1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int interp_name_len, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry, size_t pagesize); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 96 size_t pagesize); 97 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 98 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 99 int32_t *osrel); 100 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 101 static boolean_t __elfN(check_note)(struct image_params *imgp, 102 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 107 ""); 108 109 #define CORE_BUF_SIZE (16 * 1024) 110 111 int __elfN(fallback_brand) = -1; 112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 113 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 114 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 115 116 static int elf_legacy_coredump = 0; 117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 118 &elf_legacy_coredump, 0, 119 "include all and only RW pages in core dumps"); 120 121 int __elfN(nxstack) = 122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 123 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 124 defined(__riscv) 125 1; 126 #else 127 0; 128 #endif 129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 132 133 #if __ELF_WORD_SIZE == 32 134 #if defined(__amd64__) 135 int i386_read_exec = 0; 136 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 137 "enable execution from readable segments"); 138 #endif 139 #endif 140 141 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 142 143 #define trunc_page_ps(va, ps) rounddown2(va, ps) 144 #define round_page_ps(va, ps) roundup2(va, ps) 145 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 146 147 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 148 149 Elf_Brandnote __elfN(freebsd_brandnote) = { 150 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 151 .hdr.n_descsz = sizeof(int32_t), 152 .hdr.n_type = NT_FREEBSD_ABI_TAG, 153 .vendor = FREEBSD_ABI_VENDOR, 154 .flags = BN_TRANSLATE_OSREL, 155 .trans_osrel = __elfN(freebsd_trans_osrel) 156 }; 157 158 static bool 159 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 160 { 161 uintptr_t p; 162 163 p = (uintptr_t)(note + 1); 164 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 165 *osrel = *(const int32_t *)(p); 166 167 return (true); 168 } 169 170 static const char GNU_ABI_VENDOR[] = "GNU"; 171 static int GNU_KFREEBSD_ABI_DESC = 3; 172 173 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 174 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 175 .hdr.n_descsz = 16, /* XXX at least 16 */ 176 .hdr.n_type = 1, 177 .vendor = GNU_ABI_VENDOR, 178 .flags = BN_TRANSLATE_OSREL, 179 .trans_osrel = kfreebsd_trans_osrel 180 }; 181 182 static bool 183 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 184 { 185 const Elf32_Word *desc; 186 uintptr_t p; 187 188 p = (uintptr_t)(note + 1); 189 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 190 191 desc = (const Elf32_Word *)p; 192 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 193 return (false); 194 195 /* 196 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 197 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 198 */ 199 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 200 201 return (true); 202 } 203 204 int 205 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 206 { 207 int i; 208 209 for (i = 0; i < MAX_BRANDS; i++) { 210 if (elf_brand_list[i] == NULL) { 211 elf_brand_list[i] = entry; 212 break; 213 } 214 } 215 if (i == MAX_BRANDS) { 216 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 217 __func__, entry); 218 return (-1); 219 } 220 return (0); 221 } 222 223 int 224 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 225 { 226 int i; 227 228 for (i = 0; i < MAX_BRANDS; i++) { 229 if (elf_brand_list[i] == entry) { 230 elf_brand_list[i] = NULL; 231 break; 232 } 233 } 234 if (i == MAX_BRANDS) 235 return (-1); 236 return (0); 237 } 238 239 int 240 __elfN(brand_inuse)(Elf_Brandinfo *entry) 241 { 242 struct proc *p; 243 int rval = FALSE; 244 245 sx_slock(&allproc_lock); 246 FOREACH_PROC_IN_SYSTEM(p) { 247 if (p->p_sysent == entry->sysvec) { 248 rval = TRUE; 249 break; 250 } 251 } 252 sx_sunlock(&allproc_lock); 253 254 return (rval); 255 } 256 257 static Elf_Brandinfo * 258 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 259 int interp_name_len, int32_t *osrel, uint32_t *fctl0) 260 { 261 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 262 Elf_Brandinfo *bi, *bi_m; 263 boolean_t ret; 264 int i; 265 266 /* 267 * We support four types of branding -- (1) the ELF EI_OSABI field 268 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 269 * branding w/in the ELF header, (3) path of the `interp_path' 270 * field, and (4) the ".note.ABI-tag" ELF section. 271 */ 272 273 /* Look for an ".note.ABI-tag" ELF section */ 274 bi_m = NULL; 275 for (i = 0; i < MAX_BRANDS; i++) { 276 bi = elf_brand_list[i]; 277 if (bi == NULL) 278 continue; 279 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 280 continue; 281 if (hdr->e_machine == bi->machine && (bi->flags & 282 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 283 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 284 fctl0); 285 /* Give brand a chance to veto check_note's guess */ 286 if (ret && bi->header_supported) 287 ret = bi->header_supported(imgp); 288 /* 289 * If note checker claimed the binary, but the 290 * interpreter path in the image does not 291 * match default one for the brand, try to 292 * search for other brands with the same 293 * interpreter. Either there is better brand 294 * with the right interpreter, or, failing 295 * this, we return first brand which accepted 296 * our note and, optionally, header. 297 */ 298 if (ret && bi_m == NULL && interp != NULL && 299 (bi->interp_path == NULL || 300 (strlen(bi->interp_path) + 1 != interp_name_len || 301 strncmp(interp, bi->interp_path, interp_name_len) 302 != 0))) { 303 bi_m = bi; 304 ret = 0; 305 } 306 if (ret) 307 return (bi); 308 } 309 } 310 if (bi_m != NULL) 311 return (bi_m); 312 313 /* If the executable has a brand, search for it in the brand list. */ 314 for (i = 0; i < MAX_BRANDS; i++) { 315 bi = elf_brand_list[i]; 316 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 317 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 318 continue; 319 if (hdr->e_machine == bi->machine && 320 (hdr->e_ident[EI_OSABI] == bi->brand || 321 (bi->compat_3_brand != NULL && 322 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 323 bi->compat_3_brand) == 0))) { 324 /* Looks good, but give brand a chance to veto */ 325 if (bi->header_supported == NULL || 326 bi->header_supported(imgp)) { 327 /* 328 * Again, prefer strictly matching 329 * interpreter path. 330 */ 331 if (interp_name_len == 0 && 332 bi->interp_path == NULL) 333 return (bi); 334 if (bi->interp_path != NULL && 335 strlen(bi->interp_path) + 1 == 336 interp_name_len && strncmp(interp, 337 bi->interp_path, interp_name_len) == 0) 338 return (bi); 339 if (bi_m == NULL) 340 bi_m = bi; 341 } 342 } 343 } 344 if (bi_m != NULL) 345 return (bi_m); 346 347 /* No known brand, see if the header is recognized by any brand */ 348 for (i = 0; i < MAX_BRANDS; i++) { 349 bi = elf_brand_list[i]; 350 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 351 bi->header_supported == NULL) 352 continue; 353 if (hdr->e_machine == bi->machine) { 354 ret = bi->header_supported(imgp); 355 if (ret) 356 return (bi); 357 } 358 } 359 360 /* Lacking a known brand, search for a recognized interpreter. */ 361 if (interp != NULL) { 362 for (i = 0; i < MAX_BRANDS; i++) { 363 bi = elf_brand_list[i]; 364 if (bi == NULL || (bi->flags & 365 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 366 != 0) 367 continue; 368 if (hdr->e_machine == bi->machine && 369 bi->interp_path != NULL && 370 /* ELF image p_filesz includes terminating zero */ 371 strlen(bi->interp_path) + 1 == interp_name_len && 372 strncmp(interp, bi->interp_path, interp_name_len) 373 == 0 && (bi->header_supported == NULL || 374 bi->header_supported(imgp))) 375 return (bi); 376 } 377 } 378 379 /* Lacking a recognized interpreter, try the default brand */ 380 for (i = 0; i < MAX_BRANDS; i++) { 381 bi = elf_brand_list[i]; 382 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 383 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 384 continue; 385 if (hdr->e_machine == bi->machine && 386 __elfN(fallback_brand) == bi->brand && 387 (bi->header_supported == NULL || 388 bi->header_supported(imgp))) 389 return (bi); 390 } 391 return (NULL); 392 } 393 394 static int 395 __elfN(check_header)(const Elf_Ehdr *hdr) 396 { 397 Elf_Brandinfo *bi; 398 int i; 399 400 if (!IS_ELF(*hdr) || 401 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 402 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 403 hdr->e_ident[EI_VERSION] != EV_CURRENT || 404 hdr->e_phentsize != sizeof(Elf_Phdr) || 405 hdr->e_version != ELF_TARG_VER) 406 return (ENOEXEC); 407 408 /* 409 * Make sure we have at least one brand for this machine. 