1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 106 ""); 107 108 #define CORE_BUF_SIZE (16 * 1024) 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0, 139 ""); 140 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 141 142 static int __elfN(aslr_enabled) = 0; 143 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 144 &__elfN(aslr_enabled), 0, 145 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 146 ": enable address map randomization"); 147 148 static int __elfN(pie_aslr_enabled) = 0; 149 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 150 &__elfN(pie_aslr_enabled), 0, 151 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 152 ": enable address map randomization for PIE binaries"); 153 154 static int __elfN(aslr_honor_sbrk) = 1; 155 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 156 &__elfN(aslr_honor_sbrk), 0, 157 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 158 159 static int __elfN(aslr_stack_gap) = 3; 160 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 161 &__elfN(aslr_stack_gap), 0, 162 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 163 ": maximum percentage of main stack to waste on a random gap"); 164 165 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 166 167 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 168 169 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 170 171 Elf_Brandnote __elfN(freebsd_brandnote) = { 172 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 173 .hdr.n_descsz = sizeof(int32_t), 174 .hdr.n_type = NT_FREEBSD_ABI_TAG, 175 .vendor = FREEBSD_ABI_VENDOR, 176 .flags = BN_TRANSLATE_OSREL, 177 .trans_osrel = __elfN(freebsd_trans_osrel) 178 }; 179 180 static bool 181 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 182 { 183 uintptr_t p; 184 185 p = (uintptr_t)(note + 1); 186 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 187 *osrel = *(const int32_t *)(p); 188 189 return (true); 190 } 191 192 static const char GNU_ABI_VENDOR[] = "GNU"; 193 static int GNU_KFREEBSD_ABI_DESC = 3; 194 195 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 196 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 197 .hdr.n_descsz = 16, /* XXX at least 16 */ 198 .hdr.n_type = 1, 199 .vendor = GNU_ABI_VENDOR, 200 .flags = BN_TRANSLATE_OSREL, 201 .trans_osrel = kfreebsd_trans_osrel 202 }; 203 204 static bool 205 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 206 { 207 const Elf32_Word *desc; 208 uintptr_t p; 209 210 p = (uintptr_t)(note + 1); 211 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 212 213 desc = (const Elf32_Word *)p; 214 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 215 return (false); 216 217 /* 218 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 219 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 220 */ 221 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 222 223 return (true); 224 } 225 226 int 227 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 228 { 229 int i; 230 231 for (i = 0; i < MAX_BRANDS; i++) { 232 if (elf_brand_list[i] == NULL) { 233 elf_brand_list[i] = entry; 234 break; 235 } 236 } 237 if (i == MAX_BRANDS) { 238 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 239 __func__, entry); 240 return (-1); 241 } 242 return (0); 243 } 244 245 int 246 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 247 { 248 int i; 249 250 for (i = 0; i < MAX_BRANDS; i++) { 251 if (elf_brand_list[i] == entry) { 252 elf_brand_list[i] = NULL; 253 break; 254 } 255 } 256 if (i == MAX_BRANDS) 257 return (-1); 258 return (0); 259 } 260 261 int 262 __elfN(brand_inuse)(Elf_Brandinfo *entry) 263 { 264 struct proc *p; 265 int rval = FALSE; 266 267 sx_slock(&allproc_lock); 268 FOREACH_PROC_IN_SYSTEM(p) { 269 if (p->p_sysent == entry->sysvec) { 270 rval = TRUE; 271 break; 272 } 273 } 274 sx_sunlock(&allproc_lock); 275 276 return (rval); 277 } 278 279 static Elf_Brandinfo * 280 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 281 int32_t *osrel, uint32_t *fctl0) 282 { 283 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 284 Elf_Brandinfo *bi, *bi_m; 285 boolean_t ret; 286 int i, interp_name_len; 287 288 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 289 290 /* 291 * We support four types of branding -- (1) the ELF EI_OSABI field 292 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 293 * branding w/in the ELF header, (3) path of the `interp_path' 294 * field, and (4) the ".note.ABI-tag" ELF section. 295 */ 296 297 /* Look for an ".note.ABI-tag" ELF section */ 298 bi_m = NULL; 299 for (i = 0; i < MAX_BRANDS; i++) { 300 bi = elf_brand_list[i]; 301 if (bi == NULL) 302 continue; 303 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 304 continue; 305 if (hdr->e_machine == bi->machine && (bi->flags & 306 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 307 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 308 fctl0); 309 /* Give brand a chance to veto check_note's guess */ 310 if (ret && bi->header_supported) 311 ret = bi->header_supported(imgp); 312 /* 313 * If note checker claimed the binary, but the 314 * interpreter path in the image does not 315 * match default one for the brand, try to 316 * search for other brands with the same 317 * interpreter. Either there is better brand 318 * with the right interpreter, or, failing 319 * this, we return first brand which accepted 320 * our note and, optionally, header. 321 */ 322 if (ret && bi_m == NULL && interp != NULL && 323 (bi->interp_path == NULL || 324 (strlen(bi->interp_path) + 1 != interp_name_len || 325 strncmp(interp, bi->interp_path, interp_name_len) 326 != 0))) { 327 bi_m = bi; 328 ret = 0; 329 } 330 if (ret) 331 return (bi); 332 } 333 } 334 if (bi_m != NULL) 335 return (bi_m); 336 337 /* If the executable has a brand, search for it in the brand list. */ 338 for (i = 0; i < MAX_BRANDS; i++) { 339 bi = elf_brand_list[i]; 340 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 341 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 342 continue; 343 if (hdr->e_machine == bi->machine && 344 (hdr->e_ident[EI_OSABI] == bi->brand || 345 (bi->compat_3_brand != NULL && 346 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 347 bi->compat_3_brand) == 0))) { 348 /* Looks good, but give brand a chance to veto */ 349 if (bi->header_supported == NULL || 350 bi->header_supported(imgp)) { 351 /* 352 * Again, prefer strictly matching 353 * interpreter path. 354 */ 355 if (interp_name_len == 0 && 356 bi->interp_path == NULL) 357 return (bi); 358 if (bi->interp_path != NULL && 359 strlen(bi->interp_path) + 1 == 360 interp_name_len && strncmp(interp, 361 bi->interp_path, interp_name_len) == 0) 362 return (bi); 363 if (bi_m == NULL) 364 bi_m = bi; 365 } 366 } 367 } 368 if (bi_m != NULL) 369 return (bi_m); 370 371 /* No known brand, see if the header is recognized by any brand */ 372 for (i = 0; i < MAX_BRANDS; i++) { 373 bi = elf_brand_list[i]; 374 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 375 bi->header_supported == NULL) 376 continue; 377 if (hdr->e_machine == bi->machine) { 378 ret = bi->header_supported(imgp); 379 if (ret) 380 return (bi); 381 } 382 } 383 384 /* Lacking a known brand, search for a recognized interpreter. */ 385 if (interp != NULL) { 386 for (i = 0; i < MAX_BRANDS; i++) { 387 bi = elf_brand_list[i]; 388 if (bi == NULL || (bi->flags & 389 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 390 != 0) 391 continue; 392 if (hdr->e_machine == bi->machine && 393 bi->interp_path != NULL && 394 /* ELF image p_filesz includes terminating zero */ 395 strlen(bi->interp_path) + 1 == interp_name_len && 396 strncmp(interp, bi->interp_path, interp_name_len) 397 == 0 && (bi->header_supported == NULL || 398 bi->header_supported(imgp))) 399 return (bi); 400 } 401 } 402 403 /* Lacking a recognized interpreter, try the default brand */ 404 for (i = 0; i < MAX_BRANDS; i++) { 405 bi = elf_brand_list[i]; 406 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 407 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 408 continue; 409 if (hdr->e_machine == bi->machine && 410 __elfN(fallback_brand) == bi->brand && 411 (bi->header_supported == NULL || 412 bi->header_supported(imgp))) 413 return (bi); 414 } 415 return (NULL); 416 } 417 418 static int 419 __elfN(check_header)(const Elf_Ehdr *hdr) 420 { 421 Elf_Brandinfo *bi; 422 int i; 423 424 if (!IS_ELF(*hdr) || 425 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 426 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 427 hdr->e_ident[EI_VERSION] != EV_CURRENT || 428 hdr->e_phentsize != sizeof(Elf_Phdr) || 429 hdr->e_version != ELF_TARG_VER) 430 return (ENOEXEC); 431 432 /* 433 * Make sure we have at least one brand for this machine. 434 */ 435 436 for (i = 0; i < MAX_BRANDS; i++) { 437 bi = elf_brand_list[i]; 438 if (bi != NULL && bi->machine == hdr->e_machine) 439 break; 440 } 441 if (i == MAX_BRANDS) 442 return (ENOEXEC); 443 444 return (0); 445 } 446 447 static int 448 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 449 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 450 { 451 struct sf_buf *sf; 452 int error; 453 vm_offset_t off; 454 455 /* 456 * Create the page if it doesn't exist yet. Ignore errors. 457 */ 458 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 459 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 460 461 /* 462 * Find the page from the underlying object. 