1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_gzio.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/gzio.h> 43 #include <sys/imgact.h> 44 #include <sys/imgact_elf.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/mman.h> 51 #include <sys/namei.h> 52 #include <sys/pioctl.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/racct.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sf_buf.h> 60 #include <sys/smp.h> 61 #include <sys/systm.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/sx.h> 65 #include <sys/syscall.h> 66 #include <sys/sysctl.h> 67 #include <sys/sysent.h> 68 #include <sys/vnode.h> 69 #include <sys/syslog.h> 70 #include <sys/eventhandler.h> 71 #include <sys/user.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #define CORE_BUF_SIZE (16 * 1024) 108 109 int __elfN(fallback_brand) = -1; 110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 111 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 112 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 113 114 static int elf_legacy_coredump = 0; 115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 116 &elf_legacy_coredump, 0, 117 "include all and only RW pages in core dumps"); 118 119 int __elfN(nxstack) = 120 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 121 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) 122 1; 123 #else 124 0; 125 #endif 126 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 127 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 128 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 129 130 #if __ELF_WORD_SIZE == 32 131 #if defined(__amd64__) 132 int i386_read_exec = 0; 133 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 134 "enable execution from readable segments"); 135 #endif 136 #endif 137 138 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 139 140 #define trunc_page_ps(va, ps) rounddown2(va, ps) 141 #define round_page_ps(va, ps) roundup2(va, ps) 142 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 143 144 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 145 146 Elf_Brandnote __elfN(freebsd_brandnote) = { 147 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 148 .hdr.n_descsz = sizeof(int32_t), 149 .hdr.n_type = NT_FREEBSD_ABI_TAG, 150 .vendor = FREEBSD_ABI_VENDOR, 151 .flags = BN_TRANSLATE_OSREL, 152 .trans_osrel = __elfN(freebsd_trans_osrel) 153 }; 154 155 static boolean_t 156 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 157 { 158 uintptr_t p; 159 160 p = (uintptr_t)(note + 1); 161 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 162 *osrel = *(const int32_t *)(p); 163 164 return (TRUE); 165 } 166 167 static const char GNU_ABI_VENDOR[] = "GNU"; 168 static int GNU_KFREEBSD_ABI_DESC = 3; 169 170 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 171 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 172 .hdr.n_descsz = 16, /* XXX at least 16 */ 173 .hdr.n_type = 1, 174 .vendor = GNU_ABI_VENDOR, 175 .flags = BN_TRANSLATE_OSREL, 176 .trans_osrel = kfreebsd_trans_osrel 177 }; 178 179 static boolean_t 180 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 181 { 182 const Elf32_Word *desc; 183 uintptr_t p; 184 185 p = (uintptr_t)(note + 1); 186 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 187 188 desc = (const Elf32_Word *)p; 189 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 190 return (FALSE); 191 192 /* 193 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 194 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 195 */ 196 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 197 198 return (TRUE); 199 } 200 201 int 202 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 203 { 204 int i; 205 206 for (i = 0; i < MAX_BRANDS; i++) { 207 if (elf_brand_list[i] == NULL) { 208 elf_brand_list[i] = entry; 209 break; 210 } 211 } 212 if (i == MAX_BRANDS) { 213 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 214 __func__, entry); 215 return (-1); 216 } 217 return (0); 218 } 219 220 int 221 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 222 { 223 int i; 224 225 for (i = 0; i < MAX_BRANDS; i++) { 226 if (elf_brand_list[i] == entry) { 227 elf_brand_list[i] = NULL; 228 break; 229 } 230 } 231 if (i == MAX_BRANDS) 232 return (-1); 233 return (0); 234 } 235 236 int 237 __elfN(brand_inuse)(Elf_Brandinfo *entry) 238 { 239 struct proc *p; 240 int rval = FALSE; 241 242 sx_slock(&allproc_lock); 243 FOREACH_PROC_IN_SYSTEM(p) { 244 if (p->p_sysent == entry->sysvec) { 245 rval = TRUE; 246 break; 247 } 248 } 249 sx_sunlock(&allproc_lock); 250 251 return (rval); 252 } 253 254 static Elf_Brandinfo * 255 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 256 int interp_name_len, int32_t *osrel) 257 { 258 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 259 Elf_Brandinfo *bi, *bi_m; 260 boolean_t ret; 261 int i; 262 263 /* 264 * We support four types of branding -- (1) the ELF EI_OSABI field 265 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 266 * branding w/in the ELF header, (3) path of the `interp_path' 267 * field, and (4) the ".note.ABI-tag" ELF section. 268 */ 269 270 /* Look for an ".note.ABI-tag" ELF section */ 271 bi_m = NULL; 272 for (i = 0; i < MAX_BRANDS; i++) { 273 bi = elf_brand_list[i]; 274 if (bi == NULL) 275 continue; 276 if (hdr->e_machine == bi->machine && (bi->flags & 277 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 278 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 279 /* Give brand a chance to veto check_note's guess */ 280 if (ret && bi->header_supported) 281 ret = bi->header_supported(imgp); 282 /* 283 * If note checker claimed the binary, but the 284 * interpreter path in the image does not 285 * match default one for the brand, try to 286 * search for other brands with the same 287 * interpreter. Either there is better brand 288 * with the right interpreter, or, failing 289 * this, we return first brand which accepted 290 * our note and, optionally, header. 291 */ 292 if (ret && bi_m == NULL && (strlen(bi->interp_path) + 293 1 != interp_name_len || strncmp(interp, 294 bi->interp_path, interp_name_len) != 0)) { 295 bi_m = bi; 296 ret = 0; 297 } 298 if (ret) 299 return (bi); 300 } 301 } 302 if (bi_m != NULL) 303 return (bi_m); 304 305 /* If the executable has a brand, search for it in the brand list. */ 306 for (i = 0; i < MAX_BRANDS; i++) { 307 bi = elf_brand_list[i]; 308 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 309 continue; 310 if (hdr->e_machine == bi->machine && 311 (hdr->e_ident[EI_OSABI] == bi->brand || 312 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 313 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) { 314 /* Looks good, but give brand a chance to veto */ 315 if (!bi->header_supported || bi->header_supported(imgp)) 316 return (bi); 317 } 318 } 319 320 /* No known brand, see if the header is recognized by any brand */ 321 for (i = 0; i < MAX_BRANDS; i++) { 322 bi = elf_brand_list[i]; 323 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 324 bi->header_supported == NULL) 325 continue; 326 if (hdr->e_machine == bi->machine) { 327 ret = bi->header_supported(imgp); 328 if (ret) 329 return (bi); 330 } 331 } 332 333 /* Lacking a known brand, search for a recognized interpreter. */ 334 if (interp != NULL) { 335 for (i = 0; i < MAX_BRANDS; i++) { 336 bi = elf_brand_list[i]; 337 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 338 continue; 339 if (hdr->e_machine == bi->machine && 340 /* ELF image p_filesz includes terminating zero */ 341 strlen(bi->interp_path) + 1 == interp_name_len && 342 strncmp(interp, bi->interp_path, interp_name_len) 343 == 0) 344 return (bi); 345 } 346 } 347 348 /* Lacking a recognized interpreter, try the default brand */ 349 for (i = 0; i < MAX_BRANDS; i++) { 350 bi = elf_brand_list[i]; 351 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 352 continue; 353 if (hdr->e_machine == bi->machine && 354 __elfN(fallback_brand) == bi->brand) 355 return (bi); 356 } 357 return (NULL); 358 } 359 360 static int 361 __elfN(check_header)(const Elf_Ehdr *hdr) 362 { 363 Elf_Brandinfo *bi; 364 int i; 365 366 if (!IS_ELF(*hdr) || 367 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 368 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 369 hdr->e_ident[EI_VERSION] != EV_CURRENT || 370 hdr->e_phentsize != sizeof(Elf_Phdr) || 371 hdr->e_version != ELF_TARG_VER) 372 return (ENOEXEC); 373 374 /* 375 * Make sure we have at least one brand for this machine. 