1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 S�ren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_compat.h" 35 36 #include <sys/param.h> 37 #include <sys/exec.h> 38 #include <sys/fcntl.h> 39 #include <sys/imgact.h> 40 #include <sys/imgact_elf.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/mutex.h> 46 #include <sys/mman.h> 47 #include <sys/namei.h> 48 #include <sys/pioctl.h> 49 #include <sys/proc.h> 50 #include <sys/procfs.h> 51 #include <sys/resourcevar.h> 52 #include <sys/systm.h> 53 #include <sys/signalvar.h> 54 #include <sys/stat.h> 55 #include <sys/sx.h> 56 #include <sys/syscall.h> 57 #include <sys/sysctl.h> 58 #include <sys/sysent.h> 59 #include <sys/vnode.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_kern.h> 63 #include <vm/vm_param.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_extern.h> 68 69 #include <machine/elf.h> 70 #include <machine/md_var.h> 71 72 #if defined(COMPAT_IA32) && __ELF_WORD_SIZE == 32 73 #include <machine/fpu.h> 74 #include <compat/ia32/ia32_reg.h> 75 #endif 76 77 #define OLD_EI_BRAND 8 78 79 static int __elfN(check_header)(const Elf_Ehdr *hdr); 80 static Elf_Brandinfo *__elfN(get_brandinfo)(const Elf_Ehdr *hdr, 81 const char *interp); 82 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 83 u_long *entry, size_t pagesize); 84 static int __elfN(load_section)(struct proc *p, 85 struct vmspace *vmspace, struct vnode *vp, vm_object_t object, 86 vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, 87 vm_prot_t prot, size_t pagesize); 88 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 89 90 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 91 ""); 92 93 int __elfN(fallback_brand) = -1; 94 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 95 fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0, 96 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 97 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand", 98 &__elfN(fallback_brand)); 99 100 static int elf_trace = 0; 101 SYSCTL_INT(_debug, OID_AUTO, __elfN(trace), CTLFLAG_RW, &elf_trace, 0, ""); 102 103 static int elf_legacy_coredump = 0; 104 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 105 &elf_legacy_coredump, 0, ""); 106 107 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 108 109 int 110 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 111 { 112 int i; 113 114 for (i = 0; i < MAX_BRANDS; i++) { 115 if (elf_brand_list[i] == NULL) { 116 elf_brand_list[i] = entry; 117 break; 118 } 119 } 120 if (i == MAX_BRANDS) 121 return (-1); 122 return (0); 123 } 124 125 int 126 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 127 { 128 int i; 129 130 for (i = 0; i < MAX_BRANDS; i++) { 131 if (elf_brand_list[i] == entry) { 132 elf_brand_list[i] = NULL; 133 break; 134 } 135 } 136 if (i == MAX_BRANDS) 137 return (-1); 138 return (0); 139 } 140 141 int 142 __elfN(brand_inuse)(Elf_Brandinfo *entry) 143 { 144 struct proc *p; 145 int rval = FALSE; 146 147 sx_slock(&allproc_lock); 148 LIST_FOREACH(p, &allproc, p_list) { 149 if (p->p_sysent == entry->sysvec) { 150 rval = TRUE; 151 break; 152 } 153 } 154 sx_sunlock(&allproc_lock); 155 156 return (rval); 157 } 158 159 static Elf_Brandinfo * 160 __elfN(get_brandinfo)(const Elf_Ehdr *hdr, const char *interp) 161 { 162 Elf_Brandinfo *bi; 163 int i; 164 165 /* 166 * We support three types of branding -- (1) the ELF EI_OSABI field 167 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 168 * branding w/in the ELF header, and (3) path of the `interp_path' 169 * field. We should also look for an ".note.ABI-tag" ELF section now 170 * in all Linux ELF binaries, FreeBSD 4.1+, and some NetBSD ones. 171 */ 172 173 /* If the executable has a brand, search for it in the brand list. */ 174 for (i = 0; i < MAX_BRANDS; i++) { 175 bi = elf_brand_list[i]; 176 if (bi != NULL && hdr->e_machine == bi->machine && 177 (hdr->e_ident[EI_OSABI] == bi->brand || 178 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 179 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 180 return (bi); 181 } 182 183 /* Lacking a known brand, search for a recognized interpreter. */ 184 if (interp != NULL) { 185 for (i = 0; i < MAX_BRANDS; i++) { 186 bi = elf_brand_list[i]; 187 if (bi != NULL && hdr->e_machine == bi->machine && 188 strcmp(interp, bi->interp_path) == 0) 189 return (bi); 190 } 191 } 192 193 /* Lacking a recognized interpreter, try the default brand */ 194 for (i = 0; i < MAX_BRANDS; i++) { 195 bi = elf_brand_list[i]; 196 if (bi != NULL && hdr->e_machine == bi->machine && 197 __elfN(fallback_brand) == bi->brand) 198 return (bi); 199 } 200 return (NULL); 201 } 202 203 static int 204 __elfN(check_header)(const Elf_Ehdr *hdr) 205 { 206 Elf_Brandinfo *bi; 207 int i; 208 209 if (!IS_ELF(*hdr) || 210 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 211 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 212 hdr->e_ident[EI_VERSION] != EV_CURRENT || 213 hdr->e_phentsize != sizeof(Elf_Phdr) || 214 hdr->e_version != ELF_TARG_VER) 215 return (ENOEXEC); 216 217 /* 218 * Make sure we have at least one brand for this machine. 