463 */ 464 if (object != NULL) { 465 sf = vm_imgact_map_page(object, offset); 466 if (sf == NULL) 467 return (KERN_FAILURE); 468 off = offset - trunc_page(offset); 469 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 470 end - start); 471 vm_imgact_unmap_page(sf); 472 if (error != 0) 473 return (KERN_FAILURE); 474 } 475 476 return (KERN_SUCCESS); 477 } 478 479 static int 480 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 481 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 482 int cow) 483 { 484 struct sf_buf *sf; 485 vm_offset_t off; 486 vm_size_t sz; 487 int error, locked, rv; 488 489 if (start != trunc_page(start)) { 490 rv = __elfN(map_partial)(map, object, offset, start, 491 round_page(start), prot); 492 if (rv != KERN_SUCCESS) 493 return (rv); 494 offset += round_page(start) - start; 495 start = round_page(start); 496 } 497 if (end != round_page(end)) { 498 rv = __elfN(map_partial)(map, object, offset + 499 trunc_page(end) - start, trunc_page(end), end, prot); 500 if (rv != KERN_SUCCESS) 501 return (rv); 502 end = trunc_page(end); 503 } 504 if (start >= end) 505 return (KERN_SUCCESS); 506 if ((offset & PAGE_MASK) != 0) { 507 /* 508 * The mapping is not page aligned. This means that we have 509 * to copy the data. 510 */ 511 rv = vm_map_fixed(map, NULL, 0, start, end - start, 512 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 513 if (rv != KERN_SUCCESS) 514 return (rv); 515 if (object == NULL) 516 return (KERN_SUCCESS); 517 for (; start < end; start += sz) { 518 sf = vm_imgact_map_page(object, offset); 519 if (sf == NULL) 520 return (KERN_FAILURE); 521 off = offset - trunc_page(offset); 522 sz = end - start; 523 if (sz > PAGE_SIZE - off) 524 sz = PAGE_SIZE - off; 525 error = copyout((caddr_t)sf_buf_kva(sf) + off, 526 (caddr_t)start, sz); 527 vm_imgact_unmap_page(sf); 528 if (error != 0) 529 return (KERN_FAILURE); 530 offset += sz; 531 } 532 } else { 533 vm_object_reference(object); 534 rv = vm_map_fixed(map, object, offset, start, end - start, 535 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 536 (object != NULL ? MAP_VN_EXEC : 0)); 537 if (rv != KERN_SUCCESS) { 538 locked = VOP_ISLOCKED(imgp->vp); 539 VOP_UNLOCK(imgp->vp, 0); 540 vm_object_deallocate(object); 541 vn_lock(imgp->vp, locked | LK_RETRY); 542 return (rv); 543 } else if (object != NULL) { 544 MPASS(imgp->vp->v_object == object); 545 VOP_SET_TEXT_CHECKED(imgp->vp); 546 } 547 } 548 return (KERN_SUCCESS); 549 } 550 551 static int 552 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 553 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 554 { 555 struct sf_buf *sf; 556 size_t map_len; 557 vm_map_t map; 558 vm_object_t object; 559 vm_offset_t map_addr; 560 int error, rv, cow; 561 size_t copy_len; 562 vm_ooffset_t file_addr; 563 564 /* 565 * It's necessary to fail if the filsz + offset taken from the 566 * header is greater than the actual file pager object's size. 567 * If we were to allow this, then the vm_map_find() below would 568 * walk right off the end of the file object and into the ether. 569 * 570 * While I'm here, might as well check for something else that 571 * is invalid: filsz cannot be greater than memsz. 572 */ 573 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 574 filsz > memsz) { 575 uprintf("elf_load_section: truncated ELF file\n"); 576 return (ENOEXEC); 577 } 578 579 object = imgp->object; 580 map = &imgp->proc->p_vmspace->vm_map; 581 map_addr = trunc_page((vm_offset_t)vmaddr); 582 file_addr = trunc_page(offset); 583 584 /* 585 * We have two choices. We can either clear the data in the last page 586 * of an oversized mapping, or we can start the anon mapping a page 587 * early and copy the initialized data into that first page. We 588 * choose the second. 589 */ 590 if (filsz == 0) 591 map_len = 0; 592 else if (memsz > filsz) 593 map_len = trunc_page(offset + filsz) - file_addr; 594 else 595 map_len = round_page(offset + filsz) - file_addr; 596 597 if (map_len != 0) { 598 /* cow flags: don't dump readonly sections in core */ 599 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 600 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 601 602 rv = __elfN(map_insert)(imgp, map, object, file_addr, 603 map_addr, map_addr + map_len, prot, cow); 604 if (rv != KERN_SUCCESS) 605 return (EINVAL); 606 607 /* we can stop now if we've covered it all */ 608 if (memsz == filsz) 609 return (0); 610 } 611 612 613 /* 614 * We have to get the remaining bit of the file into the first part 615 * of the oversized map segment. This is normally because the .data 616 * segment in the file is extended to provide bss. It's a neat idea 617 * to try and save a page, but it's a pain in the behind to implement. 618 */ 619 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 620 filsz); 621 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 622 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 623 624 /* This had damn well better be true! */ 625 if (map_len != 0) { 626 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 627 map_addr + map_len, prot, 0); 628 if (rv != KERN_SUCCESS) 629 return (EINVAL); 630 } 631 632 if (copy_len != 0) { 633 sf = vm_imgact_map_page(object, offset + filsz); 634 if (sf == NULL) 635 return (EIO); 636 637 /* send the page fragment to user space */ 638 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 639 copy_len); 640 vm_imgact_unmap_page(sf); 641 if (error != 0) 642 return (error); 643 } 644 645 /* 646 * Remove write access to the page if it was only granted by map_insert 647 * to allow copyout. 648 */ 649 if ((prot & VM_PROT_WRITE) == 0) 650 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 651 map_len), prot, FALSE); 652 653 return (0); 654 } 655 656 static int 657 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 658 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 659 { 660 vm_prot_t prot; 661 u_long base_addr; 662 bool first; 663 int error, i; 664 665 ASSERT_VOP_LOCKED(imgp->vp, __func__); 666 667 base_addr = 0; 668 first = true; 669 670 for (i = 0; i < hdr->e_phnum; i++) { 671 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 672 continue; 673 674 /* Loadable segment */ 675 prot = __elfN(trans_prot)(phdr[i].p_flags); 676 error = __elfN(load_section)(imgp, phdr[i].p_offset, 677 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 678 phdr[i].p_memsz, phdr[i].p_filesz, prot); 679 if (error != 0) 680 return (error); 681 682 /* 683 * Establish the base address if this is the first segment. 684 */ 685 if (first) { 686 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 687 first = false; 688 } 689 } 690 691 if (base_addrp != NULL) 692 *base_addrp = base_addr; 693 694 return (0); 695 } 696 697 /* 698 * Load the file "file" into memory. It may be either a shared object 699 * or an executable. 700 * 701 * The "addr" reference parameter is in/out. On entry, it specifies 702 * the address where a shared object should be loaded. If the file is 703 * an executable, this value is ignored. On exit, "addr" specifies 704 * where the file was actually loaded. 705 * 706 * The "entry" reference parameter is out only. On exit, it specifies 707 * the entry point for the loaded file. 708 */ 709 static int 710 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 711 u_long *entry) 712 { 713 struct { 714 struct nameidata nd; 715 struct vattr attr; 716 struct image_params image_params; 717 } *tempdata; 718 const Elf_Ehdr *hdr = NULL; 719 const Elf_Phdr *phdr = NULL; 720 struct nameidata *nd; 721 struct vattr *attr; 722 struct image_params *imgp; 723 u_long rbase; 724 u_long base_addr = 0; 725 int error; 726 727 #ifdef CAPABILITY_MODE 728 /* 729 * XXXJA: This check can go away once we are sufficiently confident 730 * that the checks in namei() are correct. 731 */ 732 if (IN_CAPABILITY_MODE(curthread)) 733 return (ECAPMODE); 734 #endif 735 736 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 737 nd = &tempdata->nd; 738 attr = &tempdata->attr; 739 imgp = &tempdata->image_params; 740 741 /* 742 * Initialize part of the common data 743 */ 744 imgp->proc = p; 745 imgp->attr = attr; 746 747 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 748 UIO_SYSSPACE, file, curthread); 749 if ((error = namei(nd)) != 0) { 750 nd->ni_vp = NULL; 751 goto fail; 752 } 753 NDFREE(nd, NDF_ONLY_PNBUF); 754 imgp->vp = nd->ni_vp; 755 756 /* 757 * Check permissions, modes, uid, etc on the file, and "open" it. 758 */ 759 error = exec_check_permissions(imgp); 760 if (error) 761 goto fail; 762 763 error = exec_map_first_page(imgp); 764 if (error) 765 goto fail; 766 767 imgp->object = nd->ni_vp->v_object; 768 769 hdr = (const Elf_Ehdr *)imgp->image_header; 770 if ((error = __elfN(check_header)(hdr)) != 0) 771 goto fail; 772 if (hdr->e_type == ET_DYN) 773 rbase = *addr; 774 else if (hdr->e_type == ET_EXEC) 775 rbase = 0; 776 else { 777 error = ENOEXEC; 778 goto fail; 779 } 780 781 /* Only support headers that fit within first page for now */ 782 if ((hdr->e_phoff > PAGE_SIZE) || 783 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 784 error = ENOEXEC; 785 goto fail; 786 } 787 788 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 789 if (!aligned(phdr, Elf_Addr)) { 790 error = ENOEXEC; 791 goto fail; 792 } 793 794 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 795 if (error != 0) 796 goto fail; 797 798 *addr = base_addr; 799 *entry = (unsigned long)hdr->e_entry + rbase; 800 801 fail: 802 if (imgp->firstpage) 803 exec_unmap_first_page(imgp); 804 805 if (nd->ni_vp) { 806 if (imgp->textset) 807 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 808 vput(nd->ni_vp); 809 } 810 free(tempdata, M_TEMP); 811 812 return (error); 813 } 814 815 static u_long 816 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 817 u_int align) 818 { 819 u_long rbase, res; 820 821 MPASS(vm_map_min(map) <= minv); 822 MPASS(maxv <= vm_map_max(map)); 823 MPASS(minv < maxv); 824 MPASS(minv + align < maxv); 825 arc4rand(&rbase, sizeof(rbase), 0); 826 