xref: /freebsd/sys/kern/imgact_elf.c (revision a12eb9e4ae534557867d49803a1e28bfe519a207)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/ptrace.h>
56 #include <sys/racct.h>
57 #include <sys/reg.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static bool __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
102     uint32_t *fctl0);
103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
105 static size_t __elfN(prepare_register_notes)(struct thread *td,
106     struct note_info_list *list, struct thread *target_td);
107 
108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
109     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
110     "");
111 
112 int __elfN(fallback_brand) = -1;
113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
114     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
115     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
116 
117 static int elf_legacy_coredump = 0;
118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
119     &elf_legacy_coredump, 0,
120     "include all and only RW pages in core dumps");
121 
122 int __elfN(nxstack) =
123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
124     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
125     defined(__riscv)
126 	1;
127 #else
128 	0;
129 #endif
130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
131     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
132     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
133 
134 #if defined(__amd64__)
135 static int __elfN(vdso) = 1;
136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
137     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
138     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
139 #else
140 static int __elfN(vdso) = 0;
141 #endif
142 
143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
144 int i386_read_exec = 0;
145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
146     "enable execution from readable segments");
147 #endif
148 
149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
150 static int
151 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
152 {
153 	u_long val;
154 	int error;
155 
156 	val = __elfN(pie_base);
157 	error = sysctl_handle_long(oidp, &val, 0, req);
158 	if (error != 0 || req->newptr == NULL)
159 		return (error);
160 	if ((val & PAGE_MASK) != 0)
161 		return (EINVAL);
162 	__elfN(pie_base) = val;
163 	return (0);
164 }
165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
166     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
167     sysctl_pie_base, "LU",
168     "PIE load base without randomization");
169 
170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "");
173 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
174 
175 /*
176  * While for 64-bit machines ASLR works properly, there are
177  * still some problems when using 32-bit architectures. For this
178  * reason ASLR is only enabled by default when running native
179  * 64-bit non-PIE executables.
180  */
181 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
182 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
183     &__elfN(aslr_enabled), 0,
184     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
185     ": enable address map randomization");
186 
187 /*
188  * Enable ASLR only for 64-bit PIE binaries by default.
189  */
190 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
191 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
192     &__elfN(pie_aslr_enabled), 0,
193     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
194     ": enable address map randomization for PIE binaries");
195 
196 /*
197  * Sbrk is now deprecated and it can be assumed, that in most
198  * cases it will not be used anyway. This setting is valid only
199  * for the ASLR enabled and allows for utilizing the bss grow region.
200  */
201 static int __elfN(aslr_honor_sbrk) = 0;
202 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
203     &__elfN(aslr_honor_sbrk), 0,
204     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
205 
206 static int __elfN(aslr_stack) = 1;
207 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
208     &__elfN(aslr_stack), 0,
209     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
210     ": enable stack address randomization");
211 
212 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
213 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
214     &__elfN(aslr_shared_page), 0,
215     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
216     ": enable shared page address randomization");
217 
218 static int __elfN(sigfastblock) = 1;
219 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
220     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
221     "enable sigfastblock for new processes");
222 
223 static bool __elfN(allow_wx) = true;
224 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
225     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
226     "Allow pages to be mapped simultaneously writable and executable");
227 
228 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
229 
230 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
231 
232 Elf_Brandnote __elfN(freebsd_brandnote) = {
233 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
234 	.hdr.n_descsz	= sizeof(int32_t),
235 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
236 	.vendor		= FREEBSD_ABI_VENDOR,
237 	.flags		= BN_TRANSLATE_OSREL,
238 	.trans_osrel	= __elfN(freebsd_trans_osrel)
239 };
240 
241 static bool
242 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
243 {
244 	uintptr_t p;
245 
246 	p = (uintptr_t)(note + 1);
247 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
248 	*osrel = *(const int32_t *)(p);
249 
250 	return (true);
251 }
252 
253 static const char GNU_ABI_VENDOR[] = "GNU";
254 static int GNU_KFREEBSD_ABI_DESC = 3;
255 
256 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
257 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
258 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
259 	.hdr.n_type	= 1,
260 	.vendor		= GNU_ABI_VENDOR,
261 	.flags		= BN_TRANSLATE_OSREL,
262 	.trans_osrel	= kfreebsd_trans_osrel
263 };
264 
265 static bool
266 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
267 {
268 	const Elf32_Word *desc;
269 	uintptr_t p;
270 
271 	p = (uintptr_t)(note + 1);
272 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
273 
274 	desc = (const Elf32_Word *)p;
275 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
276 		return (false);
277 
278 	/*
279 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
280 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
281 	 */
282 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
283 
284 	return (true);
285 }
286 
287 int
288 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
289 {
290 	int i;
291 
292 	for (i = 0; i < MAX_BRANDS; i++) {
293 		if (elf_brand_list[i] == NULL) {
294 			elf_brand_list[i] = entry;
295 			break;
296 		}
297 	}
298 	if (i == MAX_BRANDS) {
299 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
300 			__func__, entry);
301 		return (-1);
302 	}
303 	return (0);
304 }
305 
306 int
307 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
308 {
309 	int i;
310 
311 	for (i = 0; i < MAX_BRANDS; i++) {
312 		if (elf_brand_list[i] == entry) {
313 			elf_brand_list[i] = NULL;
314 			break;
315 		}
316 	}
317 	if (i == MAX_BRANDS)
318 		return (-1);
319 	return (0);
320 }
321 
322 bool
323 __elfN(brand_inuse)(Elf_Brandinfo *entry)
324 {
325 	struct proc *p;
326 	bool rval = false;
327 
328 	sx_slock(&allproc_lock);
329 	FOREACH_PROC_IN_SYSTEM(p) {
330 		if (p->p_sysent == entry->sysvec) {
331 			rval = true;
332 			break;
333 		}
334 	}
335 	sx_sunlock(&allproc_lock);
336 
337 	return (rval);
338 }
339 
340 static Elf_Brandinfo *
341 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
342     int32_t *osrel, uint32_t *fctl0)
343 {
344 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
345 	Elf_Brandinfo *bi, *bi_m;
346 	bool ret, has_fctl0;
347 	int i, interp_name_len;
348 
349 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
350 
351 	/*
352 	 * We support four types of branding -- (1) the ELF EI_OSABI field
353 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
354 	 * branding w/in the ELF header, (3) path of the `interp_path'
355 	 * field, and (4) the ".note.ABI-tag" ELF section.
356 	 */
357 
358 	/* Look for an ".note.ABI-tag" ELF section */
359 	bi_m = NULL;
360 	for (i = 0; i < MAX_BRANDS; i++) {
361 		bi = elf_brand_list[i];
362 		if (bi == NULL)
363 			continue;
364 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
365 			continue;
366 		if (hdr->e_machine == bi->machine && (bi->flags &
367 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
368 			has_fctl0 = false;
369 			*fctl0 = 0;
370 			*osrel = 0;
371 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
372 			    &has_fctl0, fctl0);
373 			/* Give brand a chance to veto check_note's guess */
374 			if (ret && bi->header_supported) {
375 				ret = bi->header_supported(imgp, osrel,
376 				    has_fctl0 ? fctl0 : NULL);
377 			}
378 			/*
379 			 * If note checker claimed the binary, but the
380 			 * interpreter path in the image does not
381 			 * match default one for the brand, try to
382 			 * search for other brands with the same
383 			 * interpreter.  Either there is better brand
384 			 * with the right interpreter, or, failing
385 			 * this, we return first brand which accepted
386 			 * our note and, optionally, header.
387 			 */
388 			if (ret && bi_m == NULL && interp != NULL &&
389 			    (bi->interp_path == NULL ||
390 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
391 			    strncmp(interp, bi->interp_path, interp_name_len)
392 			    != 0))) {
393 				bi_m = bi;
394 				ret = 0;
395 			}
396 			if (ret)
397 				return (bi);
398 		}
399 	}
400 	if (bi_m != NULL)
401 		return (bi_m);
402 
403 	/* If the executable has a brand, search for it in the brand list. */
404 	for (i = 0; i < MAX_BRANDS; i++) {
405 		bi = elf_brand_list[i];
406 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
407 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
408 			continue;
409 		if (hdr->e_machine == bi->machine &&
410 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
411 		    (bi->compat_3_brand != NULL &&
412 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
413 		    bi->compat_3_brand) == 0))) {
414 			/* Looks good, but give brand a chance to veto */
415 			if (bi->header_supported == NULL ||
416 			    bi->header_supported(imgp, NULL, NULL)) {
417 				/*
418 				 * Again, prefer strictly matching
419 				 * interpreter path.
420 				 */
421 				if (interp_name_len == 0 &&
422 				    bi->interp_path == NULL)
423 					return (bi);
424 				if (bi->interp_path != NULL &&
425 				    strlen(bi->interp_path) + 1 ==
426 				    interp_name_len && strncmp(interp,
427 				    bi->interp_path, interp_name_len) == 0)
428 					return (bi);
429 				if (bi_m == NULL)
430 					bi_m = bi;
431 			}
432 		}
433 	}
434 	if (bi_m != NULL)
435 		return (bi_m);
436 
437 	/* No known brand, see if the header is recognized by any brand */
438 	for (i = 0; i < MAX_BRANDS; i++) {
439 		bi = elf_brand_list[i];
440 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
441 		    bi->header_supported == NULL)
442 			continue;
443 		if (hdr->e_machine == bi->machine) {
444 			ret = bi->header_supported(imgp, NULL, NULL);
445 			if (ret)
446 				return (bi);
447 		}
448 	}
449 
450 	/* Lacking a known brand, search for a recognized interpreter. */
451 	if (interp != NULL) {
452 		for (i = 0; i < MAX_BRANDS; i++) {
453 			bi = elf_brand_list[i];
454 			if (bi == NULL || (bi->flags &
455 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
456 			    != 0)
457 				continue;
458 			if (hdr->e_machine == bi->machine &&
459 			    bi->interp_path != NULL &&
460 			    /* ELF image p_filesz includes terminating zero */
461 			    strlen(bi->interp_path) + 1 == interp_name_len &&
462 			    strncmp(interp, bi->interp_path, interp_name_len)
463 			    == 0 && (bi->header_supported == NULL ||
464 			    bi->header_supported(imgp, NULL, NULL)))
465 				return (bi);
466 		}
467 	}
468 
469 	/* Lacking a recognized interpreter, try the default brand */
470 	for (i = 0; i < MAX_BRANDS; i++) {
471 		bi = elf_brand_list[i];
472 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
473 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
474 			continue;
475 		if (hdr->e_machine == bi->machine &&
476 		    __elfN(fallback_brand) == bi->brand &&
477 		    (bi->header_supported == NULL ||
478 		    bi->header_supported(imgp, NULL, NULL)))
479 			return (bi);
480 	}
481 	return (NULL);
482 }
483 
484 static bool
485 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
486 {
487 	return (hdr->e_phoff <= PAGE_SIZE &&
488 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
489 }
490 
491 static int
492 __elfN(check_header)(const Elf_Ehdr *hdr)
493 {
494 	Elf_Brandinfo *bi;
495 	int i;
496 
497 	if (!IS_ELF(*hdr) ||
498 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
499 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
500 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
501 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
502 	    hdr->e_version != ELF_TARG_VER)
503 		return (ENOEXEC);
504 
505 	/*
506 	 * Make sure we have at least one brand for this machine.