219 */ 220 221 for (i = 0; i < MAX_BRANDS; i++) { 222 bi = elf_brand_list[i]; 223 if (bi != NULL && bi->machine == hdr->e_machine) 224 break; 225 } 226 if (i == MAX_BRANDS) 227 return (ENOEXEC); 228 229 return (0); 230 } 231 232 static int 233 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 234 vm_offset_t start, vm_offset_t end, vm_prot_t prot, 235 vm_prot_t max) 236 { 237 int error, rv; 238 vm_offset_t off; 239 vm_offset_t data_buf = 0; 240 241 /* 242 * Create the page if it doesn't exist yet. Ignore errors. 243 */ 244 vm_map_lock(map); 245 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), max, 246 max, 0); 247 vm_map_unlock(map); 248 249 /* 250 * Find the page from the underlying object. 251 */ 252 if (object) { 253 vm_object_reference(object); 254 rv = vm_map_find(exec_map, 255 object, 256 trunc_page(offset), 257 &data_buf, 258 PAGE_SIZE, 259 TRUE, 260 VM_PROT_READ, 261 VM_PROT_ALL, 262 MAP_COPY_ON_WRITE | MAP_PREFAULT_PARTIAL); 263 if (rv != KERN_SUCCESS) { 264 vm_object_deallocate(object); 265 return (rv); 266 } 267 268 off = offset - trunc_page(offset); 269 error = copyout((caddr_t)data_buf + off, (caddr_t)start, 270 end - start); 271 vm_map_remove(exec_map, data_buf, data_buf + PAGE_SIZE); 272 if (error) { 273 return (KERN_FAILURE); 274 } 275 } 276 277 return (KERN_SUCCESS); 278 } 279 280 static int 281 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 282 vm_offset_t start, vm_offset_t end, vm_prot_t prot, 283 vm_prot_t max, int cow) 284 { 285 vm_offset_t data_buf, off; 286 vm_size_t sz; 287 int error, rv; 288 289 if (start != trunc_page(start)) { 290 rv = __elfN(map_partial)(map, object, offset, start, 291 round_page(start), prot, max); 292 if (rv) 293 return (rv); 294 offset += round_page(start) - start; 295 start = round_page(start); 296 } 297 if (end != round_page(end)) { 298 rv = __elfN(map_partial)(map, object, offset + 299 trunc_page(end) - start, trunc_page(end), end, prot, max); 300 if (rv) 301 return (rv); 302 end = trunc_page(end); 303 } 304 if (end > start) { 305 if (offset & PAGE_MASK) { 306 /* 307 * The mapping is not page aligned. This means we have 308 * to copy the data. Sigh. 309 */ 310 rv = vm_map_find(map, 0, 0, &start, end - start, 311 FALSE, prot, max, 0); 312 if (rv) 313 return (rv); 314 data_buf = 0; 315 while (start < end) { 316 vm_object_reference(object); 317 rv = vm_map_find(exec_map, 318 object, 319 trunc_page(offset), 320 &data_buf, 321 2 * PAGE_SIZE, 322 TRUE, 323 VM_PROT_READ, 324 VM_PROT_ALL, 325 (MAP_COPY_ON_WRITE 326 | MAP_PREFAULT_PARTIAL)); 327 if (rv != KERN_SUCCESS) { 328 vm_object_deallocate(object); 329 return (rv); 330 } 331 off = offset - trunc_page(offset); 332 sz = end - start; 333 if (sz > PAGE_SIZE) 334 sz = PAGE_SIZE; 335 error = copyout((caddr_t)data_buf + off, 336 (caddr_t)start, sz); 337 vm_map_remove(exec_map, data_buf, 338 data_buf + 2 * PAGE_SIZE); 339 if (error) { 340 return (KERN_FAILURE); 341 } 342 start += sz; 343 } 344 rv = KERN_SUCCESS; 345 } else { 346 vm_map_lock(map); 347 rv = vm_map_insert(map, object, offset, start, end, 348 prot, max, cow); 349 vm_map_unlock(map); 350 } 351 return (rv); 352 } else { 353 return (KERN_SUCCESS); 354 } 355 } 356 357 static int 358 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, 359 struct vnode *vp, vm_object_t object, vm_offset_t offset, 360 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 361 size_t pagesize) 362 { 363 size_t map_len; 364 vm_offset_t map_addr; 365 int error, rv, cow; 366 size_t copy_len; 367 vm_offset_t file_addr; 368 vm_offset_t data_buf = 0; 369 370 error = 0; 371 372 /* 373 * It's necessary to fail if the filsz + offset taken from the 374 * header is greater than the actual file pager object's size. 375 * If we were to allow this, then the vm_map_find() below would 376 * walk right off the end of the file object and into the ether. 377 * 378 * While I'm here, might as well check for something else that 379 * is invalid: filsz cannot be greater than memsz. 