410 */ 411 412 for (i = 0; i < MAX_BRANDS; i++) { 413 bi = elf_brand_list[i]; 414 if (bi != NULL && bi->machine == hdr->e_machine) 415 break; 416 } 417 if (i == MAX_BRANDS) 418 return (ENOEXEC); 419 420 return (0); 421 } 422 423 static int 424 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 425 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 426 { 427 struct sf_buf *sf; 428 int error; 429 vm_offset_t off; 430 431 /* 432 * Create the page if it doesn't exist yet. Ignore errors. 433 */ 434 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 435 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 436 437 /* 438 * Find the page from the underlying object. 439 */ 440 if (object != NULL) { 441 sf = vm_imgact_map_page(object, offset); 442 if (sf == NULL) 443 return (KERN_FAILURE); 444 off = offset - trunc_page(offset); 445 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 446 end - start); 447 vm_imgact_unmap_page(sf); 448 if (error != 0) 449 return (KERN_FAILURE); 450 } 451 452 return (KERN_SUCCESS); 453 } 454 455 static int 456 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 457 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 458 int cow) 459 { 460 struct sf_buf *sf; 461 vm_offset_t off; 462 vm_size_t sz; 463 int error, locked, rv; 464 465 if (start != trunc_page(start)) { 466 rv = __elfN(map_partial)(map, object, offset, start, 467 round_page(start), prot); 468 if (rv != KERN_SUCCESS) 469 return (rv); 470 offset += round_page(start) - start; 471 start = round_page(start); 472 } 473 if (end != round_page(end)) { 474 rv = __elfN(map_partial)(map, object, offset + 475 trunc_page(end) - start, trunc_page(end), end, prot); 476 if (rv != KERN_SUCCESS) 477 return (rv); 478 end = trunc_page(end); 479 } 480 if (start >= end) 481 return (KERN_SUCCESS); 482 if ((offset & PAGE_MASK) != 0) { 483 /* 484 * The mapping is not page aligned. This means that we have 485 * to copy the data. 486 */ 487 rv = vm_map_fixed(map, NULL, 0, start, end - start, 488 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 489 if (rv != KERN_SUCCESS) 490 return (rv); 491 if (object == NULL) 492 return (KERN_SUCCESS); 493 for (; start < end; start += sz) { 494 sf = vm_imgact_map_page(object, offset); 495 if (sf == NULL) 496 return (KERN_FAILURE); 497 off = offset - trunc_page(offset); 498 sz = end - start; 499 if (sz > PAGE_SIZE - off) 500 sz = PAGE_SIZE - off; 501 error = copyout((caddr_t)sf_buf_kva(sf) + off, 502 (caddr_t)start, sz); 503 vm_imgact_unmap_page(sf); 504 if (error != 0) 505 return (KERN_FAILURE); 506 offset += sz; 507 } 508 } else { 509 vm_object_reference(object); 510 rv = vm_map_fixed(map, object, offset, start, end - start, 511 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 512 if (rv != KERN_SUCCESS) { 513 locked = VOP_ISLOCKED(imgp->vp); 514 VOP_UNLOCK(imgp->vp, 0); 515 vm_object_deallocate(object); 516 vn_lock(imgp->vp, locked | LK_RETRY); 517 return (rv); 518 } 519 } 520 return (KERN_SUCCESS); 521 } 522 523 static int 524 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 525 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 526 size_t pagesize) 527 { 528 struct sf_buf *sf; 529 size_t map_len; 530 vm_map_t map; 531 vm_object_t object; 532 vm_offset_t off, map_addr; 533 int error, rv, cow; 534 size_t copy_len; 535 vm_ooffset_t file_addr; 536 537 /* 538 * It's necessary to fail if the filsz + offset taken from the 539 * header is greater than the actual file pager object's size. 540 * If we were to allow this, then the vm_map_find() below would 541 * walk right off the end of the file object and into the ether. 542 * 543 * While I'm here, might as well check for something else that 544 * is invalid: filsz cannot be greater than memsz. 545 */ 546 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 547 filsz > memsz) { 548 uprintf("elf_load_section: truncated ELF file\n"); 549 return (ENOEXEC); 550 } 551 552 object = imgp->object; 553 map = &imgp->proc->p_vmspace->vm_map; 554 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 555 file_addr = trunc_page_ps(offset, pagesize); 556 557 /* 558 * We have two choices. We can either clear the data in the last page 559 * of an oversized mapping, or we can start the anon mapping a page 560 * early and copy the initialized data into that first page. We 561 * choose the second. 562 */ 563 if (filsz == 0) 564 map_len = 0; 565 else if (memsz > filsz) 566 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 567 else 568 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 569 570 if (map_len != 0) { 571 /* cow flags: don't dump readonly sections in core */ 572 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 573 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 574 575 rv = __elfN(map_insert)(imgp, map, 576 object, 577 file_addr, /* file offset */ 578 map_addr, /* virtual start */ 579 map_addr + map_len,/* virtual end */ 580 prot, 581 cow); 582 if (rv != KERN_SUCCESS) 583 return (EINVAL); 584 585 /* we can stop now if we've covered it all */ 586 if (memsz == filsz) 587 return (0); 588 } 589 590 591 /* 592 * We have to get the remaining bit of the file into the first part 593 * of the oversized map segment. This is normally because the .data 594 * segment in the file is extended to provide bss. It's a neat idea 595 * to try and save a page, but it's a pain in the behind to implement. 596 */ 597 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset + 598 filsz, pagesize); 599 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 600 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 601 map_addr; 602 603 /* This had damn well better be true! */ 604 if (map_len != 0) { 605 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 606 map_addr + map_len, prot, 0); 607 if (rv != KERN_SUCCESS) 608 return (EINVAL); 609 } 610 611 if (copy_len != 0) { 612 sf = vm_imgact_map_page(object, offset + filsz); 613 if (sf == NULL) 614 return (EIO); 615 616 /* send the page fragment to user space */ 617 off = trunc_page_ps(offset + filsz, pagesize) - 618 trunc_page(offset + filsz); 619 error = copyout((caddr_t)sf_buf_kva(sf) + off, 620 (caddr_t)map_addr, copy_len); 621 vm_imgact_unmap_page(sf); 622 if (error != 0) 623 return (error); 624 } 625 626 /* 627 * Remove write access to the page if it was only granted by map_insert 628 * to allow copyout. 629 */ 630 if ((prot & VM_PROT_WRITE) == 0) 631 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 632 map_len), prot, FALSE); 633 634 return (0); 635 } 636 637 /* 638 * Load the file "file" into memory. It may be either a shared object 639 * or an executable. 640 * 641 * The "addr" reference parameter is in/out. On entry, it specifies 642 * the address where a shared object should be loaded. If the file is 643 * an executable, this value is ignored. On exit, "addr" specifies 644 * where the file was actually loaded. 645 * 646 * The "entry" reference parameter is out only. On exit, it specifies 647 * the entry point for the loaded file. 648 */ 649 static int 650 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 651 u_long *entry, size_t pagesize) 652 { 653 struct { 654 struct nameidata nd; 655 struct vattr attr; 656 struct image_params image_params; 657 } *tempdata; 658 const Elf_Ehdr *hdr = NULL; 659 const Elf_Phdr *phdr = NULL; 660 struct nameidata *nd; 661 struct vattr *attr; 662 struct image_params *imgp; 663 vm_prot_t prot; 664 u_long rbase; 665 u_long base_addr = 0; 666 int error, i, numsegs; 667 668 #ifdef CAPABILITY_MODE 669 /* 670 * XXXJA: This check can go away once we are sufficiently confident 671 * that the checks in namei() are correct. 672 */ 673 if (IN_CAPABILITY_MODE(curthread)) 674 return (ECAPMODE); 675 #endif 676 677 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 678 nd = &tempdata->nd; 679 attr = &tempdata->attr; 680 imgp = &tempdata->image_params; 681 682 /* 683 * Initialize part of the common data 684 */ 685 imgp->proc = p; 686 imgp->attr = attr; 687 imgp->firstpage = NULL; 688 imgp->image_header = NULL; 689 imgp->object = NULL; 690 imgp->execlabel = NULL; 691 692 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 693 if ((error = namei(nd)) != 0) { 694 nd->ni_vp = NULL; 695 goto fail; 696 } 697 NDFREE(nd, NDF_ONLY_PNBUF); 698 imgp->vp = nd->ni_vp; 699 700 /* 701 * Check permissions, modes, uid, etc on the file, and "open" it. 702 */ 703 error = exec_check_permissions(imgp); 704 if (error) 705 goto fail; 706 707 error = exec_map_first_page(imgp); 708 if (error) 709 goto fail; 710 711 /* 712 * Also make certain that the interpreter stays the same, so set 713 * its VV_TEXT flag, too. 714 */ 715 VOP_SET_TEXT(nd->ni_vp); 716 717 imgp->object = nd->ni_vp->v_object; 718 719 hdr = (const Elf_Ehdr *)imgp->image_header; 720 if ((error = __elfN(check_header)(hdr)) != 0) 721 goto fail; 722 if (hdr->e_type == ET_DYN) 723 rbase = *addr; 724 else if (hdr->e_type == ET_EXEC) 725 rbase = 0; 726 else { 727 error = ENOEXEC; 728 goto fail; 729 } 730 731 /* Only support headers that fit within first page for now */ 732 if ((hdr->e_phoff > PAGE_SIZE) || 733 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 734 error = ENOEXEC; 735 goto fail; 736 } 737 738 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 739 if (!aligned(phdr, Elf_Addr)) { 740 error = ENOEXEC; 741 goto fail; 742 } 743 744 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 745 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 746 /* Loadable segment */ 747 prot = __elfN(trans_prot)(phdr[i].p_flags); 748 error = __elfN(load_section)(imgp, phdr[i].p_offset, 749 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 750 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 751 if (error != 0) 752 goto fail; 753 /* 754 * Establish the base address if this is the 755 * first segment. 