len, int32_t *osrel) 257 { 258 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 259 Elf_Brandinfo *bi, *bi_m; 260 boolean_t ret; 261 int i; 262 263 /* 264 * We support four types of branding -- (1) the ELF EI_OSABI field 265 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 266 * branding w/in the ELF header, (3) path of the `interp_path' 267 * field, and (4) the ".note.ABI-tag" ELF section. 268 */ 269 270 /* Look for an ".note.ABI-tag" ELF section */ 271 bi_m = NULL; 272 for (i = 0; i < MAX_BRANDS; i++) { 273 bi = elf_brand_list[i]; 274 if (bi == NULL) 275 continue; 276 if (hdr->e_machine == bi->machine && (bi->flags & 277 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 278 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 279 /* Give brand a chance to veto check_note's guess */ 280 if (ret && bi->header_supported) 281 ret = bi->header_supported(imgp); 282 /* 283 * If note checker claimed the binary, but the 284 * interpreter path in the image does not 285 * match default one for the brand, try to 286 * search for other brands with the same 287 * interpreter. Either there is better brand 288 * with the right interpreter, or, failing 289 * this, we return first brand which accepted 290 * our note and, optionally, header. 291 */ 292 if (ret && bi_m == NULL && (strlen(bi->interp_path) + 293 1 != interp_name_len || strncmp(interp, 294 bi->interp_path, interp_name_len) != 0)) { 295 bi_m = bi; 296 ret = 0; 297 } 298 if (ret) 299 return (bi); 300 } 301 } 302 if (bi_m != NULL) 303 return (bi_m); 304 305 /* If the executable has a brand, search for it in the brand list. */ 306 for (i = 0; i < MAX_BRANDS; i++) { 307 bi = elf_brand_list[i]; 308 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 309 continue; 310 if (hdr->e_machine == bi->machine && 311 (hdr->e_ident[EI_OSABI] == bi->brand || 312 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 313 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) { 314 /* Looks good, but give brand a chance to veto */ 315 if (!bi->header_supported || bi->header_supported(imgp)) 316 return (bi); 317 } 318 } 319 320 /* No known brand, see if the header is recognized by any brand */ 321 for (i = 0; i < MAX_BRANDS; i++) { 322 bi = elf_brand_list[i]; 323 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 324 bi->header_supported == NULL) 325 continue; 326 if (hdr->e_machine == bi->machine) { 327 ret = bi->header_supported(imgp); 328 if (ret) 329 return (bi); 330 } 331 } 332 333 /* Lacking a known brand, search for a recognized interpreter. */ 334 if (interp != NULL) { 335 for (i = 0; i < MAX_BRANDS; i++) { 336 bi = elf_brand_list[i]; 337 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 338 continue; 339 if (hdr->e_machine == bi->machine && 340 /* ELF image p_filesz includes terminating zero */ 341 strlen(bi->interp_path) + 1 == interp_name_len && 342 strncmp(interp, bi->interp_path, interp_name_len) 343 == 0) 344 return (bi); 345 } 346 } 347 348 /* Lacking a recognized interpreter, try the default brand */ 349 for (i = 0; i < MAX_BRANDS; i++) { 350 bi = elf_brand_list[i]; 351 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 352 continue; 353 if (hdr->e_machine == bi->machine && 354 __elfN(fallback_brand) == bi->brand) 355 return (bi); 356 } 357 return (NULL); 358 } 359 360 static int 361 __elfN(check_header)(const Elf_Ehdr *hdr) 362 { 363 Elf_Brandinfo *bi; 364 int i; 365 366 if (!IS_ELF(*hdr) || 367 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 368 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 369 hdr->e_ident[EI_VERSION] != EV_CURRENT || 370 hdr->e_phentsize != sizeof(Elf_Phdr) || 371 hdr->e_version != ELF_TARG_VER) 372 return (ENOEXEC); 373 374 /* 375 * Make sure we have at least one brand for this machine. 376 */ 377 378 for (i = 0; i < MAX_BRANDS; i++) { 379 bi = elf_brand_list[i]; 380 if (bi != NULL && bi->machine == hdr->e_machine) 381 break; 382 } 383 if (i == MAX_BRANDS) 384 return (ENOEXEC); 385 386 return (0); 387 } 388 389 static int 390 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 391 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 392 { 393 struct sf_buf *sf; 394 int error; 395 vm_offset_t off; 396 397 /* 398 * Create the page if it doesn't exist yet. Ignore errors. 399 */ 400 vm_map_lock(map); 401 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 402 VM_PROT_ALL, VM_PROT_ALL, 0); 403 vm_map_unlock(map); 404 405 /* 406 * Find the page from the underlying object. 407 */ 408 if (object != NULL) { 409 sf = vm_imgact_map_page(object, offset); 410 if (sf == NULL) 411 return (KERN_FAILURE); 412 off = offset - trunc_page(offset); 413 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 414 end - start); 415 vm_imgact_unmap_page(sf); 416 if (error != 0) 417 return (KERN_FAILURE); 418 } 419 420 return (KERN_SUCCESS); 421 } 422 423 static int 424 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 425 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 426 int cow) 427 { 428 struct sf_buf *sf; 429 vm_offset_t off; 430 vm_size_t sz; 431 int error, locked, rv; 432 433 if (start != trunc_page(start)) { 434 rv = __elfN(map_partial)(map, object, offset, start, 435 round_page(start), prot); 436 if (rv != KERN_SUCCESS) 437 return (rv); 438 offset += round_page(start) - start; 439 start = round_page(start); 440 } 441 if (end != round_page(end)) { 442 rv = __elfN(map_partial)(map, object, offset + 443 trunc_page(end) - start, trunc_page(end), end, prot); 444 if (rv != KERN_SUCCESS) 445 return (rv); 446 end = trunc_page(end); 447 } 448 if (end > start) { 449 if (offset & PAGE_MASK) { 450 /* 451 * The mapping is not page aligned. This means we have 452 * to copy the data. Sigh. 453 */ 454 vm_map_lock(map); 455 rv = vm_map_insert(map, NULL, 0, start, end, 456 prot | VM_PROT_WRITE, VM_PROT_ALL, 0); 457 vm_map_unlock(map); 458 if (rv != KERN_SUCCESS) 459 return (rv); 460 if (object == NULL) 461 return (KERN_SUCCESS); 462 for (; start < end; start += sz) { 463 sf = vm_imgact_map_page(object, offset); 464 if (sf == NULL) 465 return (KERN_FAILURE); 466 off = offset - trunc_page(offset); 467 sz = end - start; 468 if (sz > PAGE_SIZE - off) 469 sz = PAGE_SIZE - off; 470 error = copyout((caddr_t)sf_buf_kva(sf) + off, 471 (caddr_t)start, sz); 472 vm_imgact_unmap_page(sf); 473 if (error != 0) 474 return (KERN_FAILURE); 475 offset += sz; 476 } 477 rv = KERN_SUCCESS; 478 } else { 479 vm_object_reference(object); 480 vm_map_lock(map); 481 rv = vm_map_insert(map, object, offset, start, end, 482 prot, VM_PROT_ALL, cow); 483 vm_map_unlock(map); 484 if (rv != KERN_SUCCESS) { 485 locked = VOP_ISLOCKED(imgp->vp); 486 VOP_UNLOCK(imgp->vp, 0); 487 vm_object_deallocate(object); 488 vn_lock(imgp->vp, locked | LK_RETRY); 489 } 490 } 491 return (rv); 492 } else { 493 return (KERN_SUCCESS); 494 } 495 } 496 497 static int 498 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 499 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 500 size_t pagesize) 501 { 502 struct sf_buf *sf; 503 size_t map_len; 504 vm_map_t map; 505 vm_object_t object; 506 vm_offset_t map_addr; 507 int error, rv, cow; 508 size_t copy_len; 509 vm_offset_t file_addr; 510 511 /* 512 * It's necessary to fail if the filsz + offset taken from the 513 * header is greater than the actual file pager object's size. 514 * If we were to allow this, then the vm_map_find() below would 515 * walk right off the end of the file object and into the ether. 516 * 517 * While I'm here, might as well check for something else that 518 * is invalid: filsz cannot be greater than memsz. 519 */ 520 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 521 uprintf("elf_load_section: truncated ELF file\n"); 522 return (ENOEXEC); 523 } 524 525 object = imgp->object; 526 map = &imgp->proc->p_vmspace->vm_map; 527 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 528 file_addr = trunc_page_ps(offset, pagesize); 529 530 /* 531 * We have two choices. We can either clear the data in the last page 532 * of an oversized mapping, or we can start the anon mapping a page 533 * early and copy the initialized data into that first page. We 534 * choose the second. 