507 	 */
508 
509 	for (i = 0; i < MAX_BRANDS; i++) {
510 		bi = elf_brand_list[i];
511 		if (bi != NULL && bi->machine == hdr->e_machine)
512 			break;
513 	}
514 	if (i == MAX_BRANDS)
515 		return (ENOEXEC);
516 
517 	return (0);
518 }
519 
520 static int
521 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
522     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
523 {
524 	struct sf_buf *sf;
525 	int error;
526 	vm_offset_t off;
527 
528 	/*
529 	 * Create the page if it doesn't exist yet. Ignore errors.
530 	 */
531 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
532 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
533 
534 	/*
535 	 * Find the page from the underlying object.
536 	 */
537 	if (object != NULL) {
538 		sf = vm_imgact_map_page(object, offset);
539 		if (sf == NULL)
540 			return (KERN_FAILURE);
541 		off = offset - trunc_page(offset);
542 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
543 		    end - start);
544 		vm_imgact_unmap_page(sf);
545 		if (error != 0)
546 			return (KERN_FAILURE);
547 	}
548 
549 	return (KERN_SUCCESS);
550 }
551 
552 static int
553 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
554     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
555     int cow)
556 {
557 	struct sf_buf *sf;
558 	vm_offset_t off;
559 	vm_size_t sz;
560 	int error, locked, rv;
561 
562 	if (start != trunc_page(start)) {
563 		rv = __elfN(map_partial)(map, object, offset, start,
564 		    round_page(start), prot);
565 		if (rv != KERN_SUCCESS)
566 			return (rv);
567 		offset += round_page(start) - start;
568 		start = round_page(start);
569 	}
570 	if (end != round_page(end)) {
571 		rv = __elfN(map_partial)(map, object, offset +
572 		    trunc_page(end) - start, trunc_page(end), end, prot);
573 		if (rv != KERN_SUCCESS)
574 			return (rv);
575 		end = trunc_page(end);
576 	}
577 	if (start >= end)
578 		return (KERN_SUCCESS);
579 	if ((offset & PAGE_MASK) != 0) {
580 		/*
581 		 * The mapping is not page aligned.  This means that we have
582 		 * to copy the data.
583 		 */
584 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
585 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
586 		if (rv != KERN_SUCCESS)
587 			return (rv);
588 		if (object == NULL)
589 			return (KERN_SUCCESS);
590 		for (; start < end; start += sz) {
591 			sf = vm_imgact_map_page(object, offset);
592 			if (sf == NULL)
593 				return (KERN_FAILURE);
594 			off = offset - trunc_page(offset);
595 			sz = end - start;
596 			if (sz > PAGE_SIZE - off)
597 				sz = PAGE_SIZE - off;
598 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
599 			    (caddr_t)start, sz);
600 			vm_imgact_unmap_page(sf);
601 			if (error != 0)
602 				return (KERN_FAILURE);
603 			offset += sz;
604 		}
605 	} else {
606 		vm_object_reference(object);
607 		rv = vm_map_fixed(map, object, offset, start, end - start,
608 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
609 		    (object != NULL ? MAP_VN_EXEC : 0));
610 		if (rv != KERN_SUCCESS) {
611 			locked = VOP_ISLOCKED(imgp->vp);
612 			VOP_UNLOCK(imgp->vp);
613 			vm_object_deallocate(object);
614 			vn_lock(imgp->vp, locked | LK_RETRY);
615 			return (rv);
616 		} else if (object != NULL) {
617 			MPASS(imgp->vp->v_object == object);
618 			VOP_SET_TEXT_CHECKED(imgp->vp);
619 		}
620 	}
621 	return (KERN_SUCCESS);
622 }
623 
624 static int
625 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
626     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
627 {
628 	struct sf_buf *sf;
629 	size_t map_len;
630 	vm_map_t map;
631 	vm_object_t object;
632 	vm_offset_t map_addr;
633 	int error, rv, cow;
634 	size_t copy_len;
635 	vm_ooffset_t file_addr;
636 
637 	/*
638 	 * It's necessary to fail if the filsz + offset taken from the
639 	 * header is greater than the actual file pager object's size.
640 	 * If we were to allow this, then the vm_map_find() below would
641 	 * walk right off the end of the file object and into the ether.
642 	 *
643 	 * While I'm here, might as well check for something else that
644 	 * is invalid: filsz cannot be greater than memsz.
645 	 */
646 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
647 	    filsz > memsz) {
648 		uprintf("elf_load_section: truncated ELF file\n");
649 		return (ENOEXEC);
650 	}
651 
652 	object = imgp->object;
653 	map = &imgp->proc->p_vmspace->vm_map;
654 	map_addr = trunc_page((vm_offset_t)vmaddr);
655 	file_addr = trunc_page(offset);
656 
657 	/*
658 	 * We have two choices.  We can either clear the data in the last page
659 	 * of an oversized mapping, or we can start the anon mapping a page
660 	 * early and copy the initialized data into that first page.  We
661 	 * choose the second.
662 	 */
663 	if (filsz == 0)
664 		map_len = 0;
665 	else if (memsz > filsz)
666 		map_len = trunc_page(offset + filsz) - file_addr;
667 	else
668 		map_len = round_page(offset + filsz) - file_addr;
669 
670 	if (map_len != 0) {
671 		/* cow flags: don't dump readonly sections in core */
672 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
673 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
674 
675 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
676 		    map_addr, map_addr + map_len, prot, cow);
677 		if (rv != KERN_SUCCESS)
678 			return (EINVAL);
679 
680 		/* we can stop now if we've covered it all */
681 		if (memsz == filsz)
682 			return (0);
683 	}
684 
685 	/*
686 	 * We have to get the remaining bit of the file into the first part
687 	 * of the oversized map segment.  This is normally because the .data
688 	 * segment in the file is extended to provide bss.  It's a neat idea
689 	 * to try and save a page, but it's a pain in the behind to implement.
690 	 */
691 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
692 	    filsz);
693 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
694 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
695 
696 	/* This had damn well better be true! */
697 	if (map_len != 0) {
698 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
699 		    map_addr + map_len, prot, 0);
700 		if (rv != KERN_SUCCESS)
701 			return (EINVAL);
702 	}
703 
704 	if (copy_len != 0) {
705 		sf = vm_imgact_map_page(object, offset + filsz);
706 		if (sf == NULL)
707 			return (EIO);
708 
709 		/* send the page fragment to user space */
710 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
711 		    copy_len);
712 		vm_imgact_unmap_page(sf);
713 		if (error != 0)
714 			return (error);
715 	}
716 
717 	/*
718 	 * Remove write access to the page if it was only granted by map_insert
719 	 * to allow copyout.
720 	 */
721 	if ((prot & VM_PROT_WRITE) == 0)
722 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
723 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
724 
725 	return (0);
726 }
727 
728 static int
729 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
730     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
731 {
732 	vm_prot_t prot;
733 	u_long base_addr;
734 	bool first;
735 	int error, i;
736 
737 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
738 
739 	base_addr = 0;
740 	first = true;
741 
742 	for (i = 0; i < hdr->e_phnum; i++) {
743 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
744 			continue;
745 
746 		/* Loadable segment */
747 		prot = __elfN(trans_prot)(phdr[i].p_flags);
748 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
749 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
750 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
751 		if (error != 0)
752 			return (error);
753 
754 		/*
755 		 * Establish the base address if this is the first segment.
756 		 */
757 		if (first) {
758   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
759 			first = false;
760 		}
761 	}
762 
763 	if (base_addrp != NULL)
764 		*base_addrp = base_addr;
765 
766 	return (0);
767 }
768 
769 /*
770  * Load the file "file" into memory.  It may be either a shared object
771  * or an executable.
772  *
773  * The "addr" reference parameter is in/out.  On entry, it specifies
774  * the address where a shared object should be loaded.  If the file is
775  * an executable, this value is ignored.  On exit, "addr" specifies
776  * where the file was actually loaded.
777  *
778  * The "entry" reference parameter is out only.  On exit, it specifies
779  * the entry point for the loaded file.
780  */
781 static int
782 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
783 	u_long *entry)
784 {
785 	struct {
786 		struct nameidata nd;
787 		struct vattr attr;
788 		struct image_params image_params;
789 	} *tempdata;
790 	const Elf_Ehdr *hdr = NULL;
791 	const Elf_Phdr *phdr = NULL;
792 	struct nameidata *nd;
793 	struct vattr *attr;
794 	struct image_params *imgp;
795 	u_long rbase;
796 	u_long base_addr = 0;
797 	int error;
798 
799 #ifdef CAPABILITY_MODE
800 	/*
801 	 * XXXJA: This check can go away once we are sufficiently confident
802 	 * that the checks in namei() are correct.
803 	 */
804 	if (IN_CAPABILITY_MODE(curthread))
805 		return (ECAPMODE);
806 #endif
807 
808 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
809 	nd = &tempdata->nd;
810 	attr = &tempdata->attr;
811 	imgp = &tempdata->image_params;
812 
813 	/*
814 	 * Initialize part of the common data
815 	 */
816 	imgp->proc = p;
817 	imgp->attr = attr;
818 
819 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
820 	    UIO_SYSSPACE, file);
821 	if ((error = namei(nd)) != 0) {
822 		nd->ni_vp = NULL;
823 		goto fail;
824 	}
825 	NDFREE_PNBUF(nd);
826 	imgp->vp = nd->ni_vp;
827 
828 	/*
829 	 * Check permissions, modes, uid, etc on the file, and "open" it.