756 */ 757 if (numsegs == 0) 758 base_addr = trunc_page(phdr[i].p_vaddr + 759 rbase); 760 numsegs++; 761 } 762 } 763 *addr = base_addr; 764 *entry = (unsigned long)hdr->e_entry + rbase; 765 766 fail: 767 if (imgp->firstpage) 768 exec_unmap_first_page(imgp); 769 770 if (nd->ni_vp) 771 vput(nd->ni_vp); 772 773 free(tempdata, M_TEMP); 774 775 return (error); 776 } 777 778 static int 779 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 780 { 781 struct thread *td; 782 const Elf_Ehdr *hdr; 783 const Elf_Phdr *phdr; 784 Elf_Auxargs *elf_auxargs; 785 struct vmspace *vmspace; 786 const char *err_str, *newinterp; 787 char *interp, *interp_buf, *path; 788 Elf_Brandinfo *brand_info; 789 struct sysentvec *sv; 790 vm_prot_t prot; 791 u_long text_size, data_size, total_size, text_addr, data_addr; 792 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 793 uint32_t fctl0; 794 int32_t osrel; 795 int error, i, n, interp_name_len, have_interp; 796 797 hdr = (const Elf_Ehdr *)imgp->image_header; 798 799 /* 800 * Do we have a valid ELF header ? 801 * 802 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 803 * if particular brand doesn't support it. 804 */ 805 if (__elfN(check_header)(hdr) != 0 || 806 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 807 return (-1); 808 809 /* 810 * From here on down, we return an errno, not -1, as we've 811 * detected an ELF file. 812 */ 813 814 if ((hdr->e_phoff > PAGE_SIZE) || 815 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 816 /* Only support headers in first page for now */ 817 uprintf("Program headers not in the first page\n"); 818 return (ENOEXEC); 819 } 820 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 821 if (!aligned(phdr, Elf_Addr)) { 822 uprintf("Unaligned program headers\n"); 823 return (ENOEXEC); 824 } 825 826 n = error = 0; 827 baddr = 0; 828 osrel = 0; 829 fctl0 = 0; 830 text_size = data_size = total_size = text_addr = data_addr = 0; 831 entry = proghdr = 0; 832 interp_name_len = 0; 833 err_str = newinterp = NULL; 834 interp = interp_buf = NULL; 835 td = curthread; 836 837 for (i = 0; i < hdr->e_phnum; i++) { 838 switch (phdr[i].p_type) { 839 case PT_LOAD: 840 if (n == 0) 841 baddr = phdr[i].p_vaddr; 842 n++; 843 break; 844 case PT_INTERP: 845 /* Path to interpreter */ 846 if (phdr[i].p_filesz < 2 || 847 phdr[i].p_filesz > MAXPATHLEN) { 848 uprintf("Invalid PT_INTERP\n"); 849 error = ENOEXEC; 850 goto ret; 851 } 852 if (interp != NULL) { 853 uprintf("Multiple PT_INTERP headers\n"); 854 error = ENOEXEC; 855 goto ret; 856 } 857 interp_name_len = phdr[i].p_filesz; 858 if (phdr[i].p_offset > PAGE_SIZE || 859 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 860 VOP_UNLOCK(imgp->vp, 0); 861 interp_buf = malloc(interp_name_len + 1, M_TEMP, 862 M_WAITOK); 863 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 864 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 865 interp_name_len, phdr[i].p_offset, 866 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 867 NOCRED, NULL, td); 868 if (error != 0) { 869 uprintf("i/o error PT_INTERP %d\n", 870 error); 871 goto ret; 872 } 873 interp_buf[interp_name_len] = '\0'; 874 interp = interp_buf; 875 } else { 876 interp = __DECONST(char *, imgp->image_header) + 877 phdr[i].p_offset; 878 if (interp[interp_name_len - 1] != '\0') { 879 uprintf("Invalid PT_INTERP\n"); 880 error = ENOEXEC; 881 goto ret; 882 } 883 } 884 break; 885 case PT_GNU_STACK: 886 if (__elfN(nxstack)) 887 imgp->stack_prot = 888 __elfN(trans_prot)(phdr[i].p_flags); 889 imgp->stack_sz = phdr[i].p_memsz; 890 break; 891 } 892 } 893 894 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 895 &osrel, &fctl0); 896 if (brand_info == NULL) { 897 uprintf("ELF binary type \"%u\" not known.\n", 898 hdr->e_ident[EI_OSABI]); 899 error = ENOEXEC; 900 goto ret; 901 } 902 et_dyn_addr = 0; 903 if (hdr->e_type == ET_DYN) { 904 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 905 uprintf("Cannot execute shared object\n"); 906 error = ENOEXEC; 907 goto ret; 908 } 909 /* 910 * Honour the base load address from the dso if it is 911 * non-zero for some reason. 912 */ 913 if (baddr == 0) 914 et_dyn_addr = ET_DYN_LOAD_ADDR; 915 } 916 sv = brand_info->sysvec; 917 if (interp != NULL && brand_info->interp_newpath != NULL) 918 newinterp = brand_info->interp_newpath; 919 920 /* 921 * Avoid a possible deadlock if the current address space is destroyed 922 * and that address space maps the locked vnode. In the common case, 923 * the locked vnode's v_usecount is decremented but remains greater 924 * than zero. Consequently, the vnode lock is not needed by vrele(). 925 * However, in cases where the vnode lock is external, such as nullfs, 926 * v_usecount may become zero. 927 * 928 * The VV_TEXT flag prevents modifications to the executable while 929 * the vnode is unlocked. 930 */ 931 VOP_UNLOCK(imgp->vp, 0); 932 933 error = exec_new_vmspace(imgp, sv); 934 imgp->proc->p_sysent = sv; 935 936 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 937 if (error != 0) 938 goto ret; 939 940 for (i = 0; i < hdr->e_phnum; i++) { 941 switch (phdr[i].p_type) { 942 case PT_LOAD: /* Loadable segment */ 943 if (phdr[i].p_memsz == 0) 944 break; 945 prot = __elfN(trans_prot)(phdr[i].p_flags); 946 error = __elfN(load_section)(imgp, phdr[i].p_offset, 947 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 948 phdr[i].p_memsz, phdr[i].p_filesz, prot, 949 sv->sv_pagesize); 950 if (error != 0) 951 goto ret; 952 953 /* 954 * If this segment contains the program headers, 955 * remember their virtual address for the AT_PHDR 956 * aux entry. Static binaries don't usually include 957 * a PT_PHDR entry. 958 */ 959 if (phdr[i].p_offset == 0 && 960 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 961 <= phdr[i].p_filesz) 962 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 963 et_dyn_addr; 964 965 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 966 seg_size = round_page(phdr[i].p_memsz + 967 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 968 969 /* 970 * Make the largest executable segment the official 971 * text segment and all others data. 972 * 973 * Note that obreak() assumes that data_addr + 974 * data_size == end of data load area, and the ELF 975 * file format expects segments to be sorted by 976 * address. If multiple data segments exist, the 977 * last one will be used. 978 */ 979 980 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 981 text_size = seg_size; 982 text_addr = seg_addr; 983 } else { 984 data_size = seg_size; 985 data_addr = seg_addr; 986 } 987 total_size += seg_size; 988 break; 989 case PT_PHDR: /* Program header table info */ 990 proghdr = phdr[i].p_vaddr + et_dyn_addr; 991 break; 992 default: 993 break; 994 } 995 } 996 997 if (data_addr == 0 && data_size == 0) { 998 data_addr = text_addr; 999 data_size = text_size; 1000 } 1001 1002 entry = (u_long)hdr->e_entry + et_dyn_addr; 1003 1004 /* 1005 * Check limits. It should be safe to check the 1006 * limits after loading the segments since we do 1007 * not actually fault in all the segments pages. 