535 */ 536 if (memsz > filsz) 537 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 538 else 539 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 540 541 if (map_len != 0) { 542 /* cow flags: don't dump readonly sections in core */ 543 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 544 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 545 546 rv = __elfN(map_insert)(imgp, map, 547 object, 548 file_addr, /* file offset */ 549 map_addr, /* virtual start */ 550 map_addr + map_len,/* virtual end */ 551 prot, 552 cow); 553 if (rv != KERN_SUCCESS) 554 return (EINVAL); 555 556 /* we can stop now if we've covered it all */ 557 if (memsz == filsz) { 558 return (0); 559 } 560 } 561 562 563 /* 564 * We have to get the remaining bit of the file into the first part 565 * of the oversized map segment. This is normally because the .data 566 * segment in the file is extended to provide bss. It's a neat idea 567 * to try and save a page, but it's a pain in the behind to implement. 568 */ 569 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 570 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 571 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 572 map_addr; 573 574 /* This had damn well better be true! */ 575 if (map_len != 0) { 576 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 577 map_addr + map_len, VM_PROT_ALL, 0); 578 if (rv != KERN_SUCCESS) { 579 return (EINVAL); 580 } 581 } 582 583 if (copy_len != 0) { 584 vm_offset_t off; 585 586 sf = vm_imgact_map_page(object, offset + filsz); 587 if (sf == NULL) 588 return (EIO); 589 590 /* send the page fragment to user space */ 591 off = trunc_page_ps(offset + filsz, pagesize) - 592 trunc_page(offset + filsz); 593 error = copyout((caddr_t)sf_buf_kva(sf) + off, 594 (caddr_t)map_addr, copy_len); 595 vm_imgact_unmap_page(sf); 596 if (error) { 597 return (error); 598 } 599 } 600 601 /* 602 * set it to the specified protection. 603 * XXX had better undo the damage from pasting over the cracks here! 604 */ 605 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 606 map_len), prot, FALSE); 607 608 return (0); 609 } 610 611 /* 612 * Load the file "file" into memory. It may be either a shared object 613 * or an executable. 614 * 615 * The "addr" reference parameter is in/out. On entry, it specifies 616 * the address where a shared object should be loaded. If the file is 617 * an executable, this value is ignored. On exit, "addr" specifies 618 * where the file was actually loaded. 619 * 620 * The "entry" reference parameter is out only. On exit, it specifies 621 * the entry point for the loaded file. 622 */ 623 static int 624 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 625 u_long *entry, size_t pagesize) 626 { 627 struct { 628 struct nameidata nd; 629 struct vattr attr; 630 struct image_params image_params; 631 } *tempdata; 632 const Elf_Ehdr *hdr = NULL; 633 const Elf_Phdr *phdr = NULL; 634 struct nameidata *nd; 635 struct vattr *attr; 636 struct image_params *imgp; 637 vm_prot_t prot; 638 u_long rbase; 639 u_long base_addr = 0; 640 int error, i, numsegs; 641 642 #ifdef CAPABILITY_MODE 643 /* 644 * XXXJA: This check can go away once we are sufficiently confident 645 * that the checks in namei() are correct. 646 */ 647 if (IN_CAPABILITY_MODE(curthread)) 648 return (ECAPMODE); 649 #endif 650 651 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 652 nd = &tempdata->nd; 653 attr = &tempdata->attr; 654 imgp = &tempdata->image_params; 655 656 /* 657 * Initialize part of the common data 658 */ 659 imgp->proc = p; 660 imgp->attr = attr; 661 imgp->firstpage = NULL; 662 imgp->image_header = NULL; 663 imgp->object = NULL; 664 imgp->execlabel = NULL; 665 666 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 667 if ((error = namei(nd)) != 0) { 668 nd->ni_vp = NULL; 669 goto fail; 670 } 671 NDFREE(nd, NDF_ONLY_PNBUF); 672 imgp->vp = nd->ni_vp; 673 674 /* 675 * Check permissions, modes, uid, etc on the file, and "open" it. 676 */ 677 error = exec_check_permissions(imgp); 678 if (error) 679 goto fail; 680 681 error = exec_map_first_page(imgp); 682 if (error) 683 goto fail; 684 685 /* 686 * Also make certain that the interpreter stays the same, so set 687 * its VV_TEXT flag, too. 688 */ 689 VOP_SET_TEXT(nd->ni_vp); 690 691 imgp->object = nd->ni_vp->v_object; 692 693 hdr = (const Elf_Ehdr *)imgp->image_header; 694 if ((error = __elfN(check_header)(hdr)) != 0) 695 goto fail; 696 if (hdr->e_type == ET_DYN) 697 rbase = *addr; 698 else if (hdr->e_type == ET_EXEC) 699 rbase = 0; 700 else { 701 error = ENOEXEC; 702 goto fail; 703 } 704 705 /* Only support headers that fit within first page for now */ 706 if ((hdr->e_phoff > PAGE_SIZE) || 707 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 708 error = ENOEXEC; 709 goto fail; 710 } 711 712 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 713 if (!aligned(phdr, Elf_Addr)) { 714 error = ENOEXEC; 715 goto fail; 716 } 717 718 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 719 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 720 /* Loadable segment */ 721 prot = __elfN(trans_prot)(phdr[i].p_flags); 722 error = __elfN(load_section)(imgp, phdr[i].p_offset, 723 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 724 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 725 if (error != 0) 726 goto fail; 727 /* 728 * Establish the base address if this is the 729 * first segment. 730 */ 731 if (numsegs == 0) 732 base_addr = trunc_page(phdr[i].p_vaddr + 733 rbase); 734 numsegs++; 735 } 736 } 737 *addr = base_addr; 738 *entry = (unsigned long)hdr->e_entry + rbase; 739 740 fail: 741 if (imgp->firstpage) 742 exec_unmap_first_page(imgp); 743 744 if (nd->ni_vp) 745 vput(nd->ni_vp); 746 747 free(tempdata, M_TEMP); 748 749 return (error); 750 } 751 752 static int 753 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 754 { 755 struct thread *td; 756 const Elf_Ehdr *hdr; 757 const Elf_Phdr *phdr; 758 Elf_Auxargs *elf_auxargs; 759 struct vmspace *vmspace; 760 const char *err_str, *newinterp; 761 char *interp, *interp_buf, *path; 762 Elf_Brandinfo *brand_info; 763 struct sysentvec *sv; 764 vm_prot_t prot; 765 u_long text_size, data_size, total_size, text_addr, data_addr; 766 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 767 int32_t osrel; 768 int error, i, n, interp_name_len, have_interp; 769 770 hdr = (const Elf_Ehdr *)imgp->image_header; 771 772 /* 773 * Do we have a valid ELF header ? 774 * 775 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 776 * if particular brand doesn't support it. 777 */ 778 if (__elfN(check_header)(hdr) != 0 || 779 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 780 return (-1); 781 782 /* 783 * From here on down, we return an errno, not -1, as we've 784 * detected an ELF file. 785 */ 786 787 if ((hdr->e_phoff > PAGE_SIZE) || 788 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 789 /* Only support headers in first page for now */ 790 uprintf("Program headers not in the first page\n"); 791 return (ENOEXEC); 792 } 793 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 794 if (!aligned(phdr, Elf_Addr)) { 795 uprintf("Unaligned program headers\n"); 796 return (ENOEXEC); 797 } 798 799 n = error = 0; 800 baddr = 0; 801 osrel = 0; 802 text_size = data_size = total_size = text_addr = data_addr = 0; 803 entry = proghdr = 0; 804 interp_name_len = 0; 805 err_str = newinterp = NULL; 806 interp = interp_buf = NULL; 807 td = curthread; 808 809 for (i = 0; i < hdr->e_phnum; i++) { 810 switch (phdr[i].p_type) { 811 case PT_LOAD: 812 if (n == 0) 813 baddr = phdr[i].p_vaddr; 814 n++; 815 break; 816 case PT_INTERP: 817 /* Path to interpreter */ 818 if (phdr[i].p_filesz > MAXPATHLEN) { 819 uprintf("Invalid PT_INTERP\n"); 820 error = ENOEXEC; 821 goto ret; 822 } 823 if (interp != NULL) { 824 uprintf("Multiple PT_INTERP headers\n"); 825 error = ENOEXEC; 826 goto ret; 827 } 828 interp_name_len = phdr[i].p_filesz; 829 if (phdr[i].p_offset > PAGE_SIZE || 830 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 831 VOP_UNLOCK(imgp->vp, 0); 832 interp_buf = malloc(interp_name_len + 1, M_TEMP, 833 M_WAITOK); 834 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 835 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 836 interp_name_len, phdr[i].p_offset, 837 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 838 NOCRED, NULL, td); 839 if (error != 0) { 840 uprintf("i/o error PT_INTERP\n"); 841 goto ret; 842 } 843 interp_buf[interp_name_len] = '\0'; 844 interp = interp_buf; 845 } else { 846 interp = __DECONST(char *, imgp->image_header) + 847 phdr[i].p_offset; 848 } 849 break; 850 case PT_GNU_STACK: 851 if (__elfN(nxstack)) 852 imgp->stack_prot = 853 __elfN(trans_prot)(phdr[i].p_flags); 854 imgp->stack_sz = phdr[i].p_memsz; 855 break; 856 } 857 } 858 859 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 860 &osrel); 861 if (brand_info == NULL) { 862 uprintf("ELF binary type \"%u\" not known.