1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_core.h" 37 38 #include <sys/param.h> 39 #include <sys/capability.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/imgact.h> 43 #include <sys/imgact_elf.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mman.h> 49 #include <sys/namei.h> 50 #include <sys/pioctl.h> 51 #include <sys/proc.h> 52 #include <sys/procfs.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sbuf.h> 57 #include <sys/sf_buf.h> 58 #include <sys/smp.h> 59 #include <sys/systm.h> 60 #include <sys/signalvar.h> 61 #include <sys/stat.h> 62 #include <sys/sx.h> 63 #include <sys/syscall.h> 64 #include <sys/sysctl.h> 65 #include <sys/sysent.h> 66 #include <sys/vnode.h> 67 #include <sys/syslog.h> 68 #include <sys/eventhandler.h> 69 #include <sys/user.h> 70 71 #include <net/zlib.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #ifdef COMPRESS_USER_CORES 108 static int compress_core(gzFile, char *, char *, unsigned int, 109 struct thread * td); 110 #endif 111 #define CORE_BUF_SIZE (16 * 1024) 112 113 int __elfN(fallback_brand) = -1; 114 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 115 fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0, 116 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 117 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand", 118 &__elfN(fallback_brand)); 119 120 static int elf_legacy_coredump = 0; 121 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 122 &elf_legacy_coredump, 0, ""); 123 124 int __elfN(nxstack) = 125 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ 126 1; 127 #else 128 0; 129 #endif 130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 131 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 132 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 133 134 #if __ELF_WORD_SIZE == 32 135 #if defined(__amd64__) || defined(__ia64__) 136 int i386_read_exec = 0; 137 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 138 "enable execution from readable segments"); 139 #endif 140 #endif 141 142 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 143 144 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 145 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 146 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 147 148 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 149 150 Elf_Brandnote __elfN(freebsd_brandnote) = { 151 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 152 .hdr.n_descsz = sizeof(int32_t), 153 .hdr.n_type = 1, 154 .vendor = FREEBSD_ABI_VENDOR, 155 .flags = BN_TRANSLATE_OSREL, 156 .trans_osrel = __elfN(freebsd_trans_osrel) 157 }; 158 159 static boolean_t 160 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 161 { 162 uintptr_t p; 163 164 p = (uintptr_t)(note + 1); 165 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 166 *osrel = *(const int32_t *)(p); 167 168 return (TRUE); 169 } 170 171 static const char GNU_ABI_VENDOR[] = "GNU"; 172 static int GNU_KFREEBSD_ABI_DESC = 3; 173 174 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 175 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 176 .hdr.n_descsz = 16, /* XXX at least 16 */ 177 .hdr.n_type = 1, 178 .vendor = GNU_ABI_VENDOR, 179 .flags = BN_TRANSLATE_OSREL, 180 .trans_osrel = kfreebsd_trans_osrel 181 }; 182 183 static boolean_t 184 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 185 { 186 const Elf32_Word *desc; 187 uintptr_t p; 188 189 p = (uintptr_t)(note + 1); 190 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 191 192 desc = (const Elf32_Word *)p; 193 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 194 return (FALSE); 195 196 /* 197 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 198 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 199 */ 200 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 201 202 return (TRUE); 203 } 204 205 int 206 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 207 { 208 int i; 209 210 for (i = 0; i < MAX_BRANDS; i++) { 211 if (elf_brand_list[i] == NULL) { 212 elf_brand_list[i] = entry; 213 break; 214 } 215 } 216 if (i == MAX_BRANDS) { 217 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 218 __func__, entry); 219 return (-1); 220 } 221 return (0); 222 } 223 224 int 225 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 226 { 227 int i; 228 229 for (i = 0; i < MAX_BRANDS; i++) { 230 if (elf_brand_list[i] == entry) { 231 elf_brand_list[i] = NULL; 232 break; 233 } 234 } 235 if (i == MAX_BRANDS) 236 return (-1); 237 return (0); 238 } 239 240 int 241 __elfN(brand_inuse)(Elf_Brandinfo *entry) 242 { 243 struct proc *p; 244 int rval = FALSE; 245 246 sx_slock(&allproc_lock); 247 FOREACH_PROC_IN_SYSTEM(p) { 248 if (p->p_sysent == entry->sysvec) { 249 rval = TRUE; 250 break; 251 } 252 } 253 sx_sunlock(&allproc_lock); 254 255 return (rval); 256 } 257 258 static Elf_Brandinfo * 259 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 260 int interp_name_len, int32_t *osrel) 261 { 262 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 263 Elf_Brandinfo *bi; 264 boolean_t ret; 265 int i; 266 267 /* 268 * We support four types of branding -- (1) the ELF EI_OSABI field 269 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 270 * branding w/in the ELF header, (3) path of the `interp_path' 271 * field, and (4) the ".note.ABI-tag" ELF section. 272 */ 273 274 /* Look for an ".note.ABI-tag" ELF section */ 275 for (i = 0; i < MAX_BRANDS; i++) { 276 bi = elf_brand_list[i]; 277 if (bi == NULL) 278 continue; 279 if (hdr->e_machine == bi->machine && (bi->flags & 280 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 281 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 282 if (ret) 283 return (bi); 284 } 285 } 286 287 /* If the executable has a brand, search for it in the brand list. */ 288 for (i = 0; i < MAX_BRANDS; i++) { 289 bi = elf_brand_list[i]; 290 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 291 continue; 292 if (hdr->e_machine == bi->machine && 293 (hdr->e_ident[EI_OSABI] == bi->brand || 294 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 295 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 296 return (bi); 297 } 298 299 /* Lacking a known brand, search for a recognized interpreter. */ 300 if (interp != NULL) { 301 for (i = 0; i < MAX_BRANDS; i++) { 302 bi = elf_brand_list[i]; 303 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 304 continue; 305 if (hdr->e_machine == bi->machine && 306 /* ELF image p_filesz includes terminating zero */ 307 strlen(bi->interp_path) + 1 == interp_name_len && 308 strncmp(interp, bi->interp_path, interp_name_len) 309 == 0) 310 return (bi); 311 } 312 } 313 314 /* Lacking a recognized interpreter, try the default brand */ 315 for (i = 0; i < MAX_BRANDS; i++) { 316 bi = elf_brand_list[i]; 317 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 318 continue; 319 if (hdr->e_machine == bi->machine && 320 __elfN(fallback_brand) == bi->brand) 321 return (bi); 322 } 323 return (NULL); 324 } 325 326 static int 327 __elfN(check_header)(const Elf_Ehdr *hdr) 328 { 329 Elf_Brandinfo *bi; 330 int i; 331 332 if (!IS_ELF(*hdr) || 333 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 334 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 335 hdr->e_ident[EI_VERSION] != EV_CURRENT || 336 hdr->e_phentsize != sizeof(Elf_Phdr) || 337 hdr->e_version != ELF_TARG_VER) 338 return (ENOEXEC); 339 340 /* 341 * Make sure we have at least one brand for this machine. 