1008 */ 1009 PROC_LOCK(imgp->proc); 1010 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 1011 err_str = "Data segment size exceeds process limit"; 1012 else if (text_size > maxtsiz) 1013 err_str = "Text segment size exceeds system limit"; 1014 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 1015 err_str = "Total segment size exceeds process limit"; 1016 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 1017 err_str = "Data segment size exceeds resource limit"; 1018 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 1019 err_str = "Total segment size exceeds resource limit"; 1020 if (err_str != NULL) { 1021 PROC_UNLOCK(imgp->proc); 1022 uprintf("%s\n", err_str); 1023 error = ENOMEM; 1024 goto ret; 1025 } 1026 1027 vmspace = imgp->proc->p_vmspace; 1028 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 1029 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 1030 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 1031 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 1032 1033 /* 1034 * We load the dynamic linker where a userland call 1035 * to mmap(0, ...) would put it. The rationale behind this 1036 * calculation is that it leaves room for the heap to grow to 1037 * its maximum allowed size. 1038 */ 1039 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1040 RLIMIT_DATA)); 1041 PROC_UNLOCK(imgp->proc); 1042 1043 imgp->entry_addr = entry; 1044 1045 if (interp != NULL) { 1046 have_interp = FALSE; 1047 VOP_UNLOCK(imgp->vp, 0); 1048 if (brand_info->emul_path != NULL && 1049 brand_info->emul_path[0] != '\0') { 1050 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1051 snprintf(path, MAXPATHLEN, "%s%s", 1052 brand_info->emul_path, interp); 1053 error = __elfN(load_file)(imgp->proc, path, &addr, 1054 &imgp->entry_addr, sv->sv_pagesize); 1055 free(path, M_TEMP); 1056 if (error == 0) 1057 have_interp = TRUE; 1058 } 1059 if (!have_interp && newinterp != NULL && 1060 (brand_info->interp_path == NULL || 1061 strcmp(interp, brand_info->interp_path) == 0)) { 1062 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1063 &imgp->entry_addr, sv->sv_pagesize); 1064 if (error == 0) 1065 have_interp = TRUE; 1066 } 1067 if (!have_interp) { 1068 error = __elfN(load_file)(imgp->proc, interp, &addr, 1069 &imgp->entry_addr, sv->sv_pagesize); 1070 } 1071 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1072 if (error != 0) { 1073 uprintf("ELF interpreter %s not found, error %d\n", 1074 interp, error); 1075 goto ret; 1076 } 1077 } else 1078 addr = et_dyn_addr; 1079 1080 /* 1081 * Construct auxargs table (used by the fixup routine) 1082 */ 1083 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1084 elf_auxargs->execfd = -1; 1085 elf_auxargs->phdr = proghdr; 1086 elf_auxargs->phent = hdr->e_phentsize; 1087 elf_auxargs->phnum = hdr->e_phnum; 1088 elf_auxargs->pagesz = PAGE_SIZE; 1089 elf_auxargs->base = addr; 1090 elf_auxargs->flags = 0; 1091 elf_auxargs->entry = entry; 1092 elf_auxargs->hdr_eflags = hdr->e_flags; 1093 1094 imgp->auxargs = elf_auxargs; 1095 imgp->interpreted = 0; 1096 imgp->reloc_base = addr; 1097 imgp->proc->p_osrel = osrel; 1098 imgp->proc->p_fctl0 = fctl0; 1099 imgp->proc->p_elf_machine = hdr->e_machine; 1100 imgp->proc->p_elf_flags = hdr->e_flags; 1101 1102 ret: 1103 free(interp_buf, M_TEMP); 1104 return (error); 1105 } 1106 1107 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1108 1109 int 1110 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1111 { 1112 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1113 Elf_Auxinfo *argarray, *pos; 1114 Elf_Addr *base, *auxbase; 1115 int error; 1116 1117 base = (Elf_Addr *)*stack_base; 1118 auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1; 1119 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1120 M_WAITOK | M_ZERO); 1121 1122 if (args->execfd != -1) 1123 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1124 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1125 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1126 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1127 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1128 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1129 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1130 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1131 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1132 if (imgp->execpathp != 0) 1133 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1134 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1135 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1136 if (imgp->canary != 0) { 1137 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1138 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1139 } 1140 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1141 if (imgp->pagesizes != 0) { 1142 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1143 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1144 } 1145 if (imgp->sysent->sv_timekeep_base != 0) { 1146 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1147 imgp->sysent->sv_timekeep_base); 1148 } 1149 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1150 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1151 imgp->sysent->sv_stackprot); 1152 if (imgp->sysent->sv_hwcap != NULL) 1153 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1154 if (imgp->sysent->sv_hwcap2 != NULL) 1155 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1156 AUXARGS_ENTRY(pos, AT_NULL, 0); 1157 1158 free(imgp->auxargs, M_TEMP); 1159 imgp->auxargs = NULL; 1160 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1161 1162 error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT); 1163 free(argarray, M_TEMP); 1164 if (error != 0) 1165 return (error); 1166 1167 base--; 1168 if (suword(base, imgp->args->argc) == -1) 1169 return (EFAULT); 1170 *stack_base = (register_t *)base; 1171 return (0); 1172 } 1173 1174 /* 1175 * Code for generating ELF core dumps. 1176 */ 1177 1178 typedef void (*segment_callback)(vm_map_entry_t, void *); 1179 1180 /* Closure for cb_put_phdr(). */ 1181 struct phdr_closure { 1182 Elf_Phdr *phdr; /* Program header to fill in */ 1183 Elf_Off offset; /* Offset of segment in core file */ 1184 }; 1185 1186 /* Closure for cb_size_segment(). */ 1187 struct sseg_closure { 1188 int count; /* Count of writable segments. */ 1189 size_t size; /* Total size of all writable segments. */ 1190 }; 1191 1192 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1193 1194 struct note_info { 1195 int type; /* Note type. */ 1196 outfunc_t outfunc; /* Output function. */ 1197 void *outarg; /* Argument for the output function. */ 1198 size_t outsize; /* Output size. */ 1199 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1200 }; 1201 1202 TAILQ_HEAD(note_info_list, note_info); 1203 1204 /* Coredump output parameters. */ 1205 struct coredump_params { 1206 off_t offset; 1207 struct ucred *active_cred; 1208 struct ucred *file_cred; 1209 struct thread *td; 1210 struct vnode *vp; 1211 struct compressor *comp; 1212 }; 1213 1214 extern int compress_user_cores; 1215 extern int compress_user_cores_level; 1216 1217 static void cb_put_phdr(vm_map_entry_t, void *); 1218 static void cb_size_segment(vm_map_entry_t, void *); 1219 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1220 enum uio_seg); 1221 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1222 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1223 struct note_info_list *, size_t); 1224 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1225 size_t *); 1226 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1227 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1228 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1229 static int sbuf_drain_core_output(void *, const char *, int); 1230 static int sbuf_drain_count(void *arg, const char *data, int len); 1231 1232 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1233 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1234 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1235 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1236 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1237 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1238 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1239 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1240 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1241 static void note_procstat_files(void *, struct sbuf *, size_t *); 1242 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1243 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1244 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1245 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1246 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1247 1248 /* 1249 * Write out a core segment to the compression stream. 1250 */ 1251 static int 1252 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1253 { 1254 u_int chunk_len; 1255 int error; 1256 1257 while (len > 0) { 1258 chunk_len = MIN(len, CORE_BUF_SIZE); 1259 1260 /* 1261 * We can get EFAULT error here. 1262 * In that case zero out the current chunk of the segment. 1263 */ 1264 error = copyin(base, buf, chunk_len); 1265 if (error != 0) 1266 bzero(buf, chunk_len); 1267 error = compressor_write(p->comp, buf, chunk_len); 1268 if (error != 0) 1269 break; 1270 base += chunk_len; 1271 len -= chunk_len; 1272 } 1273 return (error); 1274 } 1275 1276 static int 1277 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1278 { 1279 1280 return (core_write((struct coredump_params *)arg, base, len, offset, 1281 UIO_SYSSPACE)); 1282 } 1283 1284 static int 1285 core_write(struct coredump_params *p, const void *base, size_t len, 1286 off_t offset, enum uio_seg seg) 1287 { 1288 1289 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1290 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1291 p->active_cred, p->file_cred, NULL, p->td)); 1292 } 1293 1294 static int 1295 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1296 void *tmpbuf) 1297 { 1298 int error; 1299 1300 if (p->comp != NULL) 1301 return (compress_chunk(p, base, tmpbuf, len)); 1302 1303 /* 1304 * EFAULT is a non-fatal error that we can get, for example, 1305 * if the segment is backed by a file but extends beyond its 1306 * end. 1307 */ 1308 error = core_write(p, base, len, offset, UIO_USERSPACE); 1309 if (error == EFAULT) { 1310 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1311 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1312 "for process %s\n", base, len, offset, curproc->p_comm); 1313 1314 /* 1315 * Write a "real" zero byte at the end of the target region 1316 * in the case this is the last segment. 