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 827 res &= ~((u_long)align - 1); 828 if (res >= maxv) 829 res -= align; 830 KASSERT(res >= minv, 831 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 832 res, minv, maxv, rbase)); 833 KASSERT(res < maxv, 834 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 835 res, maxv, minv, rbase)); 836 return (res); 837 } 838 839 static int 840 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 841 const Elf_Phdr *phdr, u_long et_dyn_addr) 842 { 843 struct vmspace *vmspace; 844 const char *err_str; 845 u_long text_size, data_size, total_size, text_addr, data_addr; 846 u_long seg_size, seg_addr; 847 int i; 848 849 err_str = NULL; 850 text_size = data_size = total_size = text_addr = data_addr = 0; 851 852 for (i = 0; i < hdr->e_phnum; i++) { 853 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 854 continue; 855 856 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 857 seg_size = round_page(phdr[i].p_memsz + 858 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 859 860 /* 861 * Make the largest executable segment the official 862 * text segment and all others data. 863 * 864 * Note that obreak() assumes that data_addr + data_size == end 865 * of data load area, and the ELF file format expects segments 866 * to be sorted by address. If multiple data segments exist, 867 * the last one will be used. 868 */ 869 870 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 871 text_size = seg_size; 872 text_addr = seg_addr; 873 } else { 874 data_size = seg_size; 875 data_addr = seg_addr; 876 } 877 total_size += seg_size; 878 } 879 880 if (data_addr == 0 && data_size == 0) { 881 data_addr = text_addr; 882 data_size = text_size; 883 } 884 885 /* 886 * Check limits. It should be safe to check the 887 * limits after loading the segments since we do 888 * not actually fault in all the segments pages. 889 */ 890 PROC_LOCK(imgp->proc); 891 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 892 err_str = "Data segment size exceeds process limit"; 893 else if (text_size > maxtsiz) 894 err_str = "Text segment size exceeds system limit"; 895 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 896 err_str = "Total segment size exceeds process limit"; 897 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 898 err_str = "Data segment size exceeds resource limit"; 899 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 900 err_str = "Total segment size exceeds resource limit"; 901 PROC_UNLOCK(imgp->proc); 902 if (err_str != NULL) { 903 uprintf("%s\n", err_str); 904 return (ENOMEM); 905 } 906 907 vmspace = imgp->proc->p_vmspace; 908 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 909 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 910 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 911 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 912 913 return (0); 914 } 915 916 static int 917 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 918 char **interpp, bool *free_interpp) 919 { 920 struct thread *td; 921 char *interp; 922 int error, interp_name_len; 923 924 KASSERT(phdr->p_type == PT_INTERP, 925 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 926 ASSERT_VOP_LOCKED(imgp->vp, __func__); 927 928 td = curthread; 929 930 /* Path to interpreter */ 931 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 932 uprintf("Invalid PT_INTERP\n"); 933 return (ENOEXEC); 934 } 935 936 interp_name_len = phdr->p_filesz; 937 if (phdr->p_offset > PAGE_SIZE || 938 interp_name_len > PAGE_SIZE - phdr->p_offset) { 939 /* 940 * The vnode lock might be needed by the pagedaemon to 941 * clean pages owned by the vnode. Do not allow sleep 942 * waiting for memory with the vnode locked, instead 943 * try non-sleepable allocation first, and if it 944 * fails, go to the slow path were we drop the lock 945 * and do M_WAITOK. A text reference prevents 946 * modifications to the vnode content. 947 */ 948 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 949 if (interp == NULL) { 950 VOP_UNLOCK(imgp->vp, 0); 951 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 952 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 953 } 954 955 error = vn_rdwr(UIO_READ, imgp->vp, interp, 956 interp_name_len, phdr->p_offset, 957 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 958 NOCRED, NULL, td); 959 if (error != 0) { 960 free(interp, M_TEMP); 961 uprintf("i/o error PT_INTERP %d\n", error); 962 return (error); 963 } 964 interp[interp_name_len] = '\0'; 965 966 *interpp = interp; 967 *free_interpp = true; 968 return (0); 969 } 970 971 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 972 if (interp[interp_name_len - 1] != '\0') { 973 uprintf("Invalid PT_INTERP\n"); 974 return (ENOEXEC); 975 } 976 977 *interpp = interp; 978 *free_interpp = false; 979 return (0); 980 } 981 982 static int 983 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 984 const char *interp, u_long *addr, u_long *entry) 985 { 986 char *path; 987 int error; 988 989 if (brand_info->emul_path != NULL && 990 brand_info->emul_path[0] != '\0') { 991 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 992 snprintf(path, MAXPATHLEN, "%s%s", 993 brand_info->emul_path, interp); 994 error = __elfN(load_file)(imgp->proc, path, addr, entry); 995 free(path, M_TEMP); 996 if (error == 0) 997 return (0); 998 } 999 1000 if (brand_info->interp_newpath != NULL && 1001 (brand_info->interp_path == NULL || 1002 strcmp(interp, brand_info->interp_path) == 0)) { 1003 error = __elfN(load_file)(imgp->proc, 1004 brand_info->interp_newpath, addr, entry); 1005 if (error == 0) 1006 return (0); 1007 } 1008 1009 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1010 if (error == 0) 1011 return (0); 1012 1013 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1014 return (error); 1015 } 1016 1017 /* 1018 * Impossible et_dyn_addr initial value indicating that the real base 1019 * must be calculated later with some randomization applied. 1020 */ 1021 #define ET_DYN_ADDR_RAND 1 1022 1023 static int 1024 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1025 { 1026 struct thread *td; 1027 const Elf_Ehdr *hdr; 1028 const Elf_Phdr *phdr; 1029 Elf_Auxargs *elf_auxargs; 1030 struct vmspace *vmspace; 1031 vm_map_t map; 1032 char *interp; 1033 Elf_Brandinfo *brand_info; 1034 struct sysentvec *sv; 1035 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1036 u_long maxalign, mapsz, maxv, maxv1; 1037 uint32_t fctl0; 1038 int32_t osrel; 1039 bool free_interp; 1040 int error, i, n; 1041 1042 hdr = (const Elf_Ehdr *)imgp->image_header; 1043 1044 /* 1045 * Do we have a valid ELF header ? 1046 * 1047 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1048 * if particular brand doesn't support it. 1049 */ 1050 if (__elfN(check_header)(hdr) != 0 || 1051 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1052 return (-1); 1053 1054 /* 1055 * From here on down, we return an errno, not -1, as we've 1056 * detected an ELF file. 1057 */ 1058 1059 if ((hdr->e_phoff > PAGE_SIZE) || 1060 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 1061 /* Only support headers in first page for now */ 1062 uprintf("Program headers not in the first page\n"); 1063 return (ENOEXEC); 1064 } 1065 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1066 if (!aligned(phdr, Elf_Addr)) { 1067 uprintf("Unaligned program headers\n"); 1068 return (ENOEXEC); 1069 } 1070 1071 n = error = 0; 1072 baddr = 0; 1073 osrel = 0; 1074 fctl0 = 0; 1075 entry = proghdr = 0; 1076 interp = NULL; 1077 free_interp = false; 1078 td = curthread; 1079 maxalign = PAGE_SIZE; 1080 mapsz = 0; 1081 1082 for (i = 0; i < hdr->e_phnum; i++) { 1083 switch (phdr[i].p_type) { 1084 case PT_LOAD: 1085 if (n == 0) 1086 baddr = phdr[i].p_vaddr; 1087 if (phdr[i].p_align > maxalign) 1088 maxalign = phdr[i].p_align; 1089 mapsz += phdr[i].p_memsz; 1090 n++; 1091 1092 /* 1093 * If this segment contains the program headers, 1094 * remember their virtual address for the AT_PHDR 1095 * aux entry. Static binaries don't usually include 1096 * a PT_PHDR entry. 1097 */ 1098 if (phdr[i].p_offset == 0 && 1099 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1100 <= phdr[i].p_filesz) 1101 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1102 break; 1103 case PT_INTERP: 1104 /* Path to interpreter */ 1105 if (interp != NULL) { 1106 uprintf("Multiple PT_INTERP headers\n"); 1107 error = ENOEXEC; 1108 goto ret; 1109 } 1110 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1111 &free_interp); 1112 if (error != 0) 1113 goto ret; 1114 break; 1115 case PT_GNU_STACK: 1116 if (__elfN(nxstack)) 1117 imgp->stack_prot = 1118 __elfN(trans_prot)(phdr[i].p_flags); 1119 imgp->stack_sz = phdr[i].p_memsz; 1120 break; 1121 case PT_PHDR: /* Program header table info */ 1122 proghdr = phdr[i].p_vaddr; 1123 break; 1124 } 1125 } 1126 1127 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1128 if (brand_info == NULL) { 1129 uprintf("ELF binary type \"%u\" not known.\n", 1130 hdr->e_ident[EI_OSABI]); 1131 error = ENOEXEC; 1132 goto ret; 1133 } 1134 sv = brand_info->sysvec; 1135 et_dyn_addr = 0; 1136 if (hdr->e_type == ET_DYN) { 1137 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1138 uprintf("Cannot execute shared object\n"); 1139 error = ENOEXEC; 1140 goto ret; 1141 } 1142 /* 1143 * Honour the base load address from the dso if it is 1144 * non-zero for some reason. 