376 */ 377 378 for (i = 0; i < MAX_BRANDS; i++) { 379 bi = elf_brand_list[i]; 380 if (bi != NULL && bi->machine == hdr->e_machine) 381 break; 382 } 383 if (i == MAX_BRANDS) 384 return (ENOEXEC); 385 386 return (0); 387 } 388 389 static int 390 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 391 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 392 { 393 struct sf_buf *sf; 394 int error; 395 vm_offset_t off; 396 397 /* 398 * Create the page if it doesn't exist yet. Ignore errors. 399 */ 400 vm_map_lock(map); 401 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 402 VM_PROT_ALL, VM_PROT_ALL, 0); 403 vm_map_unlock(map); 404 405 /* 406 * Find the page from the underlying object. 407 */ 408 if (object) { 409 sf = vm_imgact_map_page(object, offset); 410 if (sf == NULL) 411 return (KERN_FAILURE); 412 off = offset - trunc_page(offset); 413 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 414 end - start); 415 vm_imgact_unmap_page(sf); 416 if (error) { 417 return (KERN_FAILURE); 418 } 419 } 420 421 return (KERN_SUCCESS); 422 } 423 424 static int 425 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 426 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 427 int cow) 428 { 429 struct sf_buf *sf; 430 vm_offset_t off; 431 vm_size_t sz; 432 int error, locked, rv; 433 434 if (start != trunc_page(start)) { 435 rv = __elfN(map_partial)(map, object, offset, start, 436 round_page(start), prot); 437 if (rv) 438 return (rv); 439 offset += round_page(start) - start; 440 start = round_page(start); 441 } 442 if (end != round_page(end)) { 443 rv = __elfN(map_partial)(map, object, offset + 444 trunc_page(end) - start, trunc_page(end), end, prot); 445 if (rv) 446 return (rv); 447 end = trunc_page(end); 448 } 449 if (end > start) { 450 if (offset & PAGE_MASK) { 451 /* 452 * The mapping is not page aligned. This means we have 453 * to copy the data. Sigh. 454 */ 455 vm_map_lock(map); 456 rv = vm_map_insert(map, NULL, 0, start, end, 457 prot | VM_PROT_WRITE, VM_PROT_ALL, 0); 458 vm_map_unlock(map); 459 if (rv != KERN_SUCCESS) 460 return (rv); 461 if (object == NULL) 462 return (KERN_SUCCESS); 463 for (; start < end; start += sz) { 464 sf = vm_imgact_map_page(object, offset); 465 if (sf == NULL) 466 return (KERN_FAILURE); 467 off = offset - trunc_page(offset); 468 sz = end - start; 469 if (sz > PAGE_SIZE - off) 470 sz = PAGE_SIZE - off; 471 error = copyout((caddr_t)sf_buf_kva(sf) + off, 472 (caddr_t)start, sz); 473 vm_imgact_unmap_page(sf); 474 if (error != 0) 475 return (KERN_FAILURE); 476 offset += sz; 477 } 478 rv = KERN_SUCCESS; 479 } else { 480 vm_object_reference(object); 481 vm_map_lock(map); 482 rv = vm_map_insert(map, object, offset, start, end, 483 prot, VM_PROT_ALL, cow); 484 vm_map_unlock(map); 485 if (rv != KERN_SUCCESS) { 486 locked = VOP_ISLOCKED(imgp->vp); 487 VOP_UNLOCK(imgp->vp, 0); 488 vm_object_deallocate(object); 489 vn_lock(imgp->vp, locked | LK_RETRY); 490 } 491 } 492 return (rv); 493 } else { 494 return (KERN_SUCCESS); 495 } 496 } 497 498 static int 499 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 500 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 501 size_t pagesize) 502 { 503 struct sf_buf *sf; 504 size_t map_len; 505 vm_map_t map; 506 vm_object_t object; 507 vm_offset_t map_addr; 508 int error, rv, cow; 509 size_t copy_len; 510 vm_offset_t file_addr; 511 512 /* 513 * It's necessary to fail if the filsz + offset taken from the 514 * header is greater than the actual file pager object's size. 515 * If we were to allow this, then the vm_map_find() below would 516 * walk right off the end of the file object and into the ether. 517 * 518 * While I'm here, might as well check for something else that 519 * is invalid: filsz cannot be greater than memsz. 520 */ 521 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 522 uprintf("elf_load_section: truncated ELF file\n"); 523 return (ENOEXEC); 524 } 525 526 object = imgp->object; 527 map = &imgp->proc->p_vmspace->vm_map; 528 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 529 file_addr = trunc_page_ps(offset, pagesize); 530 531 /* 532 * We have two choices. We can either clear the data in the last page 533 * of an oversized mapping, or we can start the anon mapping a page 534 * early and copy the initialized data into that first page. We 535 * choose the second.. 536 */ 537 if (memsz > filsz) 538 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 539 else 540 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 541 542 if (map_len != 0) { 543 /* cow flags: don't dump readonly sections in core */ 544 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 545 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 546 547 rv = __elfN(map_insert)(imgp, map, 548 object, 549 file_addr, /* file offset */ 550 map_addr, /* virtual start */ 551 map_addr + map_len,/* virtual end */ 552 prot, 553 cow); 554 if (rv != KERN_SUCCESS) 555 return (EINVAL); 556 557 /* we can stop now if we've covered it all */ 558 if (memsz == filsz) { 559 return (0); 560 } 561 } 562 563 564 /* 565 * We have to get the remaining bit of the file into the first part 566 * of the oversized map segment. This is normally because the .data 567 * segment in the file is extended to provide bss. It's a neat idea 568 * to try and save a page, but it's a pain in the behind to implement. 569 */ 570 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 571 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 572 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 573 map_addr; 574 575 /* This had damn well better be true! */ 576 if (map_len != 0) { 577 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 578 map_addr + map_len, VM_PROT_ALL, 0); 579 if (rv != KERN_SUCCESS) { 580 return (EINVAL); 581 } 582 } 583 584 if (copy_len != 0) { 585 vm_offset_t off; 586 587 sf = vm_imgact_map_page(object, offset + filsz); 588 if (sf == NULL) 589 return (EIO); 590 591 /* send the page fragment to user space */ 592 off = trunc_page_ps(offset + filsz, pagesize) - 593 trunc_page(offset + filsz); 594 error = copyout((caddr_t)sf_buf_kva(sf) + off, 595 (caddr_t)map_addr, copy_len); 596 vm_imgact_unmap_page(sf); 597 if (error) { 598 return (error); 599 } 600 } 601 602 /* 603 * set it to the specified protection. 604 * XXX had better undo the damage from pasting over the cracks here! 605 */ 606 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 607 map_len), prot, FALSE); 608 609 return (0); 610 } 611 612 /* 613 * Load the file "file" into memory. It may be either a shared object 614 * or an executable. 615 * 616 * The "addr" reference parameter is in/out. On entry, it specifies 617 * the address where a shared object should be loaded. If the file is 618 * an executable, this value is ignored. On exit, "addr" specifies 619 * where the file was actually loaded. 620 * 621 * The "entry" reference parameter is out only. On exit, it specifies 622 * the entry point for the loaded file. 623 */ 624 static int 625 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 626 u_long *entry, size_t pagesize) 627 { 628 struct { 629 struct nameidata nd; 630 struct vattr attr; 631 struct image_params image_params; 632 } *tempdata; 633 const Elf_Ehdr *hdr = NULL; 634 const Elf_Phdr *phdr = NULL; 635 struct nameidata *nd; 636 struct vattr *attr; 637 struct image_params *imgp; 638 vm_prot_t prot; 639 u_long rbase; 640 u_long base_addr = 0; 641 int error, i, numsegs; 642 643 #ifdef CAPABILITY_MODE 644 /* 645 * XXXJA: This check can go away once we are sufficiently confident 646 * that the checks in namei() are correct. 647 */ 648 if (IN_CAPABILITY_MODE(curthread)) 649 return (ECAPMODE); 650 #endif 651 652 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 653 nd = &tempdata->nd; 654 attr = &tempdata->attr; 655 imgp = &tempdata->image_params; 656 657 /* 658 * Initialize part of the common data 659 */ 660 imgp->proc = p; 661 imgp->attr = attr; 662 imgp->firstpage = NULL; 663 imgp->image_header = NULL; 664 imgp->object = NULL; 665 imgp->execlabel = NULL; 666 667 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 668 if ((error = namei(nd)) != 0) { 669 nd->ni_vp = NULL; 670 goto fail; 671 } 672 NDFREE(nd, NDF_ONLY_PNBUF); 673 imgp->vp = nd->ni_vp; 674 675 /* 676 * Check permissions, modes, uid, etc on the file, and "open" it. 677 */ 678 error = exec_check_permissions(imgp); 679 if (error) 680 goto fail; 681 682 error = exec_map_first_page(imgp); 683 if (error) 684 goto fail; 685 686 /* 687 * Also make certain that the interpreter stays the same, so set 688 * its VV_TEXT flag, too. 689 */ 690 VOP_SET_TEXT(nd->ni_vp); 691 692 imgp->object = nd->ni_vp->v_object; 693 694 hdr = (const Elf_Ehdr *)imgp->image_header; 695 if ((error = __elfN(check_header)(hdr)) != 0) 696 goto fail; 697 if (hdr->e_type == ET_DYN) 698 rbase = *addr; 699 else if (hdr->e_type == ET_EXEC) 700 rbase = 0; 701 else { 702 error = ENOEXEC; 703 goto fail; 704 } 705 706 /* Only support headers that fit within first page for now */ 707 if ((hdr->e_phoff > PAGE_SIZE) || 708 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 709 error = ENOEXEC; 710 goto fail; 711 } 712 713 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 714 if (!aligned(phdr, Elf_Addr)) { 715 error = ENOEXEC; 716 goto fail; 717 } 718 719 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 720 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 721 /* Loadable segment */ 722 prot = __elfN(trans_prot)(phdr[i].p_flags); 723 error = __elfN(load_section)(imgp, phdr[i].p_offset, 724 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 725 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 726 if (error != 0) 727 goto fail; 728 /* 729 * Establish the base address if this is the 730 * first segment. 