1317 * The intermediate space will be implicitly zero-filled. 1318 */ 1319 error = core_write(p, zero_region, 1, offset + len - 1, 1320 UIO_SYSSPACE); 1321 } 1322 return (error); 1323 } 1324 1325 /* 1326 * Drain into a core file. 1327 */ 1328 static int 1329 sbuf_drain_core_output(void *arg, const char *data, int len) 1330 { 1331 struct coredump_params *p; 1332 int error, locked; 1333 1334 p = (struct coredump_params *)arg; 1335 1336 /* 1337 * Some kern_proc out routines that print to this sbuf may 1338 * call us with the process lock held. Draining with the 1339 * non-sleepable lock held is unsafe. The lock is needed for 1340 * those routines when dumping a live process. In our case we 1341 * can safely release the lock before draining and acquire 1342 * again after. 1343 */ 1344 locked = PROC_LOCKED(p->td->td_proc); 1345 if (locked) 1346 PROC_UNLOCK(p->td->td_proc); 1347 if (p->comp != NULL) 1348 error = compressor_write(p->comp, __DECONST(char *, data), len); 1349 else 1350 error = core_write(p, __DECONST(void *, data), len, p->offset, 1351 UIO_SYSSPACE); 1352 if (locked) 1353 PROC_LOCK(p->td->td_proc); 1354 if (error != 0) 1355 return (-error); 1356 p->offset += len; 1357 return (len); 1358 } 1359 1360 /* 1361 * Drain into a counter. 1362 */ 1363 static int 1364 sbuf_drain_count(void *arg, const char *data __unused, int len) 1365 { 1366 size_t *sizep; 1367 1368 sizep = (size_t *)arg; 1369 *sizep += len; 1370 return (len); 1371 } 1372 1373 int 1374 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1375 { 1376 struct ucred *cred = td->td_ucred; 1377 int error = 0; 1378 struct sseg_closure seginfo; 1379 struct note_info_list notelst; 1380 struct coredump_params params; 1381 struct note_info *ninfo; 1382 void *hdr, *tmpbuf; 1383 size_t hdrsize, notesz, coresize; 1384 1385 hdr = NULL; 1386 tmpbuf = NULL; 1387 TAILQ_INIT(¬elst); 1388 1389 /* Size the program segments. */ 1390 seginfo.count = 0; 1391 seginfo.size = 0; 1392 each_dumpable_segment(td, cb_size_segment, &seginfo); 1393 1394 /* 1395 * Collect info about the core file header area. 1396 */ 1397 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1398 if (seginfo.count + 1 >= PN_XNUM) 1399 hdrsize += sizeof(Elf_Shdr); 1400 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1401 coresize = round_page(hdrsize + notesz) + seginfo.size; 1402 1403 /* Set up core dump parameters. */ 1404 params.offset = 0; 1405 params.active_cred = cred; 1406 params.file_cred = NOCRED; 1407 params.td = td; 1408 params.vp = vp; 1409 params.comp = NULL; 1410 1411 #ifdef RACCT 1412 if (racct_enable) { 1413 PROC_LOCK(td->td_proc); 1414 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1415 PROC_UNLOCK(td->td_proc); 1416 if (error != 0) { 1417 error = EFAULT; 1418 goto done; 1419 } 1420 } 1421 #endif 1422 if (coresize >= limit) { 1423 error = EFAULT; 1424 goto done; 1425 } 1426 1427 /* Create a compression stream if necessary. */ 1428 if (compress_user_cores != 0) { 1429 params.comp = compressor_init(core_compressed_write, 1430 compress_user_cores, CORE_BUF_SIZE, 1431 compress_user_cores_level, ¶ms); 1432 if (params.comp == NULL) { 1433 error = EFAULT; 1434 goto done; 1435 } 1436 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1437 } 1438 1439 /* 1440 * Allocate memory for building the header, fill it up, 1441 * and write it out following the notes. 1442 */ 1443 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1444 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1445 notesz); 1446 1447 /* Write the contents of all of the writable segments. */ 1448 if (error == 0) { 1449 Elf_Phdr *php; 1450 off_t offset; 1451 int i; 1452 1453 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1454 offset = round_page(hdrsize + notesz); 1455 for (i = 0; i < seginfo.count; i++) { 1456 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1457 php->p_filesz, offset, ¶ms, tmpbuf); 1458 if (error != 0) 1459 break; 1460 offset += php->p_filesz; 1461 php++; 1462 } 1463 if (error == 0 && params.comp != NULL) 1464 error = compressor_flush(params.comp); 1465 } 1466 if (error) { 1467 log(LOG_WARNING, 1468 "Failed to write core file for process %s (error %d)\n", 1469 curproc->p_comm, error); 1470 } 1471 1472 done: 1473 free(tmpbuf, M_TEMP); 1474 if (params.comp != NULL) 1475 compressor_fini(params.comp); 1476 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1477 TAILQ_REMOVE(¬elst, ninfo, link); 1478 free(ninfo, M_TEMP); 1479 } 1480 if (hdr != NULL) 1481 free(hdr, M_TEMP); 1482 1483 return (error); 1484 } 1485 1486 /* 1487 * A callback for each_dumpable_segment() to write out the segment's 1488 * program header entry. 1489 */ 1490 static void 1491 cb_put_phdr(vm_map_entry_t entry, void *closure) 1492 { 1493 struct phdr_closure *phc = (struct phdr_closure *)closure; 1494 Elf_Phdr *phdr = phc->phdr; 1495 1496 phc->offset = round_page(phc->offset); 1497 1498 phdr->p_type = PT_LOAD; 1499 phdr->p_offset = phc->offset; 1500 phdr->p_vaddr = entry->start; 1501 phdr->p_paddr = 0; 1502 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1503 phdr->p_align = PAGE_SIZE; 1504 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1505 1506 phc->offset += phdr->p_filesz; 1507 phc->phdr++; 1508 } 1509 1510 /* 1511 * A callback for each_dumpable_segment() to gather information about 1512 * the number of segments and their total size. 1513 */ 1514 static void 1515 cb_size_segment(vm_map_entry_t entry, void *closure) 1516 { 1517 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1518 1519 ssc->count++; 1520 ssc->size += entry->end - entry->start; 1521 } 1522 1523 /* 1524 * For each writable segment in the process's memory map, call the given 1525 * function with a pointer to the map entry and some arbitrary 1526 * caller-supplied data. 1527 */ 1528 static void 1529 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1530 { 1531 struct proc *p = td->td_proc; 1532 vm_map_t map = &p->p_vmspace->vm_map; 1533 vm_map_entry_t entry; 1534 vm_object_t backing_object, object; 1535 boolean_t ignore_entry; 1536 1537 vm_map_lock_read(map); 1538 for (entry = map->header.next; entry != &map->header; 1539 entry = entry->next) { 1540 /* 1541 * Don't dump inaccessible mappings, deal with legacy 1542 * coredump mode. 1543 * 1544 * Note that read-only segments related to the elf binary 1545 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1546 * need to arbitrarily ignore such segments. 1547 */ 1548 if (elf_legacy_coredump) { 1549 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1550 continue; 1551 } else { 1552 if ((entry->protection & VM_PROT_ALL) == 0) 1553 continue; 1554 } 1555 1556 /* 1557 * Dont include memory segment in the coredump if 1558 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1559 * madvise(2). Do not dump submaps (i.e. parts of the 1560 * kernel map). 1561 */ 1562 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1563 continue; 1564 1565 if ((object = entry->object.vm_object) == NULL) 1566 continue; 1567 1568 /* Ignore memory-mapped devices and such things. */ 1569 VM_OBJECT_RLOCK(object); 1570 while ((backing_object = object->backing_object) != NULL) { 1571 VM_OBJECT_RLOCK(backing_object); 1572 VM_OBJECT_RUNLOCK(object); 1573 object = backing_object; 1574 } 1575 ignore_entry = object->type != OBJT_DEFAULT && 1576 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1577 object->type != OBJT_PHYS; 1578 VM_OBJECT_RUNLOCK(object); 1579 if (ignore_entry) 1580 continue; 1581 1582 (*func)(entry, closure); 1583 } 1584 vm_map_unlock_read(map); 1585 } 1586 1587 /* 1588 * Write the core file header to the file, including padding up to 1589 * the page boundary. 1590 */ 1591 static int 1592 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1593 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1594 { 1595 struct note_info *ninfo; 1596 struct sbuf *sb; 1597 int error; 1598 1599 /* Fill in the header. */ 1600 bzero(hdr, hdrsize); 1601 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1602 1603 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1604 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1605 sbuf_start_section(sb, NULL); 1606 sbuf_bcat(sb, hdr, hdrsize); 1607 TAILQ_FOREACH(ninfo, notelst, link) 1608 __elfN(putnote)(ninfo, sb); 1609 /* Align up to a page boundary for the program segments. */ 1610 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1611 error = sbuf_finish(sb); 1612 sbuf_delete(sb); 1613 1614 return (error); 1615 } 1616 1617 static void 1618 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1619 size_t *sizep) 1620 { 1621 struct proc *p; 1622 struct thread *thr; 1623 size_t size; 1624 1625 p = td->td_proc; 1626 size = 0; 1627 1628 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1629 1630 /* 1631 * To have the debugger select the right thread (LWP) as the initial 1632 * thread, we dump the state of the thread passed to us in td first. 