380 */ 381 if ((off_t)filsz + offset > object->un_pager.vnp.vnp_size || 382 filsz > memsz) { 383 mtx_lock(&Giant); 384 uprintf("elf_load_section: truncated ELF file\n"); 385 mtx_unlock(&Giant); 386 return (ENOEXEC); 387 } 388 389 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 390 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 391 392 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 393 file_addr = trunc_page_ps(offset, pagesize); 394 395 /* 396 * We have two choices. We can either clear the data in the last page 397 * of an oversized mapping, or we can start the anon mapping a page 398 * early and copy the initialized data into that first page. We 399 * choose the second.. 400 */ 401 if (memsz > filsz) 402 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 403 else 404 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 405 406 if (map_len != 0) { 407 vm_object_reference(object); 408 409 /* cow flags: don't dump readonly sections in core */ 410 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 411 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 412 413 rv = __elfN(map_insert)(&vmspace->vm_map, 414 object, 415 file_addr, /* file offset */ 416 map_addr, /* virtual start */ 417 map_addr + map_len,/* virtual end */ 418 prot, 419 VM_PROT_ALL, 420 cow); 421 if (rv != KERN_SUCCESS) { 422 vm_object_deallocate(object); 423 return (EINVAL); 424 } 425 426 /* we can stop now if we've covered it all */ 427 if (memsz == filsz) { 428 return (0); 429 } 430 } 431 432 433 /* 434 * We have to get the remaining bit of the file into the first part 435 * of the oversized map segment. This is normally because the .data 436 * segment in the file is extended to provide bss. It's a neat idea 437 * to try and save a page, but it's a pain in the behind to implement. 438 */ 439 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 440 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 441 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 442 map_addr; 443 444 /* This had damn well better be true! */ 445 if (map_len != 0) { 446 rv = __elfN(map_insert)(&vmspace->vm_map, NULL, 0, map_addr, 447 map_addr + map_len, VM_PROT_ALL, VM_PROT_ALL, 0); 448 if (rv != KERN_SUCCESS) { 449 return (EINVAL); 450 } 451 } 452 453 if (copy_len != 0) { 454 vm_offset_t off; 455 vm_object_reference(object); 456 rv = vm_map_find(exec_map, 457 object, 458 trunc_page(offset + filsz), 459 &data_buf, 460 PAGE_SIZE, 461 TRUE, 462 VM_PROT_READ, 463 VM_PROT_ALL, 464 MAP_COPY_ON_WRITE | MAP_PREFAULT_PARTIAL); 465 if (rv != KERN_SUCCESS) { 466 vm_object_deallocate(object); 467 return (EINVAL); 468 } 469 470 /* send the page fragment to user space */ 471 off = trunc_page_ps(offset + filsz, pagesize) - 472 trunc_page(offset + filsz); 473 error = copyout((caddr_t)data_buf + off, (caddr_t)map_addr, 474 copy_len); 475 vm_map_remove(exec_map, data_buf, data_buf + PAGE_SIZE); 476 if (error) { 477 return (error); 478 } 479 } 480 481 /* 482 * set it to the specified protection. 483 * XXX had better undo the damage from pasting over the cracks here! 484 */ 485 vm_map_protect(&vmspace->vm_map, trunc_page(map_addr), 486 round_page(map_addr + map_len), prot, FALSE); 487 488 return (error); 489 } 490 491 /* 492 * Load the file "file" into memory. It may be either a shared object 493 * or an executable. 494 * 495 * The "addr" reference parameter is in/out. On entry, it specifies 496 * the address where a shared object should be loaded. If the file is 497 * an executable, this value is ignored. On exit, "addr" specifies 498 * where the file was actually loaded. 499 * 500 * The "entry" reference parameter is out only. On exit, it specifies 501 * the entry point for the loaded file. 502 */ 503 static int 504 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 505 u_long *entry, size_t pagesize) 506 { 507 struct { 508 struct nameidata nd; 509 struct vattr attr; 510 struct image_params image_params; 511 } *tempdata; 512 const Elf_Ehdr *hdr = NULL; 513 const Elf_Phdr *phdr = NULL; 514 struct nameidata *nd; 515 struct vmspace *vmspace = p->p_vmspace; 516 struct vattr *attr; 517 struct image_params *imgp; 518 vm_prot_t prot; 519 u_long rbase; 520 u_long base_addr = 0; 521 int vfslocked, error, i, numsegs; 522 523 if (curthread->td_proc != p) 524 panic("elf_load_file - thread"); /* XXXKSE DIAGNOSTIC */ 525 526 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 527 nd = &tempdata->nd; 528 attr = &tempdata->attr; 529 imgp = &tempdata->image_params; 530 531 /* 532 * Initialize part of the common data 533 */ 534 imgp->proc = p; 535 imgp->attr = attr; 536 imgp->firstpage = NULL; 537 imgp->image_header = NULL; 538 imgp->object = NULL; 539 imgp->execlabel = NULL; 540 541 /* XXXKSE */ 542 