\n", 863 hdr->e_ident[EI_OSABI]); 864 error = ENOEXEC; 865 goto ret; 866 } 867 et_dyn_addr = 0; 868 if (hdr->e_type == ET_DYN) { 869 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 870 uprintf("Cannot execute shared object\n"); 871 error = ENOEXEC; 872 goto ret; 873 } 874 /* 875 * Honour the base load address from the dso if it is 876 * non-zero for some reason. 877 */ 878 if (baddr == 0) 879 et_dyn_addr = ET_DYN_LOAD_ADDR; 880 } 881 sv = brand_info->sysvec; 882 if (interp != NULL && brand_info->interp_newpath != NULL) 883 newinterp = brand_info->interp_newpath; 884 885 /* 886 * Avoid a possible deadlock if the current address space is destroyed 887 * and that address space maps the locked vnode. In the common case, 888 * the locked vnode's v_usecount is decremented but remains greater 889 * than zero. Consequently, the vnode lock is not needed by vrele(). 890 * However, in cases where the vnode lock is external, such as nullfs, 891 * v_usecount may become zero. 892 * 893 * The VV_TEXT flag prevents modifications to the executable while 894 * the vnode is unlocked. 895 */ 896 VOP_UNLOCK(imgp->vp, 0); 897 898 error = exec_new_vmspace(imgp, sv); 899 imgp->proc->p_sysent = sv; 900 901 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 902 if (error != 0) 903 goto ret; 904 905 for (i = 0; i < hdr->e_phnum; i++) { 906 switch (phdr[i].p_type) { 907 case PT_LOAD: /* Loadable segment */ 908 if (phdr[i].p_memsz == 0) 909 break; 910 prot = __elfN(trans_prot)(phdr[i].p_flags); 911 error = __elfN(load_section)(imgp, phdr[i].p_offset, 912 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 913 phdr[i].p_memsz, phdr[i].p_filesz, prot, 914 sv->sv_pagesize); 915 if (error != 0) 916 goto ret; 917 918 /* 919 * If this segment contains the program headers, 920 * remember their virtual address for the AT_PHDR 921 * aux entry. Static binaries don't usually include 922 * a PT_PHDR entry. 923 */ 924 if (phdr[i].p_offset == 0 && 925 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 926 <= phdr[i].p_filesz) 927 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 928 et_dyn_addr; 929 930 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 931 seg_size = round_page(phdr[i].p_memsz + 932 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 933 934 /* 935 * Make the largest executable segment the official 936 * text segment and all others data. 937 * 938 * Note that obreak() assumes that data_addr + 939 * data_size == end of data load area, and the ELF 940 * file format expects segments to be sorted by 941 * address. If multiple data segments exist, the 942 * last one will be used. 943 */ 944 945 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 946 text_size = seg_size; 947 text_addr = seg_addr; 948 } else { 949 data_size = seg_size; 950 data_addr = seg_addr; 951 } 952 total_size += seg_size; 953 break; 954 case PT_PHDR: /* Program header table info */ 955 proghdr = phdr[i].p_vaddr + et_dyn_addr; 956 break; 957 default: 958 break; 959 } 960 } 961 962 if (data_addr == 0 && data_size == 0) { 963 data_addr = text_addr; 964 data_size = text_size; 965 } 966 967 entry = (u_long)hdr->e_entry + et_dyn_addr; 968 969 /* 970 * Check limits. It should be safe to check the 971 * limits after loading the segments since we do 972 * not actually fault in all the segments pages. 973 */ 974 PROC_LOCK(imgp->proc); 975 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 976 err_str = "Data segment size exceeds process limit"; 977 else if (text_size > maxtsiz) 978 err_str = "Text segment size exceeds system limit"; 979 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 980 err_str = "Total segment size exceeds process limit"; 981 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 982 err_str = "Data segment size exceeds resource limit"; 983 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 984 err_str = "Total segment size exceeds resource limit"; 985 if (err_str != NULL) { 986 PROC_UNLOCK(imgp->proc); 987 uprintf("%s\n", err_str); 988 error = ENOMEM; 989 goto ret; 990 } 991 992 vmspace = imgp->proc->p_vmspace; 993 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 994 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 995 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 996 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 997 998 /* 999 * We load the dynamic linker where a userland call 1000 * to mmap(0, ...) would put it. The rationale behind this 1001 * calculation is that it leaves room for the heap to grow to 1002 * its maximum allowed size. 1003 */ 1004 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1005 RLIMIT_DATA)); 1006 PROC_UNLOCK(imgp->proc); 1007 1008 imgp->entry_addr = entry; 1009 1010 if (interp != NULL) { 1011 have_interp = FALSE; 1012 VOP_UNLOCK(imgp->vp, 0); 1013 if (brand_info->emul_path != NULL && 1014 brand_info->emul_path[0] != '\0') { 1015 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1016 snprintf(path, MAXPATHLEN, "%s%s", 1017 brand_info->emul_path, interp); 1018 error = __elfN(load_file)(imgp->proc, path, &addr, 1019 &imgp->entry_addr, sv->sv_pagesize); 1020 free(path, M_TEMP); 1021 if (error == 0) 1022 have_interp = TRUE; 1023 } 1024 if (!have_interp && newinterp != NULL && 1025 (brand_info->interp_path == NULL || 1026 strcmp(interp, brand_info->interp_path) == 0)) { 1027 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1028 &imgp->entry_addr, sv->sv_pagesize); 1029 if (error == 0) 1030 have_interp = TRUE; 1031 } 1032 if (!have_interp) { 1033 error = __elfN(load_file)(imgp->proc, interp, &addr, 1034 &imgp->entry_addr, sv->sv_pagesize); 1035 } 1036 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1037 if (error != 0) { 1038 uprintf("ELF interpreter %s not found, error %d\n", 1039 interp, error); 1040 goto ret; 1041 } 1042 } else 1043 addr = et_dyn_addr; 1044 1045 /* 1046 * Construct auxargs table (used by the fixup routine) 1047 */ 1048 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1049 elf_auxargs->execfd = -1; 1050 elf_auxargs->phdr = proghdr; 1051 elf_auxargs->phent = hdr->e_phentsize; 1052 elf_auxargs->phnum = hdr->e_phnum; 1053 elf_auxargs->pagesz = PAGE_SIZE; 1054 elf_auxargs->base = addr; 1055 elf_auxargs->flags = 0; 1056 elf_auxargs->entry = entry; 1057 elf_auxargs->hdr_eflags = hdr->e_flags; 1058 1059 imgp->auxargs = elf_auxargs; 1060 imgp->interpreted = 0; 1061 imgp->reloc_base = addr; 1062 imgp->proc->p_osrel = osrel; 1063 imgp->proc->p_elf_machine = hdr->e_machine; 1064 imgp->proc->p_elf_flags = hdr->e_flags; 1065 1066 ret: 1067 free(interp_buf, M_TEMP); 1068 return (error); 1069 } 1070 1071 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1072 1073 int 1074 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1075 { 1076 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1077 Elf_Addr *base; 1078 Elf_Addr *pos; 1079 1080 base = (Elf_Addr *)*stack_base; 1081 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1082 1083 if (args->execfd != -1) 1084 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1085 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1086 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1087 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1088 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1089 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1090 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1091 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1092 #ifdef AT_EHDRFLAGS 1093 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1094 #endif 1095 if (imgp->execpathp != 0) 1096 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1097 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1098 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1099 if (imgp->canary != 0) { 1100 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1101 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1102 } 1103 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1104 if (imgp->pagesizes != 0) { 1105 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1106 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1107 } 1108 if (imgp->sysent->sv_timekeep_base != 0) { 1109 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1110 imgp->sysent->sv_timekeep_base); 1111 } 1112 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1113 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1114 imgp->sysent->sv_stackprot); 1115 AUXARGS_ENTRY(pos, AT_NULL, 0); 1116 1117 free(imgp->auxargs, M_TEMP); 1118 imgp->auxargs = NULL; 1119 1120 base--; 1121 suword(base, (long)imgp->args->argc); 1122 *stack_base = (register_t *)base; 1123 return (0); 1124 } 1125 1126 /* 1127 * Code for generating ELF core dumps. 1128 */ 1129 1130 typedef void (*segment_callback)(vm_map_entry_t, void *); 1131 1132 /* Closure for cb_put_phdr(). */ 1133 struct phdr_closure { 1134 Elf_Phdr *phdr; /* Program header to fill in */ 1135 Elf_Off offset; /* Offset of segment in core file */ 1136 }; 1137 1138 /* Closure for cb_size_segment(). */ 1139 struct sseg_closure { 1140 int count; /* Count of writable segments. */ 1141 size_t size; /* Total size of all writable segments. */ 1142 }; 1143 1144 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1145 1146 struct note_info { 1147 int type; /* Note type. */ 1148 outfunc_t outfunc; /* Output function. */ 1149 void *outarg; /* Argument for the output function. */ 1150 size_t outsize; /* Output size. */ 1151 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1152 }; 1153 1154 TAILQ_HEAD(note_info_list, note_info); 1155 1156 /* Coredump output parameters. */ 1157 struct coredump_params { 1158 off_t offset; 1159 struct ucred *active_cred; 1160 struct ucred *file_cred; 1161 struct thread *td; 1162 struct vnode *vp; 1163 struct gzio_stream *gzs; 1164 }; 1165 1166 static void cb_put_phdr(vm_map_entry_t, void *); 1167 static void cb_size_segment(vm_map_entry_t, void *); 1168 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1169 enum uio_seg); 1170 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1171 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1172 struct note_info_list *, size_t); 1173 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1174 size_t *); 1175 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1176 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1177 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1178 static int sbuf_drain_core_output(void *, const char *, int); 1179 static int sbuf_drain_count(void *arg, const char *data, int len); 1180 1181 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1182 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1183 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1184 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1185 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1186 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1187 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1188 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1189 static void note_procstat_files(void *, struct sbuf *, size_t *); 1190 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1191 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1192 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1193 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1194 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1195 1196 #ifdef GZIO 1197 extern int compress_user_cores_gzlevel; 1198 1199 /* 1200 * Write out a core segment to the compression stream. 1201 */ 1202 static int 1203 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1204 { 1205 u_int chunk_len; 1206 int error; 1207 1208 while (len > 0) { 1209 chunk_len = MIN(len, CORE_BUF_SIZE); 1210 1211 /* 1212 * We can get EFAULT error here. 1213 * In that case zero out the current chunk of the segment. 1214 */ 1215 error = copyin(base, buf, chunk_len); 1216 if (error != 0) 1217 bzero(buf, chunk_len); 1218 error = gzio_write(p->gzs, buf, chunk_len); 1219 if (error != 0) 1220 break; 1221 base += chunk_len; 1222 len -= chunk_len; 1223 } 1224 return (error); 1225 } 1226 1227 static int 1228 core_gz_write(void *base, size_t len, off_t offset, void *arg) 1229 { 1230 1231 return (core_write((struct coredump_params *)arg, base, len, offset, 1232 UIO_SYSSPACE)); 1233 } 1234 #endif /* GZIO */ 1235 1236 static int 1237 core_write(struct coredump_params *p, const void *base, size_t len, 1238 off_t offset, enum uio_seg seg) 1239 { 1240 1241 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1242 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1243 p->active_cred, p->file_cred, NULL, p->td)); 1244 } 1245 1246 static int 1247 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1248 void *tmpbuf) 1249 { 1250 int error; 1251 1252 #ifdef GZIO 1253 if (p->gzs != NULL) 1254 return (compress_chunk(p, base, tmpbuf, len)); 1255 #endif 1256 /* 1257 * EFAULT is a non-fatal error that we can get, for example, 1258 * if the segment is backed by a file but extends beyond its 1259 * end. 1260 */ 1261 error = core_write(p, base, len, offset, UIO_USERSPACE); 1262 if (error == EFAULT) { 1263 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1264 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1265 "for process %s\n", base, len, offset, curproc->p_comm); 1266 1267 /* 1268 * Write a "real" zero byte at the end of the target region 1269 * in the case this is the last segment. 1270 * The intermediate space will be implicitly zero-filled. 1271 */ 1272 error = core_write(p, zero_region, 1, offset + len - 1, 1273 UIO_SYSSPACE); 1274 } 1275 return (error); 1276 } 1277 1278 /* 1279 * Drain into a core file. 1280 */ 1281 static int 1282 sbuf_drain_core_output(void *arg, const char *data, int len) 1283 { 1284 struct coredump_params *p; 1285 int error, locked; 1286 1287 p = (struct coredump_params *)arg; 1288 1289 /* 1290 * Some kern_proc out routines that print to this sbuf may 1291 * call us with the process lock held. Draining with the 1292 * non-sleepable lock held is unsafe. The lock is needed for 1293 * those routines when dumping a live process. In our case we 1294 * can safely release the lock before draining and acquire 1295 * again after. 1296 */ 1297 locked = PROC_LOCKED(p->td->td_proc); 1298 if (locked) 1299 PROC_UNLOCK(p->td->td_proc); 1300 #ifdef GZIO 1301 if (p->gzs != NULL) 1302 error = gzio_write(p->gzs, __DECONST(char *, data), len); 1303 else 1304 #endif 1305 error = core_write(p, __DECONST(void *, data), len, p->offset, 1306 UIO_SYSSPACE); 1307 if (locked) 1308 PROC_LOCK(p->td->td_proc); 1309 if (error != 0) 1310 return (-error); 1311 p->offset += len; 1312 return (len); 1313 } 1314 1315 /* 1316 * Drain into a counter. 