342 */ 343 344 for (i = 0; i < MAX_BRANDS; i++) { 345 bi = elf_brand_list[i]; 346 if (bi != NULL && bi->machine == hdr->e_machine) 347 break; 348 } 349 if (i == MAX_BRANDS) 350 return (ENOEXEC); 351 352 return (0); 353 } 354 355 static int 356 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 357 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 358 { 359 struct sf_buf *sf; 360 int error; 361 vm_offset_t off; 362 363 /* 364 * Create the page if it doesn't exist yet. Ignore errors. 365 */ 366 vm_map_lock(map); 367 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 368 VM_PROT_ALL, VM_PROT_ALL, 0); 369 vm_map_unlock(map); 370 371 /* 372 * Find the page from the underlying object. 373 */ 374 if (object) { 375 sf = vm_imgact_map_page(object, offset); 376 if (sf == NULL) 377 return (KERN_FAILURE); 378 off = offset - trunc_page(offset); 379 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 380 end - start); 381 vm_imgact_unmap_page(sf); 382 if (error) { 383 return (KERN_FAILURE); 384 } 385 } 386 387 return (KERN_SUCCESS); 388 } 389 390 static int 391 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 392 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 393 { 394 struct sf_buf *sf; 395 vm_offset_t off; 396 vm_size_t sz; 397 int error, rv; 398 399 if (start != trunc_page(start)) { 400 rv = __elfN(map_partial)(map, object, offset, start, 401 round_page(start), prot); 402 if (rv) 403 return (rv); 404 offset += round_page(start) - start; 405 start = round_page(start); 406 } 407 if (end != round_page(end)) { 408 rv = __elfN(map_partial)(map, object, offset + 409 trunc_page(end) - start, trunc_page(end), end, prot); 410 if (rv) 411 return (rv); 412 end = trunc_page(end); 413 } 414 if (end > start) { 415 if (offset & PAGE_MASK) { 416 /* 417 * The mapping is not page aligned. This means we have 418 * to copy the data. Sigh. 419 */ 420 rv = vm_map_find(map, NULL, 0, &start, end - start, 0, 421 VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL, 422 0); 423 if (rv) 424 return (rv); 425 if (object == NULL) 426 return (KERN_SUCCESS); 427 for (; start < end; start += sz) { 428 sf = vm_imgact_map_page(object, offset); 429 if (sf == NULL) 430 return (KERN_FAILURE); 431 off = offset - trunc_page(offset); 432 sz = end - start; 433 if (sz > PAGE_SIZE - off) 434 sz = PAGE_SIZE - off; 435 error = copyout((caddr_t)sf_buf_kva(sf) + off, 436 (caddr_t)start, sz); 437 vm_imgact_unmap_page(sf); 438 if (error) { 439 return (KERN_FAILURE); 440 } 441 offset += sz; 442 } 443 rv = KERN_SUCCESS; 444 } else { 445 vm_object_reference(object); 446 vm_map_lock(map); 447 rv = vm_map_insert(map, object, offset, start, end, 448 prot, VM_PROT_ALL, cow); 449 vm_map_unlock(map); 450 if (rv != KERN_SUCCESS) 451 vm_object_deallocate(object); 452 } 453 return (rv); 454 } else { 455 return (KERN_SUCCESS); 456 } 457 } 458 459 static int 460 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 461 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 462 size_t pagesize) 463 { 464 struct sf_buf *sf; 465 size_t map_len; 466 vm_map_t map; 467 vm_object_t object; 468 vm_offset_t map_addr; 469 int error, rv, cow; 470 size_t copy_len; 471 vm_offset_t file_addr; 472 473 /* 474 * It's necessary to fail if the filsz + offset taken from the 475 * header is greater than the actual file pager object's size. 476 * If we were to allow this, then the vm_map_find() below would 477 * walk right off the end of the file object and into the ether. 478 * 479 * While I'm here, might as well check for something else that 480 * is invalid: filsz cannot be greater than memsz. 481 */ 482 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 483 uprintf("elf_load_section: truncated ELF file\n"); 484 return (ENOEXEC); 485 } 486 487 object = imgp->object; 488 map = &imgp->proc->p_vmspace->vm_map; 489 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 490 file_addr = trunc_page_ps(offset, pagesize); 491 492 /* 493 * We have two choices. We can either clear the data in the last page 494 * of an oversized mapping, or we can start the anon mapping a page 495 * early and copy the initialized data into that first page. We 496 * choose the second.. 497 */ 498 if (memsz > filsz) 499 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 500 else 501 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 502 503 if (map_len != 0) { 504 /* cow flags: don't dump readonly sections in core */ 505 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 506 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 507 508 rv = __elfN(map_insert)(map, 509 object, 510 file_addr, /* file offset */ 511 map_addr, /* virtual start */ 512 map_addr + map_len,/* virtual end */ 513 prot, 514 cow); 515 if (rv != KERN_SUCCESS) 516 return (EINVAL); 517 518 /* we can stop now if we've covered it all */ 519 if (memsz == filsz) { 520 return (0); 521 } 522 } 523 524 525 /* 526 * We have to get the remaining bit of the file into the first part 527 * of the oversized map segment. This is normally because the .data 528 * segment in the file is extended to provide bss. It's a neat idea 529 * to try and save a page, but it's a pain in the behind to implement. 530 */ 531 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 532 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 533 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 534 map_addr; 535 536 /* This had damn well better be true! */ 537 if (map_len != 0) { 538 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr + 539 map_len, VM_PROT_ALL, 0); 540 if (rv != KERN_SUCCESS) { 541 return (EINVAL); 542 } 543 } 544 545 if (copy_len != 0) { 546 vm_offset_t off; 547 548 sf = vm_imgact_map_page(object, offset + filsz); 549 if (sf == NULL) 550 return (EIO); 551 552 /* send the page fragment to user space */ 553 off = trunc_page_ps(offset + filsz, pagesize) - 554 trunc_page(offset + filsz); 555 error = copyout((caddr_t)sf_buf_kva(sf) + off, 556 (caddr_t)map_addr, copy_len); 557 vm_imgact_unmap_page(sf); 558 if (error) { 559 return (error); 560 } 561 } 562 563 /* 564 * set it to the specified protection. 565 * XXX had better undo the damage from pasting over the cracks here! 566 */ 567 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 568 map_len), prot, FALSE); 569 570 return (0); 571 } 572 573 /* 574 * Load the file "file" into memory. It may be either a shared object 575 * or an executable. 576 * 577 * The "addr" reference parameter is in/out. On entry, it specifies 578 * the address where a shared object should be loaded. If the file is 579 * an executable, this value is ignored. On exit, "addr" specifies 580 * where the file was actually loaded. 581 * 582 * The "entry" reference parameter is out only. On exit, it specifies 583 * the entry point for the loaded file. 584 */ 585 static int 586 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 587 u_long *entry, size_t pagesize) 588 { 589 struct { 590 struct nameidata nd; 591 struct vattr attr; 592 struct image_params image_params; 593 } *tempdata; 594 const Elf_Ehdr *hdr = NULL; 595 const Elf_Phdr *phdr = NULL; 596 struct nameidata *nd; 597 struct vattr *attr; 598 struct image_params *imgp; 599 vm_prot_t prot; 600 u_long rbase; 601 u_long base_addr = 0; 602 int error, i, numsegs; 603 604 #ifdef CAPABILITY_MODE 605 /* 606 * XXXJA: This check can go away once we are sufficiently confident 607 * that the checks in namei() are correct. 