1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/reg.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static bool __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 102 uint32_t *fctl0); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 static size_t __elfN(prepare_register_notes)(struct thread *td, 106 struct note_info_list *list, struct thread *target_td); 107 108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 109 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 110 ""); 111 112 int __elfN(fallback_brand) = -1; 113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 114 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 115 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 116 117 static int elf_legacy_coredump = 0; 118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 119 &elf_legacy_coredump, 0, 120 "include all and only RW pages in core dumps"); 121 122 int __elfN(nxstack) = 123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 124 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 125 defined(__riscv) 126 1; 127 #else 128 0; 129 #endif 130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 131 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 132 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 133 134 #if defined(__amd64__) 135 static int __elfN(vdso) = 1; 136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 137 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0, 138 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading"); 139 #else 140 static int __elfN(vdso) = 0; 141 #endif 142 143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 144 int i386_read_exec = 0; 145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 146 "enable execution from readable segments"); 147 #endif 148 149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 150 static int 151 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 152 { 153 u_long val; 154 int error; 155 156 val = __elfN(pie_base); 157 error = sysctl_handle_long(oidp, &val, 0, req); 158 if (error != 0 || req->newptr == NULL) 159 return (error); 160 if ((val & PAGE_MASK) != 0) 161 return (EINVAL); 162 __elfN(pie_base) = val; 163 return (0); 164 } 165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 166 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 167 sysctl_pie_base, "LU", 168 "PIE load base without randomization"); 169 170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 171 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 172 ""); 173 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 174 175 /* 176 * While for 64-bit machines ASLR works properly, there are 177 * still some problems when using 32-bit architectures. For this 178 * reason ASLR is only enabled by default when running native 179 * 64-bit non-PIE executables. 180 */ 181 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 182 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 183 &__elfN(aslr_enabled), 0, 184 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 185 ": enable address map randomization"); 186 187 /* 188 * Enable ASLR only for 64-bit PIE binaries by default. 189 */ 190 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 191 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 192 &__elfN(pie_aslr_enabled), 0, 193 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 194 ": enable address map randomization for PIE binaries"); 195 196 /* 197 * Sbrk is now deprecated and it can be assumed, that in most 198 * cases it will not be used anyway. This setting is valid only 199 * for the ASLR enabled and allows for utilizing the bss grow region. 200 */ 201 static int __elfN(aslr_honor_sbrk) = 0; 202 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 203 &__elfN(aslr_honor_sbrk), 0, 204 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 205 206 static int __elfN(aslr_stack) = 1; 207 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN, 208 &__elfN(aslr_stack), 0, 209 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 210 ": enable stack address randomization"); 211 212 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64; 213 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN, 214 &__elfN(aslr_shared_page), 0, 215 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 216 ": enable shared page address randomization"); 217 218 static int __elfN(sigfastblock) = 1; 219 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 220 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 221 "enable sigfastblock for new processes"); 222 223 static bool __elfN(allow_wx) = true; 224 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 225 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 226 "Allow pages to be mapped simultaneously writable and executable"); 227 228 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 229 230 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 231 232 Elf_Brandnote __elfN(freebsd_brandnote) = { 233 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 234 .hdr.n_descsz = sizeof(int32_t), 235 .hdr.n_type = NT_FREEBSD_ABI_TAG, 236 .vendor = FREEBSD_ABI_VENDOR, 237 .flags = BN_TRANSLATE_OSREL, 238 .trans_osrel = __elfN(freebsd_trans_osrel) 239 }; 240 241 static bool 242 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 243 { 244 uintptr_t p; 245 246 p = (uintptr_t)(note + 1); 247 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 248 *osrel = *(const int32_t *)(p); 249 250 return (true); 251 } 252 253 static const char GNU_ABI_VENDOR[] = "GNU"; 254 static int GNU_KFREEBSD_ABI_DESC = 3; 255 256 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 257 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 258 .hdr.n_descsz = 16, /* XXX at least 16 */ 259 .hdr.n_type = 1, 260 .vendor = GNU_ABI_VENDOR, 261 .flags = BN_TRANSLATE_OSREL, 262 .trans_osrel = kfreebsd_trans_osrel 263 }; 264 265 static bool 266 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 267 { 268 const Elf32_Word *desc; 269 uintptr_t p; 270 271 p = (uintptr_t)(note + 1); 272 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 273 274 desc = (const Elf32_Word *)p; 275 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 276 return (false); 277 278 /* 279 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 280 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 281 */ 282 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 283 284 return (true); 285 } 286 287 int 288 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 289 { 290 int i; 291 292 for (i = 0; i < MAX_BRANDS; i++) { 293 if (elf_brand_list[i] == NULL) { 294 elf_brand_list[i] = entry; 295 break; 296 } 297 } 298 if (i == MAX_BRANDS) { 299 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 300 __func__, entry); 301 return (-1); 302 } 303 return (0); 304 } 305 306 int 307 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 308 { 309 int i; 310 311 for (i = 0; i < MAX_BRANDS; i++) { 312 if (elf_brand_list[i] == entry) { 313 elf_brand_list[i] = NULL; 314 break; 315 } 316 } 317 if (i == MAX_BRANDS) 318 return (-1); 319 return (0); 320 } 321 322 bool 323 __elfN(brand_inuse)(Elf_Brandinfo *entry) 324 { 325 struct proc *p; 326 bool rval = false; 327 328 sx_slock(&allproc_lock); 329 FOREACH_PROC_IN_SYSTEM(p) { 330 if (p->p_sysent == entry->sysvec) { 331 rval = true; 332 break; 333 } 334 } 335 sx_sunlock(&allproc_lock); 336 337 return (rval); 338 } 339 340 static Elf_Brandinfo * 341 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 342 int32_t *osrel, uint32_t *fctl0) 343 { 344 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 345 Elf_Brandinfo *bi, *bi_m; 346 bool ret, has_fctl0; 347 int i, interp_name_len; 348 349 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 350 351 /* 352 * We support four types of branding -- (1) the ELF EI_OSABI field 353 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 354 * branding w/in the ELF header, (3) path of the `interp_path' 355 * field, and (4) the ".note.ABI-tag" ELF section. 356 */ 357 358 /* Look for an ".note.ABI-tag" ELF section */ 359 bi_m = NULL; 360 for (i = 0; i < MAX_BRANDS; i++) { 361 bi = elf_brand_list[i]; 362 if (bi == NULL) 363 continue; 364 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 365 continue; 366 if (hdr->e_machine == bi->machine && (bi->flags & 367 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 368 has_fctl0 = false; 369 *fctl0 = 0; 370 *osrel = 0; 371 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 372 &has_fctl0, fctl0); 373 /* Give brand a chance to veto check_note's guess */ 374 if (ret && bi->header_supported) { 375 ret = bi->header_supported(imgp, osrel, 376 has_fctl0 ? fctl0 : NULL); 377 } 378 /* 379 * If note checker claimed the binary, but the 380 * interpreter path in the image does not 381 * match default one for the brand, try to 382 * search for other brands with the same 383 * interpreter. Either there is better brand 384 * with the right interpreter, or, failing 385 * this, we return first brand which accepted 386 * our note and, optionally, header. 