830 	 */
831 	error = exec_check_permissions(imgp);
832 	if (error)
833 		goto fail;
834 
835 	error = exec_map_first_page(imgp);
836 	if (error)
837 		goto fail;
838 
839 	imgp->object = nd->ni_vp->v_object;
840 
841 	hdr = (const Elf_Ehdr *)imgp->image_header;
842 	if ((error = __elfN(check_header)(hdr)) != 0)
843 		goto fail;
844 	if (hdr->e_type == ET_DYN)
845 		rbase = *addr;
846 	else if (hdr->e_type == ET_EXEC)
847 		rbase = 0;
848 	else {
849 		error = ENOEXEC;
850 		goto fail;
851 	}
852 
853 	/* Only support headers that fit within first page for now      */
854 	if (!__elfN(phdr_in_zero_page)(hdr)) {
855 		error = ENOEXEC;
856 		goto fail;
857 	}
858 
859 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
860 	if (!aligned(phdr, Elf_Addr)) {
861 		error = ENOEXEC;
862 		goto fail;
863 	}
864 
865 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
866 	if (error != 0)
867 		goto fail;
868 
869 	*addr = base_addr;
870 	*entry = (unsigned long)hdr->e_entry + rbase;
871 
872 fail:
873 	if (imgp->firstpage)
874 		exec_unmap_first_page(imgp);
875 
876 	if (nd->ni_vp) {
877 		if (imgp->textset)
878 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
879 		vput(nd->ni_vp);
880 	}
881 	free(tempdata, M_TEMP);
882 
883 	return (error);
884 }
885 
886 /*
887  * Select randomized valid address in the map map, between minv and
888  * maxv, with specified alignment.  The [minv, maxv) range must belong
889  * to the map.  Note that function only allocates the address, it is
890  * up to caller to clamp maxv in a way that the final allocation
891  * length fit into the map.
892  *
893  * Result is returned in *resp, error code indicates that arguments
894  * did not pass sanity checks for overflow and range correctness.
895  */
896 static int
897 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
898     u_int align, u_long *resp)
899 {
900 	u_long rbase, res;
901 
902 	MPASS(vm_map_min(map) <= minv);
903 
904 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
905 		uprintf("Invalid ELF segments layout\n");
906 		return (ENOEXEC);
907 	}
908 
909 	arc4rand(&rbase, sizeof(rbase), 0);
910 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
911 	res &= ~((u_long)align - 1);
912 	if (res >= maxv)
913 		res -= align;
914 
915 	KASSERT(res >= minv,
916 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
917 	    res, minv, maxv, rbase));
918 	KASSERT(res < maxv,
919 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
920 	    res, maxv, minv, rbase));
921 
922 	*resp = res;
923 	return (0);
924 }
925 
926 static int
927 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
928     const Elf_Phdr *phdr, u_long et_dyn_addr)
929 {
930 	struct vmspace *vmspace;
931 	const char *err_str;
932 	u_long text_size, data_size, total_size, text_addr, data_addr;
933 	u_long seg_size, seg_addr;
934 	int i;
935 
936 	err_str = NULL;
937 	text_size = data_size = total_size = text_addr = data_addr = 0;
938 
939 	for (i = 0; i < hdr->e_phnum; i++) {
940 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
941 			continue;
942 
943 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
944 		seg_size = round_page(phdr[i].p_memsz +
945 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
946 
947 		/*
948 		 * Make the largest executable segment the official
949 		 * text segment and all others data.
950 		 *
951 		 * Note that obreak() assumes that data_addr + data_size == end
952 		 * of data load area, and the ELF file format expects segments
953 		 * to be sorted by address.  If multiple data segments exist,
954 		 * the last one will be used.
955 		 */
956 
957 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
958 			text_size = seg_size;
959 			text_addr = seg_addr;
960 		} else {
961 			data_size = seg_size;
962 			data_addr = seg_addr;
963 		}
964 		total_size += seg_size;
965 	}
966 
967 	if (data_addr == 0 && data_size == 0) {
968 		data_addr = text_addr;
969 		data_size = text_size;
970 	}
971 
972 	/*
973 	 * Check limits.  It should be safe to check the
974 	 * limits after loading the segments since we do
975 	 * not actually fault in all the segments pages.
976 	 */
977 	PROC_LOCK(imgp->proc);
978 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
979 		err_str = "Data segment size exceeds process limit";
980 	else if (text_size > maxtsiz)
981 		err_str = "Text segment size exceeds system limit";
982 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
983 		err_str = "Total segment size exceeds process limit";
984 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
985 		err_str = "Data segment size exceeds resource limit";
986 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
987 		err_str = "Total segment size exceeds resource limit";
988 	PROC_UNLOCK(imgp->proc);
989 	if (err_str != NULL) {
990 		uprintf("%s\n", err_str);
991 		return (ENOMEM);
992 	}
993 
994 	vmspace = imgp->proc->p_vmspace;
995 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
996 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
997 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
998 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
999 
1000 	return (0);
1001 }
1002 
1003 static int
1004 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1005     char **interpp, bool *free_interpp)
1006 {
1007 	struct thread *td;
1008 	char *interp;
1009 	int error, interp_name_len;
1010 
1011 	KASSERT(phdr->p_type == PT_INTERP,
1012 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1013 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1014 
1015 	td = curthread;
1016 
1017 	/* Path to interpreter */
1018 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1019 		uprintf("Invalid PT_INTERP\n");
1020 		return (ENOEXEC);
1021 	}
1022 
1023 	interp_name_len = phdr->p_filesz;
1024 	if (phdr->p_offset > PAGE_SIZE ||
1025 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1026 		/*
1027 		 * The vnode lock might be needed by the pagedaemon to
1028 		 * clean pages owned by the vnode.  Do not allow sleep
1029 		 * waiting for memory with the vnode locked, instead
1030 		 * try non-sleepable allocation first, and if it
1031 		 * fails, go to the slow path were we drop the lock
1032 		 * and do M_WAITOK.  A text reference prevents
1033 		 * modifications to the vnode content.
1034 		 */
1035 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1036 		if (interp == NULL) {
1037 			VOP_UNLOCK(imgp->vp);
1038 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1039 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1040 		}
1041 
1042 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1043 		    interp_name_len, phdr->p_offset,
1044 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1045 		    NOCRED, NULL, td);
1046 		if (error != 0) {
1047 			free(interp, M_TEMP);
1048 			uprintf("i/o error PT_INTERP %d\n", error);
1049 			return (error);
1050 		}
1051 		interp[interp_name_len] = '\0';
1052 
1053 		*interpp = interp;
1054 		*free_interpp = true;
1055 		return (0);
1056 	}
1057 
1058 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1059 	if (interp[interp_name_len - 1] != '\0') {
1060 		uprintf("Invalid PT_INTERP\n");
1061 		return (ENOEXEC);
1062 	}
1063 
1064 	*interpp = interp;
1065 	*free_interpp = false;
1066 	return (0);
1067 }
1068 
1069 static int
1070 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1071     const char *interp, u_long *addr, u_long *entry)
1072 {
1073 	char *path;
1074 	int error;
1075 
1076 	if (brand_info->emul_path != NULL &&
1077 	    brand_info->emul_path[0] != '\0') {
1078 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1079 		snprintf(path, MAXPATHLEN, "%s%s",
1080 		    brand_info->emul_path, interp);
1081 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1082 		free(path, M_TEMP);
1083 		if (error == 0)
1084 			return (0);
1085 	}
1086 
1087 	if (brand_info->interp_newpath != NULL &&
1088 	    (brand_info->interp_path == NULL ||
1089 	    strcmp(interp, brand_info->interp_path) == 0)) {
1090 		error = __elfN(load_file)(imgp->proc,
1091 		    brand_info->interp_newpath, addr, entry);
1092 		if (error == 0)
1093 			return (0);
1094 	}
1095 
1096 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1097 	if (error == 0)
1098 		return (0);
1099 
1100 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1101 	return (error);
1102 }
1103 
1104 /*
1105  * Impossible et_dyn_addr initial value indicating that the real base
1106  * must be calculated later with some randomization applied.
1107  */
1108 #define	ET_DYN_ADDR_RAND	1
1109 
1110 static int
1111 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1112 {
1113 	struct thread *td;
1114 	const Elf_Ehdr *hdr;
1115 	const Elf_Phdr *phdr;
1116 	Elf_Auxargs *elf_auxargs;
1117 	struct vmspace *vmspace;
1118 	vm_map_t map;
1119 	char *interp;
1120 	Elf_Brandinfo *brand_info;
1121 	struct sysentvec *sv;
1122 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1123 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1124 	uint32_t fctl0;
1125 	int32_t osrel;
1126 	bool free_interp;
1127 	int error, i, n;
1128 
1129 	hdr = (const Elf_Ehdr *)imgp->image_header;
1130 
1131 	/*
1132 	 * Do we have a valid ELF header ?
1133 	 *
1134 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1135 	 * if particular brand doesn't support it.
1136 	 */
1137 	if (__elfN(check_header)(hdr) != 0 ||
1138 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1139 		return (-1);
1140 
1141 	/*
1142 	 * From here on down, we return an errno, not -1, as we've
1143 	 * detected an ELF file.
1144 	 */
1145 
1146 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1147 		uprintf("Program headers not in the first page\n");
1148 		return (ENOEXEC);
1149 	}
1150 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1151 	if (!aligned(phdr, Elf_Addr)) {
1152 		uprintf("Unaligned program headers\n");
1153 		return (ENOEXEC);
1154 	}
1155 
1156 	n = error = 0;
1157 	baddr = 0;
1158 	osrel = 0;
1159 	fctl0 = 0;
1160 	entry = proghdr = 0;
1161 	interp = NULL;
1162 	free_interp = false;
1163 	td = curthread;
1164 
1165 	/*
1166 	 * Somewhat arbitrary, limit accepted max alignment for the
1167 	 * loadable segment to the max supported superpage size. Too
1168 	 * large alignment requests are not useful and are indicators
1169 	 * of corrupted or outright malicious binary.