1317 */ 1318 static int 1319 sbuf_drain_count(void *arg, const char *data __unused, int len) 1320 { 1321 size_t *sizep; 1322 1323 sizep = (size_t *)arg; 1324 *sizep += len; 1325 return (len); 1326 } 1327 1328 int 1329 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1330 { 1331 struct ucred *cred = td->td_ucred; 1332 int error = 0; 1333 struct sseg_closure seginfo; 1334 struct note_info_list notelst; 1335 struct coredump_params params; 1336 struct note_info *ninfo; 1337 void *hdr, *tmpbuf; 1338 size_t hdrsize, notesz, coresize; 1339 #ifdef GZIO 1340 boolean_t compress; 1341 1342 compress = (flags & IMGACT_CORE_COMPRESS) != 0; 1343 #endif 1344 hdr = NULL; 1345 tmpbuf = NULL; 1346 TAILQ_INIT(¬elst); 1347 1348 /* Size the program segments. */ 1349 seginfo.count = 0; 1350 seginfo.size = 0; 1351 each_dumpable_segment(td, cb_size_segment, &seginfo); 1352 1353 /* 1354 * Collect info about the core file header area. 1355 */ 1356 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1357 if (seginfo.count + 1 >= PN_XNUM) 1358 hdrsize += sizeof(Elf_Shdr); 1359 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1360 coresize = round_page(hdrsize + notesz) + seginfo.size; 1361 1362 /* Set up core dump parameters. */ 1363 params.offset = 0; 1364 params.active_cred = cred; 1365 params.file_cred = NOCRED; 1366 params.td = td; 1367 params.vp = vp; 1368 params.gzs = NULL; 1369 1370 #ifdef RACCT 1371 if (racct_enable) { 1372 PROC_LOCK(td->td_proc); 1373 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1374 PROC_UNLOCK(td->td_proc); 1375 if (error != 0) { 1376 error = EFAULT; 1377 goto done; 1378 } 1379 } 1380 #endif 1381 if (coresize >= limit) { 1382 error = EFAULT; 1383 goto done; 1384 } 1385 1386 #ifdef GZIO 1387 /* Create a compression stream if necessary. */ 1388 if (compress) { 1389 params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE, 1390 CORE_BUF_SIZE, compress_user_cores_gzlevel, ¶ms); 1391 if (params.gzs == NULL) { 1392 error = EFAULT; 1393 goto done; 1394 } 1395 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1396 } 1397 #endif 1398 1399 /* 1400 * Allocate memory for building the header, fill it up, 1401 * and write it out following the notes. 1402 */ 1403 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1404 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1405 notesz); 1406 1407 /* Write the contents of all of the writable segments. */ 1408 if (error == 0) { 1409 Elf_Phdr *php; 1410 off_t offset; 1411 int i; 1412 1413 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1414 offset = round_page(hdrsize + notesz); 1415 for (i = 0; i < seginfo.count; i++) { 1416 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1417 php->p_filesz, offset, ¶ms, tmpbuf); 1418 if (error != 0) 1419 break; 1420 offset += php->p_filesz; 1421 php++; 1422 } 1423 #ifdef GZIO 1424 if (error == 0 && compress) 1425 error = gzio_flush(params.gzs); 1426 #endif 1427 } 1428 if (error) { 1429 log(LOG_WARNING, 1430 "Failed to write core file for process %s (error %d)\n", 1431 curproc->p_comm, error); 1432 } 1433 1434 done: 1435 #ifdef GZIO 1436 if (compress) { 1437 free(tmpbuf, M_TEMP); 1438 if (params.gzs != NULL) 1439 gzio_fini(params.gzs); 1440 } 1441 #endif 1442 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1443 TAILQ_REMOVE(¬elst, ninfo, link); 1444 free(ninfo, M_TEMP); 1445 } 1446 if (hdr != NULL) 1447 free(hdr, M_TEMP); 1448 1449 return (error); 1450 } 1451 1452 /* 1453 * A callback for each_dumpable_segment() to write out the segment's 1454 * program header entry. 1455 */ 1456 static void 1457 cb_put_phdr(entry, closure) 1458 vm_map_entry_t entry; 1459 void *closure; 1460 { 1461 struct phdr_closure *phc = (struct phdr_closure *)closure; 1462 Elf_Phdr *phdr = phc->phdr; 1463 1464 phc->offset = round_page(phc->offset); 1465 1466 phdr->p_type = PT_LOAD; 1467 phdr->p_offset = phc->offset; 1468 phdr->p_vaddr = entry->start; 1469 phdr->p_paddr = 0; 1470 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1471 phdr->p_align = PAGE_SIZE; 1472 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1473 1474 phc->offset += phdr->p_filesz; 1475 phc->phdr++; 1476 } 1477 1478 /* 1479 * A callback for each_dumpable_segment() to gather information about 1480 * the number of segments and their total size. 1481 */ 1482 static void 1483 cb_size_segment(vm_map_entry_t entry, void *closure) 1484 { 1485 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1486 1487 ssc->count++; 1488 ssc->size += entry->end - entry->start; 1489 } 1490 1491 /* 1492 * For each writable segment in the process's memory map, call the given 1493 * function with a pointer to the map entry and some arbitrary 1494 * caller-supplied data. 1495 */ 1496 static void 1497 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1498 { 1499 struct proc *p = td->td_proc; 1500 vm_map_t map = &p->p_vmspace->vm_map; 1501 vm_map_entry_t entry; 1502 vm_object_t backing_object, object; 1503 boolean_t ignore_entry; 1504 1505 vm_map_lock_read(map); 1506 for (entry = map->header.next; entry != &map->header; 1507 entry = entry->next) { 1508 /* 1509 * Don't dump inaccessible mappings, deal with legacy 1510 * coredump mode. 1511 * 1512 * Note that read-only segments related to the elf binary 1513 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1514 * need to arbitrarily ignore such segments. 1515 */ 1516 if (elf_legacy_coredump) { 1517 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1518 continue; 1519 } else { 1520 if ((entry->protection & VM_PROT_ALL) == 0) 1521 continue; 1522 } 1523 1524 /* 1525 * Dont include memory segment in the coredump if 1526 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1527 * madvise(2). Do not dump submaps (i.e. parts of the 1528 * kernel map). 1529 */ 1530 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1531 continue; 1532 1533 if ((object = entry->object.vm_object) == NULL) 1534 continue; 1535 1536 /* Ignore memory-mapped devices and such things. */ 1537 VM_OBJECT_RLOCK(object); 1538 while ((backing_object = object->backing_object) != NULL) { 1539 VM_OBJECT_RLOCK(backing_object); 1540 VM_OBJECT_RUNLOCK(object); 1541 object = backing_object; 1542 } 1543 ignore_entry = object->type != OBJT_DEFAULT && 1544 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1545 object->type != OBJT_PHYS; 1546 VM_OBJECT_RUNLOCK(object); 1547 if (ignore_entry) 1548 continue; 1549 1550 (*func)(entry, closure); 1551 } 1552 vm_map_unlock_read(map); 1553 } 1554 1555 /* 1556 * Write the core file header to the file, including padding up to 1557 * the page boundary. 1558 */ 1559 static int 1560 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1561 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1562 { 1563 struct note_info *ninfo; 1564 struct sbuf *sb; 1565 int error; 1566 1567 /* Fill in the header. */ 1568 bzero(hdr, hdrsize); 1569 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1570 1571 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1572 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1573 sbuf_start_section(sb, NULL); 1574 sbuf_bcat(sb, hdr, hdrsize); 1575 TAILQ_FOREACH(ninfo, notelst, link) 1576 __elfN(putnote)(ninfo, sb); 1577 /* Align up to a page boundary for the program segments. */ 1578 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1579 error = sbuf_finish(sb); 1580 sbuf_delete(sb); 1581 1582 return (error); 1583 } 1584 1585 static void 1586 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1587 size_t *sizep) 1588 { 1589 struct proc *p; 1590 struct thread *thr; 1591 size_t size; 1592 1593 p = td->td_proc; 1594 size = 0; 1595 1596 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1597 1598 /* 1599 * To have the debugger select the right thread (LWP) as the initial 1600 * thread, we dump the state of the thread passed to us in td first. 1601 * This is the thread that causes the core dump and thus likely to 1602 * be the right thread one wants to have selected in the debugger. 