387 */ 388 if (ret && bi_m == NULL && interp != NULL && 389 (bi->interp_path == NULL || 390 (strlen(bi->interp_path) + 1 != interp_name_len || 391 strncmp(interp, bi->interp_path, interp_name_len) 392 != 0))) { 393 bi_m = bi; 394 ret = 0; 395 } 396 if (ret) 397 return (bi); 398 } 399 } 400 if (bi_m != NULL) 401 return (bi_m); 402 403 /* If the executable has a brand, search for it in the brand list. */ 404 for (i = 0; i < MAX_BRANDS; i++) { 405 bi = elf_brand_list[i]; 406 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 407 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 408 continue; 409 if (hdr->e_machine == bi->machine && 410 (hdr->e_ident[EI_OSABI] == bi->brand || 411 (bi->compat_3_brand != NULL && 412 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 413 bi->compat_3_brand) == 0))) { 414 /* Looks good, but give brand a chance to veto */ 415 if (bi->header_supported == NULL || 416 bi->header_supported(imgp, NULL, NULL)) { 417 /* 418 * Again, prefer strictly matching 419 * interpreter path. 420 */ 421 if (interp_name_len == 0 && 422 bi->interp_path == NULL) 423 return (bi); 424 if (bi->interp_path != NULL && 425 strlen(bi->interp_path) + 1 == 426 interp_name_len && strncmp(interp, 427 bi->interp_path, interp_name_len) == 0) 428 return (bi); 429 if (bi_m == NULL) 430 bi_m = bi; 431 } 432 } 433 } 434 if (bi_m != NULL) 435 return (bi_m); 436 437 /* No known brand, see if the header is recognized by any brand */ 438 for (i = 0; i < MAX_BRANDS; i++) { 439 bi = elf_brand_list[i]; 440 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 441 bi->header_supported == NULL) 442 continue; 443 if (hdr->e_machine == bi->machine) { 444 ret = bi->header_supported(imgp, NULL, NULL); 445 if (ret) 446 return (bi); 447 } 448 } 449 450 /* Lacking a known brand, search for a recognized interpreter. */ 451 if (interp != NULL) { 452 for (i = 0; i < MAX_BRANDS; i++) { 453 bi = elf_brand_list[i]; 454 if (bi == NULL || (bi->flags & 455 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 456 != 0) 457 continue; 458 if (hdr->e_machine == bi->machine && 459 bi->interp_path != NULL && 460 /* ELF image p_filesz includes terminating zero */ 461 strlen(bi->interp_path) + 1 == interp_name_len && 462 strncmp(interp, bi->interp_path, interp_name_len) 463 == 0 && (bi->header_supported == NULL || 464 bi->header_supported(imgp, NULL, NULL))) 465 return (bi); 466 } 467 } 468 469 /* Lacking a recognized interpreter, try the default brand */ 470 for (i = 0; i < MAX_BRANDS; i++) { 471 bi = elf_brand_list[i]; 472 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 473 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 474 continue; 475 if (hdr->e_machine == bi->machine && 476 __elfN(fallback_brand) == bi->brand && 477 (bi->header_supported == NULL || 478 bi->header_supported(imgp, NULL, NULL))) 479 return (bi); 480 } 481 return (NULL); 482 } 483 484 static bool 485 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 486 { 487 return (hdr->e_phoff <= PAGE_SIZE && 488 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 489 } 490 491 static int 492 __elfN(check_header)(const Elf_Ehdr *hdr) 493 { 494 Elf_Brandinfo *bi; 495 int i; 496 497 if (!IS_ELF(*hdr) || 498 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 499 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 500 hdr->e_ident[EI_VERSION] != EV_CURRENT || 501 hdr->e_phentsize != sizeof(Elf_Phdr) || 502 hdr->e_version != ELF_TARG_VER) 503 return (ENOEXEC); 504 505 /* 506 * Make sure we have at least one brand for this machine. 507 */ 508 509 for (i = 0; i < MAX_BRANDS; i++) { 510 bi = elf_brand_list[i]; 511 if (bi != NULL && bi->machine == hdr->e_machine) 512 break; 513 } 514 if (i == MAX_BRANDS) 515 return (ENOEXEC); 516 517 return (0); 518 } 519 520 static int 521 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 522 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 523 { 524 struct sf_buf *sf; 525 int error; 526 vm_offset_t off; 527 528 /* 529 * Create the page if it doesn't exist yet. Ignore errors. 530 */ 531 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 532 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 533 534 /* 535 * Find the page from the underlying object. 536 */ 537 if (object != NULL) { 538 sf = vm_imgact_map_page(object, offset); 539 if (sf == NULL) 540 return (KERN_FAILURE); 541 off = offset - trunc_page(offset); 542 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 543 end - start); 544 vm_imgact_unmap_page(sf); 545 if (error != 0) 546 return (KERN_FAILURE); 547 } 548 549 return (KERN_SUCCESS); 550 } 551 552 static int 553 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 554 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 555 int cow) 556 { 557 struct sf_buf *sf; 558 vm_offset_t off; 559 vm_size_t sz; 560 int error, locked, rv; 561 562 if (start != trunc_page(start)) { 563 rv = __elfN(map_partial)(map, object, offset, start, 564 round_page(start), prot); 565 if (rv != KERN_SUCCESS) 566 return (rv); 567 offset += round_page(start) - start; 568 start = round_page(start); 569 } 570 if (end != round_page(end)) { 571 rv = __elfN(map_partial)(map, object, offset + 572 trunc_page(end) - start, trunc_page(end), end, prot); 573 if (rv != KERN_SUCCESS) 574 return (rv); 575 end = trunc_page(end); 576 } 577 if (start >= end) 578 return (KERN_SUCCESS); 579 if ((offset & PAGE_MASK) != 0) { 580 /* 581 * The mapping is not page aligned. This means that we have 582 * to copy the data. 583 */ 584 rv = vm_map_fixed(map, NULL, 0, start, end - start, 585 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 586 if (rv != KERN_SUCCESS) 587 return (rv); 588 if (object == NULL) 589 return (KERN_SUCCESS); 590 for (; start < end; start += sz) { 591 sf = vm_imgact_map_page(object, offset); 592 if (sf == NULL) 593 return (KERN_FAILURE); 594 off = offset - trunc_page(offset); 595 sz = end - start; 596 if (sz > PAGE_SIZE - off) 597 sz = PAGE_SIZE - off; 598 error = copyout((caddr_t)sf_buf_kva(sf) + off, 599 (caddr_t)start, sz); 600 vm_imgact_unmap_page(sf); 601 if (error != 0) 602 return (KERN_FAILURE); 603 offset += sz; 604 } 605 } else { 606 vm_object_reference(object); 607 rv = vm_map_fixed(map, object, offset, start, end - start, 608 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 609 (object != NULL ? MAP_VN_EXEC : 0)); 610 if (rv != KERN_SUCCESS) { 611 locked = VOP_ISLOCKED(imgp->vp); 612 VOP_UNLOCK(imgp->vp); 613 vm_object_deallocate(object); 614 vn_lock(imgp->vp, locked | LK_RETRY); 615 return (rv); 616 } else if (object != NULL) { 617 MPASS(imgp->vp->v_object == object); 618 VOP_SET_TEXT_CHECKED(imgp->vp); 619 } 620 } 621 return (KERN_SUCCESS); 622 } 623 624 static int 625 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 626 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 627 { 628 struct sf_buf *sf; 629 size_t map_len; 630 vm_map_t map; 631 vm_object_t object; 632 vm_offset_t map_addr; 633 int error, rv, cow; 634 size_t copy_len; 635 vm_ooffset_t file_addr; 636 637 /* 638 * It's necessary to fail if the filsz + offset taken from the 639 * header is greater than the actual file pager object's size. 640 * If we were to allow this, then the vm_map_find() below would 641 * walk right off the end of the file object and into the ether. 642 * 643 * While I'm here, might as well check for something else that 644 * is invalid: filsz cannot be greater than memsz. 645 */ 646 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 647 filsz > memsz) { 648 uprintf("elf_load_section: truncated ELF file\n"); 649 return (ENOEXEC); 650 } 651 652 object = imgp->object; 653 map = &imgp->proc->p_vmspace->vm_map; 654 map_addr = trunc_page((vm_offset_t)vmaddr); 655 file_addr = trunc_page(offset); 656 657 /* 658 * We have two choices. We can either clear the data in the last page 659 * of an oversized mapping, or we can start the anon mapping a page 660 * early and copy the initialized data into that first page. We 661 * choose the second. 662 */ 663 if (filsz == 0) 664 map_len = 0; 665 else if (memsz > filsz) 666 map_len = trunc_page(offset + filsz) - file_addr; 667 else 668 map_len = round_page(offset + filsz) - file_addr; 669 670 if (map_len != 0) { 671 /* cow flags: don't dump readonly sections in core */ 672 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 673 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 674 675 rv = __elfN(map_insert)(imgp, map, object, file_addr, 676 map_addr, map_addr + map_len, prot, cow); 677 if (rv != KERN_SUCCESS) 678 return (EINVAL); 679 680 /* we can stop now if we've covered it all */ 681 if (memsz == filsz) 682 return (0); 683 } 684 685 /* 686 * We have to get the remaining bit of the file into the first part 687 * of the oversized map segment. This is normally because the .data 688 * segment in the file is extended to provide bss. It's a neat idea 689 * to try and save a page, but it's a pain in the behind to implement. 690 */ 691 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 692 filsz); 693 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 694 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 695 696 /* This had damn well better be true! */ 697 if (map_len != 0) { 698 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 699 map_addr + map_len, prot, 0); 700 if (rv != KERN_SUCCESS) 701 return (EINVAL); 702 } 703 704 if (copy_len != 0) { 705 sf = vm_imgact_map_page(object, offset + filsz); 706 if (sf == NULL) 707 return (EIO); 708 709 /* send the page fragment to user space */ 710 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 711 copy_len); 712 vm_imgact_unmap_page(sf); 713 if (error != 0) 714 return (error); 715 } 716 717 /* 718 * Remove write access to the page if it was only granted by map_insert 719 * to allow copyout. 720 */ 721 if ((prot & VM_PROT_WRITE) == 0) 722 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 723 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 724 725 return (0); 726 } 727 728 static int 729 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 730 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 731 { 732 vm_prot_t prot; 733 u_long base_addr; 734 bool first; 735 int error, i; 736 737 ASSERT_VOP_LOCKED(imgp->vp, __func__); 738 739 base_addr = 0; 740 first = true; 741 742 for (i = 0; i < hdr->e_phnum; i++) { 743 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 744 continue; 745 746 /* Loadable segment */ 747 prot = __elfN(trans_prot)(phdr[i].p_flags); 748 error = __elfN(load_section)(imgp, phdr[i].p_offset, 749 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 750 phdr[i].p_memsz, phdr[i].p_filesz, prot); 751 if (error != 0) 752 return (error); 753 754 /* 755 * Establish the base address if this is the first segment. 756 */ 757 if (first) { 758 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 759 first = false; 760 } 761 } 762 763 if (base_addrp != NULL) 764 *base_addrp = base_addr; 765 766 return (0); 767 } 768 769 /* 770 * Load the file "file" into memory. It may be either a shared object 771 * or an executable. 772 * 773 * The "addr" reference parameter is in/out. On entry, it specifies 774 * the address where a shared object should be loaded. If the file is 775 * an executable, this value is ignored. On exit, "addr" specifies 776 * where the file was actually loaded. 777 * 778 * The "entry" reference parameter is out only. On exit, it specifies 779 * the entry point for the loaded file. 780 */ 781 static int 782 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 783 u_long *entry) 784 { 785 struct { 786 struct nameidata nd; 787 struct vattr attr; 788 struct image_params image_params; 789 } *tempdata; 790 const Elf_Ehdr *hdr = NULL; 791 const Elf_Phdr *phdr = NULL; 792 struct nameidata *nd; 793 struct vattr *attr; 794 struct image_params *imgp; 795 u_long rbase; 796 u_long base_addr = 0; 797 int error; 798 799 #ifdef CAPABILITY_MODE 800 /* 801 * XXXJA: This check can go away once we are sufficiently confident 802 * that the checks in namei() are correct. 