NDINIT(nd, LOOKUP, MPSAFE|LOCKLEAF|FOLLOW, UIO_SYSSPACE, file, 543 curthread); 544 vfslocked = 0; 545 if ((error = namei(nd)) != 0) { 546 nd->ni_vp = NULL; 547 goto fail; 548 } 549 vfslocked = NDHASGIANT(nd); 550 NDFREE(nd, NDF_ONLY_PNBUF); 551 imgp->vp = nd->ni_vp; 552 553 /* 554 * Check permissions, modes, uid, etc on the file, and "open" it. 555 */ 556 error = exec_check_permissions(imgp); 557 if (error) { 558 VOP_UNLOCK(nd->ni_vp, 0, curthread); /* XXXKSE */ 559 goto fail; 560 } 561 562 error = exec_map_first_page(imgp); 563 /* 564 * Also make certain that the interpreter stays the same, so set 565 * its VV_TEXT flag, too. 566 */ 567 if (error == 0) 568 nd->ni_vp->v_vflag |= VV_TEXT; 569 570 imgp->object = nd->ni_vp->v_object; 571 vm_object_reference(imgp->object); 572 573 VOP_UNLOCK(nd->ni_vp, 0, curthread); /* XXXKSE */ 574 if (error) 575 goto fail; 576 577 hdr = (const Elf_Ehdr *)imgp->image_header; 578 if ((error = __elfN(check_header)(hdr)) != 0) 579 goto fail; 580 if (hdr->e_type == ET_DYN) 581 rbase = *addr; 582 else if (hdr->e_type == ET_EXEC) 583 rbase = 0; 584 else { 585 error = ENOEXEC; 586 goto fail; 587 } 588 589 /* Only support headers that fit within first page for now */ 590 /* (multiplication of two Elf_Half fields will not overflow) */ 591 if ((hdr->e_phoff > PAGE_SIZE) || 592 (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) { 593 error = ENOEXEC; 594 goto fail; 595 } 596 597 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 598 599 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 600 if (phdr[i].p_type == PT_LOAD) { /* Loadable segment */ 601 prot = 0; 602 if (phdr[i].p_flags & PF_X) 603 prot |= VM_PROT_EXECUTE; 604 if (phdr[i].p_flags & PF_W) 605 prot |= VM_PROT_WRITE; 606 if (phdr[i].p_flags & PF_R) 607 prot |= VM_PROT_READ; 608 609 if ((error = __elfN(load_section)(p, vmspace, 610 nd->ni_vp, imgp->object, phdr[i].p_offset, 611 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 612 phdr[i].p_memsz, phdr[i].p_filesz, prot, 613 pagesize)) != 0) 614 goto fail; 615 /* 616 * Establish the base address if this is the 617 * first segment. 618 */ 619 if (numsegs == 0) 620 base_addr = trunc_page(phdr[i].p_vaddr + 621 rbase); 622 numsegs++; 623 } 624 } 625 *addr = base_addr; 626 *entry = (unsigned long)hdr->e_entry + rbase; 627 628 fail: 629 if (imgp->firstpage) 630 exec_unmap_first_page(imgp); 631 if (imgp->object) 632 vm_object_deallocate(imgp->object); 633 634 if (nd->ni_vp) 635 vrele(nd->ni_vp); 636 637 VFS_UNLOCK_GIANT(vfslocked); 638 free(tempdata, M_TEMP); 639 640 return (error); 641 } 642 643 static int 644 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 645 { 646 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 647 const Elf_Phdr *phdr; 648 Elf_Auxargs *elf_auxargs = NULL; 649 struct vmspace *vmspace; 650 vm_prot_t prot; 651 u_long text_size = 0, data_size = 0, total_size = 0; 652 u_long text_addr = 0, data_addr = 0; 653 u_long seg_size, seg_addr; 654 u_long addr, entry = 0, proghdr = 0; 655 int error = 0, i; 656 const char *interp = NULL; 657 Elf_Brandinfo *brand_info; 658 char *path; 659 struct thread *td = curthread; 660 struct sysentvec *sv; 661 662 /* 663 * Do we have a valid ELF header ? 664 */ 665 if (__elfN(check_header)(hdr) != 0 || hdr->e_type != ET_EXEC) 666 return (-1); 667 668 /* 669 * From here on down, we return an errno, not -1, as we've 670 * detected an ELF file. 671 */ 672 673 if ((hdr->e_phoff > PAGE_SIZE) || 674 (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) { 675 /* Only support headers in first page for now */ 676 return (ENOEXEC); 677 } 678 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 679 680 /* 681 * From this point on, we may have resources that need to be freed. 682 */ 683 684 VOP_UNLOCK(imgp->vp, 0, td); 685 686 for (i = 0; i < hdr->e_phnum; i++) { 687 switch (phdr[i].p_type) { 688 case PT_INTERP: /* Path to interpreter */ 689 if (phdr[i].p_filesz > MAXPATHLEN || 690 phdr[i].p_offset + phdr[i].p_filesz > PAGE_SIZE) { 691 error = ENOEXEC; 692 goto fail; 693 } 694 interp = imgp->image_header + phdr[i].p_offset; 695 break; 696 default: 697 break; 698 } 699 } 700 701 brand_info = __elfN(get_brandinfo)(hdr, interp); 702 if (brand_info == NULL) { 703 mtx_lock(&Giant); 704 uprintf("ELF binary type \"%u\" not known.