1145 */ 1146 if (baddr == 0) { 1147 if ((sv->sv_flags & SV_ASLR) == 0 || 1148 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1149 et_dyn_addr = ET_DYN_LOAD_ADDR; 1150 else if ((__elfN(pie_aslr_enabled) && 1151 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1152 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1153 et_dyn_addr = ET_DYN_ADDR_RAND; 1154 else 1155 et_dyn_addr = ET_DYN_LOAD_ADDR; 1156 } 1157 } 1158 1159 /* 1160 * Avoid a possible deadlock if the current address space is destroyed 1161 * and that address space maps the locked vnode. In the common case, 1162 * the locked vnode's v_usecount is decremented but remains greater 1163 * than zero. Consequently, the vnode lock is not needed by vrele(). 1164 * However, in cases where the vnode lock is external, such as nullfs, 1165 * v_usecount may become zero. 1166 * 1167 * The VV_TEXT flag prevents modifications to the executable while 1168 * the vnode is unlocked. 1169 */ 1170 VOP_UNLOCK(imgp->vp, 0); 1171 1172 /* 1173 * Decide whether to enable randomization of user mappings. 1174 * First, reset user preferences for the setid binaries. 1175 * Then, account for the support of the randomization by the 1176 * ABI, by user preferences, and make special treatment for 1177 * PIE binaries. 1178 */ 1179 if (imgp->credential_setid) { 1180 PROC_LOCK(imgp->proc); 1181 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1182 PROC_UNLOCK(imgp->proc); 1183 } 1184 if ((sv->sv_flags & SV_ASLR) == 0 || 1185 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1186 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1187 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1188 ("et_dyn_addr == RAND and !ASLR")); 1189 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1190 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1191 et_dyn_addr == ET_DYN_ADDR_RAND) { 1192 imgp->map_flags |= MAP_ASLR; 1193 /* 1194 * If user does not care about sbrk, utilize the bss 1195 * grow region for mappings as well. We can select 1196 * the base for the image anywere and still not suffer 1197 * from the fragmentation. 1198 */ 1199 if (!__elfN(aslr_honor_sbrk) || 1200 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1201 imgp->map_flags |= MAP_ASLR_IGNSTART; 1202 } 1203 1204 error = exec_new_vmspace(imgp, sv); 1205 vmspace = imgp->proc->p_vmspace; 1206 map = &vmspace->vm_map; 1207 1208 imgp->proc->p_sysent = sv; 1209 1210 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1211 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1212 KASSERT((map->flags & MAP_ASLR) != 0, 1213 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1214 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1215 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1216 /* reserve half of the address space to interpreter */ 1217 maxv / 2, 1UL << flsl(maxalign)); 1218 } 1219 1220 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1221 if (error != 0) 1222 goto ret; 1223 1224 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1225 if (error != 0) 1226 goto ret; 1227 1228 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1229 if (error != 0) 1230 goto ret; 1231 1232 entry = (u_long)hdr->e_entry + et_dyn_addr; 1233 1234 /* 1235 * We load the dynamic linker where a userland call 1236 * to mmap(0, ...) would put it. The rationale behind this 1237 * calculation is that it leaves room for the heap to grow to 1238 * its maximum allowed size. 1239 */ 1240 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1241 RLIMIT_DATA)); 1242 if ((map->flags & MAP_ASLR) != 0) { 1243 maxv1 = maxv / 2 + addr / 2; 1244 MPASS(maxv1 >= addr); /* No overflow */ 1245 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1246 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1247 } else { 1248 map->anon_loc = addr; 1249 } 1250 1251 imgp->entry_addr = entry; 1252 1253 if (interp != NULL) { 1254 VOP_UNLOCK(imgp->vp, 0); 1255 if ((map->flags & MAP_ASLR) != 0) { 1256 /* Assume that interpeter fits into 1/4 of AS */ 1257 maxv1 = maxv / 2 + addr / 2; 1258 MPASS(maxv1 >= addr); /* No overflow */ 1259 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1260 maxv1, PAGE_SIZE); 1261 } 1262 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1263 &imgp->entry_addr); 1264 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1265 if (error != 0) 1266 goto ret; 1267 } else 1268 addr = et_dyn_addr; 1269 1270 /* 1271 * Construct auxargs table (used by the fixup routine) 1272 */ 1273 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1274 if (elf_auxargs == NULL) { 1275 VOP_UNLOCK(imgp->vp, 0); 1276 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1277 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1278 } 1279 elf_auxargs->execfd = -1; 1280 elf_auxargs->phdr = proghdr + et_dyn_addr; 1281 elf_auxargs->phent = hdr->e_phentsize; 1282 elf_auxargs->phnum = hdr->e_phnum; 1283 elf_auxargs->pagesz = PAGE_SIZE; 1284 elf_auxargs->base = addr; 1285 elf_auxargs->flags = 0; 1286 elf_auxargs->entry = entry; 1287 elf_auxargs->hdr_eflags = hdr->e_flags; 1288 1289 imgp->auxargs = elf_auxargs; 1290 imgp->interpreted = 0; 1291 imgp->reloc_base = addr; 1292 imgp->proc->p_osrel = osrel; 1293 imgp->proc->p_fctl0 = fctl0; 1294 imgp->proc->p_elf_machine = hdr->e_machine; 1295 imgp->proc->p_elf_flags = hdr->e_flags; 1296 1297 ret: 1298 if (free_interp) 1299 free(interp, M_TEMP); 1300 return (error); 1301 } 1302 1303 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1304 1305 int 1306 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1307 { 1308 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1309 Elf_Auxinfo *argarray, *pos; 1310 Elf_Addr *base, *auxbase; 1311 int error; 1312 1313 base = (Elf_Addr *)*stack_base; 1314 auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1; 1315 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1316 M_WAITOK | M_ZERO); 1317 1318 if (args->execfd != -1) 1319 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1320 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1321 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1322 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1323 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1324 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1325 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1326 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1327 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1328 if (imgp->execpathp != 0) 1329 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1330 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1331 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1332 if (imgp->canary != 0) { 1333 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1334 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1335 } 1336 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1337 if (imgp->pagesizes != 0) { 1338 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1339 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1340 } 1341 if (imgp->sysent->sv_timekeep_base != 0) { 1342 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1343 imgp->sysent->sv_timekeep_base); 1344 } 1345 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1346 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1347 imgp->sysent->sv_stackprot); 1348 if (imgp->sysent->sv_hwcap != NULL) 1349 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1350 if (imgp->sysent->sv_hwcap2 != NULL) 1351 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1352 AUXARGS_ENTRY(pos, AT_NULL, 0); 1353 1354 free(imgp->auxargs, M_TEMP); 1355 imgp->auxargs = NULL; 1356 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1357 1358 error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT); 1359 free(argarray, M_TEMP); 1360 if (error != 0) 1361 return (error); 1362 1363 base--; 1364 if (suword(base, imgp->args->argc) == -1) 1365 return (EFAULT); 1366 *stack_base = (register_t *)base; 1367 return (0); 1368 } 1369 1370 /* 1371 * Code for generating ELF core dumps. 1372 */ 1373 1374 typedef void (*segment_callback)(vm_map_entry_t, void *); 1375 1376 /* Closure for cb_put_phdr(). */ 1377 struct phdr_closure { 1378 Elf_Phdr *phdr; /* Program header to fill in */ 1379 Elf_Off offset; /* Offset of segment in core file */ 1380 }; 1381 1382 /* Closure for cb_size_segment(). */ 1383 struct sseg_closure { 1384 int count; /* Count of writable segments. */ 1385 size_t size; /* Total size of all writable segments. */ 1386 }; 1387 1388 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1389 1390 struct note_info { 1391 int type; /* Note type. */ 1392 outfunc_t outfunc; /* Output function. */ 1393 void *outarg; /* Argument for the output function. */ 1394 size_t outsize; /* Output size. */ 1395 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1396 }; 1397 1398 TAILQ_HEAD(note_info_list, note_info); 1399 1400 /* Coredump output parameters. */ 1401 struct coredump_params { 1402 off_t offset; 1403 struct ucred *active_cred; 1404 struct ucred *file_cred; 1405 struct thread *td; 1406 struct vnode *vp; 1407 struct compressor *comp; 1408 }; 1409 1410 extern int compress_user_cores; 1411 extern int compress_user_cores_level; 1412 1413 static void cb_put_phdr(vm_map_entry_t, void *); 1414 static void cb_size_segment(vm_map_entry_t, void *); 1415 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1416 enum uio_seg); 1417 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1418 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1419 struct note_info_list *, size_t); 1420 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1421 size_t *); 1422 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1423 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1424 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1425 static int sbuf_drain_core_output(void *, const char *, int); 1426 1427 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1428 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1429 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1430 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1431 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1432 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1433 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1434 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1435 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1436 static void note_procstat_files(void *, struct sbuf *, size_t *); 1437 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1438 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1439 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1440 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1441 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1442 1443 /* 1444 * Write out a core segment to the compression stream. 