1170 	 */
1171 	maxalign = PAGE_SIZE;
1172 	maxsalign = PAGE_SIZE * 1024;
1173 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1174 		if (pagesizes[i] > maxsalign)
1175 			maxsalign = pagesizes[i];
1176 	}
1177 
1178 	mapsz = 0;
1179 
1180 	for (i = 0; i < hdr->e_phnum; i++) {
1181 		switch (phdr[i].p_type) {
1182 		case PT_LOAD:
1183 			if (n == 0)
1184 				baddr = phdr[i].p_vaddr;
1185 			if (!powerof2(phdr[i].p_align) ||
1186 			    phdr[i].p_align > maxsalign) {
1187 				uprintf("Invalid segment alignment\n");
1188 				error = ENOEXEC;
1189 				goto ret;
1190 			}
1191 			if (phdr[i].p_align > maxalign)
1192 				maxalign = phdr[i].p_align;
1193 			if (mapsz + phdr[i].p_memsz < mapsz) {
1194 				uprintf("Mapsize overflow\n");
1195 				error = ENOEXEC;
1196 				goto ret;
1197 			}
1198 			mapsz += phdr[i].p_memsz;
1199 			n++;
1200 
1201 			/*
1202 			 * If this segment contains the program headers,
1203 			 * remember their virtual address for the AT_PHDR
1204 			 * aux entry. Static binaries don't usually include
1205 			 * a PT_PHDR entry.
1206 			 */
1207 			if (phdr[i].p_offset == 0 &&
1208 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1209 			    phdr[i].p_filesz)
1210 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1211 			break;
1212 		case PT_INTERP:
1213 			/* Path to interpreter */
1214 			if (interp != NULL) {
1215 				uprintf("Multiple PT_INTERP headers\n");
1216 				error = ENOEXEC;
1217 				goto ret;
1218 			}
1219 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1220 			    &free_interp);
1221 			if (error != 0)
1222 				goto ret;
1223 			break;
1224 		case PT_GNU_STACK:
1225 			if (__elfN(nxstack))
1226 				imgp->stack_prot =
1227 				    __elfN(trans_prot)(phdr[i].p_flags);
1228 			imgp->stack_sz = phdr[i].p_memsz;
1229 			break;
1230 		case PT_PHDR: 	/* Program header table info */
1231 			proghdr = phdr[i].p_vaddr;
1232 			break;
1233 		}
1234 	}
1235 
1236 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1237 	if (brand_info == NULL) {
1238 		uprintf("ELF binary type \"%u\" not known.\n",
1239 		    hdr->e_ident[EI_OSABI]);
1240 		error = ENOEXEC;
1241 		goto ret;
1242 	}
1243 	sv = brand_info->sysvec;
1244 	et_dyn_addr = 0;
1245 	if (hdr->e_type == ET_DYN) {
1246 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1247 			uprintf("Cannot execute shared object\n");
1248 			error = ENOEXEC;
1249 			goto ret;
1250 		}
1251 		/*
1252 		 * Honour the base load address from the dso if it is
1253 		 * non-zero for some reason.
1254 		 */
1255 		if (baddr == 0) {
1256 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1257 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1258 				et_dyn_addr = __elfN(pie_base);
1259 			else if ((__elfN(pie_aslr_enabled) &&
1260 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1261 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1262 				et_dyn_addr = ET_DYN_ADDR_RAND;
1263 			else
1264 				et_dyn_addr = __elfN(pie_base);
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * Avoid a possible deadlock if the current address space is destroyed
1270 	 * and that address space maps the locked vnode.  In the common case,
1271 	 * the locked vnode's v_usecount is decremented but remains greater
1272 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1273 	 * However, in cases where the vnode lock is external, such as nullfs,
1274 	 * v_usecount may become zero.
1275 	 *
1276 	 * The VV_TEXT flag prevents modifications to the executable while
1277 	 * the vnode is unlocked.
1278 	 */
1279 	VOP_UNLOCK(imgp->vp);
1280 
1281 	/*
1282 	 * Decide whether to enable randomization of user mappings.
1283 	 * First, reset user preferences for the setid binaries.
1284 	 * Then, account for the support of the randomization by the
1285 	 * ABI, by user preferences, and make special treatment for
1286 	 * PIE binaries.
1287 	 */
1288 	if (imgp->credential_setid) {
1289 		PROC_LOCK(imgp->proc);
1290 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1291 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1292 		PROC_UNLOCK(imgp->proc);
1293 	}
1294 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1295 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1296 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1297 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1298 		    ("et_dyn_addr == RAND and !ASLR"));
1299 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1300 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1301 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1302 		imgp->map_flags |= MAP_ASLR;
1303 		/*
1304 		 * If user does not care about sbrk, utilize the bss
1305 		 * grow region for mappings as well.  We can select
1306 		 * the base for the image anywere and still not suffer
1307 		 * from the fragmentation.
1308 		 */
1309 		if (!__elfN(aslr_honor_sbrk) ||
1310 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1311 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1312 		if (__elfN(aslr_stack))
1313 			imgp->map_flags |= MAP_ASLR_STACK;
1314 		if (__elfN(aslr_shared_page))
1315 			imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1316 	}
1317 
1318 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1319 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1320 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1321 		imgp->map_flags |= MAP_WXORX;
1322 
1323 	error = exec_new_vmspace(imgp, sv);
1324 
1325 	imgp->proc->p_sysent = sv;
1326 	imgp->proc->p_elf_brandinfo = brand_info;
1327 
1328 	vmspace = imgp->proc->p_vmspace;
1329 	map = &vmspace->vm_map;
1330 	maxv = sv->sv_usrstack;
1331 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1332 		maxv -= lim_max(td, RLIMIT_STACK);
1333 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1334 		uprintf("Excessive mapping size\n");
1335 		error = ENOEXEC;
1336 	}
1337 
1338 	if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) {
1339 		KASSERT((map->flags & MAP_ASLR) != 0,
1340 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1341 		error = __CONCAT(rnd_, __elfN(base))(map,
1342 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1343 		    /* reserve half of the address space to interpreter */
1344 		    maxv / 2, maxalign, &et_dyn_addr);
1345 	}
1346 
1347 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1348 	if (error != 0)
1349 		goto ret;
1350 
1351 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1352 	if (error != 0)
1353 		goto ret;
1354 
1355 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1356 	if (error != 0)
1357 		goto ret;
1358 
1359 	/*
1360 	 * We load the dynamic linker where a userland call
1361 	 * to mmap(0, ...) would put it.  The rationale behind this
1362 	 * calculation is that it leaves room for the heap to grow to
1363 	 * its maximum allowed size.
1364 	 */
1365 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1366 	    RLIMIT_DATA));
1367 	if ((map->flags & MAP_ASLR) != 0) {
1368 		maxv1 = maxv / 2 + addr / 2;
1369 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1370 		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1371 		    pagesizes[1] : pagesizes[0], &anon_loc);
1372 		if (error != 0)
1373 			goto ret;
1374 		map->anon_loc = anon_loc;
1375 	} else {
1376 		map->anon_loc = addr;
1377 	}
1378 
1379 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1380 	imgp->entry_addr = entry;
1381 
1382 	if (interp != NULL) {
1383 		VOP_UNLOCK(imgp->vp);
1384 		if ((map->flags & MAP_ASLR) != 0) {
1385 			/* Assume that interpreter fits into 1/4 of AS */
1386 			maxv1 = maxv / 2 + addr / 2;
1387 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1388 			    maxv1, PAGE_SIZE, &addr);
1389 		}
1390 		if (error == 0) {
1391 			error = __elfN(load_interp)(imgp, brand_info, interp,
1392 			    &addr, &imgp->entry_addr);
1393 		}
1394 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1395 		if (error != 0)
1396 			goto ret;
1397 	} else
1398 		addr = et_dyn_addr;
1399 
1400 	error = exec_map_stack(imgp);
1401 	if (error != 0)
1402 		goto ret;
1403 
1404 	/*
1405 	 * Construct auxargs table (used by the copyout_auxargs routine)
1406 	 */
1407 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1408 	if (elf_auxargs == NULL) {
1409 		VOP_UNLOCK(imgp->vp);
1410 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1411 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1412 	}
1413 	elf_auxargs->execfd = -1;
1414 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1415 	elf_auxargs->phent = hdr->e_phentsize;
1416 	elf_auxargs->phnum = hdr->e_phnum;
1417 	elf_auxargs->pagesz = PAGE_SIZE;
1418 	elf_auxargs->base = addr;
1419 	elf_auxargs->flags = 0;
1420 	elf_auxargs->entry = entry;
1421 	elf_auxargs->hdr_eflags = hdr->e_flags;
1422 
1423 	imgp->auxargs = elf_auxargs;
1424 	imgp->interpreted = 0;
1425 	imgp->reloc_base = addr;
1426 	imgp->proc->p_osrel = osrel;
1427 	imgp->proc->p_fctl0 = fctl0;
1428 	imgp->proc->p_elf_flags = hdr->e_flags;
1429 
1430 ret:
1431 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1432 	if (free_interp)
1433 		free(interp, M_TEMP);
1434 	return (error);
1435 }
1436 
1437 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1438 
1439 int
1440 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1441 {
1442 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1443 	Elf_Auxinfo *argarray, *pos;
1444 	struct vmspace *vmspace;
1445 	int error;
1446 
1447 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1448 	    M_WAITOK | M_ZERO);
1449 
1450 	vmspace = imgp->proc->p_vmspace;
1451 
1452 	if (args->execfd != -1)
1453 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1454 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1455 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1456 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1457 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1458 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1459 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1460 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1461 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1462 	if (imgp->execpathp != 0)
1463 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1464 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1465 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1466 	if (imgp->canary != 0) {
1467 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1468 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1469 	}
1470 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1471 	if (imgp->pagesizes != 0) {
1472 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1473 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1474 	}
1475 	if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1476 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1477 		    vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1478 	}
1479 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1480 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1481 	    imgp->sysent->sv_stackprot);
1482 	if (imgp->sysent->sv_hwcap != NULL)
1483 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1484 	if (imgp->sysent->sv_hwcap2 != NULL)
1485 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1486 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ?
1487 	    ELF_BSDF_SIGFASTBLK : 0);
1488 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1489 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1490 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1491 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1492 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1493 #ifdef RANDOM_FENESTRASX
1494 	if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1495 		AUXARGS_ENTRY(pos, AT_FXRNG,
1496 		    vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1497 	}
1498 #endif
1499 	if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1500 		AUXARGS_ENTRY(pos, AT_KPRELOAD,
1501 		    vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1502 	}
1503 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1504 
1505 	free(imgp->auxargs, M_TEMP);
1506 	imgp->auxargs = NULL;
1507 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1508 
1509 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1510 	free(argarray, M_TEMP);
1511 	return (error);
1512 }
1513 
1514 int
1515 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1516 {
1517 	Elf_Addr *base;
1518 
1519 	base = (Elf_Addr *)*stack_base;
1520 	base--;
1521 	if (elf_suword(base, imgp->args->argc) == -1)
1522 		return (EFAULT);
1523 	*stack_base = (uintptr_t)base;
1524 	return (0);
1525 }
1526 
1527 /*
1528  * Code for generating ELF core dumps.