731 */ 732 if (numsegs == 0) 733 base_addr = trunc_page(phdr[i].p_vaddr + 734 rbase); 735 numsegs++; 736 } 737 } 738 *addr = base_addr; 739 *entry = (unsigned long)hdr->e_entry + rbase; 740 741 fail: 742 if (imgp->firstpage) 743 exec_unmap_first_page(imgp); 744 745 if (nd->ni_vp) 746 vput(nd->ni_vp); 747 748 free(tempdata, M_TEMP); 749 750 return (error); 751 } 752 753 static int 754 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 755 { 756 struct thread *td; 757 const Elf_Ehdr *hdr; 758 const Elf_Phdr *phdr; 759 Elf_Auxargs *elf_auxargs; 760 struct vmspace *vmspace; 761 const char *err_str, *newinterp; 762 char *interp, *interp_buf, *path; 763 Elf_Brandinfo *brand_info; 764 struct sysentvec *sv; 765 vm_prot_t prot; 766 u_long text_size, data_size, total_size, text_addr, data_addr; 767 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 768 int32_t osrel; 769 int error, i, n, interp_name_len, have_interp; 770 771 hdr = (const Elf_Ehdr *)imgp->image_header; 772 773 /* 774 * Do we have a valid ELF header ? 775 * 776 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 777 * if particular brand doesn't support it. 778 */ 779 if (__elfN(check_header)(hdr) != 0 || 780 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 781 return (-1); 782 783 /* 784 * From here on down, we return an errno, not -1, as we've 785 * detected an ELF file. 786 */ 787 788 if ((hdr->e_phoff > PAGE_SIZE) || 789 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 790 /* Only support headers in first page for now */ 791 uprintf("Program headers not in the first page\n"); 792 return (ENOEXEC); 793 } 794 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 795 if (!aligned(phdr, Elf_Addr)) { 796 uprintf("Unaligned program headers\n"); 797 return (ENOEXEC); 798 } 799 800 n = error = 0; 801 baddr = 0; 802 osrel = 0; 803 text_size = data_size = total_size = text_addr = data_addr = 0; 804 entry = proghdr = 0; 805 interp_name_len = 0; 806 err_str = newinterp = NULL; 807 interp = interp_buf = NULL; 808 td = curthread; 809 810 for (i = 0; i < hdr->e_phnum; i++) { 811 switch (phdr[i].p_type) { 812 case PT_LOAD: 813 if (n == 0) 814 baddr = phdr[i].p_vaddr; 815 n++; 816 break; 817 case PT_INTERP: 818 /* Path to interpreter */ 819 if (phdr[i].p_filesz > MAXPATHLEN) { 820 uprintf("Invalid PT_INTERP\n"); 821 error = ENOEXEC; 822 goto ret; 823 } 824 if (interp != NULL) { 825 uprintf("Multiple PT_INTERP headers\n"); 826 error = ENOEXEC; 827 goto ret; 828 } 829 interp_name_len = phdr[i].p_filesz; 830 if (phdr[i].p_offset > PAGE_SIZE || 831 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 832 VOP_UNLOCK(imgp->vp, 0); 833 interp_buf = malloc(interp_name_len + 1, M_TEMP, 834 M_WAITOK); 835 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 836 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 837 interp_name_len, phdr[i].p_offset, 838 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 839 NOCRED, NULL, td); 840 if (error != 0) { 841 uprintf("i/o error PT_INTERP\n"); 842 goto ret; 843 } 844 interp_buf[interp_name_len] = '\0'; 845 interp = interp_buf; 846 } else { 847 interp = __DECONST(char *, imgp->image_header) + 848 phdr[i].p_offset; 849 } 850 break; 851 case PT_GNU_STACK: 852 if (__elfN(nxstack)) 853 imgp->stack_prot = 854 __elfN(trans_prot)(phdr[i].p_flags); 855 imgp->stack_sz = phdr[i].p_memsz; 856 break; 857 } 858 } 859 860 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 861 &osrel); 862 if (brand_info == NULL) { 863 uprintf("ELF binary type \"%u\" not known.\n", 864 hdr->e_ident[EI_OSABI]); 865 error = ENOEXEC; 866 goto ret; 867 } 868 et_dyn_addr = 0; 869 if (hdr->e_type == ET_DYN) { 870 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 871 uprintf("Cannot execute shared object\n"); 872 error = ENOEXEC; 873 goto ret; 874 } 875 /* 876 * Honour the base load address from the dso if it is 877 * non-zero for some reason. 878 */ 879 if (baddr == 0) 880 et_dyn_addr = ET_DYN_LOAD_ADDR; 881 } 882 sv = brand_info->sysvec; 883 if (interp != NULL && brand_info->interp_newpath != NULL) 884 newinterp = brand_info->interp_newpath; 885 886 /* 887 * Avoid a possible deadlock if the current address space is destroyed 888 * and that address space maps the locked vnode. In the common case, 889 * the locked vnode's v_usecount is decremented but remains greater 890 * than zero. Consequently, the vnode lock is not needed by vrele(). 891 * However, in cases where the vnode lock is external, such as nullfs, 892 * v_usecount may become zero. 893 * 894 * The VV_TEXT flag prevents modifications to the executable while 895 * the vnode is unlocked. 896 */ 897 VOP_UNLOCK(imgp->vp, 0); 898 899 error = exec_new_vmspace(imgp, sv); 900 imgp->proc->p_sysent = sv; 901 902 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 903 if (error != 0) 904 goto ret; 905 906 for (i = 0; i < hdr->e_phnum; i++) { 907 switch (phdr[i].p_type) { 908 case PT_LOAD: /* Loadable segment */ 909 if (phdr[i].p_memsz == 0) 910 break; 911 prot = __elfN(trans_prot)(phdr[i].p_flags); 912 error = __elfN(load_section)(imgp, phdr[i].p_offset, 913 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 914 phdr[i].p_memsz, phdr[i].p_filesz, prot, 915 sv->sv_pagesize); 916 if (error != 0) 917 goto ret; 918 919 /* 920 * If this segment contains the program headers, 921 * remember their virtual address for the AT_PHDR 922 * aux entry. Static binaries don't usually include 923 * a PT_PHDR entry. 924 */ 925 if (phdr[i].p_offset == 0 && 926 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 927 <= phdr[i].p_filesz) 928 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 929 et_dyn_addr; 930 931 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 932 seg_size = round_page(phdr[i].p_memsz + 933 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 934 935 /* 936 * Make the largest executable segment the official 937 * text segment and all others data. 938 * 939 * Note that obreak() assumes that data_addr + 940 * data_size == end of data load area, and the ELF 941 * file format expects segments to be sorted by 942 * address. If multiple data segments exist, the 943 * last one will be used. 944 */ 945 946 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 947 text_size = seg_size; 948 text_addr = seg_addr; 949 } else { 950 data_size = seg_size; 951 data_addr = seg_addr; 952 } 953 total_size += seg_size; 954 break; 955 case PT_PHDR: /* Program header table info */ 956 proghdr = phdr[i].p_vaddr + et_dyn_addr; 957 break; 958 default: 959 break; 960 } 961 } 962 963 if (data_addr == 0 && data_size == 0) { 964 data_addr = text_addr; 965 data_size = text_size; 966 } 967 968 entry = (u_long)hdr->e_entry + et_dyn_addr; 969 970 /* 971 * Check limits. It should be safe to check the 972 * limits after loading the segments since we do 973 * not actually fault in all the segments pages. 