\n", 705 hdr->e_ident[EI_OSABI]); 706 mtx_unlock(&Giant); 707 error = ENOEXEC; 708 goto fail; 709 } 710 sv = brand_info->sysvec; 711 if (interp != NULL && brand_info->interp_newpath != NULL) 712 interp = brand_info->interp_newpath; 713 714 exec_new_vmspace(imgp, sv); 715 716 vmspace = imgp->proc->p_vmspace; 717 718 for (i = 0; i < hdr->e_phnum; i++) { 719 switch (phdr[i].p_type) { 720 case PT_LOAD: /* Loadable segment */ 721 prot = 0; 722 if (phdr[i].p_flags & PF_X) 723 prot |= VM_PROT_EXECUTE; 724 if (phdr[i].p_flags & PF_W) 725 prot |= VM_PROT_WRITE; 726 if (phdr[i].p_flags & PF_R) 727 prot |= VM_PROT_READ; 728 729 #if defined(__ia64__) && __ELF_WORD_SIZE == 32 && defined(IA32_ME_HARDER) 730 /* 731 * Some x86 binaries assume read == executable, 732 * notably the M3 runtime and therefore cvsup 733 */ 734 if (prot & VM_PROT_READ) 735 prot |= VM_PROT_EXECUTE; 736 #endif 737 738 if ((error = __elfN(load_section)(imgp->proc, vmspace, 739 imgp->vp, imgp->object, phdr[i].p_offset, 740 (caddr_t)(uintptr_t)phdr[i].p_vaddr, 741 phdr[i].p_memsz, phdr[i].p_filesz, prot, 742 sv->sv_pagesize)) != 0) 743 goto fail; 744 745 /* 746 * If this segment contains the program headers, 747 * remember their virtual address for the AT_PHDR 748 * aux entry. Static binaries don't usually include 749 * a PT_PHDR entry. 750 */ 751 if (phdr[i].p_offset == 0 && 752 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 753 <= phdr[i].p_filesz) 754 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 755 756 seg_addr = trunc_page(phdr[i].p_vaddr); 757 seg_size = round_page(phdr[i].p_memsz + 758 phdr[i].p_vaddr - seg_addr); 759 760 /* 761 * Is this .text or .data? We can't use 762 * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the 763 * alpha terribly and possibly does other bad 764 * things so we stick to the old way of figuring 765 * it out: If the segment contains the program 766 * entry point, it's a text segment, otherwise it 767 * is a data segment. 768 * 769 * Note that obreak() assumes that data_addr + 770 * data_size == end of data load area, and the ELF 771 * file format expects segments to be sorted by 772 * address. If multiple data segments exist, the 773 * last one will be used. 774 */ 775 if (hdr->e_entry >= phdr[i].p_vaddr && 776 hdr->e_entry < (phdr[i].p_vaddr + 777 phdr[i].p_memsz)) { 778 text_size = seg_size; 779 text_addr = seg_addr; 780 entry = (u_long)hdr->e_entry; 781 } else { 782 data_size = seg_size; 783 data_addr = seg_addr; 784 } 785 total_size += seg_size; 786 break; 787 case PT_PHDR: /* Program header table info */ 788 proghdr = phdr[i].p_vaddr; 789 break; 790 default: 791 break; 792 } 793 } 794 795 if (data_addr == 0 && data_size == 0) { 796 data_addr = text_addr; 797 data_size = text_size; 798 } 799 800 /* 801 * Check limits. It should be safe to check the 802 * limits after loading the segments since we do 803 * not actually fault in all the segments pages. 804 */ 805 PROC_LOCK(imgp->proc); 806 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 807 text_size > maxtsiz || 808 total_size > lim_cur(imgp->proc, RLIMIT_VMEM)) { 809 PROC_UNLOCK(imgp->proc); 810 error = ENOMEM; 811 goto fail; 812 } 813 814 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 815 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 816 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 817 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 818 819 /* 820 * We load the dynamic linker where a userland call 821 * to mmap(0, ...) would put it. The rationale behind this 822 * calculation is that it leaves room for the heap to grow to 823 * its maximum allowed size. 824 */ 825 addr = round_page((vm_offset_t)imgp->proc->p_vmspace->vm_daddr + 826 lim_max(imgp->proc, RLIMIT_DATA)); 827 PROC_UNLOCK(imgp->proc); 828 829 imgp->entry_addr = entry; 830 831 imgp->proc->p_sysent = sv; 832 if (interp != NULL && brand_info->emul_path != NULL && 833 brand_info->emul_path[0] != '\0') { 834 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 835 snprintf(path, MAXPATHLEN, "%s%s", brand_info->emul_path, 836 interp); 837 error = __elfN(load_file)(imgp->proc, path, &addr, 838 &imgp->entry_addr, sv->sv_pagesize); 839 free(path, M_TEMP); 840 if (error == 0) 841 interp = NULL; 842 } 843 if (interp != NULL) { 844 error = __elfN(load_file)(imgp->proc, interp, &addr, 845 &imgp->entry_addr, sv->sv_pagesize); 846 if (error != 0) { 847 mtx_lock(&Giant); 848 uprintf("ELF interpreter %s not found\n", interp); 849 mtx_unlock(&Giant); 850 goto fail; 851 } 852 } 853 854 /* 855 * Construct auxargs table (used by the fixup routine) 856 */ 857 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 858 elf_auxargs->execfd = -1; 859 elf_auxargs->phdr = proghdr; 860 elf_auxargs->phent = hdr->e_phentsize; 861 elf_auxargs->phnum = hdr->e_phnum; 862 elf_auxargs->pagesz = PAGE_SIZE; 863 elf_auxargs->base = addr; 864 elf_auxargs->flags = 0; 865 elf_auxargs->entry = entry; 866 elf_auxargs->trace = elf_trace; 867 868 