803 */ 804 if (IN_CAPABILITY_MODE(curthread)) 805 return (ECAPMODE); 806 #endif 807 808 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 809 nd = &tempdata->nd; 810 attr = &tempdata->attr; 811 imgp = &tempdata->image_params; 812 813 /* 814 * Initialize part of the common data 815 */ 816 imgp->proc = p; 817 imgp->attr = attr; 818 819 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 820 UIO_SYSSPACE, file); 821 if ((error = namei(nd)) != 0) { 822 nd->ni_vp = NULL; 823 goto fail; 824 } 825 NDFREE_PNBUF(nd); 826 imgp->vp = nd->ni_vp; 827 828 /* 829 * Check permissions, modes, uid, etc on the file, and "open" it. 830 */ 831 error = exec_check_permissions(imgp); 832 if (error) 833 goto fail; 834 835 error = exec_map_first_page(imgp); 836 if (error) 837 goto fail; 838 839 imgp->object = nd->ni_vp->v_object; 840 841 hdr = (const Elf_Ehdr *)imgp->image_header; 842 if ((error = __elfN(check_header)(hdr)) != 0) 843 goto fail; 844 if (hdr->e_type == ET_DYN) 845 rbase = *addr; 846 else if (hdr->e_type == ET_EXEC) 847 rbase = 0; 848 else { 849 error = ENOEXEC; 850 goto fail; 851 } 852 853 /* Only support headers that fit within first page for now */ 854 if (!__elfN(phdr_in_zero_page)(hdr)) { 855 error = ENOEXEC; 856 goto fail; 857 } 858 859 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 860 if (!aligned(phdr, Elf_Addr)) { 861 error = ENOEXEC; 862 goto fail; 863 } 864 865 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 866 if (error != 0) 867 goto fail; 868 869 *addr = base_addr; 870 *entry = (unsigned long)hdr->e_entry + rbase; 871 872 fail: 873 if (imgp->firstpage) 874 exec_unmap_first_page(imgp); 875 876 if (nd->ni_vp) { 877 if (imgp->textset) 878 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 879 vput(nd->ni_vp); 880 } 881 free(tempdata, M_TEMP); 882 883 return (error); 884 } 885 886 /* 887 * Select randomized valid address in the map map, between minv and 888 * maxv, with specified alignment. The [minv, maxv) range must belong 889 * to the map. Note that function only allocates the address, it is 890 * up to caller to clamp maxv in a way that the final allocation 891 * length fit into the map. 892 * 893 * Result is returned in *resp, error code indicates that arguments 894 * did not pass sanity checks for overflow and range correctness. 895 */ 896 static int 897 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv, 898 u_int align, u_long *resp) 899 { 900 u_long rbase, res; 901 902 MPASS(vm_map_min(map) <= minv); 903 904 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) { 905 uprintf("Invalid ELF segments layout\n"); 906 return (ENOEXEC); 907 } 908 909 arc4rand(&rbase, sizeof(rbase), 0); 910 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 911 res &= ~((u_long)align - 1); 912 if (res >= maxv) 913 res -= align; 914 915 KASSERT(res >= minv, 916 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 917 res, minv, maxv, rbase)); 918 KASSERT(res < maxv, 919 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 920 res, maxv, minv, rbase)); 921 922 *resp = res; 923 return (0); 924 } 925 926 static int 927 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 928 const Elf_Phdr *phdr, u_long et_dyn_addr) 929 { 930 struct vmspace *vmspace; 931 const char *err_str; 932 u_long text_size, data_size, total_size, text_addr, data_addr; 933 u_long seg_size, seg_addr; 934 int i; 935 936 err_str = NULL; 937 text_size = data_size = total_size = text_addr = data_addr = 0; 938 939 for (i = 0; i < hdr->e_phnum; i++) { 940 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 941 continue; 942 943 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 944 seg_size = round_page(phdr[i].p_memsz + 945 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 946 947 /* 948 * Make the largest executable segment the official 949 * text segment and all others data. 950 * 951 * Note that obreak() assumes that data_addr + data_size == end 952 * of data load area, and the ELF file format expects segments 953 * to be sorted by address. If multiple data segments exist, 954 * the last one will be used. 955 */ 956 957 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 958 text_size = seg_size; 959 text_addr = seg_addr; 960 } else { 961 data_size = seg_size; 962 data_addr = seg_addr; 963 } 964 total_size += seg_size; 965 } 966 967 if (data_addr == 0 && data_size == 0) { 968 data_addr = text_addr; 969 data_size = text_size; 970 } 971 972 /* 973 * Check limits. It should be safe to check the 974 * limits after loading the segments since we do 975 * not actually fault in all the segments pages. 976 */ 977 PROC_LOCK(imgp->proc); 978 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 979 err_str = "Data segment size exceeds process limit"; 980 else if (text_size > maxtsiz) 981 err_str = "Text segment size exceeds system limit"; 982 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 983 err_str = "Total segment size exceeds process limit"; 984 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 985 err_str = "Data segment size exceeds resource limit"; 986 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 987 err_str = "Total segment size exceeds resource limit"; 988 PROC_UNLOCK(imgp->proc); 989 if (err_str != NULL) { 990 uprintf("%s\n", err_str); 991 return (ENOMEM); 992 } 993 994 vmspace = imgp->proc->p_vmspace; 995 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 996 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 997 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 998 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 999 1000 return (0); 1001 } 1002 1003 static int 1004 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 1005 char **interpp, bool *free_interpp) 1006 { 1007 struct thread *td; 1008 char *interp; 1009 int error, interp_name_len; 1010 1011 KASSERT(phdr->p_type == PT_INTERP, 1012 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 1013 ASSERT_VOP_LOCKED(imgp->vp, __func__); 1014 1015 td = curthread; 1016 1017 /* Path to interpreter */ 1018 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 1019 uprintf("Invalid PT_INTERP\n"); 1020 return (ENOEXEC); 1021 } 1022 1023 interp_name_len = phdr->p_filesz; 1024 if (phdr->p_offset > PAGE_SIZE || 1025 interp_name_len > PAGE_SIZE - phdr->p_offset) { 1026 /* 1027 * The vnode lock might be needed by the pagedaemon to 1028 * clean pages owned by the vnode. Do not allow sleep 1029 * waiting for memory with the vnode locked, instead 1030 * try non-sleepable allocation first, and if it 1031 * fails, go to the slow path were we drop the lock 1032 * and do M_WAITOK. A text reference prevents 1033 * modifications to the vnode content. 1034 */ 1035 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1036 if (interp == NULL) { 1037 VOP_UNLOCK(imgp->vp); 1038 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1039 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1040 } 1041 1042 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1043 interp_name_len, phdr->p_offset, 1044 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1045 NOCRED, NULL, td); 1046 if (error != 0) { 1047 free(interp, M_TEMP); 1048 uprintf("i/o error PT_INTERP %d\n", error); 1049 return (error); 1050 } 1051 interp[interp_name_len] = '\0'; 1052 1053 *interpp = interp; 1054 *free_interpp = true; 1055 return (0); 1056 } 1057 1058 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1059 if (interp[interp_name_len - 1] != '\0') { 1060 uprintf("Invalid PT_INTERP\n"); 1061 return (ENOEXEC); 1062 } 1063 1064 *interpp = interp; 1065 *free_interpp = false; 1066 return (0); 1067 } 1068 1069 static int 1070 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1071 const char *interp, u_long *addr, u_long *entry) 1072 { 1073 char *path; 1074 int error; 1075 1076 if (brand_info->emul_path != NULL && 1077 brand_info->emul_path[0] != '\0') { 1078 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1079 snprintf(path, MAXPATHLEN, "%s%s", 1080 brand_info->emul_path, interp); 1081 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1082 free(path, M_TEMP); 1083 if (error == 0) 1084 return (0); 1085 } 1086 1087 if (brand_info->interp_newpath != NULL && 1088 (brand_info->interp_path == NULL || 1089 strcmp(interp, brand_info->interp_path) == 0)) { 1090 error = __elfN(load_file)(imgp->proc, 1091 brand_info->interp_newpath, addr, entry); 1092 if (error == 0) 1093 return (0); 1094 } 1095 1096 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1097 if (error == 0) 1098 return (0); 1099 1100 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1101 return (error); 1102 } 1103 1104 /* 1105 * Impossible et_dyn_addr initial value indicating that the real base 1106 * must be calculated later with some randomization applied. 1107 */ 1108 #define ET_DYN_ADDR_RAND 1 1109 1110 static int 1111 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1112 { 1113 struct thread *td; 1114 const Elf_Ehdr *hdr; 1115 const Elf_Phdr *phdr; 1116 Elf_Auxargs *elf_auxargs; 1117 struct vmspace *vmspace; 1118 vm_map_t map; 1119 char *interp; 1120 Elf_Brandinfo *brand_info; 1121 struct sysentvec *sv; 1122 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1123 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc; 1124 uint32_t fctl0; 1125 int32_t osrel; 1126 bool free_interp; 1127 int error, i, n; 1128 1129 hdr = (const Elf_Ehdr *)imgp->image_header; 1130 1131 /* 1132 * Do we have a valid ELF header ? 1133 * 1134 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1135 * if particular brand doesn't support it. 1136 */ 1137 if (__elfN(check_header)(hdr) != 0 || 1138 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1139 return (-1); 1140 1141 /* 1142 * From here on down, we return an errno, not -1, as we've 1143 * detected an ELF file. 1144 */ 1145 1146 if (!__elfN(phdr_in_zero_page)(hdr)) { 1147 uprintf("Program headers not in the first page\n"); 1148 return (ENOEXEC); 1149 } 1150 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1151 if (!aligned(phdr, Elf_Addr)) { 1152 uprintf("Unaligned program headers\n"); 1153 return (ENOEXEC); 1154 } 1155 1156 n = error = 0; 1157 baddr = 0; 1158 osrel = 0; 1159 fctl0 = 0; 1160 entry = proghdr = 0; 1161 interp = NULL; 1162 free_interp = false; 1163 td = curthread; 1164 1165 /* 1166 * Somewhat arbitrary, limit accepted max alignment for the 1167 * loadable segment to the max supported superpage size. Too 1168 * large alignment requests are not useful and are indicators 1169 * of corrupted or outright malicious binary. 