1529  */
1530 
1531 typedef void (*segment_callback)(vm_map_entry_t, void *);
1532 
1533 /* Closure for cb_put_phdr(). */
1534 struct phdr_closure {
1535 	Elf_Phdr *phdr;		/* Program header to fill in */
1536 	Elf_Off offset;		/* Offset of segment in core file */
1537 };
1538 
1539 struct note_info {
1540 	int		type;		/* Note type. */
1541 	struct regset	*regset;	/* Register set. */
1542 	outfunc_t 	outfunc; 	/* Output function. */
1543 	void		*outarg;	/* Argument for the output function. */
1544 	size_t		outsize;	/* Output size. */
1545 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1546 };
1547 
1548 TAILQ_HEAD(note_info_list, note_info);
1549 
1550 extern int compress_user_cores;
1551 extern int compress_user_cores_level;
1552 
1553 static void cb_put_phdr(vm_map_entry_t, void *);
1554 static void cb_size_segment(vm_map_entry_t, void *);
1555 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1556     int);
1557 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1558     struct note_info_list *, size_t, int);
1559 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1560 
1561 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1562 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1563 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1564 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1565 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1566 static void note_procstat_files(void *, struct sbuf *, size_t *);
1567 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1568 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1569 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1570 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1571 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1572 
1573 static int
1574 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1575 {
1576 
1577 	return (core_write((struct coredump_params *)arg, base, len, offset,
1578 	    UIO_SYSSPACE, NULL));
1579 }
1580 
1581 int
1582 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1583 {
1584 	struct ucred *cred = td->td_ucred;
1585 	int compm, error = 0;
1586 	struct sseg_closure seginfo;
1587 	struct note_info_list notelst;
1588 	struct coredump_params params;
1589 	struct note_info *ninfo;
1590 	void *hdr, *tmpbuf;
1591 	size_t hdrsize, notesz, coresize;
1592 
1593 	hdr = NULL;
1594 	tmpbuf = NULL;
1595 	TAILQ_INIT(&notelst);
1596 
1597 	/* Size the program segments. */
1598 	__elfN(size_segments)(td, &seginfo, flags);
1599 
1600 	/*
1601 	 * Collect info about the core file header area.
1602 	 */
1603 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1604 	if (seginfo.count + 1 >= PN_XNUM)
1605 		hdrsize += sizeof(Elf_Shdr);
1606 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1607 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1608 
1609 	/* Set up core dump parameters. */
1610 	params.offset = 0;
1611 	params.active_cred = cred;
1612 	params.file_cred = NOCRED;
1613 	params.td = td;
1614 	params.vp = vp;
1615 	params.comp = NULL;
1616 
1617 #ifdef RACCT
1618 	if (racct_enable) {
1619 		PROC_LOCK(td->td_proc);
1620 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1621 		PROC_UNLOCK(td->td_proc);
1622 		if (error != 0) {
1623 			error = EFAULT;
1624 			goto done;
1625 		}
1626 	}
1627 #endif
1628 	if (coresize >= limit) {
1629 		error = EFAULT;
1630 		goto done;
1631 	}
1632 
1633 	/* Create a compression stream if necessary. */
1634 	compm = compress_user_cores;
1635 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1636 	    compm == 0)
1637 		compm = COMPRESS_GZIP;
1638 	if (compm != 0) {
1639 		params.comp = compressor_init(core_compressed_write,
1640 		    compm, CORE_BUF_SIZE,
1641 		    compress_user_cores_level, &params);
1642 		if (params.comp == NULL) {
1643 			error = EFAULT;
1644 			goto done;
1645 		}
1646 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1647         }
1648 
1649 	/*
1650 	 * Allocate memory for building the header, fill it up,
1651 	 * and write it out following the notes.
1652 	 */
1653 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1654 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1655 	    notesz, flags);
1656 
1657 	/* Write the contents of all of the writable segments. */
1658 	if (error == 0) {
1659 		Elf_Phdr *php;
1660 		off_t offset;
1661 		int i;
1662 
1663 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1664 		offset = round_page(hdrsize + notesz);
1665 		for (i = 0; i < seginfo.count; i++) {
1666 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1667 			    php->p_filesz, offset, &params, tmpbuf);
1668 			if (error != 0)
1669 				break;
1670 			offset += php->p_filesz;
1671 			php++;
1672 		}
1673 		if (error == 0 && params.comp != NULL)
1674 			error = compressor_flush(params.comp);
1675 	}
1676 	if (error) {
1677 		log(LOG_WARNING,
1678 		    "Failed to write core file for process %s (error %d)\n",
1679 		    curproc->p_comm, error);
1680 	}
1681 
1682 done:
1683 	free(tmpbuf, M_TEMP);
1684 	if (params.comp != NULL)
1685 		compressor_fini(params.comp);
1686 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1687 		TAILQ_REMOVE(&notelst, ninfo, link);
1688 		free(ninfo, M_TEMP);
1689 	}
1690 	if (hdr != NULL)
1691 		free(hdr, M_TEMP);
1692 
1693 	return (error);
1694 }
1695 
1696 /*
1697  * A callback for each_dumpable_segment() to write out the segment's
1698  * program header entry.
1699  */
1700 static void
1701 cb_put_phdr(vm_map_entry_t entry, void *closure)
1702 {
1703 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1704 	Elf_Phdr *phdr = phc->phdr;
1705 
1706 	phc->offset = round_page(phc->offset);
1707 
1708 	phdr->p_type = PT_LOAD;
1709 	phdr->p_offset = phc->offset;
1710 	phdr->p_vaddr = entry->start;
1711 	phdr->p_paddr = 0;
1712 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1713 	phdr->p_align = PAGE_SIZE;
1714 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1715 
1716 	phc->offset += phdr->p_filesz;
1717 	phc->phdr++;
1718 }
1719 
1720 /*
1721  * A callback for each_dumpable_segment() to gather information about
1722  * the number of segments and their total size.
1723  */
1724 static void
1725 cb_size_segment(vm_map_entry_t entry, void *closure)
1726 {
1727 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1728 
1729 	ssc->count++;
1730 	ssc->size += entry->end - entry->start;
1731 }
1732 
1733 void
1734 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1735     int flags)
1736 {
1737 	seginfo->count = 0;
1738 	seginfo->size = 0;
1739 
1740 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1741 }
1742 
1743 /*
1744  * For each writable segment in the process's memory map, call the given
1745  * function with a pointer to the map entry and some arbitrary
1746  * caller-supplied data.
1747  */
1748 static void
1749 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1750     int flags)
1751 {
1752 	struct proc *p = td->td_proc;
1753 	vm_map_t map = &p->p_vmspace->vm_map;
1754 	vm_map_entry_t entry;
1755 	vm_object_t backing_object, object;
1756 	bool ignore_entry;
1757 
1758 	vm_map_lock_read(map);
1759 	VM_MAP_ENTRY_FOREACH(entry, map) {
1760 		/*
1761 		 * Don't dump inaccessible mappings, deal with legacy
1762 		 * coredump mode.
1763 		 *
1764 		 * Note that read-only segments related to the elf binary
1765 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1766 		 * need to arbitrarily ignore such segments.
1767 		 */
1768 		if ((flags & SVC_ALL) == 0) {
1769 			if (elf_legacy_coredump) {
1770 				if ((entry->protection & VM_PROT_RW) !=
1771 				    VM_PROT_RW)
1772 					continue;
1773 			} else {
1774 				if ((entry->protection & VM_PROT_ALL) == 0)
1775 					continue;
1776 			}
1777 		}
1778 
1779 		/*
1780 		 * Dont include memory segment in the coredump if
1781 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1782 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1783 		 * kernel map).
1784 		 */
1785 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1786 			continue;
1787 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1788 		    (flags & SVC_ALL) == 0)
1789 			continue;
1790 		if ((object = entry->object.vm_object) == NULL)
1791 			continue;
1792 
1793 		/* Ignore memory-mapped devices and such things. */
1794 		VM_OBJECT_RLOCK(object);
1795 		while ((backing_object = object->backing_object) != NULL) {
1796 			VM_OBJECT_RLOCK(backing_object);
1797 			VM_OBJECT_RUNLOCK(object);
1798 			object = backing_object;
1799 		}
1800 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1801 		VM_OBJECT_RUNLOCK(object);
1802 		if (ignore_entry)
1803 			continue;
1804 
1805 		(*func)(entry, closure);
1806 	}
1807 	vm_map_unlock_read(map);
1808 }
1809 
1810 /*
1811  * Write the core file header to the file, including padding up to
1812  * the page boundary.
1813  */
1814 static int
1815 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1816     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1817     int flags)
1818 {
1819 	struct note_info *ninfo;
1820 	struct sbuf *sb;
1821 	int error;
1822 
1823 	/* Fill in the header. */
1824 	bzero(hdr, hdrsize);
1825 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1826 
1827 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1828 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1829 	sbuf_start_section(sb, NULL);
1830 	sbuf_bcat(sb, hdr, hdrsize);
1831 	TAILQ_FOREACH(ninfo, notelst, link)
1832 	    __elfN(putnote)(p->td, ninfo, sb);
1833 	/* Align up to a page boundary for the program segments. */
1834 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1835 	error = sbuf_finish(sb);
1836 	sbuf_delete(sb);
1837 
1838 	return (error);
1839 }
1840 
1841 void
1842 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1843     size_t *sizep)
1844 {
1845 	struct proc *p;
1846 	struct thread *thr;
1847 	size_t size;
1848 
1849 	p = td->td_proc;
1850 	size = 0;
1851 
1852 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1853 	    __elfN(note_prpsinfo), p);
1854 
1855 	/*
1856 	 * To have the debugger select the right thread (LWP) as the initial
1857 	 * thread, we dump the state of the thread passed to us in td first.
1858 	 * This is the thread that causes the core dump and thus likely to
1859 	 * be the right thread one wants to have selected in the debugger.