1633 * This is the thread that causes the core dump and thus likely to 1634 * be the right thread one wants to have selected in the debugger. 1635 */ 1636 thr = td; 1637 while (thr != NULL) { 1638 size += register_note(list, NT_PRSTATUS, 1639 __elfN(note_prstatus), thr); 1640 size += register_note(list, NT_FPREGSET, 1641 __elfN(note_fpregset), thr); 1642 size += register_note(list, NT_THRMISC, 1643 __elfN(note_thrmisc), thr); 1644 size += register_note(list, NT_PTLWPINFO, 1645 __elfN(note_ptlwpinfo), thr); 1646 size += register_note(list, -1, 1647 __elfN(note_threadmd), thr); 1648 1649 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1650 TAILQ_NEXT(thr, td_plist); 1651 if (thr == td) 1652 thr = TAILQ_NEXT(thr, td_plist); 1653 } 1654 1655 size += register_note(list, NT_PROCSTAT_PROC, 1656 __elfN(note_procstat_proc), p); 1657 size += register_note(list, NT_PROCSTAT_FILES, 1658 note_procstat_files, p); 1659 size += register_note(list, NT_PROCSTAT_VMMAP, 1660 note_procstat_vmmap, p); 1661 size += register_note(list, NT_PROCSTAT_GROUPS, 1662 note_procstat_groups, p); 1663 size += register_note(list, NT_PROCSTAT_UMASK, 1664 note_procstat_umask, p); 1665 size += register_note(list, NT_PROCSTAT_RLIMIT, 1666 note_procstat_rlimit, p); 1667 size += register_note(list, NT_PROCSTAT_OSREL, 1668 note_procstat_osrel, p); 1669 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1670 __elfN(note_procstat_psstrings), p); 1671 size += register_note(list, NT_PROCSTAT_AUXV, 1672 __elfN(note_procstat_auxv), p); 1673 1674 *sizep = size; 1675 } 1676 1677 static void 1678 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1679 size_t notesz) 1680 { 1681 Elf_Ehdr *ehdr; 1682 Elf_Phdr *phdr; 1683 Elf_Shdr *shdr; 1684 struct phdr_closure phc; 1685 1686 ehdr = (Elf_Ehdr *)hdr; 1687 1688 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1689 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1690 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1691 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1692 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1693 ehdr->e_ident[EI_DATA] = ELF_DATA; 1694 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1695 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1696 ehdr->e_ident[EI_ABIVERSION] = 0; 1697 ehdr->e_ident[EI_PAD] = 0; 1698 ehdr->e_type = ET_CORE; 1699 ehdr->e_machine = td->td_proc->p_elf_machine; 1700 ehdr->e_version = EV_CURRENT; 1701 ehdr->e_entry = 0; 1702 ehdr->e_phoff = sizeof(Elf_Ehdr); 1703 ehdr->e_flags = td->td_proc->p_elf_flags; 1704 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1705 ehdr->e_phentsize = sizeof(Elf_Phdr); 1706 ehdr->e_shentsize = sizeof(Elf_Shdr); 1707 ehdr->e_shstrndx = SHN_UNDEF; 1708 if (numsegs + 1 < PN_XNUM) { 1709 ehdr->e_phnum = numsegs + 1; 1710 ehdr->e_shnum = 0; 1711 } else { 1712 ehdr->e_phnum = PN_XNUM; 1713 ehdr->e_shnum = 1; 1714 1715 ehdr->e_shoff = ehdr->e_phoff + 1716 (numsegs + 1) * ehdr->e_phentsize; 1717 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1718 ("e_shoff: %zu, hdrsize - shdr: %zu", 1719 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1720 1721 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1722 memset(shdr, 0, sizeof(*shdr)); 1723 /* 1724 * A special first section is used to hold large segment and 1725 * section counts. This was proposed by Sun Microsystems in 1726 * Solaris and has been adopted by Linux; the standard ELF 1727 * tools are already familiar with the technique. 1728 * 1729 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1730 * (or 12-7 depending on the version of the document) for more 1731 * details. 1732 */ 1733 shdr->sh_type = SHT_NULL; 1734 shdr->sh_size = ehdr->e_shnum; 1735 shdr->sh_link = ehdr->e_shstrndx; 1736 shdr->sh_info = numsegs + 1; 1737 } 1738 1739 /* 1740 * Fill in the program header entries. 1741 */ 1742 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1743 1744 /* The note segement. */ 1745 phdr->p_type = PT_NOTE; 1746 phdr->p_offset = hdrsize; 1747 phdr->p_vaddr = 0; 1748 phdr->p_paddr = 0; 1749 phdr->p_filesz = notesz; 1750 phdr->p_memsz = 0; 1751 phdr->p_flags = PF_R; 1752 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1753 phdr++; 1754 1755 /* All the writable segments from the program. */ 1756 phc.phdr = phdr; 1757 phc.offset = round_page(hdrsize + notesz); 1758 each_dumpable_segment(td, cb_put_phdr, &phc); 1759 } 1760 1761 static size_t 1762 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1763 { 1764 struct note_info *ninfo; 1765 size_t size, notesize; 1766 1767 size = 0; 1768 out(arg, NULL, &size); 1769 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1770 ninfo->type = type; 1771 ninfo->outfunc = out; 1772 ninfo->outarg = arg; 1773 ninfo->outsize = size; 1774 TAILQ_INSERT_TAIL(list, ninfo, link); 1775 1776 if (type == -1) 1777 return (size); 1778 1779 notesize = sizeof(Elf_Note) + /* note header */ 1780 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1781 /* note name */ 1782 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1783 1784 return (notesize); 1785 } 1786 1787 static size_t 1788 append_note_data(const void *src, void *dst, size_t len) 1789 { 1790 size_t padded_len; 1791 1792 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1793 if (dst != NULL) { 1794 bcopy(src, dst, len); 1795 bzero((char *)dst + len, padded_len - len); 1796 } 1797 return (padded_len); 1798 } 1799 1800 size_t 1801 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1802 { 1803 Elf_Note *note; 1804 char *buf; 1805 size_t notesize; 1806 1807 buf = dst; 1808 if (buf != NULL) { 1809 note = (Elf_Note *)buf; 1810 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1811 note->n_descsz = size; 1812 note->n_type = type; 1813 buf += sizeof(*note); 1814 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1815 sizeof(FREEBSD_ABI_VENDOR)); 1816 append_note_data(src, buf, size); 1817 if (descp != NULL) 1818 *descp = buf; 1819 } 1820 1821 notesize = sizeof(Elf_Note) + /* note header */ 1822 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1823 /* note name */ 1824 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1825 1826 return (notesize); 1827 } 1828 1829 static void 1830 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1831 { 1832 Elf_Note note; 1833 ssize_t old_len, sect_len; 1834 size_t new_len, descsz, i; 1835 1836 if (ninfo->type == -1) { 1837 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1838 return; 1839 } 1840 1841 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1842 note.n_descsz = ninfo->outsize; 1843 note.n_type = ninfo->type; 1844 1845 sbuf_bcat(sb, ¬e, sizeof(note)); 1846 sbuf_start_section(sb, &old_len); 1847 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1848 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1849 if (note.n_descsz == 0) 1850 return; 1851 sbuf_start_section(sb, &old_len); 1852 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1853 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1854 if (sect_len < 0) 1855 return; 1856 1857 new_len = (size_t)sect_len; 1858 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1859 if (new_len < descsz) { 1860 /* 1861 * It is expected that individual note emitters will correctly 1862 * predict their expected output size and fill up to that size 1863 * themselves, padding in a format-specific way if needed. 1864 * However, in case they don't, just do it here with zeros. 1865 */ 1866 for (i = 0; i < descsz - new_len; i++) 1867 sbuf_putc(sb, 0); 1868 } else if (new_len > descsz) { 1869 /* 1870 * We can't always truncate sb -- we may have drained some 1871 * of it already. 1872 */ 1873 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1874 "read it (%zu > %zu). Since it is longer than " 1875 "expected, this coredump's notes are corrupt. THIS " 1876 "IS A BUG in the note_procstat routine for type %u.\n", 1877 __func__, (unsigned)note.n_type, new_len, descsz, 1878 (unsigned)note.n_type)); 1879 } 1880 } 1881 1882 /* 1883 * Miscellaneous note out functions. 