1445 */ 1446 static int 1447 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1448 { 1449 u_int chunk_len; 1450 int error; 1451 1452 while (len > 0) { 1453 chunk_len = MIN(len, CORE_BUF_SIZE); 1454 1455 /* 1456 * We can get EFAULT error here. 1457 * In that case zero out the current chunk of the segment. 1458 */ 1459 error = copyin(base, buf, chunk_len); 1460 if (error != 0) 1461 bzero(buf, chunk_len); 1462 error = compressor_write(p->comp, buf, chunk_len); 1463 if (error != 0) 1464 break; 1465 base += chunk_len; 1466 len -= chunk_len; 1467 } 1468 return (error); 1469 } 1470 1471 static int 1472 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1473 { 1474 1475 return (core_write((struct coredump_params *)arg, base, len, offset, 1476 UIO_SYSSPACE)); 1477 } 1478 1479 static int 1480 core_write(struct coredump_params *p, const void *base, size_t len, 1481 off_t offset, enum uio_seg seg) 1482 { 1483 1484 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1485 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1486 p->active_cred, p->file_cred, NULL, p->td)); 1487 } 1488 1489 static int 1490 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1491 void *tmpbuf) 1492 { 1493 int error; 1494 1495 if (p->comp != NULL) 1496 return (compress_chunk(p, base, tmpbuf, len)); 1497 1498 /* 1499 * EFAULT is a non-fatal error that we can get, for example, 1500 * if the segment is backed by a file but extends beyond its 1501 * end. 1502 */ 1503 error = core_write(p, base, len, offset, UIO_USERSPACE); 1504 if (error == EFAULT) { 1505 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1506 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1507 "for process %s\n", base, len, offset, curproc->p_comm); 1508 1509 /* 1510 * Write a "real" zero byte at the end of the target region 1511 * in the case this is the last segment. 1512 * The intermediate space will be implicitly zero-filled. 1513 */ 1514 error = core_write(p, zero_region, 1, offset + len - 1, 1515 UIO_SYSSPACE); 1516 } 1517 return (error); 1518 } 1519 1520 /* 1521 * Drain into a core file. 1522 */ 1523 static int 1524 sbuf_drain_core_output(void *arg, const char *data, int len) 1525 { 1526 struct coredump_params *p; 1527 int error, locked; 1528 1529 p = (struct coredump_params *)arg; 1530 1531 /* 1532 * Some kern_proc out routines that print to this sbuf may 1533 * call us with the process lock held. Draining with the 1534 * non-sleepable lock held is unsafe. The lock is needed for 1535 * those routines when dumping a live process. In our case we 1536 * can safely release the lock before draining and acquire 1537 * again after. 1538 */ 1539 locked = PROC_LOCKED(p->td->td_proc); 1540 if (locked) 1541 PROC_UNLOCK(p->td->td_proc); 1542 if (p->comp != NULL) 1543 error = compressor_write(p->comp, __DECONST(char *, data), len); 1544 else 1545 error = core_write(p, __DECONST(void *, data), len, p->offset, 1546 UIO_SYSSPACE); 1547 if (locked) 1548 PROC_LOCK(p->td->td_proc); 1549 if (error != 0) 1550 return (-error); 1551 p->offset += len; 1552 return (len); 1553 } 1554 1555 int 1556 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1557 { 1558 struct ucred *cred = td->td_ucred; 1559 int error = 0; 1560 struct sseg_closure seginfo; 1561 struct note_info_list notelst; 1562 struct coredump_params params; 1563 struct note_info *ninfo; 1564 void *hdr, *tmpbuf; 1565 size_t hdrsize, notesz, coresize; 1566 1567 hdr = NULL; 1568 tmpbuf = NULL; 1569 TAILQ_INIT(¬elst); 1570 1571 /* Size the program segments. */ 1572 seginfo.count = 0; 1573 seginfo.size = 0; 1574 each_dumpable_segment(td, cb_size_segment, &seginfo); 1575 1576 /* 1577 * Collect info about the core file header area. 1578 */ 1579 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1580 if (seginfo.count + 1 >= PN_XNUM) 1581 hdrsize += sizeof(Elf_Shdr); 1582 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1583 coresize = round_page(hdrsize + notesz) + seginfo.size; 1584 1585 /* Set up core dump parameters. */ 1586 params.offset = 0; 1587 params.active_cred = cred; 1588 params.file_cred = NOCRED; 1589 params.td = td; 1590 params.vp = vp; 1591 params.comp = NULL; 1592 1593 #ifdef RACCT 1594 if (racct_enable) { 1595 PROC_LOCK(td->td_proc); 1596 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1597 PROC_UNLOCK(td->td_proc); 1598 if (error != 0) { 1599 error = EFAULT; 1600 goto done; 1601 } 1602 } 1603 #endif 1604 if (coresize >= limit) { 1605 error = EFAULT; 1606 goto done; 1607 } 1608 1609 /* Create a compression stream if necessary. */ 1610 if (compress_user_cores != 0) { 1611 params.comp = compressor_init(core_compressed_write, 1612 compress_user_cores, CORE_BUF_SIZE, 1613 compress_user_cores_level, ¶ms); 1614 if (params.comp == NULL) { 1615 error = EFAULT; 1616 goto done; 1617 } 1618 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1619 } 1620 1621 /* 1622 * Allocate memory for building the header, fill it up, 1623 * and write it out following the notes. 1624 */ 1625 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1626 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1627 notesz); 1628 1629 /* Write the contents of all of the writable segments. */ 1630 if (error == 0) { 1631 Elf_Phdr *php; 1632 off_t offset; 1633 int i; 1634 1635 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1636 offset = round_page(hdrsize + notesz); 1637 for (i = 0; i < seginfo.count; i++) { 1638 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1639 php->p_filesz, offset, ¶ms, tmpbuf); 1640 if (error != 0) 1641 break; 1642 offset += php->p_filesz; 1643 php++; 1644 } 1645 if (error == 0 && params.comp != NULL) 1646 error = compressor_flush(params.comp); 1647 } 1648 if (error) { 1649 log(LOG_WARNING, 1650 "Failed to write core file for process %s (error %d)\n", 1651 curproc->p_comm, error); 1652 } 1653 1654 done: 1655 free(tmpbuf, M_TEMP); 1656 if (params.comp != NULL) 1657 compressor_fini(params.comp); 1658 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1659 TAILQ_REMOVE(¬elst, ninfo, link); 1660 free(ninfo, M_TEMP); 1661 } 1662 if (hdr != NULL) 1663 free(hdr, M_TEMP); 1664 1665 return (error); 1666 } 1667 1668 /* 1669 * A callback for each_dumpable_segment() to write out the segment's 1670 * program header entry. 1671 */ 1672 static void 1673 cb_put_phdr(vm_map_entry_t entry, void *closure) 1674 { 1675 struct phdr_closure *phc = (struct phdr_closure *)closure; 1676 Elf_Phdr *phdr = phc->phdr; 1677 1678 phc->offset = round_page(phc->offset); 1679 1680 phdr->p_type = PT_LOAD; 1681 phdr->p_offset = phc->offset; 1682 phdr->p_vaddr = entry->start; 1683 phdr->p_paddr = 0; 1684 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1685 phdr->p_align = PAGE_SIZE; 1686 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1687 1688 phc->offset += phdr->p_filesz; 1689 phc->phdr++; 1690 } 1691 1692 /* 1693 * A callback for each_dumpable_segment() to gather information about 1694 * the number of segments and their total size. 1695 */ 1696 static void 1697 cb_size_segment(vm_map_entry_t entry, void *closure) 1698 { 1699 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1700 1701 ssc->count++; 1702 ssc->size += entry->end - entry->start; 1703 } 1704 1705 /* 1706 * For each writable segment in the process's memory map, call the given 1707 * function with a pointer to the map entry and some arbitrary 1708 * caller-supplied data. 1709 */ 1710 static void 1711 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1712 { 1713 struct proc *p = td->td_proc; 1714 vm_map_t map = &p->p_vmspace->vm_map; 1715 vm_map_entry_t entry; 1716 vm_object_t backing_object, object; 1717 boolean_t ignore_entry; 1718 1719 vm_map_lock_read(map); 1720 for (entry = map->header.next; entry != &map->header; 1721 entry = entry->next) { 1722 /* 1723 * Don't dump inaccessible mappings, deal with legacy 1724 * coredump mode. 1725 * 1726 * Note that read-only segments related to the elf binary 1727 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1728 * need to arbitrarily ignore such segments. 1729 */ 1730 if (elf_legacy_coredump) { 1731 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1732 continue; 1733 } else { 1734 if ((entry->protection & VM_PROT_ALL) == 0) 1735 continue; 1736 } 1737 1738 /* 1739 * Dont include memory segment in the coredump if 1740 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1741 * madvise(2). Do not dump submaps (i.e. parts of the 1742 * kernel map). 1743 */ 1744 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1745 continue; 1746 1747 if ((object = entry->object.vm_object) == NULL) 1748 continue; 1749 1750 /* Ignore memory-mapped devices and such things. */ 1751 VM_OBJECT_RLOCK(object); 1752 while ((backing_object = object->backing_object) != NULL) { 1753 VM_OBJECT_RLOCK(backing_object); 1754 VM_OBJECT_RUNLOCK(object); 1755 object = backing_object; 1756 } 1757 ignore_entry = object->type != OBJT_DEFAULT && 1758 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1759 object->type != OBJT_PHYS; 1760 VM_OBJECT_RUNLOCK(object); 1761 if (ignore_entry) 1762 continue; 1763 1764 (*func)(entry, closure); 1765 } 1766 vm_map_unlock_read(map); 1767 } 1768 1769 /* 1770 * Write the core file header to the file, including padding up to 1771 * the page boundary. 