1170 */ 1171 maxalign = PAGE_SIZE; 1172 maxsalign = PAGE_SIZE * 1024; 1173 for (i = MAXPAGESIZES - 1; i > 0; i--) { 1174 if (pagesizes[i] > maxsalign) 1175 maxsalign = pagesizes[i]; 1176 } 1177 1178 mapsz = 0; 1179 1180 for (i = 0; i < hdr->e_phnum; i++) { 1181 switch (phdr[i].p_type) { 1182 case PT_LOAD: 1183 if (n == 0) 1184 baddr = phdr[i].p_vaddr; 1185 if (!powerof2(phdr[i].p_align) || 1186 phdr[i].p_align > maxsalign) { 1187 uprintf("Invalid segment alignment\n"); 1188 error = ENOEXEC; 1189 goto ret; 1190 } 1191 if (phdr[i].p_align > maxalign) 1192 maxalign = phdr[i].p_align; 1193 if (mapsz + phdr[i].p_memsz < mapsz) { 1194 uprintf("Mapsize overflow\n"); 1195 error = ENOEXEC; 1196 goto ret; 1197 } 1198 mapsz += phdr[i].p_memsz; 1199 n++; 1200 1201 /* 1202 * If this segment contains the program headers, 1203 * remember their virtual address for the AT_PHDR 1204 * aux entry. Static binaries don't usually include 1205 * a PT_PHDR entry. 1206 */ 1207 if (phdr[i].p_offset == 0 && 1208 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= 1209 phdr[i].p_filesz) 1210 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1211 break; 1212 case PT_INTERP: 1213 /* Path to interpreter */ 1214 if (interp != NULL) { 1215 uprintf("Multiple PT_INTERP headers\n"); 1216 error = ENOEXEC; 1217 goto ret; 1218 } 1219 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1220 &free_interp); 1221 if (error != 0) 1222 goto ret; 1223 break; 1224 case PT_GNU_STACK: 1225 if (__elfN(nxstack)) 1226 imgp->stack_prot = 1227 __elfN(trans_prot)(phdr[i].p_flags); 1228 imgp->stack_sz = phdr[i].p_memsz; 1229 break; 1230 case PT_PHDR: /* Program header table info */ 1231 proghdr = phdr[i].p_vaddr; 1232 break; 1233 } 1234 } 1235 1236 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1237 if (brand_info == NULL) { 1238 uprintf("ELF binary type \"%u\" not known.\n", 1239 hdr->e_ident[EI_OSABI]); 1240 error = ENOEXEC; 1241 goto ret; 1242 } 1243 sv = brand_info->sysvec; 1244 et_dyn_addr = 0; 1245 if (hdr->e_type == ET_DYN) { 1246 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1247 uprintf("Cannot execute shared object\n"); 1248 error = ENOEXEC; 1249 goto ret; 1250 } 1251 /* 1252 * Honour the base load address from the dso if it is 1253 * non-zero for some reason. 1254 */ 1255 if (baddr == 0) { 1256 if ((sv->sv_flags & SV_ASLR) == 0 || 1257 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1258 et_dyn_addr = __elfN(pie_base); 1259 else if ((__elfN(pie_aslr_enabled) && 1260 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1261 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1262 et_dyn_addr = ET_DYN_ADDR_RAND; 1263 else 1264 et_dyn_addr = __elfN(pie_base); 1265 } 1266 } 1267 1268 /* 1269 * Avoid a possible deadlock if the current address space is destroyed 1270 * and that address space maps the locked vnode. In the common case, 1271 * the locked vnode's v_usecount is decremented but remains greater 1272 * than zero. Consequently, the vnode lock is not needed by vrele(). 1273 * However, in cases where the vnode lock is external, such as nullfs, 1274 * v_usecount may become zero. 1275 * 1276 * The VV_TEXT flag prevents modifications to the executable while 1277 * the vnode is unlocked. 1278 */ 1279 VOP_UNLOCK(imgp->vp); 1280 1281 /* 1282 * Decide whether to enable randomization of user mappings. 1283 * First, reset user preferences for the setid binaries. 1284 * Then, account for the support of the randomization by the 1285 * ABI, by user preferences, and make special treatment for 1286 * PIE binaries. 1287 */ 1288 if (imgp->credential_setid) { 1289 PROC_LOCK(imgp->proc); 1290 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1291 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1292 PROC_UNLOCK(imgp->proc); 1293 } 1294 if ((sv->sv_flags & SV_ASLR) == 0 || 1295 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1296 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1297 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1298 ("et_dyn_addr == RAND and !ASLR")); 1299 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1300 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1301 et_dyn_addr == ET_DYN_ADDR_RAND) { 1302 imgp->map_flags |= MAP_ASLR; 1303 /* 1304 * If user does not care about sbrk, utilize the bss 1305 * grow region for mappings as well. We can select 1306 * the base for the image anywere and still not suffer 1307 * from the fragmentation. 1308 */ 1309 if (!__elfN(aslr_honor_sbrk) || 1310 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1311 imgp->map_flags |= MAP_ASLR_IGNSTART; 1312 if (__elfN(aslr_stack)) 1313 imgp->map_flags |= MAP_ASLR_STACK; 1314 if (__elfN(aslr_shared_page)) 1315 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE; 1316 } 1317 1318 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1319 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1320 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1321 imgp->map_flags |= MAP_WXORX; 1322 1323 error = exec_new_vmspace(imgp, sv); 1324 1325 imgp->proc->p_sysent = sv; 1326 imgp->proc->p_elf_brandinfo = brand_info; 1327 1328 vmspace = imgp->proc->p_vmspace; 1329 map = &vmspace->vm_map; 1330 maxv = sv->sv_usrstack; 1331 if ((imgp->map_flags & MAP_ASLR_STACK) == 0) 1332 maxv -= lim_max(td, RLIMIT_STACK); 1333 if (error == 0 && mapsz >= maxv - vm_map_min(map)) { 1334 uprintf("Excessive mapping size\n"); 1335 error = ENOEXEC; 1336 } 1337 1338 if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) { 1339 KASSERT((map->flags & MAP_ASLR) != 0, 1340 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1341 error = __CONCAT(rnd_, __elfN(base))(map, 1342 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1343 /* reserve half of the address space to interpreter */ 1344 maxv / 2, maxalign, &et_dyn_addr); 1345 } 1346 1347 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1348 if (error != 0) 1349 goto ret; 1350 1351 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1352 if (error != 0) 1353 goto ret; 1354 1355 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1356 if (error != 0) 1357 goto ret; 1358 1359 /* 1360 * We load the dynamic linker where a userland call 1361 * to mmap(0, ...) would put it. The rationale behind this 1362 * calculation is that it leaves room for the heap to grow to 1363 * its maximum allowed size. 1364 */ 1365 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1366 RLIMIT_DATA)); 1367 if ((map->flags & MAP_ASLR) != 0) { 1368 maxv1 = maxv / 2 + addr / 2; 1369 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1370 (MAXPAGESIZES > 1 && pagesizes[1] != 0) ? 1371 pagesizes[1] : pagesizes[0], &anon_loc); 1372 if (error != 0) 1373 goto ret; 1374 map->anon_loc = anon_loc; 1375 } else { 1376 map->anon_loc = addr; 1377 } 1378 1379 entry = (u_long)hdr->e_entry + et_dyn_addr; 1380 imgp->entry_addr = entry; 1381 1382 if (interp != NULL) { 1383 VOP_UNLOCK(imgp->vp); 1384 if ((map->flags & MAP_ASLR) != 0) { 1385 /* Assume that interpreter fits into 1/4 of AS */ 1386 maxv1 = maxv / 2 + addr / 2; 1387 error = __CONCAT(rnd_, __elfN(base))(map, addr, 1388 maxv1, PAGE_SIZE, &addr); 1389 } 1390 if (error == 0) { 1391 error = __elfN(load_interp)(imgp, brand_info, interp, 1392 &addr, &imgp->entry_addr); 1393 } 1394 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1395 if (error != 0) 1396 goto ret; 1397 } else 1398 addr = et_dyn_addr; 1399 1400 error = exec_map_stack(imgp); 1401 if (error != 0) 1402 goto ret; 1403 1404 /* 1405 * Construct auxargs table (used by the copyout_auxargs routine) 1406 */ 1407 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1408 if (elf_auxargs == NULL) { 1409 VOP_UNLOCK(imgp->vp); 1410 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1411 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1412 } 1413 elf_auxargs->execfd = -1; 1414 elf_auxargs->phdr = proghdr + et_dyn_addr; 1415 elf_auxargs->phent = hdr->e_phentsize; 1416 elf_auxargs->phnum = hdr->e_phnum; 1417 elf_auxargs->pagesz = PAGE_SIZE; 1418 elf_auxargs->base = addr; 1419 elf_auxargs->flags = 0; 1420 elf_auxargs->entry = entry; 1421 elf_auxargs->hdr_eflags = hdr->e_flags; 1422 1423 imgp->auxargs = elf_auxargs; 1424 imgp->interpreted = 0; 1425 imgp->reloc_base = addr; 1426 imgp->proc->p_osrel = osrel; 1427 imgp->proc->p_fctl0 = fctl0; 1428 imgp->proc->p_elf_flags = hdr->e_flags; 1429 1430 ret: 1431 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock"); 1432 if (free_interp) 1433 free(interp, M_TEMP); 1434 return (error); 1435 } 1436 1437 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1438 1439 int 1440 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1441 { 1442 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1443 Elf_Auxinfo *argarray, *pos; 1444 struct vmspace *vmspace; 1445 int error; 1446 1447 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1448 M_WAITOK | M_ZERO); 1449 1450 vmspace = imgp->proc->p_vmspace; 1451 1452 if (args->execfd != -1) 1453 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1454 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1455 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1456 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1457 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1458 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1459 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1460 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1461 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1462 if (imgp->execpathp != 0) 1463 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1464 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1465 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1466 if (imgp->canary != 0) { 1467 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1468 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1469 } 1470 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1471 if (imgp->pagesizes != 0) { 1472 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1473 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1474 } 1475 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) { 1476 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1477 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset); 1478 } 1479 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1480 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1481 imgp->sysent->sv_stackprot); 1482 if (imgp->sysent->sv_hwcap != NULL) 1483 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1484 if (imgp->sysent->sv_hwcap2 != NULL) 1485 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1486 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1487 ELF_BSDF_SIGFASTBLK : 0); 1488 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1489 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1490 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1491 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1492 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1493 #ifdef RANDOM_FENESTRASX 1494 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) { 1495 AUXARGS_ENTRY(pos, AT_FXRNG, 1496 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset); 1497 } 1498 #endif 1499 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) { 1500 AUXARGS_ENTRY(pos, AT_KPRELOAD, 1501 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset); 1502 } 1503 AUXARGS_ENTRY(pos, AT_NULL, 0); 1504 1505 free(imgp->auxargs, M_TEMP); 1506 imgp->auxargs = NULL; 1507 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1508 1509 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1510 free(argarray, M_TEMP); 1511 return (error); 1512 } 1513 1514 int 1515 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1516 { 1517 Elf_Addr *base; 1518 1519 base = (Elf_Addr *)*stack_base; 1520 base--; 1521 if (elf_suword(base, imgp->args->argc) == -1) 1522 return (EFAULT); 1523 *stack_base = (uintptr_t)base; 1524 return (0); 1525 } 1526 1527 /* 1528 * Code for generating ELF core dumps. 