608 */ 609 if (IN_CAPABILITY_MODE(curthread)) 610 return (ECAPMODE); 611 #endif 612 613 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 614 nd = &tempdata->nd; 615 attr = &tempdata->attr; 616 imgp = &tempdata->image_params; 617 618 /* 619 * Initialize part of the common data 620 */ 621 imgp->proc = p; 622 imgp->attr = attr; 623 imgp->firstpage = NULL; 624 imgp->image_header = NULL; 625 imgp->object = NULL; 626 imgp->execlabel = NULL; 627 628 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 629 if ((error = namei(nd)) != 0) { 630 nd->ni_vp = NULL; 631 goto fail; 632 } 633 NDFREE(nd, NDF_ONLY_PNBUF); 634 imgp->vp = nd->ni_vp; 635 636 /* 637 * Check permissions, modes, uid, etc on the file, and "open" it. 638 */ 639 error = exec_check_permissions(imgp); 640 if (error) 641 goto fail; 642 643 error = exec_map_first_page(imgp); 644 if (error) 645 goto fail; 646 647 /* 648 * Also make certain that the interpreter stays the same, so set 649 * its VV_TEXT flag, too. 650 */ 651 VOP_SET_TEXT(nd->ni_vp); 652 653 imgp->object = nd->ni_vp->v_object; 654 655 hdr = (const Elf_Ehdr *)imgp->image_header; 656 if ((error = __elfN(check_header)(hdr)) != 0) 657 goto fail; 658 if (hdr->e_type == ET_DYN) 659 rbase = *addr; 660 else if (hdr->e_type == ET_EXEC) 661 rbase = 0; 662 else { 663 error = ENOEXEC; 664 goto fail; 665 } 666 667 /* Only support headers that fit within first page for now */ 668 if ((hdr->e_phoff > PAGE_SIZE) || 669 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 670 error = ENOEXEC; 671 goto fail; 672 } 673 674 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 675 if (!aligned(phdr, Elf_Addr)) { 676 error = ENOEXEC; 677 goto fail; 678 } 679 680 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 681 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 682 /* Loadable segment */ 683 prot = __elfN(trans_prot)(phdr[i].p_flags); 684 error = __elfN(load_section)(imgp, phdr[i].p_offset, 685 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 686 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 687 if (error != 0) 688 goto fail; 689 /* 690 * Establish the base address if this is the 691 * first segment. 692 */ 693 if (numsegs == 0) 694 base_addr = trunc_page(phdr[i].p_vaddr + 695 rbase); 696 numsegs++; 697 } 698 } 699 *addr = base_addr; 700 *entry = (unsigned long)hdr->e_entry + rbase; 701 702 fail: 703 if (imgp->firstpage) 704 exec_unmap_first_page(imgp); 705 706 if (nd->ni_vp) 707 vput(nd->ni_vp); 708 709 free(tempdata, M_TEMP); 710 711 return (error); 712 } 713 714 static int 715 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 716 { 717 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 718 const Elf_Phdr *phdr; 719 Elf_Auxargs *elf_auxargs; 720 struct vmspace *vmspace; 721 vm_prot_t prot; 722 u_long text_size = 0, data_size = 0, total_size = 0; 723 u_long text_addr = 0, data_addr = 0; 724 u_long seg_size, seg_addr; 725 u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; 726 int32_t osrel = 0; 727 int error = 0, i, n, interp_name_len = 0; 728 const char *interp = NULL, *newinterp = NULL; 729 Elf_Brandinfo *brand_info; 730 char *path; 731 struct sysentvec *sv; 732 733 /* 734 * Do we have a valid ELF header ? 735 * 736 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 737 * if particular brand doesn't support it. 738 */ 739 if (__elfN(check_header)(hdr) != 0 || 740 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 741 return (-1); 742 743 /* 744 * From here on down, we return an errno, not -1, as we've 745 * detected an ELF file. 746 */ 747 748 if ((hdr->e_phoff > PAGE_SIZE) || 749 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 750 /* Only support headers in first page for now */ 751 return (ENOEXEC); 752 } 753 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 754 if (!aligned(phdr, Elf_Addr)) 755 return (ENOEXEC); 756 n = 0; 757 baddr = 0; 758 for (i = 0; i < hdr->e_phnum; i++) { 759 switch (phdr[i].p_type) { 760 case PT_LOAD: 761 if (n == 0) 762 baddr = phdr[i].p_vaddr; 763 n++; 764 break; 765 case PT_INTERP: 766 /* Path to interpreter */ 767 if (phdr[i].p_filesz > MAXPATHLEN || 768 phdr[i].p_offset > PAGE_SIZE || 769 phdr[i].p_filesz > PAGE_SIZE - phdr[i].p_offset) 770 return (ENOEXEC); 771 interp = imgp->image_header + phdr[i].p_offset; 772 interp_name_len = phdr[i].p_filesz; 773 break; 774 case PT_GNU_STACK: 775 if (__elfN(nxstack)) 776 imgp->stack_prot = 777 __elfN(trans_prot)(phdr[i].p_flags); 778 break; 779 } 780 } 781 782 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 783 &osrel); 784 if (brand_info == NULL) { 785 uprintf("ELF binary type \"%u\" not known.\n", 786 hdr->e_ident[EI_OSABI]); 787 return (ENOEXEC); 788 } 789 if (hdr->e_type == ET_DYN) { 790 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) 791 return (ENOEXEC); 792 /* 793 * Honour the base load address from the dso if it is 794 * non-zero for some reason. 795 */ 796 if (baddr == 0) 797 et_dyn_addr = ET_DYN_LOAD_ADDR; 798 else 799 et_dyn_addr = 0; 800 } else 801 et_dyn_addr = 0; 802 sv = brand_info->sysvec; 803 if (interp != NULL && brand_info->interp_newpath != NULL) 804 newinterp = brand_info->interp_newpath; 805 806 /* 807 * Avoid a possible deadlock if the current address space is destroyed 808 * and that address space maps the locked vnode. In the common case, 809 * the locked vnode's v_usecount is decremented but remains greater 810 * than zero. Consequently, the vnode lock is not needed by vrele(). 811 * However, in cases where the vnode lock is external, such as nullfs, 812 * v_usecount may become zero. 813 * 814 * The VV_TEXT flag prevents modifications to the executable while 815 * the vnode is unlocked. 816 */ 817 VOP_UNLOCK(imgp->vp, 0); 818 819 error = exec_new_vmspace(imgp, sv); 820 imgp->proc->p_sysent = sv; 821 822 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 823 if (error) 824 return (error); 825 826 for (i = 0; i < hdr->e_phnum; i++) { 827 switch (phdr[i].p_type) { 828 case PT_LOAD: /* Loadable segment */ 829 if (phdr[i].p_memsz == 0) 830 break; 831 prot = __elfN(trans_prot)(phdr[i].p_flags); 832 error = __elfN(load_section)(imgp, phdr[i].p_offset, 833 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 834 phdr[i].p_memsz, phdr[i].p_filesz, prot, 835 sv->sv_pagesize); 836 if (error != 0) 837 return (error); 838 839 /* 840 * If this segment contains the program headers, 841 * remember their virtual address for the AT_PHDR 842 * aux entry. Static binaries don't usually include 843 * a PT_PHDR entry. 844 */ 845 if (phdr[i].p_offset == 0 && 846 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 847 <= phdr[i].p_filesz) 848 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 849 et_dyn_addr; 850 851 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 852 seg_size = round_page(phdr[i].p_memsz + 853 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 854 855 /* 856 * Make the largest executable segment the official 857 * text segment and all others data. 858 * 859 * Note that obreak() assumes that data_addr + 860 * data_size == end of data load area, and the ELF 861 * file format expects segments to be sorted by 862 * address. If multiple data segments exist, the 863 * last one will be used. 864 */ 865 866 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 867 text_size = seg_size; 868 text_addr = seg_addr; 869 } else { 870 data_size = seg_size; 871 data_addr = seg_addr; 872 } 873 total_size += seg_size; 874 break; 875 case PT_PHDR: /* Program header table info */ 876 proghdr = phdr[i].p_vaddr + et_dyn_addr; 877 break; 878 default: 879 break; 880 } 881 } 882 883 if (data_addr == 0 && data_size == 0) { 884 data_addr = text_addr; 885 data_size = text_size; 886 } 887 888 entry = (u_long)hdr->e_entry + et_dyn_addr; 889 890 /* 891 * Check limits. It should be safe to check the 892 * limits after loading the segments since we do 893 * not actually fault in all the segments pages. 