1860 	 */
1861 	thr = td;
1862 	while (thr != NULL) {
1863 		size += __elfN(prepare_register_notes)(td, list, thr);
1864 		size += __elfN(register_note)(td, list, -1,
1865 		    __elfN(note_threadmd), thr);
1866 
1867 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1868 		    TAILQ_NEXT(thr, td_plist);
1869 		if (thr == td)
1870 			thr = TAILQ_NEXT(thr, td_plist);
1871 	}
1872 
1873 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1874 	    __elfN(note_procstat_proc), p);
1875 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1876 	    note_procstat_files, p);
1877 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1878 	    note_procstat_vmmap, p);
1879 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1880 	    note_procstat_groups, p);
1881 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1882 	    note_procstat_umask, p);
1883 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1884 	    note_procstat_rlimit, p);
1885 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1886 	    note_procstat_osrel, p);
1887 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1888 	    __elfN(note_procstat_psstrings), p);
1889 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1890 	    __elfN(note_procstat_auxv), p);
1891 
1892 	*sizep = size;
1893 }
1894 
1895 void
1896 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1897     size_t notesz, int flags)
1898 {
1899 	Elf_Ehdr *ehdr;
1900 	Elf_Phdr *phdr;
1901 	Elf_Shdr *shdr;
1902 	struct phdr_closure phc;
1903 	Elf_Brandinfo *bi;
1904 
1905 	ehdr = (Elf_Ehdr *)hdr;
1906 	bi = td->td_proc->p_elf_brandinfo;
1907 
1908 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1909 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1910 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1911 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1912 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1913 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1914 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1915 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1916 	ehdr->e_ident[EI_ABIVERSION] = 0;
1917 	ehdr->e_ident[EI_PAD] = 0;
1918 	ehdr->e_type = ET_CORE;
1919 	ehdr->e_machine = bi->machine;
1920 	ehdr->e_version = EV_CURRENT;
1921 	ehdr->e_entry = 0;
1922 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1923 	ehdr->e_flags = td->td_proc->p_elf_flags;
1924 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1925 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1926 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1927 	ehdr->e_shstrndx = SHN_UNDEF;
1928 	if (numsegs + 1 < PN_XNUM) {
1929 		ehdr->e_phnum = numsegs + 1;
1930 		ehdr->e_shnum = 0;
1931 	} else {
1932 		ehdr->e_phnum = PN_XNUM;
1933 		ehdr->e_shnum = 1;
1934 
1935 		ehdr->e_shoff = ehdr->e_phoff +
1936 		    (numsegs + 1) * ehdr->e_phentsize;
1937 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1938 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1939 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1940 
1941 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1942 		memset(shdr, 0, sizeof(*shdr));
1943 		/*
1944 		 * A special first section is used to hold large segment and
1945 		 * section counts.  This was proposed by Sun Microsystems in
1946 		 * Solaris and has been adopted by Linux; the standard ELF
1947 		 * tools are already familiar with the technique.
1948 		 *
1949 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1950 		 * (or 12-7 depending on the version of the document) for more
1951 		 * details.
1952 		 */
1953 		shdr->sh_type = SHT_NULL;
1954 		shdr->sh_size = ehdr->e_shnum;
1955 		shdr->sh_link = ehdr->e_shstrndx;
1956 		shdr->sh_info = numsegs + 1;
1957 	}
1958 
1959 	/*
1960 	 * Fill in the program header entries.
1961 	 */
1962 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1963 
1964 	/* The note segement. */
1965 	phdr->p_type = PT_NOTE;
1966 	phdr->p_offset = hdrsize;
1967 	phdr->p_vaddr = 0;
1968 	phdr->p_paddr = 0;
1969 	phdr->p_filesz = notesz;
1970 	phdr->p_memsz = 0;
1971 	phdr->p_flags = PF_R;
1972 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1973 	phdr++;
1974 
1975 	/* All the writable segments from the program. */
1976 	phc.phdr = phdr;
1977 	phc.offset = round_page(hdrsize + notesz);
1978 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1979 }
1980 
1981 static size_t
1982 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
1983     struct regset *regset, struct thread *target_td)
1984 {
1985 	const struct sysentvec *sv;
1986 	struct note_info *ninfo;
1987 	size_t size, notesize;
1988 
1989 	size = 0;
1990 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
1991 		return (0);
1992 
1993 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1994 	ninfo->type = regset->note;
1995 	ninfo->regset = regset;
1996 	ninfo->outarg = target_td;
1997 	ninfo->outsize = size;
1998 	TAILQ_INSERT_TAIL(list, ninfo, link);
1999 
2000 	sv = td->td_proc->p_sysent;
2001 	notesize = sizeof(Elf_Note) +		/* note header */
2002 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2003 						/* note name */
2004 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2005 
2006 	return (notesize);
2007 }
2008 
2009 size_t
2010 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2011     int type, outfunc_t out, void *arg)
2012 {
2013 	const struct sysentvec *sv;
2014 	struct note_info *ninfo;
2015 	size_t size, notesize;
2016 
2017 	sv = td->td_proc->p_sysent;
2018 	size = 0;
2019 	out(arg, NULL, &size);
2020 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2021 	ninfo->type = type;
2022 	ninfo->outfunc = out;
2023 	ninfo->outarg = arg;
2024 	ninfo->outsize = size;
2025 	TAILQ_INSERT_TAIL(list, ninfo, link);
2026 
2027 	if (type == -1)
2028 		return (size);
2029 
2030 	notesize = sizeof(Elf_Note) +		/* note header */
2031 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2032 						/* note name */
2033 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2034 
2035 	return (notesize);
2036 }
2037 
2038 static size_t
2039 append_note_data(const void *src, void *dst, size_t len)
2040 {
2041 	size_t padded_len;
2042 
2043 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2044 	if (dst != NULL) {
2045 		bcopy(src, dst, len);
2046 		bzero((char *)dst + len, padded_len - len);
2047 	}
2048 	return (padded_len);
2049 }
2050 
2051 size_t
2052 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2053 {
2054 	Elf_Note *note;
2055 	char *buf;
2056 	size_t notesize;
2057 
2058 	buf = dst;
2059 	if (buf != NULL) {
2060 		note = (Elf_Note *)buf;
2061 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2062 		note->n_descsz = size;
2063 		note->n_type = type;
2064 		buf += sizeof(*note);
2065 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2066 		    sizeof(FREEBSD_ABI_VENDOR));
2067 		append_note_data(src, buf, size);
2068 		if (descp != NULL)
2069 			*descp = buf;
2070 	}
2071 
2072 	notesize = sizeof(Elf_Note) +		/* note header */
2073 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2074 						/* note name */
2075 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2076 
2077 	return (notesize);
2078 }
2079 
2080 static void
2081 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2082 {
2083 	Elf_Note note;
2084 	const struct sysentvec *sv;
2085 	ssize_t old_len, sect_len;
2086 	size_t new_len, descsz, i;
2087 
2088 	if (ninfo->type == -1) {
2089 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2090 		return;
2091 	}
2092 
2093 	sv = td->td_proc->p_sysent;
2094 
2095 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2096 	note.n_descsz = ninfo->outsize;
2097 	note.n_type = ninfo->type;
2098 
2099 	sbuf_bcat(sb, &note, sizeof(note));
2100 	sbuf_start_section(sb, &old_len);
2101 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2102 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2103 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2104 	if (note.n_descsz == 0)
2105 		return;
2106 	sbuf_start_section(sb, &old_len);
2107 	if (ninfo->regset != NULL) {
2108 		struct regset *regset = ninfo->regset;
2109 		void *buf;
2110 
2111 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2112 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2113 		sbuf_bcat(sb, buf, ninfo->outsize);
2114 		free(buf, M_TEMP);
2115 	} else
2116 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2117 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2118 	if (sect_len < 0)
2119 		return;
2120 
2121 	new_len = (size_t)sect_len;
2122 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2123 	if (new_len < descsz) {
2124 		/*
2125 		 * It is expected that individual note emitters will correctly
2126 		 * predict their expected output size and fill up to that size
2127 		 * themselves, padding in a format-specific way if needed.
2128 		 * However, in case they don't, just do it here with zeros.
2129 		 */
2130 		for (i = 0; i < descsz - new_len; i++)
2131 			sbuf_putc(sb, 0);
2132 	} else if (new_len > descsz) {
2133 		/*
2134 		 * We can't always truncate sb -- we may have drained some
2135 		 * of it already.
2136 		 */
2137 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2138 		    "read it (%zu > %zu).  Since it is longer than "
2139 		    "expected, this coredump's notes are corrupt.  THIS "
2140 		    "IS A BUG in the note_procstat routine for type %u.\n",
2141 		    __func__, (unsigned)note.n_type, new_len, descsz,
2142 		    (unsigned)note.n_type));
2143 	}
2144 }
2145 
2146 /*
2147  * Miscellaneous note out functions.