1529 */ 1530 1531 typedef void (*segment_callback)(vm_map_entry_t, void *); 1532 1533 /* Closure for cb_put_phdr(). */ 1534 struct phdr_closure { 1535 Elf_Phdr *phdr; /* Program header to fill in */ 1536 Elf_Off offset; /* Offset of segment in core file */ 1537 }; 1538 1539 struct note_info { 1540 int type; /* Note type. */ 1541 struct regset *regset; /* Register set. */ 1542 outfunc_t outfunc; /* Output function. */ 1543 void *outarg; /* Argument for the output function. */ 1544 size_t outsize; /* Output size. */ 1545 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1546 }; 1547 1548 TAILQ_HEAD(note_info_list, note_info); 1549 1550 extern int compress_user_cores; 1551 extern int compress_user_cores_level; 1552 1553 static void cb_put_phdr(vm_map_entry_t, void *); 1554 static void cb_size_segment(vm_map_entry_t, void *); 1555 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1556 int); 1557 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1558 struct note_info_list *, size_t, int); 1559 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1560 1561 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1562 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1563 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1564 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1565 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1566 static void note_procstat_files(void *, struct sbuf *, size_t *); 1567 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1568 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1569 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1570 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1571 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1572 1573 static int 1574 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1575 { 1576 1577 return (core_write((struct coredump_params *)arg, base, len, offset, 1578 UIO_SYSSPACE, NULL)); 1579 } 1580 1581 int 1582 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1583 { 1584 struct ucred *cred = td->td_ucred; 1585 int compm, error = 0; 1586 struct sseg_closure seginfo; 1587 struct note_info_list notelst; 1588 struct coredump_params params; 1589 struct note_info *ninfo; 1590 void *hdr, *tmpbuf; 1591 size_t hdrsize, notesz, coresize; 1592 1593 hdr = NULL; 1594 tmpbuf = NULL; 1595 TAILQ_INIT(¬elst); 1596 1597 /* Size the program segments. */ 1598 __elfN(size_segments)(td, &seginfo, flags); 1599 1600 /* 1601 * Collect info about the core file header area. 1602 */ 1603 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1604 if (seginfo.count + 1 >= PN_XNUM) 1605 hdrsize += sizeof(Elf_Shdr); 1606 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1607 coresize = round_page(hdrsize + notesz) + seginfo.size; 1608 1609 /* Set up core dump parameters. */ 1610 params.offset = 0; 1611 params.active_cred = cred; 1612 params.file_cred = NOCRED; 1613 params.td = td; 1614 params.vp = vp; 1615 params.comp = NULL; 1616 1617 #ifdef RACCT 1618 if (racct_enable) { 1619 PROC_LOCK(td->td_proc); 1620 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1621 PROC_UNLOCK(td->td_proc); 1622 if (error != 0) { 1623 error = EFAULT; 1624 goto done; 1625 } 1626 } 1627 #endif 1628 if (coresize >= limit) { 1629 error = EFAULT; 1630 goto done; 1631 } 1632 1633 /* Create a compression stream if necessary. */ 1634 compm = compress_user_cores; 1635 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1636 compm == 0) 1637 compm = COMPRESS_GZIP; 1638 if (compm != 0) { 1639 params.comp = compressor_init(core_compressed_write, 1640 compm, CORE_BUF_SIZE, 1641 compress_user_cores_level, ¶ms); 1642 if (params.comp == NULL) { 1643 error = EFAULT; 1644 goto done; 1645 } 1646 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1647 } 1648 1649 /* 1650 * Allocate memory for building the header, fill it up, 1651 * and write it out following the notes. 1652 */ 1653 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1654 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1655 notesz, flags); 1656 1657 /* Write the contents of all of the writable segments. */ 1658 if (error == 0) { 1659 Elf_Phdr *php; 1660 off_t offset; 1661 int i; 1662 1663 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1664 offset = round_page(hdrsize + notesz); 1665 for (i = 0; i < seginfo.count; i++) { 1666 error = core_output((char *)(uintptr_t)php->p_vaddr, 1667 php->p_filesz, offset, ¶ms, tmpbuf); 1668 if (error != 0) 1669 break; 1670 offset += php->p_filesz; 1671 php++; 1672 } 1673 if (error == 0 && params.comp != NULL) 1674 error = compressor_flush(params.comp); 1675 } 1676 if (error) { 1677 log(LOG_WARNING, 1678 "Failed to write core file for process %s (error %d)\n", 1679 curproc->p_comm, error); 1680 } 1681 1682 done: 1683 free(tmpbuf, M_TEMP); 1684 if (params.comp != NULL) 1685 compressor_fini(params.comp); 1686 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1687 TAILQ_REMOVE(¬elst, ninfo, link); 1688 free(ninfo, M_TEMP); 1689 } 1690 if (hdr != NULL) 1691 free(hdr, M_TEMP); 1692 1693 return (error); 1694 } 1695 1696 /* 1697 * A callback for each_dumpable_segment() to write out the segment's 1698 * program header entry. 1699 */ 1700 static void 1701 cb_put_phdr(vm_map_entry_t entry, void *closure) 1702 { 1703 struct phdr_closure *phc = (struct phdr_closure *)closure; 1704 Elf_Phdr *phdr = phc->phdr; 1705 1706 phc->offset = round_page(phc->offset); 1707 1708 phdr->p_type = PT_LOAD; 1709 phdr->p_offset = phc->offset; 1710 phdr->p_vaddr = entry->start; 1711 phdr->p_paddr = 0; 1712 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1713 phdr->p_align = PAGE_SIZE; 1714 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1715 1716 phc->offset += phdr->p_filesz; 1717 phc->phdr++; 1718 } 1719 1720 /* 1721 * A callback for each_dumpable_segment() to gather information about 1722 * the number of segments and their total size. 1723 */ 1724 static void 1725 cb_size_segment(vm_map_entry_t entry, void *closure) 1726 { 1727 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1728 1729 ssc->count++; 1730 ssc->size += entry->end - entry->start; 1731 } 1732 1733 void 1734 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1735 int flags) 1736 { 1737 seginfo->count = 0; 1738 seginfo->size = 0; 1739 1740 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1741 } 1742 1743 /* 1744 * For each writable segment in the process's memory map, call the given 1745 * function with a pointer to the map entry and some arbitrary 1746 * caller-supplied data. 1747 */ 1748 static void 1749 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1750 int flags) 1751 { 1752 struct proc *p = td->td_proc; 1753 vm_map_t map = &p->p_vmspace->vm_map; 1754 vm_map_entry_t entry; 1755 vm_object_t backing_object, object; 1756 bool ignore_entry; 1757 1758 vm_map_lock_read(map); 1759 VM_MAP_ENTRY_FOREACH(entry, map) { 1760 /* 1761 * Don't dump inaccessible mappings, deal with legacy 1762 * coredump mode. 1763 * 1764 * Note that read-only segments related to the elf binary 1765 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1766 * need to arbitrarily ignore such segments. 1767 */ 1768 if ((flags & SVC_ALL) == 0) { 1769 if (elf_legacy_coredump) { 1770 if ((entry->protection & VM_PROT_RW) != 1771 VM_PROT_RW) 1772 continue; 1773 } else { 1774 if ((entry->protection & VM_PROT_ALL) == 0) 1775 continue; 1776 } 1777 } 1778 1779 /* 1780 * Dont include memory segment in the coredump if 1781 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1782 * madvise(2). Do not dump submaps (i.e. parts of the 1783 * kernel map). 1784 */ 1785 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1786 continue; 1787 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1788 (flags & SVC_ALL) == 0) 1789 continue; 1790 if ((object = entry->object.vm_object) == NULL) 1791 continue; 1792 1793 /* Ignore memory-mapped devices and such things. */ 1794 VM_OBJECT_RLOCK(object); 1795 while ((backing_object = object->backing_object) != NULL) { 1796 VM_OBJECT_RLOCK(backing_object); 1797 VM_OBJECT_RUNLOCK(object); 1798 object = backing_object; 1799 } 1800 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1801 VM_OBJECT_RUNLOCK(object); 1802 if (ignore_entry) 1803 continue; 1804 1805 (*func)(entry, closure); 1806 } 1807 vm_map_unlock_read(map); 1808 } 1809 1810 /* 1811 * Write the core file header to the file, including padding up to 1812 * the page boundary. 