974 */ 975 PROC_LOCK(imgp->proc); 976 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 977 err_str = "Data segment size exceeds process limit"; 978 else if (text_size > maxtsiz) 979 err_str = "Text segment size exceeds system limit"; 980 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 981 err_str = "Total segment size exceeds process limit"; 982 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 983 err_str = "Data segment size exceeds resource limit"; 984 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 985 err_str = "Total segment size exceeds resource limit"; 986 if (err_str != NULL) { 987 PROC_UNLOCK(imgp->proc); 988 uprintf("%s\n", err_str); 989 error = ENOMEM; 990 goto ret; 991 } 992 993 vmspace = imgp->proc->p_vmspace; 994 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 995 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 996 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 997 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 998 999 /* 1000 * We load the dynamic linker where a userland call 1001 * to mmap(0, ...) would put it. The rationale behind this 1002 * calculation is that it leaves room for the heap to grow to 1003 * its maximum allowed size. 1004 */ 1005 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1006 RLIMIT_DATA)); 1007 PROC_UNLOCK(imgp->proc); 1008 1009 imgp->entry_addr = entry; 1010 1011 if (interp != NULL) { 1012 have_interp = FALSE; 1013 VOP_UNLOCK(imgp->vp, 0); 1014 if (brand_info->emul_path != NULL && 1015 brand_info->emul_path[0] != '\0') { 1016 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1017 snprintf(path, MAXPATHLEN, "%s%s", 1018 brand_info->emul_path, interp); 1019 error = __elfN(load_file)(imgp->proc, path, &addr, 1020 &imgp->entry_addr, sv->sv_pagesize); 1021 free(path, M_TEMP); 1022 if (error == 0) 1023 have_interp = TRUE; 1024 } 1025 if (!have_interp && newinterp != NULL && 1026 (brand_info->interp_path == NULL || 1027 strcmp(interp, brand_info->interp_path) == 0)) { 1028 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1029 &imgp->entry_addr, sv->sv_pagesize); 1030 if (error == 0) 1031 have_interp = TRUE; 1032 } 1033 if (!have_interp) { 1034 error = __elfN(load_file)(imgp->proc, interp, &addr, 1035 &imgp->entry_addr, sv->sv_pagesize); 1036 } 1037 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1038 if (error != 0) { 1039 uprintf("ELF interpreter %s not found, error %d\n", 1040 interp, error); 1041 goto ret; 1042 } 1043 } else 1044 addr = et_dyn_addr; 1045 1046 /* 1047 * Construct auxargs table (used by the fixup routine) 1048 */ 1049 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1050 elf_auxargs->execfd = -1; 1051 elf_auxargs->phdr = proghdr; 1052 elf_auxargs->phent = hdr->e_phentsize; 1053 elf_auxargs->phnum = hdr->e_phnum; 1054 elf_auxargs->pagesz = PAGE_SIZE; 1055 elf_auxargs->base = addr; 1056 elf_auxargs->flags = 0; 1057 elf_auxargs->entry = entry; 1058 elf_auxargs->hdr_eflags = hdr->e_flags; 1059 1060 imgp->auxargs = elf_auxargs; 1061 imgp->interpreted = 0; 1062 imgp->reloc_base = addr; 1063 imgp->proc->p_osrel = osrel; 1064 imgp->proc->p_elf_machine = hdr->e_machine; 1065 imgp->proc->p_elf_flags = hdr->e_flags; 1066 1067 ret: 1068 free(interp_buf, M_TEMP); 1069 return (error); 1070 } 1071 1072 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1073 1074 int 1075 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1076 { 1077 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1078 Elf_Addr *base; 1079 Elf_Addr *pos; 1080 1081 base = (Elf_Addr *)*stack_base; 1082 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1083 1084 if (args->execfd != -1) 1085 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1086 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1087 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1088 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1089 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1090 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1091 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1092 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1093 #ifdef AT_EHDRFLAGS 1094 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1095 #endif 1096 if (imgp->execpathp != 0) 1097 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1098 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1099 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1100 if (imgp->canary != 0) { 1101 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1102 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1103 } 1104 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1105 if (imgp->pagesizes != 0) { 1106 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1107 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1108 } 1109 if (imgp->sysent->sv_timekeep_base != 0) { 1110 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1111 imgp->sysent->sv_timekeep_base); 1112 } 1113 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1114 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1115 imgp->sysent->sv_stackprot); 1116 AUXARGS_ENTRY(pos, AT_NULL, 0); 1117 1118 free(imgp->auxargs, M_TEMP); 1119 imgp->auxargs = NULL; 1120 1121 base--; 1122 suword(base, (long)imgp->args->argc); 1123 *stack_base = (register_t *)base; 1124 return (0); 1125 } 1126 1127 /* 1128 * Code for generating ELF core dumps. 1129 */ 1130 1131 typedef void (*segment_callback)(vm_map_entry_t, void *); 1132 1133 /* Closure for cb_put_phdr(). */ 1134 struct phdr_closure { 1135 Elf_Phdr *phdr; /* Program header to fill in */ 1136 Elf_Off offset; /* Offset of segment in core file */ 1137 }; 1138 1139 /* Closure for cb_size_segment(). */ 1140 struct sseg_closure { 1141 int count; /* Count of writable segments. */ 1142 size_t size; /* Total size of all writable segments. */ 1143 }; 1144 1145 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1146 1147 struct note_info { 1148 int type; /* Note type. */ 1149 outfunc_t outfunc; /* Output function. */ 1150 void *outarg; /* Argument for the output function. */ 1151 size_t outsize; /* Output size. */ 1152 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1153 }; 1154 1155 TAILQ_HEAD(note_info_list, note_info); 1156 1157 /* Coredump output parameters. */ 1158 struct coredump_params { 1159 off_t offset; 1160 struct ucred *active_cred; 1161 struct ucred *file_cred; 1162 struct thread *td; 1163 struct vnode *vp; 1164 struct gzio_stream *gzs; 1165 }; 1166 1167 static void cb_put_phdr(vm_map_entry_t, void *); 1168 static void cb_size_segment(vm_map_entry_t, void *); 1169 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1170 enum uio_seg); 1171 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1172 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1173 struct note_info_list *, size_t); 1174 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1175 size_t *); 1176 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1177 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1178 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1179 static int sbuf_drain_core_output(void *, const char *, int); 1180 static int sbuf_drain_count(void *arg, const char *data, int len); 1181 1182 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1183 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1184 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1185 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1186 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1187 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1188 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1189 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1190 static void note_procstat_files(void *, struct sbuf *, size_t *); 1191 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1192 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1193 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1194 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1195 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1196 1197 #ifdef GZIO 1198 extern int compress_user_cores_gzlevel; 1199 1200 /* 1201 * Write out a core segment to the compression stream. 1202 */ 1203 static int 1204 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1205 { 1206 u_int chunk_len; 1207 int error; 1208 1209 while (len > 0) { 1210 chunk_len = MIN(len, CORE_BUF_SIZE); 1211 1212 /* 1213 * We can get EFAULT error here. 1214 * In that case zero out the current chunk of the segment. 