1603 */ 1604 thr = td; 1605 while (thr != NULL) { 1606 size += register_note(list, NT_PRSTATUS, 1607 __elfN(note_prstatus), thr); 1608 size += register_note(list, NT_FPREGSET, 1609 __elfN(note_fpregset), thr); 1610 size += register_note(list, NT_THRMISC, 1611 __elfN(note_thrmisc), thr); 1612 size += register_note(list, -1, 1613 __elfN(note_threadmd), thr); 1614 1615 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1616 TAILQ_NEXT(thr, td_plist); 1617 if (thr == td) 1618 thr = TAILQ_NEXT(thr, td_plist); 1619 } 1620 1621 size += register_note(list, NT_PROCSTAT_PROC, 1622 __elfN(note_procstat_proc), p); 1623 size += register_note(list, NT_PROCSTAT_FILES, 1624 note_procstat_files, p); 1625 size += register_note(list, NT_PROCSTAT_VMMAP, 1626 note_procstat_vmmap, p); 1627 size += register_note(list, NT_PROCSTAT_GROUPS, 1628 note_procstat_groups, p); 1629 size += register_note(list, NT_PROCSTAT_UMASK, 1630 note_procstat_umask, p); 1631 size += register_note(list, NT_PROCSTAT_RLIMIT, 1632 note_procstat_rlimit, p); 1633 size += register_note(list, NT_PROCSTAT_OSREL, 1634 note_procstat_osrel, p); 1635 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1636 __elfN(note_procstat_psstrings), p); 1637 size += register_note(list, NT_PROCSTAT_AUXV, 1638 __elfN(note_procstat_auxv), p); 1639 1640 *sizep = size; 1641 } 1642 1643 static void 1644 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1645 size_t notesz) 1646 { 1647 Elf_Ehdr *ehdr; 1648 Elf_Phdr *phdr; 1649 Elf_Shdr *shdr; 1650 struct phdr_closure phc; 1651 1652 ehdr = (Elf_Ehdr *)hdr; 1653 1654 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1655 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1656 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1657 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1658 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1659 ehdr->e_ident[EI_DATA] = ELF_DATA; 1660 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1661 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1662 ehdr->e_ident[EI_ABIVERSION] = 0; 1663 ehdr->e_ident[EI_PAD] = 0; 1664 ehdr->e_type = ET_CORE; 1665 ehdr->e_machine = td->td_proc->p_elf_machine; 1666 ehdr->e_version = EV_CURRENT; 1667 ehdr->e_entry = 0; 1668 ehdr->e_phoff = sizeof(Elf_Ehdr); 1669 ehdr->e_flags = td->td_proc->p_elf_flags; 1670 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1671 ehdr->e_phentsize = sizeof(Elf_Phdr); 1672 ehdr->e_shentsize = sizeof(Elf_Shdr); 1673 ehdr->e_shstrndx = SHN_UNDEF; 1674 if (numsegs + 1 < PN_XNUM) { 1675 ehdr->e_phnum = numsegs + 1; 1676 ehdr->e_shnum = 0; 1677 } else { 1678 ehdr->e_phnum = PN_XNUM; 1679 ehdr->e_shnum = 1; 1680 1681 ehdr->e_shoff = ehdr->e_phoff + 1682 (numsegs + 1) * ehdr->e_phentsize; 1683 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1684 ("e_shoff: %zu, hdrsize - shdr: %zu", 1685 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1686 1687 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1688 memset(shdr, 0, sizeof(*shdr)); 1689 /* 1690 * A special first section is used to hold large segment and 1691 * section counts. This was proposed by Sun Microsystems in 1692 * Solaris and has been adopted by Linux; the standard ELF 1693 * tools are already familiar with the technique. 1694 * 1695 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1696 * (or 12-7 depending on the version of the document) for more 1697 * details. 1698 */ 1699 shdr->sh_type = SHT_NULL; 1700 shdr->sh_size = ehdr->e_shnum; 1701 shdr->sh_link = ehdr->e_shstrndx; 1702 shdr->sh_info = numsegs + 1; 1703 } 1704 1705 /* 1706 * Fill in the program header entries. 1707 */ 1708 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1709 1710 /* The note segement. */ 1711 phdr->p_type = PT_NOTE; 1712 phdr->p_offset = hdrsize; 1713 phdr->p_vaddr = 0; 1714 phdr->p_paddr = 0; 1715 phdr->p_filesz = notesz; 1716 phdr->p_memsz = 0; 1717 phdr->p_flags = PF_R; 1718 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1719 phdr++; 1720 1721 /* All the writable segments from the program. */ 1722 phc.phdr = phdr; 1723 phc.offset = round_page(hdrsize + notesz); 1724 each_dumpable_segment(td, cb_put_phdr, &phc); 1725 } 1726 1727 static size_t 1728 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1729 { 1730 struct note_info *ninfo; 1731 size_t size, notesize; 1732 1733 size = 0; 1734 out(arg, NULL, &size); 1735 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1736 ninfo->type = type; 1737 ninfo->outfunc = out; 1738 ninfo->outarg = arg; 1739 ninfo->outsize = size; 1740 TAILQ_INSERT_TAIL(list, ninfo, link); 1741 1742 if (type == -1) 1743 return (size); 1744 1745 notesize = sizeof(Elf_Note) + /* note header */ 1746 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1747 /* note name */ 1748 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1749 1750 return (notesize); 1751 } 1752 1753 static size_t 1754 append_note_data(const void *src, void *dst, size_t len) 1755 { 1756 size_t padded_len; 1757 1758 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1759 if (dst != NULL) { 1760 bcopy(src, dst, len); 1761 bzero((char *)dst + len, padded_len - len); 1762 } 1763 return (padded_len); 1764 } 1765 1766 size_t 1767 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1768 { 1769 Elf_Note *note; 1770 char *buf; 1771 size_t notesize; 1772 1773 buf = dst; 1774 if (buf != NULL) { 1775 note = (Elf_Note *)buf; 1776 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1777 note->n_descsz = size; 1778 note->n_type = type; 1779 buf += sizeof(*note); 1780 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1781 sizeof(FREEBSD_ABI_VENDOR)); 1782 append_note_data(src, buf, size); 1783 if (descp != NULL) 1784 *descp = buf; 1785 } 1786 1787 notesize = sizeof(Elf_Note) + /* note header */ 1788 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1789 /* note name */ 1790 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1791 1792 return (notesize); 1793 } 1794 1795 static void 1796 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1797 { 1798 Elf_Note note; 1799 ssize_t old_len, sect_len; 1800 size_t new_len, descsz, i; 1801 1802 if (ninfo->type == -1) { 1803 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1804 return; 1805 } 1806 1807 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1808 note.n_descsz = ninfo->outsize; 1809 note.n_type = ninfo->type; 1810 1811 sbuf_bcat(sb, ¬e, sizeof(note)); 1812 sbuf_start_section(sb, &old_len); 1813 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1814 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1815 if (note.n_descsz == 0) 1816 return; 1817 sbuf_start_section(sb, &old_len); 1818 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1819 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1820 if (sect_len < 0) 1821 return; 1822 1823 new_len = (size_t)sect_len; 1824 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1825 if (new_len < descsz) { 1826 /* 1827 * It is expected that individual note emitters will correctly 1828 * predict their expected output size and fill up to that size 1829 * themselves, padding in a format-specific way if needed. 1830 * However, in case they don't, just do it here with zeros. 1831 */ 1832 for (i = 0; i < descsz - new_len; i++) 1833 sbuf_putc(sb, 0); 1834 } else if (new_len > descsz) { 1835 /* 1836 * We can't always truncate sb -- we may have drained some 1837 * of it already. 1838 */ 1839 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1840 "read it (%zu > %zu). Since it is longer than " 1841 "expected, this coredump's notes are corrupt. THIS " 1842 "IS A BUG in the note_procstat routine for type %u.\n", 1843 __func__, (unsigned)note.n_type, new_len, descsz, 1844 (unsigned)note.n_type)); 1845 } 1846 } 1847 1848 /* 1849 * Miscellaneous note out functions. 