1813 */ 1814 static int 1815 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1816 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1817 int flags) 1818 { 1819 struct note_info *ninfo; 1820 struct sbuf *sb; 1821 int error; 1822 1823 /* Fill in the header. */ 1824 bzero(hdr, hdrsize); 1825 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1826 1827 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1828 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1829 sbuf_start_section(sb, NULL); 1830 sbuf_bcat(sb, hdr, hdrsize); 1831 TAILQ_FOREACH(ninfo, notelst, link) 1832 __elfN(putnote)(p->td, ninfo, sb); 1833 /* Align up to a page boundary for the program segments. */ 1834 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1835 error = sbuf_finish(sb); 1836 sbuf_delete(sb); 1837 1838 return (error); 1839 } 1840 1841 void 1842 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1843 size_t *sizep) 1844 { 1845 struct proc *p; 1846 struct thread *thr; 1847 size_t size; 1848 1849 p = td->td_proc; 1850 size = 0; 1851 1852 size += __elfN(register_note)(td, list, NT_PRPSINFO, 1853 __elfN(note_prpsinfo), p); 1854 1855 /* 1856 * To have the debugger select the right thread (LWP) as the initial 1857 * thread, we dump the state of the thread passed to us in td first. 1858 * This is the thread that causes the core dump and thus likely to 1859 * be the right thread one wants to have selected in the debugger. 1860 */ 1861 thr = td; 1862 while (thr != NULL) { 1863 size += __elfN(prepare_register_notes)(td, list, thr); 1864 size += __elfN(register_note)(td, list, -1, 1865 __elfN(note_threadmd), thr); 1866 1867 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1868 TAILQ_NEXT(thr, td_plist); 1869 if (thr == td) 1870 thr = TAILQ_NEXT(thr, td_plist); 1871 } 1872 1873 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1874 __elfN(note_procstat_proc), p); 1875 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1876 note_procstat_files, p); 1877 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1878 note_procstat_vmmap, p); 1879 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1880 note_procstat_groups, p); 1881 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1882 note_procstat_umask, p); 1883 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1884 note_procstat_rlimit, p); 1885 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1886 note_procstat_osrel, p); 1887 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1888 __elfN(note_procstat_psstrings), p); 1889 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1890 __elfN(note_procstat_auxv), p); 1891 1892 *sizep = size; 1893 } 1894 1895 void 1896 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1897 size_t notesz, int flags) 1898 { 1899 Elf_Ehdr *ehdr; 1900 Elf_Phdr *phdr; 1901 Elf_Shdr *shdr; 1902 struct phdr_closure phc; 1903 Elf_Brandinfo *bi; 1904 1905 ehdr = (Elf_Ehdr *)hdr; 1906 bi = td->td_proc->p_elf_brandinfo; 1907 1908 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1909 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1910 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1911 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1912 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1913 ehdr->e_ident[EI_DATA] = ELF_DATA; 1914 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1915 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1916 ehdr->e_ident[EI_ABIVERSION] = 0; 1917 ehdr->e_ident[EI_PAD] = 0; 1918 ehdr->e_type = ET_CORE; 1919 ehdr->e_machine = bi->machine; 1920 ehdr->e_version = EV_CURRENT; 1921 ehdr->e_entry = 0; 1922 ehdr->e_phoff = sizeof(Elf_Ehdr); 1923 ehdr->e_flags = td->td_proc->p_elf_flags; 1924 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1925 ehdr->e_phentsize = sizeof(Elf_Phdr); 1926 ehdr->e_shentsize = sizeof(Elf_Shdr); 1927 ehdr->e_shstrndx = SHN_UNDEF; 1928 if (numsegs + 1 < PN_XNUM) { 1929 ehdr->e_phnum = numsegs + 1; 1930 ehdr->e_shnum = 0; 1931 } else { 1932 ehdr->e_phnum = PN_XNUM; 1933 ehdr->e_shnum = 1; 1934 1935 ehdr->e_shoff = ehdr->e_phoff + 1936 (numsegs + 1) * ehdr->e_phentsize; 1937 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1938 ("e_shoff: %zu, hdrsize - shdr: %zu", 1939 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1940 1941 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1942 memset(shdr, 0, sizeof(*shdr)); 1943 /* 1944 * A special first section is used to hold large segment and 1945 * section counts. This was proposed by Sun Microsystems in 1946 * Solaris and has been adopted by Linux; the standard ELF 1947 * tools are already familiar with the technique. 1948 * 1949 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1950 * (or 12-7 depending on the version of the document) for more 1951 * details. 1952 */ 1953 shdr->sh_type = SHT_NULL; 1954 shdr->sh_size = ehdr->e_shnum; 1955 shdr->sh_link = ehdr->e_shstrndx; 1956 shdr->sh_info = numsegs + 1; 1957 } 1958 1959 /* 1960 * Fill in the program header entries. 1961 */ 1962 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1963 1964 /* The note segement. */ 1965 phdr->p_type = PT_NOTE; 1966 phdr->p_offset = hdrsize; 1967 phdr->p_vaddr = 0; 1968 phdr->p_paddr = 0; 1969 phdr->p_filesz = notesz; 1970 phdr->p_memsz = 0; 1971 phdr->p_flags = PF_R; 1972 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1973 phdr++; 1974 1975 /* All the writable segments from the program. */ 1976 phc.phdr = phdr; 1977 phc.offset = round_page(hdrsize + notesz); 1978 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1979 } 1980 1981 static size_t 1982 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list, 1983 struct regset *regset, struct thread *target_td) 1984 { 1985 const struct sysentvec *sv; 1986 struct note_info *ninfo; 1987 size_t size, notesize; 1988 1989 size = 0; 1990 if (!regset->get(regset, target_td, NULL, &size) || size == 0) 1991 return (0); 1992 1993 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1994 ninfo->type = regset->note; 1995 ninfo->regset = regset; 1996 ninfo->outarg = target_td; 1997 ninfo->outsize = size; 1998 TAILQ_INSERT_TAIL(list, ninfo, link); 1999 2000 sv = td->td_proc->p_sysent; 2001 notesize = sizeof(Elf_Note) + /* note header */ 2002 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2003 /* note name */ 2004 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2005 2006 return (notesize); 2007 } 2008 2009 size_t 2010 __elfN(register_note)(struct thread *td, struct note_info_list *list, 2011 int type, outfunc_t out, void *arg) 2012 { 2013 const struct sysentvec *sv; 2014 struct note_info *ninfo; 2015 size_t size, notesize; 2016 2017 sv = td->td_proc->p_sysent; 2018 size = 0; 2019 out(arg, NULL, &size); 2020 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2021 ninfo->type = type; 2022 ninfo->outfunc = out; 2023 ninfo->outarg = arg; 2024 ninfo->outsize = size; 2025 TAILQ_INSERT_TAIL(list, ninfo, link); 2026 2027 if (type == -1) 2028 return (size); 2029 2030 notesize = sizeof(Elf_Note) + /* note header */ 2031 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2032 /* note name */ 2033 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2034 2035 return (notesize); 2036 } 2037 2038 static size_t 2039 append_note_data(const void *src, void *dst, size_t len) 2040 { 2041 size_t padded_len; 2042 2043 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2044 if (dst != NULL) { 2045 bcopy(src, dst, len); 2046 bzero((char *)dst + len, padded_len - len); 2047 } 2048 return (padded_len); 2049 } 2050 2051 size_t 2052 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2053 { 2054 Elf_Note *note; 2055 char *buf; 2056 size_t notesize; 2057 2058 buf = dst; 2059 if (buf != NULL) { 2060 note = (Elf_Note *)buf; 2061 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2062 note->n_descsz = size; 2063 note->n_type = type; 2064 buf += sizeof(*note); 2065 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2066 sizeof(FREEBSD_ABI_VENDOR)); 2067 append_note_data(src, buf, size); 2068 if (descp != NULL) 2069 *descp = buf; 2070 } 2071 2072 notesize = sizeof(Elf_Note) + /* note header */ 2073 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2074 /* note name */ 2075 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2076 2077 return (notesize); 2078 } 2079 2080 static void 2081 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 2082 { 2083 Elf_Note note; 2084 const struct sysentvec *sv; 2085 ssize_t old_len, sect_len; 2086 size_t new_len, descsz, i; 2087 2088 if (ninfo->type == -1) { 2089 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2090 return; 2091 } 2092 2093 sv = td->td_proc->p_sysent; 2094 2095 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 2096 note.n_descsz = ninfo->outsize; 2097 note.n_type = ninfo->type; 2098 2099 sbuf_bcat(sb, ¬e, sizeof(note)); 2100 sbuf_start_section(sb, &old_len); 2101 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 2102 strlen(sv->sv_elf_core_abi_vendor) + 1); 2103 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2104 if (note.n_descsz == 0) 2105 return; 2106 sbuf_start_section(sb, &old_len); 2107 if (ninfo->regset != NULL) { 2108 struct regset *regset = ninfo->regset; 2109 void *buf; 2110 2111 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK); 2112 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize); 2113 sbuf_bcat(sb, buf, ninfo->outsize); 2114 free(buf, M_TEMP); 2115 } else 2116 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2117 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2118 if (sect_len < 0) 2119 return; 2120 2121 new_len = (size_t)sect_len; 2122 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2123 if (new_len < descsz) { 2124 /* 2125 * It is expected that individual note emitters will correctly 2126 * predict their expected output size and fill up to that size 2127 * themselves, padding in a format-specific way if needed. 2128 * However, in case they don't, just do it here with zeros. 2129 */ 2130 for (i = 0; i < descsz - new_len; i++) 2131 sbuf_putc(sb, 0); 2132 } else if (new_len > descsz) { 2133 /* 2134 * We can't always truncate sb -- we may have drained some 2135 * of it already. 2136 */ 2137 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2138 "read it (%zu > %zu). Since it is longer than " 2139 "expected, this coredump's notes are corrupt. THIS " 2140 "IS A BUG in the note_procstat routine for type %u.\n", 2141 __func__, (unsigned)note.n_type, new_len, descsz, 2142 (unsigned)note.n_type)); 2143 } 2144 } 2145 2146 /* 2147 * Miscellaneous note out functions. 