imgp->auxargs = elf_auxargs; 869 imgp->interpreted = 0; 870 871 fail: 872 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY, td); 873 return (error); 874 } 875 876 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 877 878 int 879 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 880 { 881 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 882 Elf_Addr *base; 883 Elf_Addr *pos; 884 885 base = (Elf_Addr *)*stack_base; 886 pos = base + (imgp->args->argc + imgp->args->envc + 2); 887 888 if (args->trace) { 889 AUXARGS_ENTRY(pos, AT_DEBUG, 1); 890 } 891 if (args->execfd != -1) { 892 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 893 } 894 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 895 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 896 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 897 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 898 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 899 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 900 AUXARGS_ENTRY(pos, AT_BASE, args->base); 901 AUXARGS_ENTRY(pos, AT_NULL, 0); 902 903 free(imgp->auxargs, M_TEMP); 904 imgp->auxargs = NULL; 905 906 base--; 907 suword(base, (long)imgp->args->argc); 908 *stack_base = (register_t *)base; 909 return (0); 910 } 911 912 /* 913 * Code for generating ELF core dumps. 914 */ 915 916 typedef void (*segment_callback)(vm_map_entry_t, void *); 917 918 /* Closure for cb_put_phdr(). */ 919 struct phdr_closure { 920 Elf_Phdr *phdr; /* Program header to fill in */ 921 Elf_Off offset; /* Offset of segment in core file */ 922 }; 923 924 /* Closure for cb_size_segment(). */ 925 struct sseg_closure { 926 int count; /* Count of writable segments. */ 927 size_t size; /* Total size of all writable segments. */ 928 }; 929 930 static void cb_put_phdr(vm_map_entry_t, void *); 931 static void cb_size_segment(vm_map_entry_t, void *); 932 static void each_writable_segment(struct thread *, segment_callback, void *); 933 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *, 934 int, void *, size_t); 935 static void __elfN(puthdr)(struct thread *, void *, size_t *, int); 936 static void __elfN(putnote)(void *, size_t *, const char *, int, 937 const void *, size_t); 938 939 extern int osreldate; 940 941 int 942 __elfN(coredump)(td, vp, limit) 943 struct thread *td; 944 struct vnode *vp; 945 off_t limit; 946 { 947 struct ucred *cred = td->td_ucred; 948 int error = 0; 949 struct sseg_closure seginfo; 950 void *hdr; 951 size_t hdrsize; 952 953 /* Size the program segments. */ 954 seginfo.count = 0; 955 seginfo.size = 0; 956 each_writable_segment(td, cb_size_segment, &seginfo); 957 958 /* 959 * Calculate the size of the core file header area by making 960 * a dry run of generating it. Nothing is written, but the 961 * size is calculated. 962 */ 963 hdrsize = 0; 964 __elfN(puthdr)(td, (void *)NULL, &hdrsize, seginfo.count); 965 966 if (hdrsize + seginfo.size >= limit) 967 return (EFAULT); 968 969 /* 970 * Allocate memory for building the header, fill it up, 971 * and write it out. 972 */ 973 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 974 if (hdr == NULL) { 975 return (EINVAL); 976 } 977 error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize); 978 979 /* Write the contents of all of the writable segments. */ 980 if (error == 0) { 981 Elf_Phdr *php; 982 off_t offset; 983 int i; 984 985 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 986 offset = hdrsize; 987 for (i = 0; i < seginfo.count; i++) { 988 error = vn_rdwr_inchunks(UIO_WRITE, vp, 989 (caddr_t)(uintptr_t)php->p_vaddr, 990 php->p_filesz, offset, UIO_USERSPACE, 991 IO_UNIT | IO_DIRECT, cred, NOCRED, NULL, 992 curthread); /* XXXKSE */ 993 if (error != 0) 994 break; 995 offset += php->p_filesz; 996 php++; 997 } 998 } 999 free(hdr, M_TEMP); 1000 1001 return (error); 1002 } 1003 1004 /* 1005 * A callback for each_writable_segment() to write out the segment's 1006 * program header entry. 