1850 */ 1851 1852 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1853 #include <compat/freebsd32/freebsd32.h> 1854 1855 typedef struct prstatus32 elf_prstatus_t; 1856 typedef struct prpsinfo32 elf_prpsinfo_t; 1857 typedef struct fpreg32 elf_prfpregset_t; 1858 typedef struct fpreg32 elf_fpregset_t; 1859 typedef struct reg32 elf_gregset_t; 1860 typedef struct thrmisc32 elf_thrmisc_t; 1861 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1862 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1863 typedef uint32_t elf_ps_strings_t; 1864 #else 1865 typedef prstatus_t elf_prstatus_t; 1866 typedef prpsinfo_t elf_prpsinfo_t; 1867 typedef prfpregset_t elf_prfpregset_t; 1868 typedef prfpregset_t elf_fpregset_t; 1869 typedef gregset_t elf_gregset_t; 1870 typedef thrmisc_t elf_thrmisc_t; 1871 #define ELF_KERN_PROC_MASK 0 1872 typedef struct kinfo_proc elf_kinfo_proc_t; 1873 typedef vm_offset_t elf_ps_strings_t; 1874 #endif 1875 1876 static void 1877 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1878 { 1879 struct sbuf sbarg; 1880 size_t len; 1881 char *cp, *end; 1882 struct proc *p; 1883 elf_prpsinfo_t *psinfo; 1884 int error; 1885 1886 p = (struct proc *)arg; 1887 if (sb != NULL) { 1888 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1889 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1890 psinfo->pr_version = PRPSINFO_VERSION; 1891 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1892 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1893 PROC_LOCK(p); 1894 if (p->p_args != NULL) { 1895 len = sizeof(psinfo->pr_psargs) - 1; 1896 if (len > p->p_args->ar_length) 1897 len = p->p_args->ar_length; 1898 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 1899 PROC_UNLOCK(p); 1900 error = 0; 1901 } else { 1902 _PHOLD(p); 1903 PROC_UNLOCK(p); 1904 sbuf_new(&sbarg, psinfo->pr_psargs, 1905 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 1906 error = proc_getargv(curthread, p, &sbarg); 1907 PRELE(p); 1908 if (sbuf_finish(&sbarg) == 0) 1909 len = sbuf_len(&sbarg) - 1; 1910 else 1911 len = sizeof(psinfo->pr_psargs) - 1; 1912 sbuf_delete(&sbarg); 1913 } 1914 if (error || len == 0) 1915 strlcpy(psinfo->pr_psargs, p->p_comm, 1916 sizeof(psinfo->pr_psargs)); 1917 else { 1918 KASSERT(len < sizeof(psinfo->pr_psargs), 1919 ("len is too long: %zu vs %zu", len, 1920 sizeof(psinfo->pr_psargs))); 1921 cp = psinfo->pr_psargs; 1922 end = cp + len - 1; 1923 for (;;) { 1924 cp = memchr(cp, '\0', end - cp); 1925 if (cp == NULL) 1926 break; 1927 *cp = ' '; 1928 } 1929 } 1930 psinfo->pr_pid = p->p_pid; 1931 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1932 free(psinfo, M_TEMP); 1933 } 1934 *sizep = sizeof(*psinfo); 1935 } 1936 1937 static void 1938 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1939 { 1940 struct thread *td; 1941 elf_prstatus_t *status; 1942 1943 td = (struct thread *)arg; 1944 if (sb != NULL) { 1945 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1946 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1947 status->pr_version = PRSTATUS_VERSION; 1948 status->pr_statussz = sizeof(elf_prstatus_t); 1949 status->pr_gregsetsz = sizeof(elf_gregset_t); 1950 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1951 status->pr_osreldate = osreldate; 1952 status->pr_cursig = td->td_proc->p_sig; 1953 status->pr_pid = td->td_tid; 1954 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1955 fill_regs32(td, &status->pr_reg); 1956 #else 1957 fill_regs(td, &status->pr_reg); 1958 #endif 1959 sbuf_bcat(sb, status, sizeof(*status)); 1960 free(status, M_TEMP); 1961 } 1962 *sizep = sizeof(*status); 1963 } 1964 1965 static void 1966 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1967 { 1968 struct thread *td; 1969 elf_prfpregset_t *fpregset; 1970 1971 td = (struct thread *)arg; 1972 if (sb != NULL) { 1973 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1974 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1975 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1976 fill_fpregs32(td, fpregset); 1977 #else 1978 fill_fpregs(td, fpregset); 1979 #endif 1980 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1981 free(fpregset, M_TEMP); 1982 } 1983 *sizep = sizeof(*fpregset); 1984 } 1985 1986 static void 1987 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1988 { 1989 struct thread *td; 1990 elf_thrmisc_t thrmisc; 1991 1992 td = (struct thread *)arg; 1993 if (sb != NULL) { 1994 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1995 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1996 strcpy(thrmisc.pr_tname, td->td_name); 1997 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1998 } 1999 *sizep = sizeof(thrmisc); 2000 } 2001 2002 /* 2003 * Allow for MD specific notes, as well as any MD 2004 * specific preparations for writing MI notes. 2005 */ 2006 static void 2007 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2008 { 2009 struct thread *td; 2010 void *buf; 2011 size_t size; 2012 2013 td = (struct thread *)arg; 2014 size = *sizep; 2015 if (size != 0 && sb != NULL) 2016 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2017 else 2018 buf = NULL; 2019 size = 0; 2020 __elfN(dump_thread)(td, buf, &size); 2021 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2022 if (size != 0 && sb != NULL) 2023 sbuf_bcat(sb, buf, size); 2024 free(buf, M_TEMP); 2025 *sizep = size; 2026 } 2027 2028 #ifdef KINFO_PROC_SIZE 2029 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2030 #endif 2031 2032 static void 2033 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2034 { 2035 struct proc *p; 2036 size_t size; 2037 int structsize; 2038 2039 p = (struct proc *)arg; 2040 size = sizeof(structsize) + p->p_numthreads * 2041 sizeof(elf_kinfo_proc_t); 2042 2043 if (sb != NULL) { 2044 KASSERT(*sizep == size, ("invalid size")); 2045 structsize = sizeof(elf_kinfo_proc_t); 2046 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2047 sx_slock(&proctree_lock); 2048 PROC_LOCK(p); 2049 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2050 sx_sunlock(&proctree_lock); 2051 } 2052 *sizep = size; 2053 } 2054 2055 #ifdef KINFO_FILE_SIZE 2056 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2057 #endif 2058 2059 static void 2060 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2061 { 2062 struct proc *p; 2063 size_t size, sect_sz, i; 2064 ssize_t start_len, sect_len; 2065 int structsize, filedesc_flags; 2066 2067 if (coredump_pack_fileinfo) 2068 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2069 else 2070 filedesc_flags = 0; 2071 2072 p = (struct proc *)arg; 2073 structsize = sizeof(struct kinfo_file); 2074 if (sb == NULL) { 2075 size = 0; 2076 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2077 sbuf_set_drain(sb, sbuf_drain_count, &size); 2078 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2079 PROC_LOCK(p); 2080 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2081 sbuf_finish(sb); 2082 sbuf_delete(sb); 2083 *sizep = size; 2084 } else { 2085 sbuf_start_section(sb, &start_len); 2086 2087 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2088 PROC_LOCK(p); 2089 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2090 filedesc_flags); 2091 2092 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2093 if (sect_len < 0) 2094 return; 2095 sect_sz = sect_len; 2096 2097 KASSERT(sect_sz <= *sizep, 2098 ("kern_proc_filedesc_out did not respect maxlen; " 2099 "requested %zu, got %zu", *sizep - sizeof(structsize), 2100 sect_sz - sizeof(structsize))); 2101 2102 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2103 sbuf_putc(sb, 0); 2104 } 2105 } 2106 2107 #ifdef KINFO_VMENTRY_SIZE 2108 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2109 #endif 2110 2111 static void 2112 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2113 { 2114 struct proc *p; 2115 size_t size; 2116 int structsize, vmmap_flags; 2117 2118 if (coredump_pack_vmmapinfo) 2119 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2120 else 2121 vmmap_flags = 0; 2122 2123 p = (struct proc *)arg; 2124 structsize = sizeof(struct kinfo_vmentry); 2125 if (sb == NULL) { 2126 size = 0; 2127 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2128 sbuf_set_drain(sb, sbuf_drain_count, &size); 2129 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2130 PROC_LOCK(p); 2131 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2132 sbuf_finish(sb); 2133 sbuf_delete(sb); 2134 *sizep = size; 2135 } else { 2136 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2137 PROC_LOCK(p); 2138 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2139 vmmap_flags); 2140 } 2141 } 2142 2143 static void 2144 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2145 { 2146 struct proc *p; 2147 size_t size; 2148 int structsize; 2149 2150 p = (struct proc *)arg; 2151 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2152 if (sb != NULL) { 2153 KASSERT(*sizep == size, ("invalid size")); 2154 structsize = sizeof(gid_t); 2155 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2156 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2157 sizeof(gid_t)); 2158 } 2159 *sizep = size; 2160 } 2161 2162 static void 2163 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2164 { 2165 struct proc *p; 2166 size_t size; 2167 int structsize; 2168 2169 p = (struct proc *)arg; 2170 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2171 if (sb != NULL) { 2172 KASSERT(*sizep == size, ("invalid size")); 2173 structsize = sizeof(p->p_fd->fd_cmask); 2174 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2175 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2176 } 2177 *sizep = size; 2178 } 2179 2180 static void 2181 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2182 { 2183 struct proc *p; 2184 struct rlimit rlim[RLIM_NLIMITS]; 2185 size_t size; 2186 int structsize, i; 2187 2188 p = (struct proc *)arg; 2189 size = sizeof(structsize) + sizeof(rlim); 2190 if (sb != NULL) { 2191 KASSERT(*sizep == size, ("invalid size")); 2192 structsize = sizeof(rlim); 2193 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2194 PROC_LOCK(p); 2195 for (i = 0; i < RLIM_NLIMITS; i++) 2196 lim_rlimit_proc(p, i, &rlim[i]); 2197 PROC_UNLOCK(p); 2198 sbuf_bcat(sb, rlim, sizeof(rlim)); 2199 } 2200 *sizep = size; 2201 } 2202 2203 static void 2204 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2205 { 2206 struct proc *p; 2207 size_t size; 2208 int structsize; 2209 2210 p = (struct proc *)arg; 2211 size = sizeof(structsize) + sizeof(p->p_osrel); 2212 if (sb != NULL) { 2213 KASSERT(*sizep == size, ("invalid size")); 2214 structsize = sizeof(p->p_osrel); 2215 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2216 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2217 } 2218 *sizep = size; 2219 } 2220 2221 static void 2222 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2223 { 2224 struct proc *p; 2225 elf_ps_strings_t ps_strings; 2226 size_t size; 2227 int structsize; 2228 2229 p = (struct proc *)arg; 2230 size = sizeof(structsize) + sizeof(ps_strings); 2231 if (sb != NULL) { 2232 KASSERT(*sizep == size, ("invalid size")); 2233 structsize = sizeof(ps_strings); 2234 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2235 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2236 #else 2237 ps_strings = p->p_sysent->sv_psstrings; 2238 #endif 2239 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2240 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2241 } 2242 *sizep = size; 2243 } 2244 2245 static void 2246 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2247 { 2248 struct proc *p; 2249 size_t size; 2250 int structsize; 2251 2252 p = (struct proc *)arg; 2253 if (sb == NULL) { 2254 size = 0; 2255 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2256 sbuf_set_drain(sb, sbuf_drain_count, &size); 2257 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2258 PHOLD(p); 2259 proc_getauxv(curthread, p, sb); 2260 PRELE(p); 2261 sbuf_finish(sb); 2262 sbuf_delete(sb); 2263 *sizep = size; 2264 } else { 2265 structsize = sizeof(Elf_Auxinfo); 2266 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2267 PHOLD(p); 2268 proc_getauxv(curthread, p, sb); 2269 PRELE(p); 2270 } 2271 } 2272 2273 static boolean_t 2274 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2275 int32_t *osrel, const Elf_Phdr *pnote) 2276 { 2277 const Elf_Note *note, *note0, *note_end; 2278 const char *note_name; 2279 char *buf; 2280 int i, error; 2281 boolean_t res; 2282 2283 /* We need some limit, might as well use PAGE_SIZE. */ 2284 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2285 return (FALSE); 2286 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2287 if (pnote->p_offset > PAGE_SIZE || 2288 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2289 VOP_UNLOCK(imgp->vp, 0); 2290 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2291 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2292 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2293 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2294 curthread->td_ucred, NOCRED, NULL, curthread); 2295 if (error != 0) { 2296 uprintf("i/o error PT_NOTE\n"); 2297 res = FALSE; 2298 goto ret; 2299 } 2300 note = note0 = (const Elf_Note *)buf; 2301 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2302 } else { 2303 note = note0 = (const Elf_Note *)(imgp->image_header + 2304 pnote->p_offset); 2305 note_end = (const Elf_Note *)(imgp->image_header + 2306 pnote->p_offset + pnote->p_filesz); 2307 buf = NULL; 2308 } 2309 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2310 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2311 (const char *)note < sizeof(Elf_Note)) { 2312 res = FALSE; 2313 goto ret; 2314 } 2315 if (note->n_namesz != checknote->hdr.n_namesz || 2316 note->n_descsz != checknote->hdr.n_descsz || 2317 note->n_type != checknote->hdr.n_type) 2318 goto nextnote; 2319 note_name = (const char *)(note + 1); 2320 if (note_name + checknote->hdr.n_namesz >= 2321 (const char *)note_end || strncmp(checknote->vendor, 2322 note_name, checknote->hdr.n_namesz) != 0) 2323 goto nextnote; 2324 2325 /* 2326 * Fetch the osreldate for binary 2327 * from the ELF OSABI-note if necessary. 2328 */ 2329 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2330 checknote->trans_osrel != NULL) { 2331 res = checknote->trans_osrel(note, osrel); 2332 goto ret; 2333 } 2334 res = TRUE; 2335 goto ret; 2336 nextnote: 2337 note = (const Elf_Note *)((const char *)(note + 1) + 2338 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2339 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2340 } 2341 res = FALSE; 2342 ret: 2343 free(buf, M_TEMP); 2344 return (res); 2345 } 2346 2347 /* 2348 * Try to find the appropriate ABI-note section for checknote, 2349 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2350 * first page of the image is searched, the same as for headers. 2351 */ 2352 static boolean_t 2353 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2354 int32_t *osrel) 2355 { 2356 const Elf_Phdr *phdr; 2357 const Elf_Ehdr *hdr; 2358 int i; 2359 2360 hdr = (const Elf_Ehdr *)imgp->image_header; 2361 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2362 2363 for (i = 0; i < hdr->e_phnum; i++) { 2364 if (phdr[i].p_type == PT_NOTE && 2365 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2366 return (TRUE); 2367 } 2368 return (FALSE); 2369 2370 } 2371 2372 /* 2373 * Tell kern_execve.c about it, with a little help from the linker. 2374 */ 2375 static struct execsw __elfN(execsw) = { 2376 __CONCAT(exec_, __elfN(imgact)), 2377 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2378 }; 2379 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2380 2381 static vm_prot_t 2382 __elfN(trans_prot)(Elf_Word flags) 2383 { 2384 vm_prot_t prot; 2385 2386 prot = 0; 2387 if (flags & PF_X) 2388 prot |= VM_PROT_EXECUTE; 2389 if (flags & PF_W) 2390 prot |= VM_PROT_WRITE; 2391 if (flags & PF_R) 2392 prot |= VM_PROT_READ; 2393 #if __ELF_WORD_SIZE == 32 2394 #if defined(__amd64__) 2395 if (i386_read_exec && (flags & PF_R)) 2396 prot |= VM_PROT_EXECUTE; 2397 #endif 2398 #endif 2399 return (prot); 2400 } 2401 2402 static Elf_Word 2403 __elfN(untrans_prot)(vm_prot_t prot) 2404 { 2405 Elf_Word flags; 2406 2407 flags = 0; 2408 if (prot & VM_PROT_EXECUTE) 2409 flags |= PF_X; 2410 if (prot & VM_PROT_READ) 2411 flags |= PF_R; 2412 if (prot & VM_PROT_WRITE) 2413 flags |= PF_W; 2414 return (flags); 2415 } 2416