2148 */ 2149 2150 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2151 #include <compat/freebsd32/freebsd32.h> 2152 #include <compat/freebsd32/freebsd32_signal.h> 2153 2154 typedef struct prstatus32 elf_prstatus_t; 2155 typedef struct prpsinfo32 elf_prpsinfo_t; 2156 typedef struct fpreg32 elf_prfpregset_t; 2157 typedef struct fpreg32 elf_fpregset_t; 2158 typedef struct reg32 elf_gregset_t; 2159 typedef struct thrmisc32 elf_thrmisc_t; 2160 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t; 2161 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2162 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2163 typedef uint32_t elf_ps_strings_t; 2164 #else 2165 typedef prstatus_t elf_prstatus_t; 2166 typedef prpsinfo_t elf_prpsinfo_t; 2167 typedef prfpregset_t elf_prfpregset_t; 2168 typedef prfpregset_t elf_fpregset_t; 2169 typedef gregset_t elf_gregset_t; 2170 typedef thrmisc_t elf_thrmisc_t; 2171 typedef struct ptrace_lwpinfo elf_lwpinfo_t; 2172 #define ELF_KERN_PROC_MASK 0 2173 typedef struct kinfo_proc elf_kinfo_proc_t; 2174 typedef vm_offset_t elf_ps_strings_t; 2175 #endif 2176 2177 static void 2178 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2179 { 2180 struct sbuf sbarg; 2181 size_t len; 2182 char *cp, *end; 2183 struct proc *p; 2184 elf_prpsinfo_t *psinfo; 2185 int error; 2186 2187 p = arg; 2188 if (sb != NULL) { 2189 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2190 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2191 psinfo->pr_version = PRPSINFO_VERSION; 2192 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2193 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2194 PROC_LOCK(p); 2195 if (p->p_args != NULL) { 2196 len = sizeof(psinfo->pr_psargs) - 1; 2197 if (len > p->p_args->ar_length) 2198 len = p->p_args->ar_length; 2199 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2200 PROC_UNLOCK(p); 2201 error = 0; 2202 } else { 2203 _PHOLD(p); 2204 PROC_UNLOCK(p); 2205 sbuf_new(&sbarg, psinfo->pr_psargs, 2206 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2207 error = proc_getargv(curthread, p, &sbarg); 2208 PRELE(p); 2209 if (sbuf_finish(&sbarg) == 0) 2210 len = sbuf_len(&sbarg) - 1; 2211 else 2212 len = sizeof(psinfo->pr_psargs) - 1; 2213 sbuf_delete(&sbarg); 2214 } 2215 if (error || len == 0) 2216 strlcpy(psinfo->pr_psargs, p->p_comm, 2217 sizeof(psinfo->pr_psargs)); 2218 else { 2219 KASSERT(len < sizeof(psinfo->pr_psargs), 2220 ("len is too long: %zu vs %zu", len, 2221 sizeof(psinfo->pr_psargs))); 2222 cp = psinfo->pr_psargs; 2223 end = cp + len - 1; 2224 for (;;) { 2225 cp = memchr(cp, '\0', end - cp); 2226 if (cp == NULL) 2227 break; 2228 *cp = ' '; 2229 } 2230 } 2231 psinfo->pr_pid = p->p_pid; 2232 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2233 free(psinfo, M_TEMP); 2234 } 2235 *sizep = sizeof(*psinfo); 2236 } 2237 2238 static bool 2239 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf, 2240 size_t *sizep) 2241 { 2242 elf_prstatus_t *status; 2243 2244 if (buf != NULL) { 2245 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2246 __func__)); 2247 status = buf; 2248 memset(status, 0, *sizep); 2249 status->pr_version = PRSTATUS_VERSION; 2250 status->pr_statussz = sizeof(elf_prstatus_t); 2251 status->pr_gregsetsz = sizeof(elf_gregset_t); 2252 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2253 status->pr_osreldate = osreldate; 2254 status->pr_cursig = td->td_proc->p_sig; 2255 status->pr_pid = td->td_tid; 2256 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2257 fill_regs32(td, &status->pr_reg); 2258 #else 2259 fill_regs(td, &status->pr_reg); 2260 #endif 2261 } 2262 *sizep = sizeof(*status); 2263 return (true); 2264 } 2265 2266 static bool 2267 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf, 2268 size_t size) 2269 { 2270 elf_prstatus_t *status; 2271 2272 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__)); 2273 status = buf; 2274 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2275 set_regs32(td, &status->pr_reg); 2276 #else 2277 set_regs(td, &status->pr_reg); 2278 #endif 2279 return (true); 2280 } 2281 2282 static struct regset __elfN(regset_prstatus) = { 2283 .note = NT_PRSTATUS, 2284 .size = sizeof(elf_prstatus_t), 2285 .get = __elfN(get_prstatus), 2286 .set = __elfN(set_prstatus), 2287 }; 2288 ELF_REGSET(__elfN(regset_prstatus)); 2289 2290 static bool 2291 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf, 2292 size_t *sizep) 2293 { 2294 elf_prfpregset_t *fpregset; 2295 2296 if (buf != NULL) { 2297 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size", 2298 __func__)); 2299 fpregset = buf; 2300 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2301 fill_fpregs32(td, fpregset); 2302 #else 2303 fill_fpregs(td, fpregset); 2304 #endif 2305 } 2306 *sizep = sizeof(*fpregset); 2307 return (true); 2308 } 2309 2310 static bool 2311 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf, 2312 size_t size) 2313 { 2314 elf_prfpregset_t *fpregset; 2315 2316 fpregset = buf; 2317 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__)); 2318 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2319 set_fpregs32(td, fpregset); 2320 #else 2321 set_fpregs(td, fpregset); 2322 #endif 2323 return (true); 2324 } 2325 2326 static struct regset __elfN(regset_fpregset) = { 2327 .note = NT_FPREGSET, 2328 .size = sizeof(elf_prfpregset_t), 2329 .get = __elfN(get_fpregset), 2330 .set = __elfN(set_fpregset), 2331 }; 2332 ELF_REGSET(__elfN(regset_fpregset)); 2333 2334 static bool 2335 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf, 2336 size_t *sizep) 2337 { 2338 elf_thrmisc_t *thrmisc; 2339 2340 if (buf != NULL) { 2341 KASSERT(*sizep == sizeof(*thrmisc), 2342 ("%s: invalid size", __func__)); 2343 thrmisc = buf; 2344 bzero(thrmisc, sizeof(*thrmisc)); 2345 strcpy(thrmisc->pr_tname, td->td_name); 2346 } 2347 *sizep = sizeof(*thrmisc); 2348 return (true); 2349 } 2350 2351 static struct regset __elfN(regset_thrmisc) = { 2352 .note = NT_THRMISC, 2353 .size = sizeof(elf_thrmisc_t), 2354 .get = __elfN(get_thrmisc), 2355 }; 2356 ELF_REGSET(__elfN(regset_thrmisc)); 2357 2358 static bool 2359 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf, 2360 size_t *sizep) 2361 { 2362 elf_lwpinfo_t pl; 2363 size_t size; 2364 int structsize; 2365 2366 size = sizeof(structsize) + sizeof(pl); 2367 if (buf != NULL) { 2368 KASSERT(*sizep == size, ("%s: invalid size", __func__)); 2369 structsize = sizeof(pl); 2370 memcpy(buf, &structsize, sizeof(structsize)); 2371 bzero(&pl, sizeof(pl)); 2372 pl.pl_lwpid = td->td_tid; 2373 pl.pl_event = PL_EVENT_NONE; 2374 pl.pl_sigmask = td->td_sigmask; 2375 pl.pl_siglist = td->td_siglist; 2376 if (td->td_si.si_signo != 0) { 2377 pl.pl_event = PL_EVENT_SIGNAL; 2378 pl.pl_flags |= PL_FLAG_SI; 2379 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2380 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2381 #else 2382 pl.pl_siginfo = td->td_si; 2383 #endif 2384 } 2385 strcpy(pl.pl_tdname, td->td_name); 2386 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2387 memcpy((int *)buf + 1, &pl, sizeof(pl)); 2388 } 2389 *sizep = size; 2390 return (true); 2391 } 2392 2393 static struct regset __elfN(regset_lwpinfo) = { 2394 .note = NT_PTLWPINFO, 2395 .size = sizeof(int) + sizeof(elf_lwpinfo_t), 2396 .get = __elfN(get_lwpinfo), 2397 }; 2398 ELF_REGSET(__elfN(regset_lwpinfo)); 2399 2400 static size_t 2401 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list, 2402 struct thread *target_td) 2403 { 2404 struct sysentvec *sv = td->td_proc->p_sysent; 2405 struct regset **regsetp, **regset_end, *regset; 2406 size_t size; 2407 2408 size = 0; 2409 2410 /* NT_PRSTATUS must be the first register set note. */ 2411 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus), 2412 target_td); 2413 2414 regsetp = sv->sv_regset_begin; 2415 if (regsetp == NULL) { 2416 /* XXX: This shouldn't be true for any FreeBSD ABIs. */ 2417 size += __elfN(register_regset_note)(td, list, 2418 &__elfN(regset_fpregset), target_td); 2419 return (size); 2420 } 2421 regset_end = sv->sv_regset_end; 2422 MPASS(regset_end != NULL); 2423 for (; regsetp < regset_end; regsetp++) { 2424 regset = *regsetp; 2425 if (regset->note == NT_PRSTATUS) 2426 continue; 2427 size += __elfN(register_regset_note)(td, list, regset, 2428 target_td); 2429 } 2430 return (size); 2431 } 2432 2433 /* 2434 * Allow for MD specific notes, as well as any MD 2435 * specific preparations for writing MI notes. 2436 */ 2437 static void 2438 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2439 { 2440 struct thread *td; 2441 void *buf; 2442 size_t size; 2443 2444 td = (struct thread *)arg; 2445 size = *sizep; 2446 if (size != 0 && sb != NULL) 2447 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2448 else 2449 buf = NULL; 2450 size = 0; 2451 __elfN(dump_thread)(td, buf, &size); 2452 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2453 if (size != 0 && sb != NULL) 2454 sbuf_bcat(sb, buf, size); 2455 free(buf, M_TEMP); 2456 *sizep = size; 2457 } 2458 2459 #ifdef KINFO_PROC_SIZE 2460 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2461 #endif 2462 2463 static void 2464 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2465 { 2466 struct proc *p; 2467 size_t size; 2468 int structsize; 2469 2470 p = arg; 2471 size = sizeof(structsize) + p->p_numthreads * 2472 sizeof(elf_kinfo_proc_t); 2473 2474 if (sb != NULL) { 2475 KASSERT(*sizep == size, ("invalid size")); 2476 structsize = sizeof(elf_kinfo_proc_t); 2477 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2478 sx_slock(&proctree_lock); 2479 PROC_LOCK(p); 2480 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2481 sx_sunlock(&proctree_lock); 2482 } 2483 *sizep = size; 2484 } 2485 2486 #ifdef KINFO_FILE_SIZE 2487 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2488 #endif 2489 2490 static void 2491 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2492 { 2493 struct proc *p; 2494 size_t size, sect_sz, i; 2495 ssize_t start_len, sect_len; 2496 int structsize, filedesc_flags; 2497 2498 if (coredump_pack_fileinfo) 2499 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2500 else 2501 filedesc_flags = 0; 2502 2503 p = arg; 2504 structsize = sizeof(struct kinfo_file); 2505 if (sb == NULL) { 2506 size = 0; 2507 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2508 sbuf_set_drain(sb, sbuf_count_drain, &size); 2509 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2510 PROC_LOCK(p); 2511 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2512 sbuf_finish(sb); 2513 sbuf_delete(sb); 2514 *sizep = size; 2515 } else { 2516 sbuf_start_section(sb, &start_len); 2517 2518 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2519 PROC_LOCK(p); 2520 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2521 filedesc_flags); 2522 2523 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2524 if (sect_len < 0) 2525 return; 2526 sect_sz = sect_len; 2527 2528 KASSERT(sect_sz <= *sizep, 2529 ("kern_proc_filedesc_out did not respect