894 */ 895 PROC_LOCK(imgp->proc); 896 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 897 text_size > maxtsiz || 898 total_size > lim_cur(imgp->proc, RLIMIT_VMEM) || 899 racct_set(imgp->proc, RACCT_DATA, data_size) != 0 || 900 racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) { 901 PROC_UNLOCK(imgp->proc); 902 return (ENOMEM); 903 } 904 905 vmspace = imgp->proc->p_vmspace; 906 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 907 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 908 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 909 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 910 911 /* 912 * We load the dynamic linker where a userland call 913 * to mmap(0, ...) would put it. The rationale behind this 914 * calculation is that it leaves room for the heap to grow to 915 * its maximum allowed size. 916 */ 917 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc, 918 RLIMIT_DATA)); 919 PROC_UNLOCK(imgp->proc); 920 921 imgp->entry_addr = entry; 922 923 if (interp != NULL) { 924 int have_interp = FALSE; 925 VOP_UNLOCK(imgp->vp, 0); 926 if (brand_info->emul_path != NULL && 927 brand_info->emul_path[0] != '\0') { 928 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 929 snprintf(path, MAXPATHLEN, "%s%s", 930 brand_info->emul_path, interp); 931 error = __elfN(load_file)(imgp->proc, path, &addr, 932 &imgp->entry_addr, sv->sv_pagesize); 933 free(path, M_TEMP); 934 if (error == 0) 935 have_interp = TRUE; 936 } 937 if (!have_interp && newinterp != NULL) { 938 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 939 &imgp->entry_addr, sv->sv_pagesize); 940 if (error == 0) 941 have_interp = TRUE; 942 } 943 if (!have_interp) { 944 error = __elfN(load_file)(imgp->proc, interp, &addr, 945 &imgp->entry_addr, sv->sv_pagesize); 946 } 947 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 948 if (error != 0) { 949 uprintf("ELF interpreter %s not found\n", interp); 950 return (error); 951 } 952 } else 953 addr = et_dyn_addr; 954 955 /* 956 * Construct auxargs table (used by the fixup routine) 957 */ 958 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 959 elf_auxargs->execfd = -1; 960 elf_auxargs->phdr = proghdr; 961 elf_auxargs->phent = hdr->e_phentsize; 962 elf_auxargs->phnum = hdr->e_phnum; 963 elf_auxargs->pagesz = PAGE_SIZE; 964 elf_auxargs->base = addr; 965 elf_auxargs->flags = 0; 966 elf_auxargs->entry = entry; 967 968 imgp->auxargs = elf_auxargs; 969 imgp->interpreted = 0; 970 imgp->reloc_base = addr; 971 imgp->proc->p_osrel = osrel; 972 973 return (error); 974 } 975 976 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 977 978 int 979 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 980 { 981 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 982 Elf_Addr *base; 983 Elf_Addr *pos; 984 985 base = (Elf_Addr *)*stack_base; 986 pos = base + (imgp->args->argc + imgp->args->envc + 2); 987 988 if (args->execfd != -1) 989 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 990 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 991 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 992 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 993 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 994 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 995 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 996 AUXARGS_ENTRY(pos, AT_BASE, args->base); 997 if (imgp->execpathp != 0) 998 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 999 AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate); 1000 if (imgp->canary != 0) { 1001 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1002 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1003 } 1004 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1005 if (imgp->pagesizes != 0) { 1006 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1007 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1008 } 1009 if (imgp->sysent->sv_timekeep_base != 0) { 1010 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1011 imgp->sysent->sv_timekeep_base); 1012 } 1013 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1014 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1015 imgp->sysent->sv_stackprot); 1016 AUXARGS_ENTRY(pos, AT_NULL, 0); 1017 1018 free(imgp->auxargs, M_TEMP); 1019 imgp->auxargs = NULL; 1020 1021 base--; 1022 suword(base, (long)imgp->args->argc); 1023 *stack_base = (register_t *)base; 1024 return (0); 1025 } 1026 1027 /* 1028 * Code for generating ELF core dumps. 1029 */ 1030 1031 typedef void (*segment_callback)(vm_map_entry_t, void *); 1032 1033 /* Closure for cb_put_phdr(). */ 1034 struct phdr_closure { 1035 Elf_Phdr *phdr; /* Program header to fill in */ 1036 Elf_Off offset; /* Offset of segment in core file */ 1037 }; 1038 1039 /* Closure for cb_size_segment(). */ 1040 struct sseg_closure { 1041 int count; /* Count of writable segments. */ 1042 size_t size; /* Total size of all writable segments. */ 1043 }; 1044 1045 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1046 1047 struct note_info { 1048 int type; /* Note type. */ 1049 outfunc_t outfunc; /* Output function. */ 1050 void *outarg; /* Argument for the output function. */ 1051 size_t outsize; /* Output size. */ 1052 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1053 }; 1054 1055 TAILQ_HEAD(note_info_list, note_info); 1056 1057 static void cb_put_phdr(vm_map_entry_t, void *); 1058 static void cb_size_segment(vm_map_entry_t, void *); 1059 static void each_writable_segment(struct thread *, segment_callback, void *); 1060 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *, 1061 int, void *, size_t, struct note_info_list *, size_t, gzFile); 1062 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1063 size_t *); 1064 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1065 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1066 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1067 static int sbuf_drain_core_output(void *, const char *, int); 1068 static int sbuf_drain_count(void *arg, const char *data, int len); 1069 1070 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1071 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1072 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1073 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1074 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1075 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1076 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1077 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1078 static void note_procstat_files(void *, struct sbuf *, size_t *); 1079 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1080 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1081 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1082 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1083 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1084 1085 #ifdef COMPRESS_USER_CORES 1086 extern int compress_user_cores; 1087 extern int compress_user_cores_gzlevel; 1088 #endif 1089 1090 static int 1091 core_output(struct vnode *vp, void *base, size_t len, off_t offset, 1092 struct ucred *active_cred, struct ucred *file_cred, 1093 struct thread *td, char *core_buf, gzFile gzfile) { 1094 1095 int error; 1096 if (gzfile) { 1097 #ifdef COMPRESS_USER_CORES 1098 error = compress_core(gzfile, base, core_buf, len, td); 