2148  */
2149 
2150 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2151 #include <compat/freebsd32/freebsd32.h>
2152 #include <compat/freebsd32/freebsd32_signal.h>
2153 
2154 typedef struct prstatus32 elf_prstatus_t;
2155 typedef struct prpsinfo32 elf_prpsinfo_t;
2156 typedef struct fpreg32 elf_prfpregset_t;
2157 typedef struct fpreg32 elf_fpregset_t;
2158 typedef struct reg32 elf_gregset_t;
2159 typedef struct thrmisc32 elf_thrmisc_t;
2160 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2161 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2162 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2163 typedef uint32_t elf_ps_strings_t;
2164 #else
2165 typedef prstatus_t elf_prstatus_t;
2166 typedef prpsinfo_t elf_prpsinfo_t;
2167 typedef prfpregset_t elf_prfpregset_t;
2168 typedef prfpregset_t elf_fpregset_t;
2169 typedef gregset_t elf_gregset_t;
2170 typedef thrmisc_t elf_thrmisc_t;
2171 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2172 #define ELF_KERN_PROC_MASK	0
2173 typedef struct kinfo_proc elf_kinfo_proc_t;
2174 typedef vm_offset_t elf_ps_strings_t;
2175 #endif
2176 
2177 static void
2178 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2179 {
2180 	struct sbuf sbarg;
2181 	size_t len;
2182 	char *cp, *end;
2183 	struct proc *p;
2184 	elf_prpsinfo_t *psinfo;
2185 	int error;
2186 
2187 	p = arg;
2188 	if (sb != NULL) {
2189 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2190 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2191 		psinfo->pr_version = PRPSINFO_VERSION;
2192 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2193 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2194 		PROC_LOCK(p);
2195 		if (p->p_args != NULL) {
2196 			len = sizeof(psinfo->pr_psargs) - 1;
2197 			if (len > p->p_args->ar_length)
2198 				len = p->p_args->ar_length;
2199 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2200 			PROC_UNLOCK(p);
2201 			error = 0;
2202 		} else {
2203 			_PHOLD(p);
2204 			PROC_UNLOCK(p);
2205 			sbuf_new(&sbarg, psinfo->pr_psargs,
2206 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2207 			error = proc_getargv(curthread, p, &sbarg);
2208 			PRELE(p);
2209 			if (sbuf_finish(&sbarg) == 0)
2210 				len = sbuf_len(&sbarg) - 1;
2211 			else
2212 				len = sizeof(psinfo->pr_psargs) - 1;
2213 			sbuf_delete(&sbarg);
2214 		}
2215 		if (error || len == 0)
2216 			strlcpy(psinfo->pr_psargs, p->p_comm,
2217 			    sizeof(psinfo->pr_psargs));
2218 		else {
2219 			KASSERT(len < sizeof(psinfo->pr_psargs),
2220 			    ("len is too long: %zu vs %zu", len,
2221 			    sizeof(psinfo->pr_psargs)));
2222 			cp = psinfo->pr_psargs;
2223 			end = cp + len - 1;
2224 			for (;;) {
2225 				cp = memchr(cp, '\0', end - cp);
2226 				if (cp == NULL)
2227 					break;
2228 				*cp = ' ';
2229 			}
2230 		}
2231 		psinfo->pr_pid = p->p_pid;
2232 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2233 		free(psinfo, M_TEMP);
2234 	}
2235 	*sizep = sizeof(*psinfo);
2236 }
2237 
2238 static bool
2239 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2240     size_t *sizep)
2241 {
2242 	elf_prstatus_t *status;
2243 
2244 	if (buf != NULL) {
2245 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2246 		    __func__));
2247 		status = buf;
2248 		memset(status, 0, *sizep);
2249 		status->pr_version = PRSTATUS_VERSION;
2250 		status->pr_statussz = sizeof(elf_prstatus_t);
2251 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2252 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2253 		status->pr_osreldate = osreldate;
2254 		status->pr_cursig = td->td_proc->p_sig;
2255 		status->pr_pid = td->td_tid;
2256 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2257 		fill_regs32(td, &status->pr_reg);
2258 #else
2259 		fill_regs(td, &status->pr_reg);
2260 #endif
2261 	}
2262 	*sizep = sizeof(*status);
2263 	return (true);
2264 }
2265 
2266 static bool
2267 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2268     size_t size)
2269 {
2270 	elf_prstatus_t *status;
2271 
2272 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2273 	status = buf;
2274 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2275 	set_regs32(td, &status->pr_reg);
2276 #else
2277 	set_regs(td, &status->pr_reg);
2278 #endif
2279 	return (true);
2280 }
2281 
2282 static struct regset __elfN(regset_prstatus) = {
2283 	.note = NT_PRSTATUS,
2284 	.size = sizeof(elf_prstatus_t),
2285 	.get = __elfN(get_prstatus),
2286 	.set = __elfN(set_prstatus),
2287 };
2288 ELF_REGSET(__elfN(regset_prstatus));
2289 
2290 static bool
2291 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2292     size_t *sizep)
2293 {
2294 	elf_prfpregset_t *fpregset;
2295 
2296 	if (buf != NULL) {
2297 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2298 		    __func__));
2299 		fpregset = buf;
2300 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2301 		fill_fpregs32(td, fpregset);
2302 #else
2303 		fill_fpregs(td, fpregset);
2304 #endif
2305 	}
2306 	*sizep = sizeof(*fpregset);
2307 	return (true);
2308 }
2309 
2310 static bool
2311 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2312     size_t size)
2313 {
2314 	elf_prfpregset_t *fpregset;
2315 
2316 	fpregset = buf;
2317 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2318 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2319 	set_fpregs32(td, fpregset);
2320 #else
2321 	set_fpregs(td, fpregset);
2322 #endif
2323 	return (true);
2324 }
2325 
2326 static struct regset __elfN(regset_fpregset) = {
2327 	.note = NT_FPREGSET,
2328 	.size = sizeof(elf_prfpregset_t),
2329 	.get = __elfN(get_fpregset),
2330 	.set = __elfN(set_fpregset),
2331 };
2332 ELF_REGSET(__elfN(regset_fpregset));
2333 
2334 static bool
2335 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2336     size_t *sizep)
2337 {
2338 	elf_thrmisc_t *thrmisc;
2339 
2340 	if (buf != NULL) {
2341 		KASSERT(*sizep == sizeof(*thrmisc),
2342 		    ("%s: invalid size", __func__));
2343 		thrmisc = buf;
2344 		bzero(thrmisc, sizeof(*thrmisc));
2345 		strcpy(thrmisc->pr_tname, td->td_name);
2346 	}
2347 	*sizep = sizeof(*thrmisc);
2348 	return (true);
2349 }
2350 
2351 static struct regset __elfN(regset_thrmisc) = {
2352 	.note = NT_THRMISC,
2353 	.size = sizeof(elf_thrmisc_t),
2354 	.get = __elfN(get_thrmisc),
2355 };
2356 ELF_REGSET(__elfN(regset_thrmisc));
2357 
2358 static bool
2359 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2360     size_t *sizep)
2361 {
2362 	elf_lwpinfo_t pl;
2363 	size_t size;
2364 	int structsize;
2365 
2366 	size = sizeof(structsize) + sizeof(pl);
2367 	if (buf != NULL) {
2368 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2369 		structsize = sizeof(pl);
2370 		memcpy(buf, &structsize, sizeof(structsize));
2371 		bzero(&pl, sizeof(pl));
2372 		pl.pl_lwpid = td->td_tid;
2373 		pl.pl_event = PL_EVENT_NONE;
2374 		pl.pl_sigmask = td->td_sigmask;
2375 		pl.pl_siglist = td->td_siglist;
2376 		if (td->td_si.si_signo != 0) {
2377 			pl.pl_event = PL_EVENT_SIGNAL;
2378 			pl.pl_flags |= PL_FLAG_SI;
2379 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2380 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2381 #else
2382 			pl.pl_siginfo = td->td_si;
2383 #endif
2384 		}
2385 		strcpy(pl.pl_tdname, td->td_name);
2386 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2387 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2388 	}
2389 	*sizep = size;
2390 	return (true);
2391 }
2392 
2393 static struct regset __elfN(regset_lwpinfo) = {
2394 	.note = NT_PTLWPINFO,
2395 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2396 	.get = __elfN(get_lwpinfo),
2397 };
2398 ELF_REGSET(__elfN(regset_lwpinfo));
2399 
2400 static size_t
2401 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2402     struct thread *target_td)
2403 {
2404 	struct sysentvec *sv = td->td_proc->p_sysent;
2405 	struct regset **regsetp, **regset_end, *regset;
2406 	size_t size;
2407 
2408 	size = 0;
2409 
2410 	/* NT_PRSTATUS must be the first register set note. */
2411 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2412 	    target_td);
2413 
2414 	regsetp = sv->sv_regset_begin;
2415 	if (regsetp == NULL) {
2416 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2417 		size += __elfN(register_regset_note)(td, list,
2418 		    &__elfN(regset_fpregset), target_td);
2419 		return (size);
2420 	}
2421 	regset_end = sv->sv_regset_end;
2422 	MPASS(regset_end != NULL);
2423 	for (; regsetp < regset_end; regsetp++) {
2424 		regset = *regsetp;
2425 		if (regset->note == NT_PRSTATUS)
2426 			continue;
2427 		size += __elfN(register_regset_note)(td, list, regset,
2428 		    target_td);
2429 	}
2430 	return (size);
2431 }
2432 
2433 /*
2434  * Allow for MD specific notes, as well as any MD
2435  * specific preparations for writing MI notes.