1772 */ 1773 static int 1774 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1775 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1776 { 1777 struct note_info *ninfo; 1778 struct sbuf *sb; 1779 int error; 1780 1781 /* Fill in the header. */ 1782 bzero(hdr, hdrsize); 1783 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1784 1785 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1786 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1787 sbuf_start_section(sb, NULL); 1788 sbuf_bcat(sb, hdr, hdrsize); 1789 TAILQ_FOREACH(ninfo, notelst, link) 1790 __elfN(putnote)(ninfo, sb); 1791 /* Align up to a page boundary for the program segments. */ 1792 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1793 error = sbuf_finish(sb); 1794 sbuf_delete(sb); 1795 1796 return (error); 1797 } 1798 1799 static void 1800 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1801 size_t *sizep) 1802 { 1803 struct proc *p; 1804 struct thread *thr; 1805 size_t size; 1806 1807 p = td->td_proc; 1808 size = 0; 1809 1810 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1811 1812 /* 1813 * To have the debugger select the right thread (LWP) as the initial 1814 * thread, we dump the state of the thread passed to us in td first. 1815 * This is the thread that causes the core dump and thus likely to 1816 * be the right thread one wants to have selected in the debugger. 1817 */ 1818 thr = td; 1819 while (thr != NULL) { 1820 size += register_note(list, NT_PRSTATUS, 1821 __elfN(note_prstatus), thr); 1822 size += register_note(list, NT_FPREGSET, 1823 __elfN(note_fpregset), thr); 1824 size += register_note(list, NT_THRMISC, 1825 __elfN(note_thrmisc), thr); 1826 size += register_note(list, NT_PTLWPINFO, 1827 __elfN(note_ptlwpinfo), thr); 1828 size += register_note(list, -1, 1829 __elfN(note_threadmd), thr); 1830 1831 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1832 TAILQ_NEXT(thr, td_plist); 1833 if (thr == td) 1834 thr = TAILQ_NEXT(thr, td_plist); 1835 } 1836 1837 size += register_note(list, NT_PROCSTAT_PROC, 1838 __elfN(note_procstat_proc), p); 1839 size += register_note(list, NT_PROCSTAT_FILES, 1840 note_procstat_files, p); 1841 size += register_note(list, NT_PROCSTAT_VMMAP, 1842 note_procstat_vmmap, p); 1843 size += register_note(list, NT_PROCSTAT_GROUPS, 1844 note_procstat_groups, p); 1845 size += register_note(list, NT_PROCSTAT_UMASK, 1846 note_procstat_umask, p); 1847 size += register_note(list, NT_PROCSTAT_RLIMIT, 1848 note_procstat_rlimit, p); 1849 size += register_note(list, NT_PROCSTAT_OSREL, 1850 note_procstat_osrel, p); 1851 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1852 __elfN(note_procstat_psstrings), p); 1853 size += register_note(list, NT_PROCSTAT_AUXV, 1854 __elfN(note_procstat_auxv), p); 1855 1856 *sizep = size; 1857 } 1858 1859 static void 1860 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1861 size_t notesz) 1862 { 1863 Elf_Ehdr *ehdr; 1864 Elf_Phdr *phdr; 1865 Elf_Shdr *shdr; 1866 struct phdr_closure phc; 1867 1868 ehdr = (Elf_Ehdr *)hdr; 1869 1870 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1871 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1872 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1873 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1874 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1875 ehdr->e_ident[EI_DATA] = ELF_DATA; 1876 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1877 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1878 ehdr->e_ident[EI_ABIVERSION] = 0; 1879 ehdr->e_ident[EI_PAD] = 0; 1880 ehdr->e_type = ET_CORE; 1881 ehdr->e_machine = td->td_proc->p_elf_machine; 1882 ehdr->e_version = EV_CURRENT; 1883 ehdr->e_entry = 0; 1884 ehdr->e_phoff = sizeof(Elf_Ehdr); 1885 ehdr->e_flags = td->td_proc->p_elf_flags; 1886 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1887 ehdr->e_phentsize = sizeof(Elf_Phdr); 1888 ehdr->e_shentsize = sizeof(Elf_Shdr); 1889 ehdr->e_shstrndx = SHN_UNDEF; 1890 if (numsegs + 1 < PN_XNUM) { 1891 ehdr->e_phnum = numsegs + 1; 1892 ehdr->e_shnum = 0; 1893 } else { 1894 ehdr->e_phnum = PN_XNUM; 1895 ehdr->e_shnum = 1; 1896 1897 ehdr->e_shoff = ehdr->e_phoff + 1898 (numsegs + 1) * ehdr->e_phentsize; 1899 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1900 ("e_shoff: %zu, hdrsize - shdr: %zu", 1901 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1902 1903 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1904 memset(shdr, 0, sizeof(*shdr)); 1905 /* 1906 * A special first section is used to hold large segment and 1907 * section counts. This was proposed by Sun Microsystems in 1908 * Solaris and has been adopted by Linux; the standard ELF 1909 * tools are already familiar with the technique. 1910 * 1911 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1912 * (or 12-7 depending on the version of the document) for more 1913 * details. 1914 */ 1915 shdr->sh_type = SHT_NULL; 1916 shdr->sh_size = ehdr->e_shnum; 1917 shdr->sh_link = ehdr->e_shstrndx; 1918 shdr->sh_info = numsegs + 1; 1919 } 1920 1921 /* 1922 * Fill in the program header entries. 1923 */ 1924 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1925 1926 /* The note segement. */ 1927 phdr->p_type = PT_NOTE; 1928 phdr->p_offset = hdrsize; 1929 phdr->p_vaddr = 0; 1930 phdr->p_paddr = 0; 1931 phdr->p_filesz = notesz; 1932 phdr->p_memsz = 0; 1933 phdr->p_flags = PF_R; 1934 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1935 phdr++; 1936 1937 /* All the writable segments from the program. */ 1938 phc.phdr = phdr; 1939 phc.offset = round_page(hdrsize + notesz); 1940 each_dumpable_segment(td, cb_put_phdr, &phc); 1941 } 1942 1943 static size_t 1944 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1945 { 1946 struct note_info *ninfo; 1947 size_t size, notesize; 1948 1949 size = 0; 1950 out(arg, NULL, &size); 1951 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1952 ninfo->type = type; 1953 ninfo->outfunc = out; 1954 ninfo->outarg = arg; 1955 ninfo->outsize = size; 1956 TAILQ_INSERT_TAIL(list, ninfo, link); 1957 1958 if (type == -1) 1959 return (size); 1960 1961 notesize = sizeof(Elf_Note) + /* note header */ 1962 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1963 /* note name */ 1964 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1965 1966 return (notesize); 1967 } 1968 1969 static size_t 1970 append_note_data(const void *src, void *dst, size_t len) 1971 { 1972 size_t padded_len; 1973 1974 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1975 if (dst != NULL) { 1976 bcopy(src, dst, len); 1977 bzero((char *)dst + len, padded_len - len); 1978 } 1979 return (padded_len); 1980 } 1981 1982 size_t 1983 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1984 { 1985 Elf_Note *note; 1986 char *buf; 1987 size_t notesize; 1988 1989 buf = dst; 1990 if (buf != NULL) { 1991 note = (Elf_Note *)buf; 1992 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1993 note->n_descsz = size; 1994 note->n_type = type; 1995 buf += sizeof(*note); 1996 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1997 sizeof(FREEBSD_ABI_VENDOR)); 1998 append_note_data(src, buf, size); 1999 if (descp != NULL) 2000 *descp = buf; 2001 } 2002 2003 notesize = sizeof(Elf_Note) + /* note header */ 2004 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2005 /* note name */ 2006 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2007 2008 return (notesize); 2009 } 2010 2011 static void 2012 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2013 { 2014 Elf_Note note; 2015 ssize_t old_len, sect_len; 2016 size_t new_len, descsz, i; 2017 2018 if (ninfo->type == -1) { 2019 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2020 return; 2021 } 2022 2023 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2024 note.n_descsz = ninfo->outsize; 2025 note.n_type = ninfo->type; 2026 2027 sbuf_bcat(sb, ¬e, sizeof(note)); 2028 sbuf_start_section(sb, &old_len); 2029 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2030 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2031 if (note.n_descsz == 0) 2032 return; 2033 sbuf_start_section(sb, &old_len); 2034 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2035 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2036 if (sect_len < 0) 2037 return; 2038 2039 new_len = (size_t)sect_len; 2040 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2041 if (new_len < descsz) { 2042 /* 2043 * It is expected that individual note emitters will correctly 2044 * predict their expected output size and fill up to that size 2045 * themselves, padding in a format-specific way if needed. 2046 * However, in case they don't, just do it here with zeros. 2047 */ 2048 for (i = 0; i < descsz - new_len; i++) 2049 sbuf_putc(sb, 0); 2050 } else if (new_len > descsz) { 2051 /* 2052 * We can't always truncate sb -- we may have drained some 2053 * of it already. 2054 */ 2055 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2056 "read it (%zu > %zu). Since it is longer than " 2057 "expected, this coredump's notes are corrupt. THIS " 2058 "IS A BUG in the note_procstat routine for type %u.\n", 2059 __func__, (unsigned)note.n_type, new_len, descsz, 2060 (unsigned)note.n_type)); 2061 } 2062 } 2063 2064 /* 2065 * Miscellaneous note out functions. 