1099 #else 1100 panic("shouldn't be here"); 1101 #endif 1102 } else { 1103 error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset, 1104 UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred, 1105 NULL, td); 1106 } 1107 return (error); 1108 } 1109 1110 /* Coredump output parameters for sbuf drain routine. */ 1111 struct sbuf_drain_core_params { 1112 off_t offset; 1113 struct ucred *active_cred; 1114 struct ucred *file_cred; 1115 struct thread *td; 1116 struct vnode *vp; 1117 #ifdef COMPRESS_USER_CORES 1118 gzFile gzfile; 1119 #endif 1120 }; 1121 1122 /* 1123 * Drain into a core file. 1124 */ 1125 static int 1126 sbuf_drain_core_output(void *arg, const char *data, int len) 1127 { 1128 struct sbuf_drain_core_params *p; 1129 int error, locked; 1130 1131 p = (struct sbuf_drain_core_params *)arg; 1132 1133 /* 1134 * Some kern_proc out routines that print to this sbuf may 1135 * call us with the process lock held. Draining with the 1136 * non-sleepable lock held is unsafe. The lock is needed for 1137 * those routines when dumping a live process. In our case we 1138 * can safely release the lock before draining and acquire 1139 * again after. 1140 */ 1141 locked = PROC_LOCKED(p->td->td_proc); 1142 if (locked) 1143 PROC_UNLOCK(p->td->td_proc); 1144 #ifdef COMPRESS_USER_CORES 1145 if (p->gzfile != Z_NULL) 1146 error = compress_core(p->gzfile, NULL, __DECONST(char *, data), 1147 len, p->td); 1148 else 1149 #endif 1150 error = vn_rdwr_inchunks(UIO_WRITE, p->vp, 1151 __DECONST(void *, data), len, p->offset, UIO_SYSSPACE, 1152 IO_UNIT | IO_DIRECT, p->active_cred, p->file_cred, NULL, 1153 p->td); 1154 if (locked) 1155 PROC_LOCK(p->td->td_proc); 1156 if (error != 0) 1157 return (-error); 1158 p->offset += len; 1159 return (len); 1160 } 1161 1162 /* 1163 * Drain into a counter. 1164 */ 1165 static int 1166 sbuf_drain_count(void *arg, const char *data __unused, int len) 1167 { 1168 size_t *sizep; 1169 1170 sizep = (size_t *)arg; 1171 *sizep += len; 1172 return (len); 1173 } 1174 1175 int 1176 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1177 { 1178 struct ucred *cred = td->td_ucred; 1179 int error = 0; 1180 struct sseg_closure seginfo; 1181 struct note_info_list notelst; 1182 struct note_info *ninfo; 1183 void *hdr; 1184 size_t hdrsize, notesz, coresize; 1185 1186 gzFile gzfile = Z_NULL; 1187 char *core_buf = NULL; 1188 #ifdef COMPRESS_USER_CORES 1189 char gzopen_flags[8]; 1190 char *p; 1191 int doing_compress = flags & IMGACT_CORE_COMPRESS; 1192 #endif 1193 1194 hdr = NULL; 1195 TAILQ_INIT(¬elst); 1196 1197 #ifdef COMPRESS_USER_CORES 1198 if (doing_compress) { 1199 p = gzopen_flags; 1200 *p++ = 'w'; 1201 if (compress_user_cores_gzlevel >= 0 && 1202 compress_user_cores_gzlevel <= 9) 1203 *p++ = '0' + compress_user_cores_gzlevel; 1204 *p = 0; 1205 gzfile = gz_open("", gzopen_flags, vp); 1206 if (gzfile == Z_NULL) { 1207 error = EFAULT; 1208 goto done; 1209 } 1210 core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1211 if (!core_buf) { 1212 error = ENOMEM; 1213 goto done; 1214 } 1215 } 1216 #endif 1217 1218 /* Size the program segments. */ 1219 seginfo.count = 0; 1220 seginfo.size = 0; 1221 each_writable_segment(td, cb_size_segment, &seginfo); 1222 1223 /* 1224 * Collect info about the core file header area. 1225 */ 1226 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1227 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1228 coresize = round_page(hdrsize + notesz) + seginfo.size; 1229 1230 #ifdef RACCT 1231 PROC_LOCK(td->td_proc); 1232 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1233 PROC_UNLOCK(td->td_proc); 1234 if (error != 0) { 1235 error = EFAULT; 1236 goto done; 1237 } 1238 #endif 1239 if (coresize >= limit) { 1240 error = EFAULT; 1241 goto done; 1242 } 1243 1244 /* 1245 * Allocate memory for building the header, fill it up, 1246 * and write it out following the notes. 1247 */ 1248 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1249 if (hdr == NULL) { 1250 error = EINVAL; 1251 goto done; 1252 } 1253 error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize, 1254 ¬elst, notesz, gzfile); 1255 1256 /* Write the contents of all of the writable segments. */ 1257 if (error == 0) { 1258 Elf_Phdr *php; 1259 off_t offset; 1260 int i; 1261 1262 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1263 offset = round_page(hdrsize + notesz); 1264 for (i = 0; i < seginfo.count; i++) { 1265 error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr, 1266 php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile); 1267 if (error != 0) 1268 break; 1269 offset += php->p_filesz; 1270 php++; 1271 } 1272 } 1273 if (error) { 1274 log(LOG_WARNING, 1275 "Failed to write core file for process %s (error %d)\n", 1276 curproc->p_comm, error); 1277 } 1278 1279 done: 1280 #ifdef COMPRESS_USER_CORES 1281 if (core_buf) 1282 free(core_buf, M_TEMP); 1283 if (gzfile) 1284 gzclose(gzfile); 1285 #endif 1286 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1287 TAILQ_REMOVE(¬elst, ninfo, link); 1288 free(ninfo, M_TEMP); 1289 } 1290 if (hdr != NULL) 1291 free(hdr, M_TEMP); 1292 1293 return (error); 1294 } 1295 1296 /* 1297 * A callback for each_writable_segment() to write out the segment's 1298 * program header entry. 1299 */ 1300 static void 1301 cb_put_phdr(entry, closure) 1302 vm_map_entry_t entry; 1303 void *closure; 1304 { 1305 struct phdr_closure *phc = (struct phdr_closure *)closure; 1306 Elf_Phdr *phdr = phc->phdr; 1307 1308 phc->offset = round_page(phc->offset); 1309 1310 phdr->p_type = PT_LOAD; 1311 phdr->p_offset = phc->offset; 1312 phdr->p_vaddr = entry->start; 1313 phdr->p_paddr = 0; 1314 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1315 phdr->p_align = PAGE_SIZE; 1316 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1317 1318 phc->offset += phdr->p_filesz; 1319 phc->phdr++; 1320 } 1321 1322 /* 1323 * A callback for each_writable_segment() to gather information about 1324 * the number of segments and their total size. 1325 */ 1326 static void 1327 cb_size_segment(entry, closure) 1328 vm_map_entry_t entry; 1329 void *closure; 1330 { 1331 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1332 1333 ssc->count++; 1334 ssc->size += entry->end - entry->start; 1335 } 1336 1337 /* 1338 * For each writable segment in the process's memory map, call the given 1339 * function with a pointer to the map entry and some arbitrary 1340 * caller-supplied data. 1341 */ 1342 static void 1343 each_writable_segment(td, func, closure) 1344 struct thread *td; 1345 segment_callback func; 1346 void *closure; 1347 { 1348 struct proc *p = td->td_proc; 1349 vm_map_t map = &p->p_vmspace->vm_map; 1350 vm_map_entry_t entry; 1351 vm_object_t backing_object, object; 1352 boolean_t ignore_entry; 1353 1354 vm_map_lock_read(map); 1355 for (entry = map->header.next; entry != &map->header; 1356 entry = entry->next) { 1357 /* 1358 * Don't dump inaccessible mappings, deal with legacy 1359 * coredump mode. 1360 * 1361 * Note that read-only segments related to the elf binary 1362 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1363 * need to arbitrarily ignore such segments. 1364 */ 1365 if (elf_legacy_coredump) { 1366 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1367 continue; 1368 } else { 1369 if ((entry->protection & VM_PROT_ALL) == 0) 1370 continue; 1371 } 1372 1373 /* 1374 * Dont include memory segment in the coredump if 1375 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1376 * madvise(2). Do not dump submaps (i.e. parts of the 1377 * kernel map). 