1007 */ 1008 static void 1009 cb_put_phdr(entry, closure) 1010 vm_map_entry_t entry; 1011 void *closure; 1012 { 1013 struct phdr_closure *phc = (struct phdr_closure *)closure; 1014 Elf_Phdr *phdr = phc->phdr; 1015 1016 phc->offset = round_page(phc->offset); 1017 1018 phdr->p_type = PT_LOAD; 1019 phdr->p_offset = phc->offset; 1020 phdr->p_vaddr = entry->start; 1021 phdr->p_paddr = 0; 1022 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1023 phdr->p_align = PAGE_SIZE; 1024 phdr->p_flags = 0; 1025 if (entry->protection & VM_PROT_READ) 1026 phdr->p_flags |= PF_R; 1027 if (entry->protection & VM_PROT_WRITE) 1028 phdr->p_flags |= PF_W; 1029 if (entry->protection & VM_PROT_EXECUTE) 1030 phdr->p_flags |= PF_X; 1031 1032 phc->offset += phdr->p_filesz; 1033 phc->phdr++; 1034 } 1035 1036 /* 1037 * A callback for each_writable_segment() to gather information about 1038 * the number of segments and their total size. 1039 */ 1040 static void 1041 cb_size_segment(entry, closure) 1042 vm_map_entry_t entry; 1043 void *closure; 1044 { 1045 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1046 1047 ssc->count++; 1048 ssc->size += entry->end - entry->start; 1049 } 1050 1051 /* 1052 * For each writable segment in the process's memory map, call the given 1053 * function with a pointer to the map entry and some arbitrary 1054 * caller-supplied data. 1055 */ 1056 static void 1057 each_writable_segment(td, func, closure) 1058 struct thread *td; 1059 segment_callback func; 1060 void *closure; 1061 { 1062 struct proc *p = td->td_proc; 1063 vm_map_t map = &p->p_vmspace->vm_map; 1064 vm_map_entry_t entry; 1065 1066 for (entry = map->header.next; entry != &map->header; 1067 entry = entry->next) { 1068 vm_object_t obj; 1069 1070 /* 1071 * Don't dump inaccessible mappings, deal with legacy 1072 * coredump mode. 1073 * 1074 * Note that read-only segments related to the elf binary 1075 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1076 * need to arbitrarily ignore such segments. 1077 */ 1078 if (elf_legacy_coredump) { 1079 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1080 continue; 1081 } else { 1082 if ((entry->protection & VM_PROT_ALL) == 0) 1083 continue; 1084 } 1085 1086 /* 1087 * Dont include memory segment in the coredump if 1088 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1089 * madvise(2). Do not dump submaps (i.e. parts of the 1090 * kernel map). 1091 */ 1092 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1093 continue; 1094 1095 if ((obj = entry->object.vm_object) == NULL) 1096 continue; 1097 1098 /* Find the deepest backing object. */ 1099 while (obj->backing_object != NULL) 1100 obj = obj->backing_object; 1101 1102 /* Ignore memory-mapped devices and such things. */ 1103 if (obj->type != OBJT_DEFAULT && 1104 obj->type != OBJT_SWAP && 1105 obj->type != OBJT_VNODE) 1106 continue; 1107 1108 (*func)(entry, closure); 1109 } 1110 } 1111 1112 /* 1113 * Write the core file header to the file, including padding up to 1114 * the page boundary. 1115 */ 1116 static int 1117 __elfN(corehdr)(td, vp, cred, numsegs, hdr, hdrsize) 1118 struct thread *td; 1119 struct vnode *vp; 1120 struct ucred *cred; 1121 int numsegs; 1122 size_t hdrsize; 1123 void *hdr; 1124 { 1125 size_t off; 1126 1127 /* Fill in the header. */ 1128 bzero(hdr, hdrsize); 1129 off = 0; 1130 __elfN(puthdr)(td, hdr, &off, numsegs); 1131 1132 /* Write it to the core file. */ 1133 return (vn_rdwr_inchunks(UIO_WRITE, vp, hdr, hdrsize, (off_t)0, 1134 UIO_SYSSPACE, IO_UNIT | IO_DIRECT, cred, NOCRED, NULL, 1135 td)); /* XXXKSE */ 1136 } 1137 1138 #if defined(COMPAT_IA32) && __ELF_WORD_SIZE == 32 1139 typedef struct prstatus32 elf_prstatus_t; 1140 typedef struct prpsinfo32 elf_prpsinfo_t; 1141 typedef struct fpreg32 elf_prfpregset_t; 1142 typedef struct fpreg32 elf_fpregset_t; 1143 typedef struct reg32 elf_gregset_t; 1144 #else 1145 typedef prstatus_t elf_prstatus_t; 1146 typedef prpsinfo_t elf_prpsinfo_t; 1147 typedef prfpregset_t elf_prfpregset_t; 1148 typedef prfpregset_t elf_fpregset_t; 1149 typedef gregset_t elf_gregset_t; 1150 #endif 1151 1152 static void 1153 __elfN(puthdr)(struct thread *td, void *dst, size_t *off, int numsegs) 1154 { 1155 struct { 1156 elf_prstatus_t status; 1157 elf_prfpregset_t fpregset; 1158 elf_prpsinfo_t psinfo; 1159 } *tempdata; 1160 elf_prstatus_t *status; 1161 elf_prfpregset_t *fpregset; 1162 elf_prpsinfo_t *psinfo; 1163 struct proc *p; 1164 struct thread *thr; 1165 size_t ehoff, noteoff, notesz, phoff; 1166 1167 p = td->td_proc; 1168 1169 ehoff = *off; 1170 *off += sizeof(Elf_Ehdr); 1171 1172 phoff = *off; 1173 *off += (numsegs + 1) * sizeof(Elf_Phdr); 1174 1175 noteoff = *off; 1176 /* 1177 * Don't allocate space for the notes if we're just calculating 1178 * the size of the header. We also don't collect the data. 1179 */ 1180 if (dst != NULL) { 1181 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_ZERO|M_WAITOK); 1182 status = &tempdata->status; 1183 fpregset = &tempdata->fpregset; 1184 psinfo = &tempdata->psinfo; 1185 } else { 1186 tempdata = NULL; 1187 status = NULL; 1188 fpregset = NULL; 1189 psinfo = NULL; 1190 } 1191 1192 if (dst != NULL) { 1193 psinfo->pr_version = PRPSINFO_VERSION; 1194 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1195 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1196 /* 1197 * XXX - We don't fill in the command line arguments properly 1198 * yet. 1199 */ 1200 strlcpy(psinfo->pr_psargs, p->p_comm, 1201 sizeof(psinfo->pr_psargs)); 1202 } 1203 __elfN(putnote)(dst, off, "FreeBSD", NT_PRPSINFO, psinfo, 1204 sizeof *psinfo); 1205 1206 /* 1207 * To have the debugger select the right thread (LWP) as the initial 1208 * thread, we dump the state of the thread passed to us in td first. 