1215 */ 1216 error = copyin(base, buf, chunk_len); 1217 if (error != 0) 1218 bzero(buf, chunk_len); 1219 error = gzio_write(p->gzs, buf, chunk_len); 1220 if (error != 0) 1221 break; 1222 base += chunk_len; 1223 len -= chunk_len; 1224 } 1225 return (error); 1226 } 1227 1228 static int 1229 core_gz_write(void *base, size_t len, off_t offset, void *arg) 1230 { 1231 1232 return (core_write((struct coredump_params *)arg, base, len, offset, 1233 UIO_SYSSPACE)); 1234 } 1235 #endif /* GZIO */ 1236 1237 static int 1238 core_write(struct coredump_params *p, const void *base, size_t len, 1239 off_t offset, enum uio_seg seg) 1240 { 1241 1242 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1243 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1244 p->active_cred, p->file_cred, NULL, p->td)); 1245 } 1246 1247 static int 1248 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1249 void *tmpbuf) 1250 { 1251 int error; 1252 1253 #ifdef GZIO 1254 if (p->gzs != NULL) 1255 return (compress_chunk(p, base, tmpbuf, len)); 1256 #endif 1257 /* 1258 * EFAULT is a non-fatal error that we can get, for example, 1259 * if the segment is backed by a file but extends beyond its 1260 * end. 1261 */ 1262 error = core_write(p, base, len, offset, UIO_USERSPACE); 1263 if (error == EFAULT) { 1264 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1265 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1266 "for process %s\n", base, len, offset, curproc->p_comm); 1267 1268 /* 1269 * Write a "real" zero byte at the end of the target region 1270 * in the case this is the last segment. 1271 * The intermediate space will be implicitly zero-filled. 1272 */ 1273 error = core_write(p, zero_region, 1, offset + len - 1, 1274 UIO_SYSSPACE); 1275 } 1276 return (error); 1277 } 1278 1279 /* 1280 * Drain into a core file. 1281 */ 1282 static int 1283 sbuf_drain_core_output(void *arg, const char *data, int len) 1284 { 1285 struct coredump_params *p; 1286 int error, locked; 1287 1288 p = (struct coredump_params *)arg; 1289 1290 /* 1291 * Some kern_proc out routines that print to this sbuf may 1292 * call us with the process lock held. Draining with the 1293 * non-sleepable lock held is unsafe. The lock is needed for 1294 * those routines when dumping a live process. In our case we 1295 * can safely release the lock before draining and acquire 1296 * again after. 1297 */ 1298 locked = PROC_LOCKED(p->td->td_proc); 1299 if (locked) 1300 PROC_UNLOCK(p->td->td_proc); 1301 #ifdef GZIO 1302 if (p->gzs != NULL) 1303 error = gzio_write(p->gzs, __DECONST(char *, data), len); 1304 else 1305 #endif 1306 error = core_write(p, __DECONST(void *, data), len, p->offset, 1307 UIO_SYSSPACE); 1308 if (locked) 1309 PROC_LOCK(p->td->td_proc); 1310 if (error != 0) 1311 return (-error); 1312 p->offset += len; 1313 return (len); 1314 } 1315 1316 /* 1317 * Drain into a counter. 1318 */ 1319 static int 1320 sbuf_drain_count(void *arg, const char *data __unused, int len) 1321 { 1322 size_t *sizep; 1323 1324 sizep = (size_t *)arg; 1325 *sizep += len; 1326 return (len); 1327 } 1328 1329 int 1330 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1331 { 1332 struct ucred *cred = td->td_ucred; 1333 int error = 0; 1334 struct sseg_closure seginfo; 1335 struct note_info_list notelst; 1336 struct coredump_params params; 1337 struct note_info *ninfo; 1338 void *hdr, *tmpbuf; 1339 size_t hdrsize, notesz, coresize; 1340 #ifdef GZIO 1341 boolean_t compress; 1342 1343 compress = (flags & IMGACT_CORE_COMPRESS) != 0; 1344 #endif 1345 hdr = NULL; 1346 tmpbuf = NULL; 1347 TAILQ_INIT(¬elst); 1348 1349 /* Size the program segments. */ 1350 seginfo.count = 0; 1351 seginfo.size = 0; 1352 each_dumpable_segment(td, cb_size_segment, &seginfo); 1353 1354 /* 1355 * Collect info about the core file header area. 1356 */ 1357 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1358 if (seginfo.count + 1 >= PN_XNUM) 1359 hdrsize += sizeof(Elf_Shdr); 1360 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1361 coresize = round_page(hdrsize + notesz) + seginfo.size; 1362 1363 /* Set up core dump parameters. */ 1364 params.offset = 0; 1365 params.active_cred = cred; 1366 params.file_cred = NOCRED; 1367 params.td = td; 1368 params.vp = vp; 1369 params.gzs = NULL; 1370 1371 #ifdef RACCT 1372 if (racct_enable) { 1373 PROC_LOCK(td->td_proc); 1374 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1375 PROC_UNLOCK(td->td_proc); 1376 if (error != 0) { 1377 error = EFAULT; 1378 goto done; 1379 } 1380 } 1381 #endif 1382 if (coresize >= limit) { 1383 error = EFAULT; 1384 goto done; 1385 } 1386 1387 #ifdef GZIO 1388 /* Create a compression stream if necessary. */ 1389 if (compress) { 1390 params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE, 1391 CORE_BUF_SIZE, compress_user_cores_gzlevel, ¶ms); 1392 if (params.gzs == NULL) { 1393 error = EFAULT; 1394 goto done; 1395 } 1396 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1397 } 1398 #endif 1399 1400 /* 1401 * Allocate memory for building the header, fill it up, 1402 * and write it out following the notes. 1403 */ 1404 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1405 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1406 notesz); 1407 1408 /* Write the contents of all of the writable segments. */ 1409 if (error == 0) { 1410 Elf_Phdr *php; 1411 off_t offset; 1412 int i; 1413 1414 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1415 offset = round_page(hdrsize + notesz); 1416 for (i = 0; i < seginfo.count; i++) { 1417 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1418 php->p_filesz, offset, ¶ms, tmpbuf); 1419 if (error != 0) 1420 break; 1421 offset += php->p_filesz; 1422 php++; 1423 } 1424 #ifdef GZIO 1425 if (error == 0 && compress) 1426 error = gzio_flush(params.gzs); 1427 #endif 1428 } 1429 if (error) { 1430 log(LOG_WARNING, 1431 "Failed to write core file for process %s (error %d)\n", 1432 curproc->p_comm, error); 1433 } 1434 1435 done: 1436 #ifdef GZIO 1437 if (compress) { 1438 free(tmpbuf, M_TEMP); 1439 if (params.gzs != NULL) 1440 gzio_fini(params.gzs); 1441 } 1442 #endif 1443 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1444 TAILQ_REMOVE(¬elst, ninfo, link); 1445 free(ninfo, M_TEMP); 1446 } 1447 if (hdr != NULL) 1448 free(hdr, M_TEMP); 1449 1450 return (error); 1451 } 1452 1453 /* 1454 * A callback for each_dumpable_segment() to write out the segment's 1455 * program header entry. 1456 */ 1457 static void 1458 cb_put_phdr(entry, closure) 1459 vm_map_entry_t entry; 1460 void *closure; 1461 { 1462 struct phdr_closure *phc = (struct phdr_closure *)closure; 1463 Elf_Phdr *phdr = phc->phdr; 1464 1465 phc->offset = round_page(phc->offset); 1466 1467 phdr->p_type = PT_LOAD; 1468 phdr->p_offset = phc->offset; 1469 phdr->p_vaddr = entry->start; 1470 phdr->p_paddr = 0; 1471 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1472 phdr->p_align = PAGE_SIZE; 1473 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1474 1475 phc->offset += phdr->p_filesz; 1476 phc->phdr++; 1477 } 1478 1479 /* 1480 * A callback for each_dumpable_segment() to gather information about 1481 * the number of segments and their total size. 1482 */ 1483 static void 1484 cb_size_segment(vm_map_entry_t entry, void *closure) 1485 { 1486 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1487 1488 ssc->count++; 1489 ssc->size += entry->end - entry->start; 1490 } 1491 1492 /* 1493 * For each writable segment in the process's memory map, call the given 1494 * function with a pointer to the map entry and some arbitrary 1495 * caller-supplied data. 1496 */ 1497 static void 1498 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1499 { 1500 struct proc *p = td->td_proc; 1501 vm_map_t map = &p->p_vmspace->vm_map; 1502 vm_map_entry_t entry; 1503 vm_object_t backing_object, object; 1504 boolean_t ignore_entry; 1505 1506 vm_map_lock_read(map); 1507 for (entry = map->header.next; entry != &map->header; 1508 entry = entry->next) { 1509 /* 1510 * Don't dump inaccessible mappings, deal with legacy 1511 * coredump mode. 1512 * 1513 * Note that read-only segments related to the elf binary 1514 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1515 * need to arbitrarily ignore such segments. 1516 */ 1517 if (elf_legacy_coredump) { 1518 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1519 continue; 1520 } else { 1521 if ((entry->protection & VM_PROT_ALL) == 0) 1522 continue; 1523 } 1524 1525 /* 1526 * Dont include memory segment in the coredump if 1527 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1528 * madvise(2). Do not dump submaps (i.e. parts of the 1529 * kernel map). 1530 */ 1531 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1532 continue; 1533 1534 if ((object = entry->object.vm_object) == NULL) 1535 continue; 1536 1537 /* Ignore memory-mapped devices and such things. */ 1538 VM_OBJECT_RLOCK(object); 1539 while ((backing_object = object->backing_object) != NULL) { 1540 VM_OBJECT_RLOCK(backing_object); 1541 VM_OBJECT_RUNLOCK(object); 1542 object = backing_object; 1543 } 1544 ignore_entry = object->type != OBJT_DEFAULT && 1545 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1546 object->type != OBJT_PHYS; 1547 VM_OBJECT_RUNLOCK(object); 1548 if (ignore_entry) 1549 continue; 1550 1551 (*func)(entry, closure); 1552 } 1553 vm_map_unlock_read(map); 1554 } 1555 1556 /* 1557 * Write the core file header to the file, including padding up to 1558 * the page boundary. 