1378 */ 1379 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1380 continue; 1381 1382 if ((object = entry->object.vm_object) == NULL) 1383 continue; 1384 1385 /* Ignore memory-mapped devices and such things. */ 1386 VM_OBJECT_RLOCK(object); 1387 while ((backing_object = object->backing_object) != NULL) { 1388 VM_OBJECT_RLOCK(backing_object); 1389 VM_OBJECT_RUNLOCK(object); 1390 object = backing_object; 1391 } 1392 ignore_entry = object->type != OBJT_DEFAULT && 1393 object->type != OBJT_SWAP && object->type != OBJT_VNODE; 1394 VM_OBJECT_RUNLOCK(object); 1395 if (ignore_entry) 1396 continue; 1397 1398 (*func)(entry, closure); 1399 } 1400 vm_map_unlock_read(map); 1401 } 1402 1403 /* 1404 * Write the core file header to the file, including padding up to 1405 * the page boundary. 1406 */ 1407 static int 1408 __elfN(corehdr)(struct thread *td, struct vnode *vp, struct ucred *cred, 1409 int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst, 1410 size_t notesz, gzFile gzfile) 1411 { 1412 struct sbuf_drain_core_params params; 1413 struct note_info *ninfo; 1414 struct sbuf *sb; 1415 int error; 1416 1417 /* Fill in the header. */ 1418 bzero(hdr, hdrsize); 1419 __elfN(puthdr)(td, hdr, hdrsize, numsegs, notesz); 1420 1421 params.offset = 0; 1422 params.active_cred = cred; 1423 params.file_cred = NOCRED; 1424 params.td = td; 1425 params.vp = vp; 1426 #ifdef COMPRESS_USER_CORES 1427 params.gzfile = gzfile; 1428 #endif 1429 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1430 sbuf_set_drain(sb, sbuf_drain_core_output, ¶ms); 1431 sbuf_start_section(sb, NULL); 1432 sbuf_bcat(sb, hdr, hdrsize); 1433 TAILQ_FOREACH(ninfo, notelst, link) 1434 __elfN(putnote)(ninfo, sb); 1435 /* Align up to a page boundary for the program segments. */ 1436 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1437 error = sbuf_finish(sb); 1438 sbuf_delete(sb); 1439 1440 return (error); 1441 } 1442 1443 static void 1444 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1445 size_t *sizep) 1446 { 1447 struct proc *p; 1448 struct thread *thr; 1449 size_t size; 1450 1451 p = td->td_proc; 1452 size = 0; 1453 1454 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1455 1456 /* 1457 * To have the debugger select the right thread (LWP) as the initial 1458 * thread, we dump the state of the thread passed to us in td first. 1459 * This is the thread that causes the core dump and thus likely to 1460 * be the right thread one wants to have selected in the debugger. 1461 */ 1462 thr = td; 1463 while (thr != NULL) { 1464 size += register_note(list, NT_PRSTATUS, 1465 __elfN(note_prstatus), thr); 1466 size += register_note(list, NT_FPREGSET, 1467 __elfN(note_fpregset), thr); 1468 size += register_note(list, NT_THRMISC, 1469 __elfN(note_thrmisc), thr); 1470 size += register_note(list, -1, 1471 __elfN(note_threadmd), thr); 1472 1473 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1474 TAILQ_NEXT(thr, td_plist); 1475 if (thr == td) 1476 thr = TAILQ_NEXT(thr, td_plist); 1477 } 1478 1479 size += register_note(list, NT_PROCSTAT_PROC, 1480 __elfN(note_procstat_proc), p); 1481 size += register_note(list, NT_PROCSTAT_FILES, 1482 note_procstat_files, p); 1483 size += register_note(list, NT_PROCSTAT_VMMAP, 1484 note_procstat_vmmap, p); 1485 size += register_note(list, NT_PROCSTAT_GROUPS, 1486 note_procstat_groups, p); 1487 size += register_note(list, NT_PROCSTAT_UMASK, 1488 note_procstat_umask, p); 1489 size += register_note(list, NT_PROCSTAT_RLIMIT, 1490 note_procstat_rlimit, p); 1491 size += register_note(list, NT_PROCSTAT_OSREL, 1492 note_procstat_osrel, p); 1493 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1494 __elfN(note_procstat_psstrings), p); 1495 size += register_note(list, NT_PROCSTAT_AUXV, 1496 __elfN(note_procstat_auxv), p); 1497 1498 *sizep = size; 1499 } 1500 1501 static void 1502 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1503 size_t notesz) 1504 { 1505 Elf_Ehdr *ehdr; 1506 Elf_Phdr *phdr; 1507 struct phdr_closure phc; 1508 1509 ehdr = (Elf_Ehdr *)hdr; 1510 phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)); 1511 1512 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1513 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1514 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1515 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1516 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1517 ehdr->e_ident[EI_DATA] = ELF_DATA; 1518 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1519 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1520 ehdr->e_ident[EI_ABIVERSION] = 0; 1521 ehdr->e_ident[EI_PAD] = 0; 1522 ehdr->e_type = ET_CORE; 1523 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1524 ehdr->e_machine = ELF_ARCH32; 1525 #else 1526 ehdr->e_machine = ELF_ARCH; 1527 #endif 1528 ehdr->e_version = EV_CURRENT; 1529 ehdr->e_entry = 0; 1530 ehdr->e_phoff = sizeof(Elf_Ehdr); 1531 ehdr->e_flags = 0; 1532 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1533 ehdr->e_phentsize = sizeof(Elf_Phdr); 1534 ehdr->e_phnum = numsegs + 1; 1535 ehdr->e_shentsize = sizeof(Elf_Shdr); 1536 ehdr->e_shnum = 0; 1537 ehdr->e_shstrndx = SHN_UNDEF; 1538 1539 /* 1540 * Fill in the program header entries. 1541 */ 1542 1543 /* The note segement. */ 1544 phdr->p_type = PT_NOTE; 1545 phdr->p_offset = hdrsize; 1546 phdr->p_vaddr = 0; 1547 phdr->p_paddr = 0; 1548 phdr->p_filesz = notesz; 1549 phdr->p_memsz = 0; 1550 phdr->p_flags = PF_R; 1551 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1552 phdr++; 1553 1554 /* All the writable segments from the program. */ 1555 phc.phdr = phdr; 1556 phc.offset = round_page(hdrsize + notesz); 1557 each_writable_segment(td, cb_put_phdr, &phc); 1558 } 1559 1560 static size_t 1561 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1562 { 1563 struct note_info *ninfo; 1564 size_t size, notesize; 1565 1566 size = 0; 1567 out(arg, NULL, &size); 1568 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1569 ninfo->type = type; 1570 ninfo->outfunc = out; 1571 ninfo->outarg = arg; 1572 ninfo->outsize = size; 1573 TAILQ_INSERT_TAIL(list, ninfo, link); 1574 1575 if (type == -1) 1576 return (size); 1577 1578 notesize = sizeof(Elf_Note) + /* note header */ 1579 roundup2(8, ELF_NOTE_ROUNDSIZE) + /* note name ("FreeBSD") */ 1580 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1581 1582 return (notesize); 1583 } 1584 1585 static void 1586 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1587 { 1588 Elf_Note note; 1589 ssize_t old_len; 1590 1591 if (ninfo->type == -1) { 1592 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1593 return; 1594 } 1595 1596 note.n_namesz = 8; /* strlen("FreeBSD") + 1 */ 1597 note.n_descsz = ninfo->outsize; 1598 note.n_type = ninfo->type; 1599 1600 sbuf_bcat(sb, ¬e, sizeof(note)); 1601 sbuf_start_section(sb, &old_len); 1602 sbuf_bcat(sb, "FreeBSD", note.n_namesz); 1603 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1604 if (note.n_descsz == 0) 1605 return; 1606 sbuf_start_section(sb, &old_len); 1607 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1608 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1609 } 1610 1611 /* 1612 * Miscellaneous note out functions. 