1884 */ 1885 1886 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1887 #include <compat/freebsd32/freebsd32.h> 1888 #include <compat/freebsd32/freebsd32_signal.h> 1889 1890 typedef struct prstatus32 elf_prstatus_t; 1891 typedef struct prpsinfo32 elf_prpsinfo_t; 1892 typedef struct fpreg32 elf_prfpregset_t; 1893 typedef struct fpreg32 elf_fpregset_t; 1894 typedef struct reg32 elf_gregset_t; 1895 typedef struct thrmisc32 elf_thrmisc_t; 1896 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1897 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1898 typedef uint32_t elf_ps_strings_t; 1899 #else 1900 typedef prstatus_t elf_prstatus_t; 1901 typedef prpsinfo_t elf_prpsinfo_t; 1902 typedef prfpregset_t elf_prfpregset_t; 1903 typedef prfpregset_t elf_fpregset_t; 1904 typedef gregset_t elf_gregset_t; 1905 typedef thrmisc_t elf_thrmisc_t; 1906 #define ELF_KERN_PROC_MASK 0 1907 typedef struct kinfo_proc elf_kinfo_proc_t; 1908 typedef vm_offset_t elf_ps_strings_t; 1909 #endif 1910 1911 static void 1912 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1913 { 1914 struct sbuf sbarg; 1915 size_t len; 1916 char *cp, *end; 1917 struct proc *p; 1918 elf_prpsinfo_t *psinfo; 1919 int error; 1920 1921 p = (struct proc *)arg; 1922 if (sb != NULL) { 1923 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1924 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1925 psinfo->pr_version = PRPSINFO_VERSION; 1926 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1927 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1928 PROC_LOCK(p); 1929 if (p->p_args != NULL) { 1930 len = sizeof(psinfo->pr_psargs) - 1; 1931 if (len > p->p_args->ar_length) 1932 len = p->p_args->ar_length; 1933 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 1934 PROC_UNLOCK(p); 1935 error = 0; 1936 } else { 1937 _PHOLD(p); 1938 PROC_UNLOCK(p); 1939 sbuf_new(&sbarg, psinfo->pr_psargs, 1940 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 1941 error = proc_getargv(curthread, p, &sbarg); 1942 PRELE(p); 1943 if (sbuf_finish(&sbarg) == 0) 1944 len = sbuf_len(&sbarg) - 1; 1945 else 1946 len = sizeof(psinfo->pr_psargs) - 1; 1947 sbuf_delete(&sbarg); 1948 } 1949 if (error || len == 0) 1950 strlcpy(psinfo->pr_psargs, p->p_comm, 1951 sizeof(psinfo->pr_psargs)); 1952 else { 1953 KASSERT(len < sizeof(psinfo->pr_psargs), 1954 ("len is too long: %zu vs %zu", len, 1955 sizeof(psinfo->pr_psargs))); 1956 cp = psinfo->pr_psargs; 1957 end = cp + len - 1; 1958 for (;;) { 1959 cp = memchr(cp, '\0', end - cp); 1960 if (cp == NULL) 1961 break; 1962 *cp = ' '; 1963 } 1964 } 1965 psinfo->pr_pid = p->p_pid; 1966 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1967 free(psinfo, M_TEMP); 1968 } 1969 *sizep = sizeof(*psinfo); 1970 } 1971 1972 static void 1973 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1974 { 1975 struct thread *td; 1976 elf_prstatus_t *status; 1977 1978 td = (struct thread *)arg; 1979 if (sb != NULL) { 1980 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1981 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1982 status->pr_version = PRSTATUS_VERSION; 1983 status->pr_statussz = sizeof(elf_prstatus_t); 1984 status->pr_gregsetsz = sizeof(elf_gregset_t); 1985 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1986 status->pr_osreldate = osreldate; 1987 status->pr_cursig = td->td_proc->p_sig; 1988 status->pr_pid = td->td_tid; 1989 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1990 fill_regs32(td, &status->pr_reg); 1991 #else 1992 fill_regs(td, &status->pr_reg); 1993 #endif 1994 sbuf_bcat(sb, status, sizeof(*status)); 1995 free(status, M_TEMP); 1996 } 1997 *sizep = sizeof(*status); 1998 } 1999 2000 static void 2001 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2002 { 2003 struct thread *td; 2004 elf_prfpregset_t *fpregset; 2005 2006 td = (struct thread *)arg; 2007 if (sb != NULL) { 2008 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2009 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2010 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2011 fill_fpregs32(td, fpregset); 2012 #else 2013 fill_fpregs(td, fpregset); 2014 #endif 2015 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2016 free(fpregset, M_TEMP); 2017 } 2018 *sizep = sizeof(*fpregset); 2019 } 2020 2021 static void 2022 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2023 { 2024 struct thread *td; 2025 elf_thrmisc_t thrmisc; 2026 2027 td = (struct thread *)arg; 2028 if (sb != NULL) { 2029 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2030 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2031 strcpy(thrmisc.pr_tname, td->td_name); 2032 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2033 } 2034 *sizep = sizeof(thrmisc); 2035 } 2036 2037 static void 2038 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2039 { 2040 struct thread *td; 2041 size_t size; 2042 int structsize; 2043 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2044 struct ptrace_lwpinfo32 pl; 2045 #else 2046 struct ptrace_lwpinfo pl; 2047 #endif 2048 2049 td = (struct thread *)arg; 2050 size = sizeof(structsize) + sizeof(pl); 2051 if (sb != NULL) { 2052 KASSERT(*sizep == size, ("invalid size")); 2053 structsize = sizeof(pl); 2054 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2055 bzero(&pl, sizeof(pl)); 2056 pl.pl_lwpid = td->td_tid; 2057 pl.pl_event = PL_EVENT_NONE; 2058 pl.pl_sigmask = td->td_sigmask; 2059 pl.pl_siglist = td->td_siglist; 2060 if (td->td_si.si_signo != 0) { 2061 pl.pl_event = PL_EVENT_SIGNAL; 2062 pl.pl_flags |= PL_FLAG_SI; 2063 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2064 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2065 #else 2066 pl.pl_siginfo = td->td_si; 2067 #endif 2068 } 2069 strcpy(pl.pl_tdname, td->td_name); 2070 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2071 sbuf_bcat(sb, &pl, sizeof(pl)); 2072 } 2073 *sizep = size; 2074 } 2075 2076 /* 2077 * Allow for MD specific notes, as well as any MD 2078 * specific preparations for writing MI notes. 2079 */ 2080 static void 2081 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2082 { 2083 struct thread *td; 2084 void *buf; 2085 size_t size; 2086 2087 td = (struct thread *)arg; 2088 size = *sizep; 2089 if (size != 0 && sb != NULL) 2090 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2091 else 2092 buf = NULL; 2093 size = 0; 2094 __elfN(dump_thread)(td, buf, &size); 2095 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2096 if (size != 0 && sb != NULL) 2097 sbuf_bcat(sb, buf, size); 2098 free(buf, M_TEMP); 2099 *sizep = size; 2100 } 2101 2102 #ifdef KINFO_PROC_SIZE 2103 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2104 #endif 2105 2106 static void 2107 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2108 { 2109 struct proc *p; 2110 size_t size; 2111 int structsize; 2112 2113 p = (struct proc *)arg; 2114 size = sizeof(structsize) + p->p_numthreads * 2115 sizeof(elf_kinfo_proc_t); 2116 2117 if (sb != NULL) { 2118 KASSERT(*sizep == size, ("invalid size")); 2119 structsize = sizeof(elf_kinfo_proc_t); 2120 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2121 sx_slock(&proctree_lock); 2122 PROC_LOCK(p); 2123 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2124 sx_sunlock(&proctree_lock); 2125 } 2126 *sizep = size; 2127 } 2128 2129 #ifdef KINFO_FILE_SIZE 2130 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2131 #endif 2132 2133 static void 2134 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2135 { 2136 struct proc *p; 2137 size_t size, sect_sz, i; 2138 ssize_t start_len, sect_len; 2139 int structsize, filedesc_flags; 2140 2141 if (coredump_pack_fileinfo) 2142 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2143 else 2144 filedesc_flags = 0; 2145 2146 p = (struct proc *)arg; 2147 structsize = sizeof(struct kinfo_file); 2148 if (sb == NULL) { 2149 size = 0; 2150 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2151 sbuf_set_drain(sb, sbuf_drain_count, &size); 2152 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2153 PROC_LOCK(p); 2154 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2155 sbuf_finish(sb); 2156 sbuf_delete(sb); 2157 *sizep = size; 2158 } else { 2159 sbuf_start_section(sb, &start_len); 2160 2161 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2162 PROC_LOCK(p); 2163 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2164 filedesc_flags); 2165 2166 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2167 if (sect_len < 0) 2168 return; 2169 sect_sz = sect_len; 2170 2171 KASSERT(sect_sz <= *sizep, 2172 ("kern_proc_filedesc_out did not respect maxlen; " 2173 "requested %zu, got %zu", *sizep - sizeof(structsize), 2174 sect_sz - sizeof(structsize))); 2175 2176 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2177 sbuf_putc(sb, 0); 2178 } 2179 } 2180 2181 #ifdef KINFO_VMENTRY_SIZE 2182 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2183 #endif 2184 2185 static void 2186 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2187 { 2188 struct proc *p; 2189 size_t size; 2190 int structsize, vmmap_flags; 2191 2192 if (coredump_pack_vmmapinfo) 2193 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2194 else 2195 vmmap_flags = 0; 2196 2197 p = (struct proc *)arg; 2198 structsize = sizeof(struct kinfo_vmentry); 2199 if (sb == NULL) { 2200 size = 0; 2201 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2202 sbuf_set_drain(sb, sbuf_drain_count, &size); 2203 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2204 PROC_LOCK(p); 2205 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2206 sbuf_finish(sb); 2207 sbuf_delete(sb); 2208 *sizep = size; 2209 } else { 2210 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2211 PROC_LOCK(p); 2212 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2213 vmmap_flags); 2214 } 2215 } 2216 2217 static void 2218 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2219 { 2220 struct proc *p; 2221 size_t size; 2222 int structsize; 2223 