1559 */ 1560 static int 1561 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1562 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1563 { 1564 struct note_info *ninfo; 1565 struct sbuf *sb; 1566 int error; 1567 1568 /* Fill in the header. */ 1569 bzero(hdr, hdrsize); 1570 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1571 1572 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1573 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1574 sbuf_start_section(sb, NULL); 1575 sbuf_bcat(sb, hdr, hdrsize); 1576 TAILQ_FOREACH(ninfo, notelst, link) 1577 __elfN(putnote)(ninfo, sb); 1578 /* Align up to a page boundary for the program segments. */ 1579 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1580 error = sbuf_finish(sb); 1581 sbuf_delete(sb); 1582 1583 return (error); 1584 } 1585 1586 static void 1587 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1588 size_t *sizep) 1589 { 1590 struct proc *p; 1591 struct thread *thr; 1592 size_t size; 1593 1594 p = td->td_proc; 1595 size = 0; 1596 1597 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1598 1599 /* 1600 * To have the debugger select the right thread (LWP) as the initial 1601 * thread, we dump the state of the thread passed to us in td first. 1602 * This is the thread that causes the core dump and thus likely to 1603 * be the right thread one wants to have selected in the debugger. 1604 */ 1605 thr = td; 1606 while (thr != NULL) { 1607 size += register_note(list, NT_PRSTATUS, 1608 __elfN(note_prstatus), thr); 1609 size += register_note(list, NT_FPREGSET, 1610 __elfN(note_fpregset), thr); 1611 size += register_note(list, NT_THRMISC, 1612 __elfN(note_thrmisc), thr); 1613 size += register_note(list, -1, 1614 __elfN(note_threadmd), thr); 1615 1616 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1617 TAILQ_NEXT(thr, td_plist); 1618 if (thr == td) 1619 thr = TAILQ_NEXT(thr, td_plist); 1620 } 1621 1622 size += register_note(list, NT_PROCSTAT_PROC, 1623 __elfN(note_procstat_proc), p); 1624 size += register_note(list, NT_PROCSTAT_FILES, 1625 note_procstat_files, p); 1626 size += register_note(list, NT_PROCSTAT_VMMAP, 1627 note_procstat_vmmap, p); 1628 size += register_note(list, NT_PROCSTAT_GROUPS, 1629 note_procstat_groups, p); 1630 size += register_note(list, NT_PROCSTAT_UMASK, 1631 note_procstat_umask, p); 1632 size += register_note(list, NT_PROCSTAT_RLIMIT, 1633 note_procstat_rlimit, p); 1634 size += register_note(list, NT_PROCSTAT_OSREL, 1635 note_procstat_osrel, p); 1636 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1637 __elfN(note_procstat_psstrings), p); 1638 size += register_note(list, NT_PROCSTAT_AUXV, 1639 __elfN(note_procstat_auxv), p); 1640 1641 *sizep = size; 1642 } 1643 1644 static void 1645 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1646 size_t notesz) 1647 { 1648 Elf_Ehdr *ehdr; 1649 Elf_Phdr *phdr; 1650 Elf_Shdr *shdr; 1651 struct phdr_closure phc; 1652 1653 ehdr = (Elf_Ehdr *)hdr; 1654 1655 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1656 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1657 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1658 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1659 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1660 ehdr->e_ident[EI_DATA] = ELF_DATA; 1661 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1662 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1663 ehdr->e_ident[EI_ABIVERSION] = 0; 1664 ehdr->e_ident[EI_PAD] = 0; 1665 ehdr->e_type = ET_CORE; 1666 ehdr->e_machine = td->td_proc->p_elf_machine; 1667 ehdr->e_version = EV_CURRENT; 1668 ehdr->e_entry = 0; 1669 ehdr->e_phoff = sizeof(Elf_Ehdr); 1670 ehdr->e_flags = td->td_proc->p_elf_flags; 1671 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1672 ehdr->e_phentsize = sizeof(Elf_Phdr); 1673 ehdr->e_shentsize = sizeof(Elf_Shdr); 1674 ehdr->e_shstrndx = SHN_UNDEF; 1675 if (numsegs + 1 < PN_XNUM) { 1676 ehdr->e_phnum = numsegs + 1; 1677 ehdr->e_shnum = 0; 1678 } else { 1679 ehdr->e_phnum = PN_XNUM; 1680 ehdr->e_shnum = 1; 1681 1682 ehdr->e_shoff = ehdr->e_phoff + 1683 (numsegs + 1) * ehdr->e_phentsize; 1684 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1685 ("e_shoff: %zu, hdrsize - shdr: %zu", 1686 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1687 1688 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1689 memset(shdr, 0, sizeof(*shdr)); 1690 /* 1691 * A special first section is used to hold large segment and 1692 * section counts. This was proposed by Sun Microsystems in 1693 * Solaris and has been adopted by Linux; the standard ELF 1694 * tools are already familiar with the technique. 1695 * 1696 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1697 * (or 12-7 depending on the version of the document) for more 1698 * details. 1699 */ 1700 shdr->sh_type = SHT_NULL; 1701 shdr->sh_size = ehdr->e_shnum; 1702 shdr->sh_link = ehdr->e_shstrndx; 1703 shdr->sh_info = numsegs + 1; 1704 } 1705 1706 /* 1707 * Fill in the program header entries. 1708 */ 1709 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1710 1711 /* The note segement. */ 1712 phdr->p_type = PT_NOTE; 1713 phdr->p_offset = hdrsize; 1714 phdr->p_vaddr = 0; 1715 phdr->p_paddr = 0; 1716 phdr->p_filesz = notesz; 1717 phdr->p_memsz = 0; 1718 phdr->p_flags = PF_R; 1719 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1720 phdr++; 1721 1722 /* All the writable segments from the program. */ 1723 phc.phdr = phdr; 1724 phc.offset = round_page(hdrsize + notesz); 1725 each_dumpable_segment(td, cb_put_phdr, &phc); 1726 } 1727 1728 static size_t 1729 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1730 { 1731 struct note_info *ninfo; 1732 size_t size, notesize; 1733 1734 size = 0; 1735 out(arg, NULL, &size); 1736 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1737 ninfo->type = type; 1738 ninfo->outfunc = out; 1739 ninfo->outarg = arg; 1740 ninfo->outsize = size; 1741 TAILQ_INSERT_TAIL(list, ninfo, link); 1742 1743 if (type == -1) 1744 return (size); 1745 1746 notesize = sizeof(Elf_Note) + /* note header */ 1747 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1748 /* note name */ 1749 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1750 1751 return (notesize); 1752 } 1753 1754 static size_t 1755 append_note_data(const void *src, void *dst, size_t len) 1756 { 1757 size_t padded_len; 1758 1759 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1760 if (dst != NULL) { 1761 bcopy(src, dst, len); 1762 bzero((char *)dst + len, padded_len - len); 1763 } 1764 return (padded_len); 1765 } 1766 1767 size_t 1768 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1769 { 1770 Elf_Note *note; 1771 char *buf; 1772 size_t notesize; 1773 1774 buf = dst; 1775 if (buf != NULL) { 1776 note = (Elf_Note *)buf; 1777 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1778 note->n_descsz = size; 1779 note->n_type = type; 1780 buf += sizeof(*note); 1781 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1782 sizeof(FREEBSD_ABI_VENDOR)); 1783 append_note_data(src, buf, size); 1784 if (descp != NULL) 1785 *descp = buf; 1786 } 1787 1788 notesize = sizeof(Elf_Note) + /* note header */ 1789 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1790 /* note name */ 1791 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1792 1793 return (notesize); 1794 } 1795 1796 static void 1797 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1798 { 1799 Elf_Note note; 1800 ssize_t old_len, sect_len; 1801 size_t new_len, descsz, i; 1802 1803 if (ninfo->type == -1) { 1804 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1805 return; 1806 } 1807 1808 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1809 note.n_descsz = ninfo->outsize; 1810 note.n_type = ninfo->type; 1811 1812 sbuf_bcat(sb, ¬e, sizeof(note)); 1813 sbuf_start_section(sb, &old_len); 1814 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1815 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1816 if (note.n_descsz == 0) 1817 return; 1818 sbuf_start_section(sb, &old_len); 1819 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1820 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1821 if (sect_len < 0) 1822 return; 1823 1824 new_len = (size_t)sect_len; 1825 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1826 if (new_len < descsz) { 1827 /* 1828 * It is expected that individual note emitters will correctly 1829 * predict their expected output size and fill up to that size 1830 * themselves, padding in a format-specific way if needed. 