maxlen; " 2530 "requested %zu, got %zu", *sizep - sizeof(structsize), 2531 sect_sz - sizeof(structsize))); 2532 2533 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2534 sbuf_putc(sb, 0); 2535 } 2536 } 2537 2538 #ifdef KINFO_VMENTRY_SIZE 2539 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2540 #endif 2541 2542 static void 2543 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2544 { 2545 struct proc *p; 2546 size_t size; 2547 int structsize, vmmap_flags; 2548 2549 if (coredump_pack_vmmapinfo) 2550 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2551 else 2552 vmmap_flags = 0; 2553 2554 p = arg; 2555 structsize = sizeof(struct kinfo_vmentry); 2556 if (sb == NULL) { 2557 size = 0; 2558 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2559 sbuf_set_drain(sb, sbuf_count_drain, &size); 2560 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2561 PROC_LOCK(p); 2562 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2563 sbuf_finish(sb); 2564 sbuf_delete(sb); 2565 *sizep = size; 2566 } else { 2567 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2568 PROC_LOCK(p); 2569 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2570 vmmap_flags); 2571 } 2572 } 2573 2574 static void 2575 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2576 { 2577 struct proc *p; 2578 size_t size; 2579 int structsize; 2580 2581 p = arg; 2582 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2583 if (sb != NULL) { 2584 KASSERT(*sizep == size, ("invalid size")); 2585 structsize = sizeof(gid_t); 2586 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2587 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2588 sizeof(gid_t)); 2589 } 2590 *sizep = size; 2591 } 2592 2593 static void 2594 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2595 { 2596 struct proc *p; 2597 size_t size; 2598 int structsize; 2599 2600 p = arg; 2601 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2602 if (sb != NULL) { 2603 KASSERT(*sizep == size, ("invalid size")); 2604 structsize = sizeof(p->p_pd->pd_cmask); 2605 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2606 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2607 } 2608 *sizep = size; 2609 } 2610 2611 static void 2612 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2613 { 2614 struct proc *p; 2615 struct rlimit rlim[RLIM_NLIMITS]; 2616 size_t size; 2617 int structsize, i; 2618 2619 p = arg; 2620 size = sizeof(structsize) + sizeof(rlim); 2621 if (sb != NULL) { 2622 KASSERT(*sizep == size, ("invalid size")); 2623 structsize = sizeof(rlim); 2624 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2625 PROC_LOCK(p); 2626 for (i = 0; i < RLIM_NLIMITS; i++) 2627 lim_rlimit_proc(p, i, &rlim[i]); 2628 PROC_UNLOCK(p); 2629 sbuf_bcat(sb, rlim, sizeof(rlim)); 2630 } 2631 *sizep = size; 2632 } 2633 2634 static void 2635 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2636 { 2637 struct proc *p; 2638 size_t size; 2639 int structsize; 2640 2641 p = arg; 2642 size = sizeof(structsize) + sizeof(p->p_osrel); 2643 if (sb != NULL) { 2644 KASSERT(*sizep == size, ("invalid size")); 2645 structsize = sizeof(p->p_osrel); 2646 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2647 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2648 } 2649 *sizep = size; 2650 } 2651 2652 static void 2653 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2654 { 2655 struct proc *p; 2656 elf_ps_strings_t ps_strings; 2657 size_t size; 2658 int structsize; 2659 2660 p = arg; 2661 size = sizeof(structsize) + sizeof(ps_strings); 2662 if (sb != NULL) { 2663 KASSERT(*sizep == size, ("invalid size")); 2664 structsize = sizeof(ps_strings); 2665 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2666 ps_strings = PTROUT(PROC_PS_STRINGS(p)); 2667 #else 2668 ps_strings = PROC_PS_STRINGS(p); 2669 #endif 2670 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2671 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2672 } 2673 *sizep = size; 2674 } 2675 2676 static void 2677 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2678 { 2679 struct proc *p; 2680 size_t size; 2681 int structsize; 2682 2683 p = arg; 2684 if (sb == NULL) { 2685 size = 0; 2686 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2687 SBUF_FIXEDLEN); 2688 sbuf_set_drain(sb, sbuf_count_drain, &size); 2689 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2690 PHOLD(p); 2691 proc_getauxv(curthread, p, sb); 2692 PRELE(p); 2693 sbuf_finish(sb); 2694 sbuf_delete(sb); 2695 *sizep = size; 2696 } else { 2697 structsize = sizeof(Elf_Auxinfo); 2698 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2699 PHOLD(p); 2700 proc_getauxv(curthread, p, sb); 2701 PRELE(p); 2702 } 2703 } 2704 2705 static bool 2706 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2707 const char *note_vendor, const Elf_Phdr *pnote, 2708 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2709 { 2710 const Elf_Note *note, *note0, *note_end; 2711 const char *note_name; 2712 char *buf; 2713 int i, error; 2714 bool res; 2715 2716 /* We need some limit, might as well use PAGE_SIZE. */ 2717 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2718 return (false); 2719 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2720 if (pnote->p_offset > PAGE_SIZE || 2721 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2722 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2723 if (buf == NULL) { 2724 VOP_UNLOCK(imgp->vp); 2725 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2726 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2727 } 2728 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2729 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2730 curthread->td_ucred, NOCRED, NULL, curthread); 2731 if (error != 0) { 2732 uprintf("i/o error PT_NOTE\n"); 2733 goto retf; 2734 } 2735 note = note0 = (const Elf_Note *)buf; 2736 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2737 } else { 2738 note = note0 = (const Elf_Note *)(imgp->image_header + 2739 pnote->p_offset); 2740 note_end = (const Elf_Note *)(imgp->image_header + 2741 pnote->p_offset + pnote->p_filesz); 2742 buf = NULL; 2743 } 2744 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2745 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2746 (const char *)note < sizeof(Elf_Note)) { 2747 goto retf; 2748 } 2749 if (note->n_namesz != checknote->n_namesz || 2750 note->n_descsz != checknote->n_descsz || 2751 note->n_type != checknote->n_type) 2752 goto nextnote; 2753 note_name = (const char *)(note + 1); 2754 if (note_name + checknote->n_namesz >= 2755 (const char *)note_end || strncmp(note_vendor, 2756 note_name, checknote->n_namesz) != 0) 2757 goto nextnote; 2758 2759 if (cb(note, cb_arg, &res)) 2760 goto ret; 2761 nextnote: 2762 note = (const Elf_Note *)((const char *)(note + 1) + 2763 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2764 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2765 } 2766 retf: 2767 res = false; 2768 ret: 2769 free(buf, M_TEMP); 2770 return (res); 2771 } 2772 2773 struct brandnote_cb_arg { 2774 Elf_Brandnote *brandnote; 2775 int32_t *osrel; 2776 }; 2777 2778 static bool 2779 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2780 { 2781 struct brandnote_cb_arg *arg; 2782 2783 arg = arg0; 2784 2785 /* 2786 * Fetch the osreldate for binary from the ELF OSABI-note if 2787 * necessary. 2788 */ 2789 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2790 arg->brandnote->trans_osrel != NULL ? 2791 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2792 2793 return (true); 2794 } 2795 2796 static Elf_Note fctl_note = { 2797 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2798 .n_descsz = sizeof(uint32_t), 2799 .n_type = NT_FREEBSD_FEATURE_CTL, 2800 }; 2801 2802 struct fctl_cb_arg { 2803 bool *has_fctl0; 2804 uint32_t *fctl0; 2805 }; 2806 2807 static bool 2808 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2809 { 2810 struct fctl_cb_arg *arg; 2811 const Elf32_Word *desc; 2812 uintptr_t p; 2813 2814 arg = arg0; 2815 p = (uintptr_t)(note + 1); 2816 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2817 desc = (const Elf32_Word *)p; 2818 *arg->has_fctl0 = true; 2819 *arg->fctl0 = desc[0]; 2820 *res = true; 2821 return (true); 2822 } 2823 2824 /* 2825 * Try to find the appropriate ABI-note section for checknote, fetch 2826 * the osreldate and feature control flags for binary from the ELF 2827 * OSABI-note. Only the first page of the image is searched, the same 2828 * as for headers. 2829 */ 2830 static bool 2831 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2832 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2833 { 2834 const Elf_Phdr *phdr; 2835 const Elf_Ehdr *hdr; 2836 struct brandnote_cb_arg b_arg; 2837 struct fctl_cb_arg f_arg; 2838 int i, j; 2839 2840 hdr = (const Elf_Ehdr *)imgp->image_header; 2841 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2842 b_arg.brandnote = brandnote; 2843 b_arg.osrel = osrel; 2844 f_arg.has_fctl0 = has_fctl0; 2845 f_arg.fctl0 = fctl0; 2846 2847 for (i = 0; i < hdr->e_phnum; i++) { 2848 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2849 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2850 &b_arg)) { 2851 for (j = 0; j < hdr->e_phnum; j++) { 2852 if (phdr[j].p_type == PT_NOTE && 2853 __elfN(parse_notes)(imgp, &fctl_note, 2854 FREEBSD_ABI_VENDOR, &phdr[j], 2855 note_fctl_cb, &f_arg)) 2856 break; 2857 } 2858 return (true); 2859 } 2860 } 2861 return (false); 2862 2863 } 2864 2865 /* 2866 * Tell kern_execve.c about it, with a little help from the linker. 2867 */ 2868 static struct execsw __elfN(execsw) = { 2869 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2870 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2871 }; 2872 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2873 2874 static vm_prot_t 2875 __elfN(trans_prot)(Elf_Word flags) 2876 { 2877 vm_prot_t prot; 2878 2879 prot = 0; 2880 if (flags & PF_X) 2881 prot |= VM_PROT_EXECUTE; 2882 if (flags & PF_W) 2883 prot |= VM_PROT_WRITE; 2884 if (flags & PF_R) 2885 prot |= VM_PROT_READ; 2886 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2887 if (i386_read_exec && (flags & PF_R)) 2888 prot |= VM_PROT_EXECUTE; 2889 #endif 2890 return (prot); 2891 } 2892 2893 static Elf_Word 2894 __elfN(untrans_prot)(vm_prot_t prot) 2895 { 2896 Elf_Word flags; 2897 2898 flags = 0; 2899 if (prot & VM_PROT_EXECUTE) 2900 flags |= PF_X; 2901 if (prot & VM_PROT_READ) 2902 flags |= PF_R; 2903 if (prot & VM_PROT_WRITE) 2904 flags |= PF_W; 2905 return (flags); 2906 } 2907