1209 * This is the thread that causes the core dump and thus likely to 1210 * be the right thread one wants to have selected in the debugger. 1211 */ 1212 thr = td; 1213 while (thr != NULL) { 1214 if (dst != NULL) { 1215 status->pr_version = PRSTATUS_VERSION; 1216 status->pr_statussz = sizeof(elf_prstatus_t); 1217 status->pr_gregsetsz = sizeof(elf_gregset_t); 1218 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1219 status->pr_osreldate = osreldate; 1220 status->pr_cursig = p->p_sig; 1221 status->pr_pid = thr->td_tid; 1222 #if defined(COMPAT_IA32) && __ELF_WORD_SIZE == 32 1223 fill_regs32(thr, &status->pr_reg); 1224 fill_fpregs32(thr, fpregset); 1225 #else 1226 fill_regs(thr, &status->pr_reg); 1227 fill_fpregs(thr, fpregset); 1228 #endif 1229 } 1230 __elfN(putnote)(dst, off, "FreeBSD", NT_PRSTATUS, status, 1231 sizeof *status); 1232 __elfN(putnote)(dst, off, "FreeBSD", NT_FPREGSET, fpregset, 1233 sizeof *fpregset); 1234 /* 1235 * Allow for MD specific notes, as well as any MD 1236 * specific preparations for writing MI notes. 1237 */ 1238 __elfN(dump_thread)(thr, dst, off); 1239 1240 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1241 TAILQ_NEXT(thr, td_plist); 1242 if (thr == td) 1243 thr = TAILQ_NEXT(thr, td_plist); 1244 } 1245 1246 notesz = *off - noteoff; 1247 1248 if (dst != NULL) 1249 free(tempdata, M_TEMP); 1250 1251 /* Align up to a page boundary for the program segments. */ 1252 *off = round_page(*off); 1253 1254 if (dst != NULL) { 1255 Elf_Ehdr *ehdr; 1256 Elf_Phdr *phdr; 1257 struct phdr_closure phc; 1258 1259 /* 1260 * Fill in the ELF header. 1261 */ 1262 ehdr = (Elf_Ehdr *)((char *)dst + ehoff); 1263 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1264 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1265 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1266 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1267 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1268 ehdr->e_ident[EI_DATA] = ELF_DATA; 1269 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1270 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1271 ehdr->e_ident[EI_ABIVERSION] = 0; 1272 ehdr->e_ident[EI_PAD] = 0; 1273 ehdr->e_type = ET_CORE; 1274 #if defined(COMPAT_IA32) && __ELF_WORD_SIZE == 32 1275 ehdr->e_machine = EM_386; 1276 #else 1277 ehdr->e_machine = ELF_ARCH; 1278 #endif 1279 ehdr->e_version = EV_CURRENT; 1280 ehdr->e_entry = 0; 1281 ehdr->e_phoff = phoff; 1282 ehdr->e_flags = 0; 1283 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1284 ehdr->e_phentsize = sizeof(Elf_Phdr); 1285 ehdr->e_phnum = numsegs + 1; 1286 ehdr->e_shentsize = sizeof(Elf_Shdr); 1287 ehdr->e_shnum = 0; 1288 ehdr->e_shstrndx = SHN_UNDEF; 1289 1290 /* 1291 * Fill in the program header entries. 1292 */ 1293 phdr = (Elf_Phdr *)((char *)dst + phoff); 1294 1295 /* The note segement. */ 1296 phdr->p_type = PT_NOTE; 1297 phdr->p_offset = noteoff; 1298 phdr->p_vaddr = 0; 1299 phdr->p_paddr = 0; 1300 phdr->p_filesz = notesz; 1301 phdr->p_memsz = 0; 1302 phdr->p_flags = 0; 1303 phdr->p_align = 0; 1304 phdr++; 1305 1306 /* All the writable segments from the program. */ 1307 phc.phdr = phdr; 1308 phc.offset = *off; 1309 each_writable_segment(td, cb_put_phdr, &phc); 1310 } 1311 } 1312 1313 static void 1314 __elfN(putnote)(void *dst, size_t *off, const char *name, int type, 1315 const void *desc, size_t descsz) 1316 { 1317 Elf_Note note; 1318 1319 note.n_namesz = strlen(name) + 1; 1320 note.n_descsz = descsz; 1321 note.n_type = type; 1322 if (dst != NULL) 1323 bcopy(¬e, (char *)dst + *off, sizeof note); 1324 *off += sizeof note; 1325 if (dst != NULL) 1326 bcopy(name, (char *)dst + *off, note.n_namesz); 1327 *off += roundup2(note.n_namesz, sizeof(Elf_Size)); 1328 if (dst != NULL) 1329 bcopy(desc, (char *)dst + *off, note.n_descsz); 1330 *off += roundup2(note.n_descsz, sizeof(Elf_Size)); 1331 } 1332 1333 /* 1334 * Tell kern_execve.c about it, with a little help from the linker. 1335 */ 1336 static struct execsw __elfN(execsw) = { 1337 __CONCAT(exec_, __elfN(imgact)), 1338 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 1339 }; 1340 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 1341