1613 */ 1614 1615 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1616 #include <compat/freebsd32/freebsd32.h> 1617 1618 typedef struct prstatus32 elf_prstatus_t; 1619 typedef struct prpsinfo32 elf_prpsinfo_t; 1620 typedef struct fpreg32 elf_prfpregset_t; 1621 typedef struct fpreg32 elf_fpregset_t; 1622 typedef struct reg32 elf_gregset_t; 1623 typedef struct thrmisc32 elf_thrmisc_t; 1624 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1625 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1626 typedef uint32_t elf_ps_strings_t; 1627 #else 1628 typedef prstatus_t elf_prstatus_t; 1629 typedef prpsinfo_t elf_prpsinfo_t; 1630 typedef prfpregset_t elf_prfpregset_t; 1631 typedef prfpregset_t elf_fpregset_t; 1632 typedef gregset_t elf_gregset_t; 1633 typedef thrmisc_t elf_thrmisc_t; 1634 #define ELF_KERN_PROC_MASK 0 1635 typedef struct kinfo_proc elf_kinfo_proc_t; 1636 typedef vm_offset_t elf_ps_strings_t; 1637 #endif 1638 1639 static void 1640 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1641 { 1642 struct proc *p; 1643 elf_prpsinfo_t *psinfo; 1644 1645 p = (struct proc *)arg; 1646 if (sb != NULL) { 1647 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1648 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1649 psinfo->pr_version = PRPSINFO_VERSION; 1650 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1651 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1652 /* 1653 * XXX - We don't fill in the command line arguments properly 1654 * yet. 1655 */ 1656 strlcpy(psinfo->pr_psargs, p->p_comm, 1657 sizeof(psinfo->pr_psargs)); 1658 1659 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1660 free(psinfo, M_TEMP); 1661 } 1662 *sizep = sizeof(*psinfo); 1663 } 1664 1665 static void 1666 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1667 { 1668 struct thread *td; 1669 elf_prstatus_t *status; 1670 1671 td = (struct thread *)arg; 1672 if (sb != NULL) { 1673 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1674 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1675 status->pr_version = PRSTATUS_VERSION; 1676 status->pr_statussz = sizeof(elf_prstatus_t); 1677 status->pr_gregsetsz = sizeof(elf_gregset_t); 1678 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1679 status->pr_osreldate = osreldate; 1680 status->pr_cursig = td->td_proc->p_sig; 1681 status->pr_pid = td->td_tid; 1682 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1683 fill_regs32(td, &status->pr_reg); 1684 #else 1685 fill_regs(td, &status->pr_reg); 1686 #endif 1687 sbuf_bcat(sb, status, sizeof(*status)); 1688 free(status, M_TEMP); 1689 } 1690 *sizep = sizeof(*status); 1691 } 1692 1693 static void 1694 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1695 { 1696 struct thread *td; 1697 elf_prfpregset_t *fpregset; 1698 1699 td = (struct thread *)arg; 1700 if (sb != NULL) { 1701 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1702 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1703 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1704 fill_fpregs32(td, fpregset); 1705 #else 1706 fill_fpregs(td, fpregset); 1707 #endif 1708 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1709 free(fpregset, M_TEMP); 1710 } 1711 *sizep = sizeof(*fpregset); 1712 } 1713 1714 static void 1715 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1716 { 1717 struct thread *td; 1718 elf_thrmisc_t thrmisc; 1719 1720 td = (struct thread *)arg; 1721 if (sb != NULL) { 1722 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1723 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1724 strcpy(thrmisc.pr_tname, td->td_name); 1725 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1726 } 1727 *sizep = sizeof(thrmisc); 1728 } 1729 1730 /* 1731 * Allow for MD specific notes, as well as any MD 1732 * specific preparations for writing MI notes. 1733 */ 1734 static void 1735 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 1736 { 1737 struct thread *td; 1738 void *buf; 1739 size_t size; 1740 1741 td = (struct thread *)arg; 1742 size = *sizep; 1743 buf = NULL; 1744 if (size != 0 && sb != NULL) 1745 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 1746 size = 0; 1747 __elfN(dump_thread)(td, buf, &size); 1748 KASSERT(*sizep == size, ("invalid size")); 1749 if (size != 0 && sb != NULL) 1750 sbuf_bcat(sb, buf, size); 1751 *sizep = size; 1752 } 1753 1754 #ifdef KINFO_PROC_SIZE 1755 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 1756 #endif 1757 1758 static void 1759 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 1760 { 1761 struct proc *p; 1762 size_t size; 1763 int structsize; 1764 1765 p = (struct proc *)arg; 1766 size = sizeof(structsize) + p->p_numthreads * 1767 sizeof(elf_kinfo_proc_t); 1768 1769 if (sb != NULL) { 1770 KASSERT(*sizep == size, ("invalid size")); 1771 structsize = sizeof(elf_kinfo_proc_t); 1772 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1773 PROC_LOCK(p); 1774 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 1775 } 1776 *sizep = size; 1777 } 1778 1779 #ifdef KINFO_FILE_SIZE 1780 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 1781 #endif 1782 1783 static void 1784 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 1785 { 1786 struct proc *p; 1787 size_t size; 1788 int structsize; 1789 1790 p = (struct proc *)arg; 1791 if (sb == NULL) { 1792 size = 0; 1793 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1794 sbuf_set_drain(sb, sbuf_drain_count, &size); 1795 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1796 PROC_LOCK(p); 1797 kern_proc_filedesc_out(p, sb, -1); 1798 sbuf_finish(sb); 1799 sbuf_delete(sb); 1800 *sizep = size; 1801 } else { 1802 structsize = sizeof(struct kinfo_file); 1803 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1804 PROC_LOCK(p); 1805 kern_proc_filedesc_out(p, sb, -1); 1806 } 1807 } 1808 1809 #ifdef KINFO_VMENTRY_SIZE 1810 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1811 #endif 1812 1813 static void 1814 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 1815 { 1816 struct proc *p; 1817 size_t size; 1818 int structsize; 1819 1820 p = (struct proc *)arg; 1821 if (sb == NULL) { 1822 size = 0; 1823 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1824 sbuf_set_drain(sb, sbuf_drain_count, &size); 1825 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1826 PROC_LOCK(p); 1827 kern_proc_vmmap_out(p, sb); 1828 sbuf_finish(sb); 1829 sbuf_delete(sb); 1830 *sizep = size; 1831 } else { 1832 structsize = sizeof(struct kinfo_vmentry); 1833 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1834 PROC_LOCK(p); 1835 kern_proc_vmmap_out(p, sb); 1836 } 1837 } 1838 1839 static void 1840 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 1841 { 1842 struct proc *p; 1843 size_t size; 1844 int structsize; 1845 1846 p = (struct proc *)arg; 1847 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 1848 if (sb != NULL) { 1849 KASSERT(*sizep == size, ("invalid size")); 1850 structsize = sizeof(gid_t); 1851 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1852 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 1853 sizeof(gid_t)); 1854 } 1855 *sizep = size; 1856 } 1857 1858 static void 1859 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 1860 { 1861 struct proc *p; 1862 size_t size; 1863 int structsize; 1864 1865 p = (struct proc *)arg; 1866 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 1867 if (sb != NULL) { 1868 KASSERT(*sizep == size, ("invalid size")); 1869 structsize = sizeof(p->p_fd->fd_cmask); 1870 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1871 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 1872 } 1873 *sizep = size; 1874 } 1875 1876 static void 1877 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 1878 { 1879 struct proc *p; 1880 struct rlimit rlim[RLIM_NLIMITS]; 1881 size_t size; 1882 int structsize, i; 1883 1884 p = (struct proc *)arg; 1885 size = sizeof(structsize) + sizeof(rlim); 1886 if (sb != NULL) { 1887 KASSERT(*sizep == size, ("invalid size")); 1888 structsize = sizeof(rlim); 1889 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1890 PROC_LOCK(p); 1891 for (i = 0; i < RLIM_NLIMITS; i++) 1892 lim_rlimit(p, i, &rlim[i]); 1893 PROC_UNLOCK(p); 1894 sbuf_bcat(sb, rlim, sizeof(rlim)); 1895 } 1896 *sizep = size; 1897 } 1898 1899 static void 1900 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 1901 { 1902 struct proc *p; 1903 size_t size; 1904 int structsize; 1905 1906 p = (struct proc *)arg; 1907 size = sizeof(structsize) + sizeof(p->p_osrel); 1908 if (sb != NULL) { 1909 KASSERT(*sizep == size, ("invalid size")); 1910 structsize = sizeof(p->p_osrel); 1911 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1912 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 1913 } 1914 *sizep = size; 1915 } 1916 1917 static void 1918 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 1919 { 1920 struct proc *p; 1921 elf_ps_strings_t ps_strings; 1922 size_t size; 1923 int structsize; 1924 1925 p = (struct proc *)arg; 1926 size = sizeof(structsize) + sizeof(ps_strings); 1927 if (sb != NULL) { 1928 KASSERT(*sizep == size, ("invalid size")); 1929 structsize = sizeof(ps_strings); 1930 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1931 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 1932 #else 1933 ps_strings = p->p_sysent->sv_psstrings; 1934 #endif 1935 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1936 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 1937 } 1938 *sizep = size; 1939 } 1940 1941 static void 1942 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 1943 { 1944 struct proc *p; 1945 size_t size; 1946 int structsize; 1947 1948 p = (struct proc *)arg; 1949 if (sb == NULL) { 1950 size = 0; 1951 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1952 sbuf_set_drain(sb, sbuf_drain_count, &size); 1953 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1954 PHOLD(p); 1955 proc_getauxv(curthread, p, sb); 1956 PRELE(p); 1957 sbuf_finish(sb); 1958 sbuf_delete(sb); 1959 *sizep = size; 1960 } else { 1961 structsize = sizeof(Elf_Auxinfo); 1962 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1963 PHOLD(p); 1964 proc_getauxv(curthread, p, sb); 1965 PRELE(p); 1966 } 1967 } 1968 1969 static boolean_t 1970 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 1971 int32_t *osrel, const Elf_Phdr *pnote) 1972 { 1973 const Elf_Note *note, *note0, *note_end; 1974 const char *note_name; 1975 int i; 1976 1977 if (pnote == NULL || pnote->p_offset > PAGE_SIZE || 1978 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) 1979 return (FALSE); 1980 1981 note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); 1982 note_end = (const Elf_Note *)(imgp->image_header + 1983 pnote->p_offset + pnote->p_filesz); 1984 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 1985 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 1986 (const char *)note < sizeof(Elf_Note)) 1987 return (FALSE); 1988 if (note->n_namesz != checknote->hdr.n_namesz || 1989 note->n_descsz != checknote->hdr.n_descsz || 1990 note->n_type != checknote->hdr.n_type) 1991 goto nextnote; 1992 note_name = (const char *)(note + 1); 1993 if (note_name + checknote->hdr.n_namesz >= 1994 (const char *)note_end || strncmp(checknote->vendor, 1995 note_name, checknote->hdr.n_namesz) != 0) 1996 goto nextnote; 1997 1998 /* 1999 * Fetch the osreldate for binary 2000 * from the ELF OSABI-note if necessary. 2001 */ 2002 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2003 checknote->trans_osrel != NULL) 2004 return (checknote->trans_osrel(note, osrel)); 2005 return (TRUE); 2006 2007 nextnote: 2008 note = (const Elf_Note *)((const char *)(note + 1) + 2009 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2010 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2011 } 2012 2013 return (FALSE); 2014 } 2015 2016 /* 2017 * Try to find the appropriate ABI-note section for checknote, 2018 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2019 * first page of the image is searched, the same as for headers. 2020 */ 2021 static boolean_t 2022 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2023 int32_t *osrel) 2024 { 2025 const Elf_Phdr *phdr; 2026 const Elf_Ehdr *hdr; 2027 int i; 2028 2029 hdr = (const Elf_Ehdr *)imgp->image_header; 2030 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2031 2032 for (i = 0; i < hdr->e_phnum; i++) { 2033 if (phdr[i].p_type == PT_NOTE && 2034 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2035 return (TRUE); 2036 } 2037 return (FALSE); 2038 2039 } 2040 2041 /* 2042 * Tell kern_execve.c about it, with a little help from the linker. 2043 */ 2044 static struct execsw __elfN(execsw) = { 2045 __CONCAT(exec_, __elfN(imgact)), 2046 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2047 }; 2048 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2049 2050 #ifdef COMPRESS_USER_CORES 2051 /* 2052 * Compress and write out a core segment for a user process. 2053 * 2054 * 'inbuf' is the starting address of a VM segment in the process' address 2055 * space that is to be compressed and written out to the core file. 'dest_buf' 2056 * is a buffer in the kernel's address space. The segment is copied from 2057 * 'inbuf' to 'dest_buf' first before being processed by the compression 2058 * routine gzwrite(). This copying is necessary because the content of the VM 2059 * segment may change between the compression pass and the crc-computation pass 2060 * in gzwrite(). This is because realtime threads may preempt the UNIX kernel. 2061 * 2062 * If inbuf is NULL it is assumed that data is already copied to 'dest_buf'. 2063 */ 2064 static int 2065 compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len, 2066 struct thread *td) 2067 { 2068 int len_compressed; 2069 int error = 0; 2070 unsigned int chunk_len; 2071 2072 while (len) { 2073 if (inbuf != NULL) { 2074 chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len; 2075 copyin(inbuf, dest_buf, chunk_len); 2076 inbuf += chunk_len; 2077 } else { 2078 chunk_len = len; 2079 } 2080 len_compressed = gzwrite(file, dest_buf, chunk_len); 2081 2082 EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed); 2083 2084 if ((unsigned int)len_compressed != chunk_len) { 2085 log(LOG_WARNING, 2086 "compress_core: length mismatch (0x%x returned, " 2087 "0x%x expected)\n", len_compressed, chunk_len); 2088 EVENTHANDLER_INVOKE(app_coredump_error, td, 2089 "compress_core: length mismatch %x -> %x", 2090 chunk_len, len_compressed); 2091 error = EFAULT; 2092 break; 2093 } 2094 len -= chunk_len; 2095 maybe_yield(); 2096 } 2097 2098 return (error); 2099 } 2100 #endif /* COMPRESS_USER_CORES */ 2101 2102 static vm_prot_t 2103 __elfN(trans_prot)(Elf_Word flags) 2104 { 2105 vm_prot_t prot; 2106 2107 prot = 0; 2108 if (flags & PF_X) 2109 prot |= VM_PROT_EXECUTE; 2110 if (flags & PF_W) 2111 prot |= VM_PROT_WRITE; 2112 if (flags & PF_R) 2113 prot |= VM_PROT_READ; 2114 #if __ELF_WORD_SIZE == 32 2115 #if defined(__amd64__) || defined(__ia64__) 2116 if (i386_read_exec && (flags & PF_R)) 2117 prot |= VM_PROT_EXECUTE; 2118 #endif 2119 #endif 2120 return (prot); 2121 } 2122 2123 static Elf_Word 2124 __elfN(untrans_prot)(vm_prot_t prot) 2125 { 2126 Elf_Word flags; 2127 2128 flags = 0; 2129 if (prot & VM_PROT_EXECUTE) 2130 flags |= PF_X; 2131 if (prot & VM_PROT_READ) 2132 flags |= PF_R; 2133 if (prot & VM_PROT_WRITE) 2134 flags |= PF_W; 2135 return (flags); 2136 } 2137