1831 * However, in case they don't, just do it here with zeros. 1832 */ 1833 for (i = 0; i < descsz - new_len; i++) 1834 sbuf_putc(sb, 0); 1835 } else if (new_len > descsz) { 1836 /* 1837 * We can't always truncate sb -- we may have drained some 1838 * of it already. 1839 */ 1840 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1841 "read it (%zu > %zu). Since it is longer than " 1842 "expected, this coredump's notes are corrupt. THIS " 1843 "IS A BUG in the note_procstat routine for type %u.\n", 1844 __func__, (unsigned)note.n_type, new_len, descsz, 1845 (unsigned)note.n_type)); 1846 } 1847 } 1848 1849 /* 1850 * Miscellaneous note out functions. 1851 */ 1852 1853 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1854 #include <compat/freebsd32/freebsd32.h> 1855 1856 typedef struct prstatus32 elf_prstatus_t; 1857 typedef struct prpsinfo32 elf_prpsinfo_t; 1858 typedef struct fpreg32 elf_prfpregset_t; 1859 typedef struct fpreg32 elf_fpregset_t; 1860 typedef struct reg32 elf_gregset_t; 1861 typedef struct thrmisc32 elf_thrmisc_t; 1862 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1863 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1864 typedef uint32_t elf_ps_strings_t; 1865 #else 1866 typedef prstatus_t elf_prstatus_t; 1867 typedef prpsinfo_t elf_prpsinfo_t; 1868 typedef prfpregset_t elf_prfpregset_t; 1869 typedef prfpregset_t elf_fpregset_t; 1870 typedef gregset_t elf_gregset_t; 1871 typedef thrmisc_t elf_thrmisc_t; 1872 #define ELF_KERN_PROC_MASK 0 1873 typedef struct kinfo_proc elf_kinfo_proc_t; 1874 typedef vm_offset_t elf_ps_strings_t; 1875 #endif 1876 1877 static void 1878 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1879 { 1880 struct sbuf sbarg; 1881 size_t len; 1882 char *cp, *end; 1883 struct proc *p; 1884 elf_prpsinfo_t *psinfo; 1885 int error; 1886 1887 p = (struct proc *)arg; 1888 if (sb != NULL) { 1889 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1890 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1891 psinfo->pr_version = PRPSINFO_VERSION; 1892 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1893 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1894 PROC_LOCK(p); 1895 if (p->p_args != NULL) { 1896 len = sizeof(psinfo->pr_psargs) - 1; 1897 if (len > p->p_args->ar_length) 1898 len = p->p_args->ar_length; 1899 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 1900 PROC_UNLOCK(p); 1901 error = 0; 1902 } else { 1903 _PHOLD(p); 1904 PROC_UNLOCK(p); 1905 sbuf_new(&sbarg, psinfo->pr_psargs, 1906 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 1907 error = proc_getargv(curthread, p, &sbarg); 1908 PRELE(p); 1909 if (sbuf_finish(&sbarg) == 0) 1910 len = sbuf_len(&sbarg) - 1; 1911 else 1912 len = sizeof(psinfo->pr_psargs) - 1; 1913 sbuf_delete(&sbarg); 1914 } 1915 if (error || len == 0) 1916 strlcpy(psinfo->pr_psargs, p->p_comm, 1917 sizeof(psinfo->pr_psargs)); 1918 else { 1919 KASSERT(len < sizeof(psinfo->pr_psargs), 1920 ("len is too long: %zu vs %zu", len, 1921 sizeof(psinfo->pr_psargs))); 1922 cp = psinfo->pr_psargs; 1923 end = cp + len - 1; 1924 for (;;) { 1925 cp = memchr(cp, '\0', end - cp); 1926 if (cp == NULL) 1927 break; 1928 *cp = ' '; 1929 } 1930 } 1931 psinfo->pr_pid = p->p_pid; 1932 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1933 free(psinfo, M_TEMP); 1934 } 1935 *sizep = sizeof(*psinfo); 1936 } 1937 1938 static void 1939 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1940 { 1941 struct thread *td; 1942 elf_prstatus_t *status; 1943 1944 td = (struct thread *)arg; 1945 if (sb != NULL) { 1946 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1947 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1948 status->pr_version = PRSTATUS_VERSION; 1949 status->pr_statussz = sizeof(elf_prstatus_t); 1950 status->pr_gregsetsz = sizeof(elf_gregset_t); 1951 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1952 status->pr_osreldate = osreldate; 1953 status->pr_cursig = td->td_proc->p_sig; 1954 status->pr_pid = td->td_tid; 1955 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1956 fill_regs32(td, &status->pr_reg); 1957 #else 1958 fill_regs(td, &status->pr_reg); 1959 #endif 1960 sbuf_bcat(sb, status, sizeof(*status)); 1961 free(status, M_TEMP); 1962 } 1963 *sizep = sizeof(*status); 1964 } 1965 1966 static void 1967 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1968 { 1969 struct thread *td; 1970 elf_prfpregset_t *fpregset; 1971 1972 td = (struct thread *)arg; 1973 if (sb != NULL) { 1974 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1975 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1976 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1977 fill_fpregs32(td, fpregset); 1978 #else 1979 fill_fpregs(td, fpregset); 1980 #endif 1981 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1982 free(fpregset, M_TEMP); 1983 } 1984 *sizep = sizeof(*fpregset); 1985 } 1986 1987 static void 1988 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1989 { 1990 struct thread *td; 1991 elf_thrmisc_t thrmisc; 1992 1993 td = (struct thread *)arg; 1994 if (sb != NULL) { 1995 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1996 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1997 strcpy(thrmisc.pr_tname, td->td_name); 1998 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1999 } 2000 *sizep = sizeof(thrmisc); 2001 } 2002 2003 /* 2004 * Allow for MD specific notes, as well as any MD 2005 * specific preparations for writing MI notes. 2006 */ 2007 static void 2008 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2009 { 2010 struct thread *td; 2011 void *buf; 2012 size_t size; 2013 2014 td = (struct thread *)arg; 2015 size = *sizep; 2016 if (size != 0 && sb != NULL) 2017 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2018 else 2019 buf = NULL; 2020 size = 0; 2021 __elfN(dump_thread)(td, buf, &size); 2022 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2023 if (size != 0 && sb != NULL) 2024 sbuf_bcat(sb, buf, size); 2025 free(buf, M_TEMP); 2026 *sizep = size; 2027 } 2028 2029 #ifdef KINFO_PROC_SIZE 2030 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2031 #endif 2032 2033 static void 2034 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2035 { 2036 struct proc *p; 2037 size_t size; 2038 int structsize; 2039 2040 p = (struct proc *)arg; 2041 size = sizeof(structsize) + p->p_numthreads * 2042 sizeof(elf_kinfo_proc_t); 2043 2044 if (sb != NULL) { 2045 KASSERT(*sizep == size, ("invalid size")); 2046 structsize = sizeof(elf_kinfo_proc_t); 2047 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2048 sx_slock(&proctree_lock); 2049 PROC_LOCK(p); 2050 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2051 sx_sunlock(&proctree_lock); 2052 } 2053 *sizep = size; 2054 } 2055 2056 #ifdef KINFO_FILE_SIZE 2057 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2058 #endif 2059 2060 static void 2061 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2062 { 2063 struct proc *p; 2064 size_t size, sect_sz, i; 2065 ssize_t start_len, sect_len; 2066 int structsize, filedesc_flags; 2067 2068 if (coredump_pack_fileinfo) 2069 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2070 else 2071 filedesc_flags = 0; 2072 2073 p = (struct proc *)arg; 2074 structsize = sizeof(struct kinfo_file); 2075 if (sb == NULL) { 2076 size = 0; 2077 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2078 sbuf_set_drain(sb, sbuf_drain_count, &size); 2079 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2080 PROC_LOCK(p); 2081 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2082 sbuf_finish(sb); 2083 sbuf_delete(sb); 2084 *sizep = size; 2085 } else { 2086 sbuf_start_section(sb, &start_len); 2087 2088 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2089 PROC_LOCK(p); 2090 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2091 filedesc_flags); 2092 2093 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2094 if (sect_len < 0) 2095 return; 2096 sect_sz = sect_len; 2097 2098 KASSERT(sect_sz <= *sizep, 2099 ("kern_proc_filedesc_out did not respect maxlen; " 2100 "requested %zu, got %zu", *sizep - sizeof(structsize), 2101 sect_sz - sizeof(structsize))); 2102 2103 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2104 sbuf_putc(sb, 0); 2105 } 2106 } 2107 2108 #ifdef KINFO_VMENTRY_SIZE 2109 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2110 #endif 2111 2112 static void 2113 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2114 { 2115 struct proc *p; 2116 size_t size; 2117 int