2224 p = (struct proc *)arg; 2225 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2226 if (sb != NULL) { 2227 KASSERT(*sizep == size, ("invalid size")); 2228 structsize = sizeof(gid_t); 2229 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2230 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2231 sizeof(gid_t)); 2232 } 2233 *sizep = size; 2234 } 2235 2236 static void 2237 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2238 { 2239 struct proc *p; 2240 size_t size; 2241 int structsize; 2242 2243 p = (struct proc *)arg; 2244 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2245 if (sb != NULL) { 2246 KASSERT(*sizep == size, ("invalid size")); 2247 structsize = sizeof(p->p_fd->fd_cmask); 2248 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2249 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2250 } 2251 *sizep = size; 2252 } 2253 2254 static void 2255 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2256 { 2257 struct proc *p; 2258 struct rlimit rlim[RLIM_NLIMITS]; 2259 size_t size; 2260 int structsize, i; 2261 2262 p = (struct proc *)arg; 2263 size = sizeof(structsize) + sizeof(rlim); 2264 if (sb != NULL) { 2265 KASSERT(*sizep == size, ("invalid size")); 2266 structsize = sizeof(rlim); 2267 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2268 PROC_LOCK(p); 2269 for (i = 0; i < RLIM_NLIMITS; i++) 2270 lim_rlimit_proc(p, i, &rlim[i]); 2271 PROC_UNLOCK(p); 2272 sbuf_bcat(sb, rlim, sizeof(rlim)); 2273 } 2274 *sizep = size; 2275 } 2276 2277 static void 2278 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2279 { 2280 struct proc *p; 2281 size_t size; 2282 int structsize; 2283 2284 p = (struct proc *)arg; 2285 size = sizeof(structsize) + sizeof(p->p_osrel); 2286 if (sb != NULL) { 2287 KASSERT(*sizep == size, ("invalid size")); 2288 structsize = sizeof(p->p_osrel); 2289 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2290 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2291 } 2292 *sizep = size; 2293 } 2294 2295 static void 2296 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2297 { 2298 struct proc *p; 2299 elf_ps_strings_t ps_strings; 2300 size_t size; 2301 int structsize; 2302 2303 p = (struct proc *)arg; 2304 size = sizeof(structsize) + sizeof(ps_strings); 2305 if (sb != NULL) { 2306 KASSERT(*sizep == size, ("invalid size")); 2307 structsize = sizeof(ps_strings); 2308 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2309 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2310 #else 2311 ps_strings = p->p_sysent->sv_psstrings; 2312 #endif 2313 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2314 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2315 } 2316 *sizep = size; 2317 } 2318 2319 static void 2320 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2321 { 2322 struct proc *p; 2323 size_t size; 2324 int structsize; 2325 2326 p = (struct proc *)arg; 2327 if (sb == NULL) { 2328 size = 0; 2329 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2330 sbuf_set_drain(sb, sbuf_drain_count, &size); 2331 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2332 PHOLD(p); 2333 proc_getauxv(curthread, p, sb); 2334 PRELE(p); 2335 sbuf_finish(sb); 2336 sbuf_delete(sb); 2337 *sizep = size; 2338 } else { 2339 structsize = sizeof(Elf_Auxinfo); 2340 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2341 PHOLD(p); 2342 proc_getauxv(curthread, p, sb); 2343 PRELE(p); 2344 } 2345 } 2346 2347 static boolean_t 2348 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2349 const char *note_vendor, const Elf_Phdr *pnote, 2350 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2351 { 2352 const Elf_Note *note, *note0, *note_end; 2353 const char *note_name; 2354 char *buf; 2355 int i, error; 2356 boolean_t res; 2357 2358 /* We need some limit, might as well use PAGE_SIZE. */ 2359 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2360 return (FALSE); 2361 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2362 if (pnote->p_offset > PAGE_SIZE || 2363 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2364 VOP_UNLOCK(imgp->vp, 0); 2365 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2366 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2367 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2368 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2369 curthread->td_ucred, NOCRED, NULL, curthread); 2370 if (error != 0) { 2371 uprintf("i/o error PT_NOTE\n"); 2372 goto retf; 2373 } 2374 note = note0 = (const Elf_Note *)buf; 2375 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2376 } else { 2377 note = note0 = (const Elf_Note *)(imgp->image_header + 2378 pnote->p_offset); 2379 note_end = (const Elf_Note *)(imgp->image_header + 2380 pnote->p_offset + pnote->p_filesz); 2381 buf = NULL; 2382 } 2383 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2384 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2385 (const char *)note < sizeof(Elf_Note)) { 2386 goto retf; 2387 } 2388 if (note->n_namesz != checknote->n_namesz || 2389 note->n_descsz != checknote->n_descsz || 2390 note->n_type != checknote->n_type) 2391 goto nextnote; 2392 note_name = (const char *)(note + 1); 2393 if (note_name + checknote->n_namesz >= 2394 (const char *)note_end || strncmp(note_vendor, 2395 note_name, checknote->n_namesz) != 0) 2396 goto nextnote; 2397 2398 if (cb(note, cb_arg, &res)) 2399 goto ret; 2400 nextnote: 2401 note = (const Elf_Note *)((const char *)(note + 1) + 2402 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2403 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2404 } 2405 retf: 2406 res = FALSE; 2407 ret: 2408 free(buf, M_TEMP); 2409 return (res); 2410 } 2411 2412 struct brandnote_cb_arg { 2413 Elf_Brandnote *brandnote; 2414 int32_t *osrel; 2415 }; 2416 2417 static boolean_t 2418 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2419 { 2420 struct brandnote_cb_arg *arg; 2421 2422 arg = arg0; 2423 2424 /* 2425 * Fetch the osreldate for binary from the ELF OSABI-note if 2426 * necessary. 2427 */ 2428 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2429 arg->brandnote->trans_osrel != NULL ? 2430 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2431 2432 return (TRUE); 2433 } 2434 2435 static Elf_Note fctl_note = { 2436 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2437 .n_descsz = sizeof(uint32_t), 2438 .n_type = NT_FREEBSD_FEATURE_CTL, 2439 }; 2440 2441 struct fctl_cb_arg { 2442 uint32_t *fctl0; 2443 }; 2444 2445 static boolean_t 2446 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2447 { 2448 struct fctl_cb_arg *arg; 2449 const Elf32_Word *desc; 2450 uintptr_t p; 2451 2452 arg = arg0; 2453 p = (uintptr_t)(note + 1); 2454 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2455 desc = (const Elf32_Word *)p; 2456 *arg->fctl0 = desc[0]; 2457 return (TRUE); 2458 } 2459 2460 /* 2461 * Try to find the appropriate ABI-note section for checknote, fetch 2462 * the osreldate and feature control flags for binary from the ELF 2463 * OSABI-note. Only the first page of the image is searched, the same 2464 * as for headers. 2465 */ 2466 static boolean_t 2467 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2468 int32_t *osrel, uint32_t *fctl0) 2469 { 2470 const Elf_Phdr *phdr; 2471 const Elf_Ehdr *hdr; 2472 struct brandnote_cb_arg b_arg; 2473 struct fctl_cb_arg f_arg; 2474 int i, j; 2475 2476 hdr = (const Elf_Ehdr *)imgp->image_header; 2477 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2478 b_arg.brandnote = brandnote; 2479 b_arg.osrel = osrel; 2480 f_arg.fctl0 = fctl0; 2481 2482 for (i = 0; i < hdr->e_phnum; i++) { 2483 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2484 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2485 &b_arg)) { 2486 for (j = 0; j < hdr->e_phnum; j++) { 2487 if (phdr[j].p_type == PT_NOTE && 2488 __elfN(parse_notes)(imgp, &fctl_note, 2489 FREEBSD_ABI_VENDOR, &phdr[j], 2490 note_fctl_cb, &f_arg)) 2491 break; 2492 } 2493 return (TRUE); 2494 } 2495 } 2496 return (FALSE); 2497 2498 } 2499 2500 /* 2501 * Tell kern_execve.c about it, with a little help from the linker. 2502 */ 2503 static struct execsw __elfN(execsw) = { 2504 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2505 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2506 }; 2507 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2508 2509 static vm_prot_t 2510 __elfN(trans_prot)(Elf_Word flags) 2511 { 2512 vm_prot_t prot; 2513 2514 prot = 0; 2515 if (flags & PF_X) 2516 prot |= VM_PROT_EXECUTE; 2517 if (flags & PF_W) 2518 prot |= VM_PROT_WRITE; 2519 if (flags & PF_R) 2520 prot |= VM_PROT_READ; 2521 #if __ELF_WORD_SIZE == 32 2522 #if defined(__amd64__) 2523 if (i386_read_exec && (flags & PF_R)) 2524 prot |= VM_PROT_EXECUTE; 2525 #endif 2526 #endif 2527 return (prot); 2528 } 2529 2530 static Elf_Word 2531 __elfN(untrans_prot)(vm_prot_t prot) 2532 { 2533 Elf_Word flags; 2534 2535 flags = 0; 2536 if (prot & VM_PROT_EXECUTE) 2537 flags |= PF_X; 2538 if (prot & VM_PROT_READ) 2539 flags |= PF_R; 2540 if (prot & VM_PROT_WRITE) 2541 flags |= PF_W; 2542 return (flags); 2543 } 2544