2066 */ 2067 2068 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2069 #include <compat/freebsd32/freebsd32.h> 2070 #include <compat/freebsd32/freebsd32_signal.h> 2071 2072 typedef struct prstatus32 elf_prstatus_t; 2073 typedef struct prpsinfo32 elf_prpsinfo_t; 2074 typedef struct fpreg32 elf_prfpregset_t; 2075 typedef struct fpreg32 elf_fpregset_t; 2076 typedef struct reg32 elf_gregset_t; 2077 typedef struct thrmisc32 elf_thrmisc_t; 2078 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2079 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2080 typedef uint32_t elf_ps_strings_t; 2081 #else 2082 typedef prstatus_t elf_prstatus_t; 2083 typedef prpsinfo_t elf_prpsinfo_t; 2084 typedef prfpregset_t elf_prfpregset_t; 2085 typedef prfpregset_t elf_fpregset_t; 2086 typedef gregset_t elf_gregset_t; 2087 typedef thrmisc_t elf_thrmisc_t; 2088 #define ELF_KERN_PROC_MASK 0 2089 typedef struct kinfo_proc elf_kinfo_proc_t; 2090 typedef vm_offset_t elf_ps_strings_t; 2091 #endif 2092 2093 static void 2094 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2095 { 2096 struct sbuf sbarg; 2097 size_t len; 2098 char *cp, *end; 2099 struct proc *p; 2100 elf_prpsinfo_t *psinfo; 2101 int error; 2102 2103 p = (struct proc *)arg; 2104 if (sb != NULL) { 2105 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2106 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2107 psinfo->pr_version = PRPSINFO_VERSION; 2108 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2109 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2110 PROC_LOCK(p); 2111 if (p->p_args != NULL) { 2112 len = sizeof(psinfo->pr_psargs) - 1; 2113 if (len > p->p_args->ar_length) 2114 len = p->p_args->ar_length; 2115 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2116 PROC_UNLOCK(p); 2117 error = 0; 2118 } else { 2119 _PHOLD(p); 2120 PROC_UNLOCK(p); 2121 sbuf_new(&sbarg, psinfo->pr_psargs, 2122 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2123 error = proc_getargv(curthread, p, &sbarg); 2124 PRELE(p); 2125 if (sbuf_finish(&sbarg) == 0) 2126 len = sbuf_len(&sbarg) - 1; 2127 else 2128 len = sizeof(psinfo->pr_psargs) - 1; 2129 sbuf_delete(&sbarg); 2130 } 2131 if (error || len == 0) 2132 strlcpy(psinfo->pr_psargs, p->p_comm, 2133 sizeof(psinfo->pr_psargs)); 2134 else { 2135 KASSERT(len < sizeof(psinfo->pr_psargs), 2136 ("len is too long: %zu vs %zu", len, 2137 sizeof(psinfo->pr_psargs))); 2138 cp = psinfo->pr_psargs; 2139 end = cp + len - 1; 2140 for (;;) { 2141 cp = memchr(cp, '\0', end - cp); 2142 if (cp == NULL) 2143 break; 2144 *cp = ' '; 2145 } 2146 } 2147 psinfo->pr_pid = p->p_pid; 2148 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2149 free(psinfo, M_TEMP); 2150 } 2151 *sizep = sizeof(*psinfo); 2152 } 2153 2154 static void 2155 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2156 { 2157 struct thread *td; 2158 elf_prstatus_t *status; 2159 2160 td = (struct thread *)arg; 2161 if (sb != NULL) { 2162 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2163 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2164 status->pr_version = PRSTATUS_VERSION; 2165 status->pr_statussz = sizeof(elf_prstatus_t); 2166 status->pr_gregsetsz = sizeof(elf_gregset_t); 2167 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2168 status->pr_osreldate = osreldate; 2169 status->pr_cursig = td->td_proc->p_sig; 2170 status->pr_pid = td->td_tid; 2171 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2172 fill_regs32(td, &status->pr_reg); 2173 #else 2174 fill_regs(td, &status->pr_reg); 2175 #endif 2176 sbuf_bcat(sb, status, sizeof(*status)); 2177 free(status, M_TEMP); 2178 } 2179 *sizep = sizeof(*status); 2180 } 2181 2182 static void 2183 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2184 { 2185 struct thread *td; 2186 elf_prfpregset_t *fpregset; 2187 2188 td = (struct thread *)arg; 2189 if (sb != NULL) { 2190 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2191 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2192 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2193 fill_fpregs32(td, fpregset); 2194 #else 2195 fill_fpregs(td, fpregset); 2196 #endif 2197 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2198 free(fpregset, M_TEMP); 2199 } 2200 *sizep = sizeof(*fpregset); 2201 } 2202 2203 static void 2204 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2205 { 2206 struct thread *td; 2207 elf_thrmisc_t thrmisc; 2208 2209 td = (struct thread *)arg; 2210 if (sb != NULL) { 2211 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2212 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2213 strcpy(thrmisc.pr_tname, td->td_name); 2214 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2215 } 2216 *sizep = sizeof(thrmisc); 2217 } 2218 2219 static void 2220 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2221 { 2222 struct thread *td; 2223 size_t size; 2224 int structsize; 2225 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2226 struct ptrace_lwpinfo32 pl; 2227 #else 2228 struct ptrace_lwpinfo pl; 2229 #endif 2230 2231 td = (struct thread *)arg; 2232 size = sizeof(structsize) + sizeof(pl); 2233 if (sb != NULL) { 2234 KASSERT(*sizep == size, ("invalid size")); 2235 structsize = sizeof(pl); 2236 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2237 bzero(&pl, sizeof(pl)); 2238 pl.pl_lwpid = td->td_tid; 2239 pl.pl_event = PL_EVENT_NONE; 2240 pl.pl_sigmask = td->td_sigmask; 2241 pl.pl_siglist = td->td_siglist; 2242 if (td->td_si.si_signo != 0) { 2243 pl.pl_event = PL_EVENT_SIGNAL; 2244 pl.pl_flags |= PL_FLAG_SI; 2245 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2246 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2247 #else 2248 pl.pl_siginfo = td->td_si; 2249 #endif 2250 } 2251 strcpy(pl.pl_tdname, td->td_name); 2252 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2253 sbuf_bcat(sb, &pl, sizeof(pl)); 2254 } 2255 *sizep = size; 2256 } 2257 2258 /* 2259 * Allow for MD specific notes, as well as any MD 2260 * specific preparations for writing MI notes. 2261 */ 2262 static void 2263 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2264 { 2265 struct thread *td; 2266 void *buf; 2267 size_t size; 2268 2269 td = (struct thread *)arg; 2270 size = *sizep; 2271 if (size != 0 && sb != NULL) 2272 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2273 else 2274 buf = NULL; 2275 size = 0; 2276 __elfN(dump_thread)(td, buf, &size); 2277 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2278 if (size != 0 && sb != NULL) 2279 sbuf_bcat(sb, buf, size); 2280 free(buf, M_TEMP); 2281 *sizep = size; 2282 } 2283 2284 #ifdef KINFO_PROC_SIZE 2285 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2286 #endif 2287 2288 static void 2289 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2290 { 2291 struct proc *p; 2292 size_t size; 2293 int structsize; 2294 2295 p = (struct proc *)arg; 2296 size = sizeof(structsize) + p->p_numthreads * 2297 sizeof(elf_kinfo_proc_t); 2298 2299 if (sb != NULL) { 2300 KASSERT(*sizep == size, ("invalid size")); 2301 structsize = sizeof(elf_kinfo_proc_t); 2302 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2303 PROC_LOCK(p); 2304 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2305 } 2306 *sizep = size; 2307 } 2308 2309 #ifdef KINFO_FILE_SIZE 2310 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2311 #endif 2312 2313 static void 2314 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2315 { 2316 struct proc *p; 2317 size_t size, sect_sz, i; 2318 ssize_t start_len, sect_len; 2319 int structsize, filedesc_flags; 2320 2321 if (coredump_pack_fileinfo) 2322 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2323 else 2324 filedesc_flags = 0; 2325 2326 p = (struct proc *)arg; 2327 structsize = sizeof(struct kinfo_file); 2328 if (sb == NULL) { 2329 size = 0; 2330 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2331 sbuf_set_drain(sb, sbuf_count_drain, &size); 2332 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2333 PROC_LOCK(p); 2334 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2335 sbuf_finish(sb); 2336 sbuf_delete(sb); 2337 *sizep = size; 2338 } else { 2339 sbuf_start_section(sb, &start_len); 2340 2341 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2342 PROC_LOCK(p); 2343 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2344 filedesc_flags); 2345 2346 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2347 if (sect_len < 0) 2348 return; 2349 sect_sz = sect_len; 2350 2351 KASSERT(sect_sz <= *sizep, 2352 ("kern_proc_filedesc_out did not respect maxlen; " 2353 "requested %zu, got %zu", *sizep - sizeof(structsize), 2354 sect_sz - sizeof(structsize))); 2355 2356 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2357 sbuf_putc(sb, 0); 2358 } 2359 } 2360 2361 #ifdef KINFO_VMENTRY_SIZE 2362 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2363 #endif 2364 2365 static void 2366 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2367 { 2368 struct proc *p; 2369 size_t size; 2370 int structsize, vmmap_flags; 2371 2372 if (coredump_pack_vmmapinfo) 2373 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2374 else 2375 vmmap_flags = 0; 2376 2377 p = (struct proc *)arg; 2378 structsize = sizeof(struct kinfo_vmentry); 2379 if (sb == NULL) { 2380 size = 0; 2381 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2382 sbuf_set_drain(sb, sbuf_count_drain, &size); 2383 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2384 PROC_LOCK(p); 2385 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2386 sbuf_finish(sb); 2387 sbuf_delete(sb); 2388 *sizep = size; 2389 } else { 2390 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2391 PROC_LOCK(p); 2392 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2393 vmmap_flags); 2394 } 2395 } 2396 2397 static void 2398 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2399 { 2400 struct proc *p; 2401 size_t size; 2402 int structsize; 2403 2404 p = (struct proc *)arg; 2405 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2406 if (sb != NULL) { 2407 KASSERT(*sizep == size, ("invalid size")); 2408 structsize = sizeof(gid_t); 2409 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2410 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2411 sizeof(gid_t)); 2412 } 2413 *sizep = size; 2414 } 2415 2416 static void 2417 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2418 { 2419 struct proc *p; 2420 size_t size; 2421 int structsize; 2422 2423 p = (struct proc *)arg; 2424 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2425 if (sb != NULL) { 2426 KASSERT(*sizep == size, ("invalid size")); 2427 structsize = sizeof(p->p_fd->fd_cmask); 2428 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2429 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2430 } 2431 *sizep = size; 2432 } 2433 2434 static void 2435 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2436 { 2437 struct proc *p; 2438 struct rlimit rlim[RLIM_NLIMITS]; 2439 size_t size; 2440 int structsize, i; 2441 2442 p = (struct proc *)arg; 2443 size = sizeof(structsize) + sizeof(rlim); 2444 if (sb != NULL) { 2445 KASSERT(*sizep == size, ("invalid size")); 2446 structsize = sizeof(rlim); 2447 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2448 PROC_LOCK(p); 2449 for (i = 0; i < RLIM_NLIMITS; i++) 2450 lim_rlimit_proc(p, i, &rlim[i]); 2451 PROC_UNLOCK(p); 2452 sbuf_bcat(sb, rlim, sizeof(rlim)); 2453 } 2454 *sizep = size; 2455 } 2456 2457 static void 2458 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2459 { 2460 struct proc *p; 2461 size_t size; 2462 int structsize; 2463 2464 p = (struct proc *)arg; 2465 size = sizeof(structsize) + sizeof(p->p_osrel); 2466 if (sb != NULL) { 2467 KASSERT(*sizep == size, ("invalid size")); 2468 structsize = sizeof(p->p_osrel); 2469 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2470 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2471 } 2472 *sizep = size; 2473 } 2474 2475 static void 2476 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2477 { 2478 struct proc *p; 2479 elf_ps_strings_t ps_strings; 2480 size_t size; 2481 int structsize; 2482 2483 p = (struct proc *)arg; 2484 size = sizeof(structsize) + sizeof(ps_strings); 2485 if (sb != NULL) { 2486 KASSERT(*sizep == size, ("invalid size")); 2487 structsize = sizeof(ps_strings); 2488 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2489 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2490 #else 2491 ps_strings = p->p_sysent->sv_psstrings; 2492 #endif 2493 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2494 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2495 } 2496 *sizep = size; 2497 } 2498 2499 static void 2500 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2501 { 2502 struct proc *p; 2503 size_t size; 2504 int structsize; 2505 2506 p = (struct proc *)arg; 2507 if (sb == NULL) { 2508 size = 0; 2509 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2510 sbuf_set_drain(sb, sbuf_count_drain, &size); 2511 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2512 PHOLD(p); 2513 proc_getauxv(curthread, p, sb); 2514 PRELE(p); 2515 sbuf_finish(sb); 2516 sbuf_delete(sb); 2517 *sizep = size; 2518 } else { 2519 structsize = sizeof(Elf_Auxinfo); 2520 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2521 PHOLD(p); 2522 proc_getauxv(curthread, p, sb); 2523 PRELE(p); 2524 } 2525 } 2526 2527 static boolean_t 2528 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2529 const char *note_vendor, const Elf_Phdr *pnote, 2530 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2531 { 2532 const Elf_Note *note, *note0, *note_end; 2533 const char *note_name; 2534 char *buf; 2535 int i, error; 2536 boolean_t res; 2537 2538 /* We need some limit, might as well use PAGE_SIZE. */ 2539 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2540 return (FALSE); 2541 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2542 if (pnote->p_offset > PAGE_SIZE || 2543 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2544 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2545 if (buf == NULL) { 2546 VOP_UNLOCK(imgp->vp, 0); 2547 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2548 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2549 } 2550 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2551 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2552 curthread->td_ucred, NOCRED, NULL, curthread); 2553 if (error != 0) { 2554 uprintf("i/o error PT_NOTE\n"); 2555 goto retf; 2556 } 2557 note = note0 = (const Elf_Note *)buf; 2558 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2559 } else { 2560 note = note0 = (const Elf_Note *)(imgp->image_header + 2561 pnote->p_offset); 2562 note_end = (const Elf_Note *)(imgp->image_header + 2563 pnote->p_offset + pnote->p_filesz); 2564 buf = NULL; 2565 } 2566 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2567 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2568 (const char *)note < sizeof(Elf_Note)) { 2569 goto retf; 2570 } 2571 if (note->n_namesz != checknote->n_namesz || 2572 note->n_descsz != checknote->n_descsz || 2573 note->n_type != checknote->n_type) 2574 goto nextnote; 2575 note_name = (const char *)(note + 1); 2576 if (note_name + checknote->n_namesz >= 2577 (const char *)note_end || strncmp(note_vendor, 2578 note_name, checknote->n_namesz) != 0) 2579 goto nextnote; 2580 2581 if (cb(note, cb_arg, &res)) 2582 goto ret; 2583 nextnote: 2584 note = (const Elf_Note *)((const char *)(note + 1) + 2585 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2586 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2587 } 2588 retf: 2589 res = FALSE; 2590 ret: 2591 free(buf, M_TEMP); 2592 return (res); 2593 } 2594 2595 struct brandnote_cb_arg { 2596 Elf_Brandnote *brandnote; 2597 int32_t *osrel; 2598 }; 2599 2600 static boolean_t 2601 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2602 { 2603 struct brandnote_cb_arg *arg; 2604 2605 arg = arg0; 2606 2607 /* 2608 * Fetch the osreldate for binary from the ELF OSABI-note if 2609 * necessary. 2610 */ 2611 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2612 arg->brandnote->trans_osrel != NULL ? 2613 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2614 2615 return (TRUE); 2616 } 2617 2618 static Elf_Note fctl_note = { 2619 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2620 .n_descsz = sizeof(uint32_t), 2621 .n_type = NT_FREEBSD_FEATURE_CTL, 2622 }; 2623 2624 struct fctl_cb_arg { 2625 uint32_t *fctl0; 2626 }; 2627 2628 static boolean_t 2629 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2630 { 2631 struct fctl_cb_arg *arg; 2632 const Elf32_Word *desc; 2633 uintptr_t p; 2634 2635 arg = arg0; 2636 p = (uintptr_t)(note + 1); 2637 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2638 desc = (const Elf32_Word *)p; 2639 *arg->fctl0 = desc[0]; 2640 return (TRUE); 2641 } 2642 2643 /* 2644 * Try to find the appropriate ABI-note section for checknote, fetch 2645 * the osreldate and feature control flags for binary from the ELF 2646 * OSABI-note. Only the first page of the image is searched, the same 2647 * as for headers. 2648 */ 2649 static boolean_t 2650 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2651 int32_t *osrel, uint32_t *fctl0) 2652 { 2653 const Elf_Phdr *phdr; 2654 const Elf_Ehdr *hdr; 2655 struct brandnote_cb_arg b_arg; 2656 struct fctl_cb_arg f_arg; 2657 int i, j; 2658 2659 hdr = (const Elf_Ehdr *)imgp->image_header; 2660 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2661 b_arg.brandnote = brandnote; 2662 b_arg.osrel = osrel; 2663 f_arg.fctl0 = fctl0; 2664 2665 for (i = 0; i < hdr->e_phnum; i++) { 2666 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2667 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2668 &b_arg)) { 2669 for (j = 0; j < hdr->e_phnum; j++) { 2670 if (phdr[j].p_type == PT_NOTE && 2671 __elfN(parse_notes)(imgp, &fctl_note, 2672 FREEBSD_ABI_VENDOR, &phdr[j], 2673 note_fctl_cb, &f_arg)) 2674 break; 2675 } 2676 return (TRUE); 2677 } 2678 } 2679 return (FALSE); 2680 2681 } 2682 2683 /* 2684 * Tell kern_execve.c about it, with a little help from the linker. 2685 */ 2686 static struct execsw __elfN(execsw) = { 2687 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2688 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2689 }; 2690 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2691 2692 static vm_prot_t 2693 __elfN(trans_prot)(Elf_Word flags) 2694 { 2695 vm_prot_t prot; 2696 2697 prot = 0; 2698 if (flags & PF_X) 2699 prot |= VM_PROT_EXECUTE; 2700 if (flags & PF_W) 2701 prot |= VM_PROT_WRITE; 2702 if (flags & PF_R) 2703 prot |= VM_PROT_READ; 2704 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2705 if (i386_read_exec && (flags & PF_R)) 2706 prot |= VM_PROT_EXECUTE; 2707 #endif 2708 return (prot); 2709 } 2710 2711 static Elf_Word 2712 __elfN(untrans_prot)(vm_prot_t prot) 2713 { 2714 Elf_Word flags; 2715 2716 flags = 0; 2717 if (prot & VM_PROT_EXECUTE) 2718 flags |= PF_X; 2719 if (prot & VM_PROT_READ) 2720 flags |= PF_R; 2721 if (prot & VM_PROT_WRITE) 2722 flags |= PF_W; 2723 return (flags); 2724 } 2725 2726 void 2727 __elfN(stackgap)(struct image_params *imgp, u_long *stack_base) 2728 { 2729 u_long range, rbase, gap; 2730 int pct; 2731 2732 if ((imgp->map_flags & MAP_ASLR) == 0) 2733 return; 2734 pct = __elfN(aslr_stack_gap); 2735 if (pct == 0) 2736 return; 2737 if (pct > 50) 2738 pct = 50; 2739 range = imgp->eff_stack_sz * pct / 100; 2740 arc4rand(&rbase, sizeof(rbase), 0); 2741 gap = rbase % range; 2742 gap &= ~(sizeof(u_long) - 1); 2743 *stack_base -= gap; 2744 } 2745