structsize, vmmap_flags; 2118 2119 if (coredump_pack_vmmapinfo) 2120 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2121 else 2122 vmmap_flags = 0; 2123 2124 p = (struct proc *)arg; 2125 structsize = sizeof(struct kinfo_vmentry); 2126 if (sb == NULL) { 2127 size = 0; 2128 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2129 sbuf_set_drain(sb, sbuf_drain_count, &size); 2130 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2131 PROC_LOCK(p); 2132 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2133 sbuf_finish(sb); 2134 sbuf_delete(sb); 2135 *sizep = size; 2136 } else { 2137 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2138 PROC_LOCK(p); 2139 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2140 vmmap_flags); 2141 } 2142 } 2143 2144 static void 2145 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2146 { 2147 struct proc *p; 2148 size_t size; 2149 int structsize; 2150 2151 p = (struct proc *)arg; 2152 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2153 if (sb != NULL) { 2154 KASSERT(*sizep == size, ("invalid size")); 2155 structsize = sizeof(gid_t); 2156 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2157 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2158 sizeof(gid_t)); 2159 } 2160 *sizep = size; 2161 } 2162 2163 static void 2164 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2165 { 2166 struct proc *p; 2167 size_t size; 2168 int structsize; 2169 2170 p = (struct proc *)arg; 2171 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2172 if (sb != NULL) { 2173 KASSERT(*sizep == size, ("invalid size")); 2174 structsize = sizeof(p->p_fd->fd_cmask); 2175 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2176 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2177 } 2178 *sizep = size; 2179 } 2180 2181 static void 2182 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2183 { 2184 struct proc *p; 2185 struct rlimit rlim[RLIM_NLIMITS]; 2186 size_t size; 2187 int structsize, i; 2188 2189 p = (struct proc *)arg; 2190 size = sizeof(structsize) + sizeof(rlim); 2191 if (sb != NULL) { 2192 KASSERT(*sizep == size, ("invalid size")); 2193 structsize = sizeof(rlim); 2194 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2195 PROC_LOCK(p); 2196 for (i = 0; i < RLIM_NLIMITS; i++) 2197 lim_rlimit_proc(p, i, &rlim[i]); 2198 PROC_UNLOCK(p); 2199 sbuf_bcat(sb, rlim, sizeof(rlim)); 2200 } 2201 *sizep = size; 2202 } 2203 2204 static void 2205 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2206 { 2207 struct proc *p; 2208 size_t size; 2209 int structsize; 2210 2211 p = (struct proc *)arg; 2212 size = sizeof(structsize) + sizeof(p->p_osrel); 2213 if (sb != NULL) { 2214 KASSERT(*sizep == size, ("invalid size")); 2215 structsize = sizeof(p->p_osrel); 2216 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2217 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2218 } 2219 *sizep = size; 2220 } 2221 2222 static void 2223 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2224 { 2225 struct proc *p; 2226 elf_ps_strings_t ps_strings; 2227 size_t size; 2228 int structsize; 2229 2230 p = (struct proc *)arg; 2231 size = sizeof(structsize) + sizeof(ps_strings); 2232 if (sb != NULL) { 2233 KASSERT(*sizep == size, ("invalid size")); 2234 structsize = sizeof(ps_strings); 2235 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2236 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2237 #else 2238 ps_strings = p->p_sysent->sv_psstrings; 2239 #endif 2240 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2241 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2242 } 2243 *sizep = size; 2244 } 2245 2246 static void 2247 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2248 { 2249 struct proc *p; 2250 size_t size; 2251 int structsize; 2252 2253 p = (struct proc *)arg; 2254 if (sb == NULL) { 2255 size = 0; 2256 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2257 sbuf_set_drain(sb, sbuf_drain_count, &size); 2258 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2259 PHOLD(p); 2260 proc_getauxv(curthread, p, sb); 2261 PRELE(p); 2262 sbuf_finish(sb); 2263 sbuf_delete(sb); 2264 *sizep = size; 2265 } else { 2266 structsize = sizeof(Elf_Auxinfo); 2267 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2268 PHOLD(p); 2269 proc_getauxv(curthread, p, sb); 2270 PRELE(p); 2271 } 2272 } 2273 2274 static boolean_t 2275 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2276 int32_t *osrel, const Elf_Phdr *pnote) 2277 { 2278 const Elf_Note *note, *note0, *note_end; 2279 const char *note_name; 2280 char *buf; 2281 int i, error; 2282 boolean_t res; 2283 2284 /* We need some limit, might as well use PAGE_SIZE. */ 2285 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2286 return (FALSE); 2287 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2288 if (pnote->p_offset > PAGE_SIZE || 2289 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2290 VOP_UNLOCK(imgp->vp, 0); 2291 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2292 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2293 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2294 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2295 curthread->td_ucred, NOCRED, NULL, curthread); 2296 if (error != 0) { 2297 uprintf("i/o error PT_NOTE\n"); 2298 res = FALSE; 2299 goto ret; 2300 } 2301 note = note0 = (const Elf_Note *)buf; 2302 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2303 } else { 2304 note = note0 = (const Elf_Note *)(imgp->image_header + 2305 pnote->p_offset); 2306 note_end = (const Elf_Note *)(imgp->image_header + 2307 pnote->p_offset + pnote->p_filesz); 2308 buf = NULL; 2309 } 2310 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2311 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2312 (const char *)note < sizeof(Elf_Note)) { 2313 res = FALSE; 2314 goto ret; 2315 } 2316 if (note->n_namesz != checknote->hdr.n_namesz || 2317 note->n_descsz != checknote->hdr.n_descsz || 2318 note->n_type != checknote->hdr.n_type) 2319 goto nextnote; 2320 note_name = (const char *)(note + 1); 2321 if (note_name + checknote->hdr.n_namesz >= 2322 (const char *)note_end || strncmp(checknote->vendor, 2323 note_name, checknote->hdr.n_namesz) != 0) 2324 goto nextnote; 2325 2326 /* 2327 * Fetch the osreldate for binary 2328 * from the ELF OSABI-note if necessary. 2329 */ 2330 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2331 checknote->trans_osrel != NULL) { 2332 res = checknote->trans_osrel(note, osrel); 2333 goto ret; 2334 } 2335 res = TRUE; 2336 goto ret; 2337 nextnote: 2338 note = (const Elf_Note *)((const char *)(note + 1) + 2339 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2340 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2341 } 2342 res = FALSE; 2343 ret: 2344 free(buf, M_TEMP); 2345 return (res); 2346 } 2347 2348 /* 2349 * Try to find the appropriate ABI-note section for checknote, 2350 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2351 * first page of the image is searched, the same as for headers. 2352 */ 2353 static boolean_t 2354 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2355 int32_t *osrel) 2356 { 2357 const Elf_Phdr *phdr; 2358 const Elf_Ehdr *hdr; 2359 int i; 2360 2361 hdr = (const Elf_Ehdr *)imgp->image_header; 2362 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2363 2364 for (i = 0; i < hdr->e_phnum; i++) { 2365 if (phdr[i].p_type == PT_NOTE && 2366 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2367 return (TRUE); 2368 } 2369 return (FALSE); 2370 2371 } 2372 2373 /* 2374 * Tell kern_execve.c about it, with a little help from the linker. 2375 */ 2376 static struct execsw __elfN(execsw) = { 2377 __CONCAT(exec_, __elfN(imgact)), 2378 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2379 }; 2380 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2381 2382 static vm_prot_t 2383 __elfN(trans_prot)(Elf_Word flags) 2384 { 2385 vm_prot_t prot; 2386 2387 prot = 0; 2388 if (flags & PF_X) 2389 prot |= VM_PROT_EXECUTE; 2390 if (flags & PF_W) 2391 prot |= VM_PROT_WRITE; 2392 if (flags & PF_R) 2393 prot |= VM_PROT_READ; 2394 #if __ELF_WORD_SIZE == 32 2395 #if defined(__amd64__) 2396 if (i386_read_exec && (flags & PF_R)) 2397 prot |= VM_PROT_EXECUTE; 2398 #endif 2399 #endif 2400 return (prot); 2401 } 2402 2403 static Elf_Word 2404 __elfN(untrans_prot)(vm_prot_t prot) 2405 { 2406 Elf_Word flags; 2407 2408 flags = 0; 2409 if (prot & VM_PROT_EXECUTE) 2410 flags |= PF_X; 2411 if (prot & VM_PROT_READ) 2412 flags |= PF_R; 2413 if (prot & VM_PROT_WRITE) 2414 flags |= PF_W; 2415 return (flags); 2416 } 2417