2436  */
2437 static void
2438 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2439 {
2440 	struct thread *td;
2441 	void *buf;
2442 	size_t size;
2443 
2444 	td = (struct thread *)arg;
2445 	size = *sizep;
2446 	if (size != 0 && sb != NULL)
2447 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2448 	else
2449 		buf = NULL;
2450 	size = 0;
2451 	__elfN(dump_thread)(td, buf, &size);
2452 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2453 	if (size != 0 && sb != NULL)
2454 		sbuf_bcat(sb, buf, size);
2455 	free(buf, M_TEMP);
2456 	*sizep = size;
2457 }
2458 
2459 #ifdef KINFO_PROC_SIZE
2460 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2461 #endif
2462 
2463 static void
2464 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2465 {
2466 	struct proc *p;
2467 	size_t size;
2468 	int structsize;
2469 
2470 	p = arg;
2471 	size = sizeof(structsize) + p->p_numthreads *
2472 	    sizeof(elf_kinfo_proc_t);
2473 
2474 	if (sb != NULL) {
2475 		KASSERT(*sizep == size, ("invalid size"));
2476 		structsize = sizeof(elf_kinfo_proc_t);
2477 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2478 		sx_slock(&proctree_lock);
2479 		PROC_LOCK(p);
2480 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2481 		sx_sunlock(&proctree_lock);
2482 	}
2483 	*sizep = size;
2484 }
2485 
2486 #ifdef KINFO_FILE_SIZE
2487 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2488 #endif
2489 
2490 static void
2491 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2492 {
2493 	struct proc *p;
2494 	size_t size, sect_sz, i;
2495 	ssize_t start_len, sect_len;
2496 	int structsize, filedesc_flags;
2497 
2498 	if (coredump_pack_fileinfo)
2499 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2500 	else
2501 		filedesc_flags = 0;
2502 
2503 	p = arg;
2504 	structsize = sizeof(struct kinfo_file);
2505 	if (sb == NULL) {
2506 		size = 0;
2507 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2508 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2509 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2510 		PROC_LOCK(p);
2511 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2512 		sbuf_finish(sb);
2513 		sbuf_delete(sb);
2514 		*sizep = size;
2515 	} else {
2516 		sbuf_start_section(sb, &start_len);
2517 
2518 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2519 		PROC_LOCK(p);
2520 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2521 		    filedesc_flags);
2522 
2523 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2524 		if (sect_len < 0)
2525 			return;
2526 		sect_sz = sect_len;
2527 
2528 		KASSERT(sect_sz <= *sizep,
2529 		    ("kern_proc_filedesc_out did not respect maxlen; "
2530 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2531 		     sect_sz - sizeof(structsize)));
2532 
2533 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2534 			sbuf_putc(sb, 0);
2535 	}
2536 }
2537 
2538 #ifdef KINFO_VMENTRY_SIZE
2539 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2540 #endif
2541 
2542 static void
2543 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2544 {
2545 	struct proc *p;
2546 	size_t size;
2547 	int structsize, vmmap_flags;
2548 
2549 	if (coredump_pack_vmmapinfo)
2550 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2551 	else
2552 		vmmap_flags = 0;
2553 
2554 	p = arg;
2555 	structsize = sizeof(struct kinfo_vmentry);
2556 	if (sb == NULL) {
2557 		size = 0;
2558 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2559 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2560 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2561 		PROC_LOCK(p);
2562 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2563 		sbuf_finish(sb);
2564 		sbuf_delete(sb);
2565 		*sizep = size;
2566 	} else {
2567 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2568 		PROC_LOCK(p);
2569 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2570 		    vmmap_flags);
2571 	}
2572 }
2573 
2574 static void
2575 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2576 {
2577 	struct proc *p;
2578 	size_t size;
2579 	int structsize;
2580 
2581 	p = arg;
2582 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2583 	if (sb != NULL) {
2584 		KASSERT(*sizep == size, ("invalid size"));
2585 		structsize = sizeof(gid_t);
2586 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2587 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2588 		    sizeof(gid_t));
2589 	}
2590 	*sizep = size;
2591 }
2592 
2593 static void
2594 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2595 {
2596 	struct proc *p;
2597 	size_t size;
2598 	int structsize;
2599 
2600 	p = arg;
2601 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2602 	if (sb != NULL) {
2603 		KASSERT(*sizep == size, ("invalid size"));
2604 		structsize = sizeof(p->p_pd->pd_cmask);
2605 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2606 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2607 	}
2608 	*sizep = size;
2609 }
2610 
2611 static void
2612 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2613 {
2614 	struct proc *p;
2615 	struct rlimit rlim[RLIM_NLIMITS];
2616 	size_t size;
2617 	int structsize, i;
2618 
2619 	p = arg;
2620 	size = sizeof(structsize) + sizeof(rlim);
2621 	if (sb != NULL) {
2622 		KASSERT(*sizep == size, ("invalid size"));
2623 		structsize = sizeof(rlim);
2624 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2625 		PROC_LOCK(p);
2626 		for (i = 0; i < RLIM_NLIMITS; i++)
2627 			lim_rlimit_proc(p, i, &rlim[i]);
2628 		PROC_UNLOCK(p);
2629 		sbuf_bcat(sb, rlim, sizeof(rlim));
2630 	}
2631 	*sizep = size;
2632 }
2633 
2634 static void
2635 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2636 {
2637 	struct proc *p;
2638 	size_t size;
2639 	int structsize;
2640 
2641 	p = arg;
2642 	size = sizeof(structsize) + sizeof(p->p_osrel);
2643 	if (sb != NULL) {
2644 		KASSERT(*sizep == size, ("invalid size"));
2645 		structsize = sizeof(p->p_osrel);
2646 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2647 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2648 	}
2649 	*sizep = size;
2650 }
2651 
2652 static void
2653 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2654 {
2655 	struct proc *p;
2656 	elf_ps_strings_t ps_strings;
2657 	size_t size;
2658 	int structsize;
2659 
2660 	p = arg;
2661 	size = sizeof(structsize) + sizeof(ps_strings);
2662 	if (sb != NULL) {
2663 		KASSERT(*sizep == size, ("invalid size"));
2664 		structsize = sizeof(ps_strings);
2665 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2666 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2667 #else
2668 		ps_strings = PROC_PS_STRINGS(p);
2669 #endif
2670 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2671 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2672 	}
2673 	*sizep = size;
2674 }
2675 
2676 static void
2677 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2678 {
2679 	struct proc *p;
2680 	size_t size;
2681 	int structsize;
2682 
2683 	p = arg;
2684 	if (sb == NULL) {
2685 		size = 0;
2686 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2687 		    SBUF_FIXEDLEN);
2688 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2689 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2690 		PHOLD(p);
2691 		proc_getauxv(curthread, p, sb);
2692 		PRELE(p);
2693 		sbuf_finish(sb);
2694 		sbuf_delete(sb);
2695 		*sizep = size;
2696 	} else {
2697 		structsize = sizeof(Elf_Auxinfo);
2698 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2699 		PHOLD(p);
2700 		proc_getauxv(curthread, p, sb);
2701 		PRELE(p);
2702 	}
2703 }
2704 
2705 static bool
2706 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2707     const char *note_vendor, const Elf_Phdr *pnote,
2708     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2709 {
2710 	const Elf_Note *note, *note0, *note_end;
2711 	const char *note_name;
2712 	char *buf;
2713 	int i, error;
2714 	bool res;
2715 
2716 	/* We need some limit, might as well use PAGE_SIZE. */
2717 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2718 		return (false);
2719 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2720 	if (pnote->p_offset > PAGE_SIZE ||
2721 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2722 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2723 		if (buf == NULL) {
2724 			VOP_UNLOCK(imgp->vp);
2725 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2726 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2727 		}
2728 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2729 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2730 		    curthread->td_ucred, NOCRED, NULL, curthread);
2731 		if (error != 0) {
2732 			uprintf("i/o error PT_NOTE\n");
2733 			goto retf;
2734 		}
2735 		note = note0 = (const Elf_Note *)buf;
2736 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2737 	} else {
2738 		note = note0 = (const Elf_Note *)(imgp->image_header +
2739 		    pnote->p_offset);
2740 		note_end = (const Elf_Note *)(imgp->image_header +
2741 		    pnote->p_offset + pnote->p_filesz);
2742 		buf = NULL;
2743 	}
2744 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2745 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2746 		    (const char *)note < sizeof(Elf_Note)) {
2747 			goto retf;
2748 		}
2749 		if (note->n_namesz != checknote->n_namesz ||
2750 		    note->n_descsz != checknote->n_descsz ||
2751 		    note->n_type != checknote->n_type)
2752 			goto nextnote;
2753 		note_name = (const char *)(note + 1);
2754 		if (note_name + checknote->n_namesz >=
2755 		    (const char *)note_end || strncmp(note_vendor,
2756 		    note_name, checknote->n_namesz) != 0)
2757 			goto nextnote;
2758 
2759 		if (cb(note, cb_arg, &res))
2760 			goto ret;
2761 nextnote:
2762 		note = (const Elf_Note *)((const char *)(note + 1) +
2763 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2764 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2765 	}
2766 retf:
2767 	res = false;
2768 ret:
2769 	free(buf, M_TEMP);
2770 	return (res);
2771 }
2772 
2773 struct brandnote_cb_arg {
2774 	Elf_Brandnote *brandnote;
2775 	int32_t *osrel;
2776 };
2777 
2778 static bool
2779 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2780 {
2781 	struct brandnote_cb_arg *arg;
2782 
2783 	arg = arg0;
2784 
2785 	/*
2786 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2787 	 * necessary.
2788 	 */
2789 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2790 	    arg->brandnote->trans_osrel != NULL ?
2791 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2792 
2793 	return (true);
2794 }
2795 
2796 static Elf_Note fctl_note = {
2797 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2798 	.n_descsz = sizeof(uint32_t),
2799 	.n_type = NT_FREEBSD_FEATURE_CTL,
2800 };
2801 
2802 struct fctl_cb_arg {
2803 	bool *has_fctl0;
2804 	uint32_t *fctl0;
2805 };
2806 
2807 static bool
2808 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2809 {
2810 	struct fctl_cb_arg *arg;
2811 	const Elf32_Word *desc;
2812 	uintptr_t p;
2813 
2814 	arg = arg0;
2815 	p = (uintptr_t)(note + 1);
2816 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2817 	desc = (const Elf32_Word *)p;
2818 	*arg->has_fctl0 = true;
2819 	*arg->fctl0 = desc[0];
2820 	*res = true;
2821 	return (true);
2822 }
2823 
2824 /*
2825  * Try to find the appropriate ABI-note section for checknote, fetch
2826  * the osreldate and feature control flags for binary from the ELF
2827  * OSABI-note.  Only the first page of the image is searched, the same
2828  * as for headers.
2829  */
2830 static bool
2831 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2832     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2833 {
2834 	const Elf_Phdr *phdr;
2835 	const Elf_Ehdr *hdr;
2836 	struct brandnote_cb_arg b_arg;
2837 	struct fctl_cb_arg f_arg;
2838 	int i, j;
2839 
2840 	hdr = (const Elf_Ehdr *)imgp->image_header;
2841 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2842 	b_arg.brandnote = brandnote;
2843 	b_arg.osrel = osrel;
2844 	f_arg.has_fctl0 = has_fctl0;
2845 	f_arg.fctl0 = fctl0;
2846 
2847 	for (i = 0; i < hdr->e_phnum; i++) {
2848 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2849 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2850 		    &b_arg)) {
2851 			for (j = 0; j < hdr->e_phnum; j++) {
2852 				if (phdr[j].p_type == PT_NOTE &&
2853 				    __elfN(parse_notes)(imgp, &fctl_note,
2854 				    FREEBSD_ABI_VENDOR, &phdr[j],
2855 				    note_fctl_cb, &f_arg))
2856 					break;
2857 			}
2858 			return (true);
2859 		}
2860 	}
2861 	return (false);
2862 
2863 }
2864 
2865 /*
2866  * Tell kern_execve.c about it, with a little help from the linker.
2867  */
2868 static struct execsw __elfN(execsw) = {
2869 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2870 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2871 };
2872 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2873 
2874 static vm_prot_t
2875 __elfN(trans_prot)(Elf_Word flags)
2876 {
2877 	vm_prot_t prot;
2878 
2879 	prot = 0;
2880 	if (flags & PF_X)
2881 		prot |= VM_PROT_EXECUTE;
2882 	if (flags & PF_W)
2883 		prot |= VM_PROT_WRITE;
2884 	if (flags & PF_R)
2885 		prot |= VM_PROT_READ;
2886 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2887 	if (i386_read_exec && (flags & PF_R))
2888 		prot |= VM_PROT_EXECUTE;
2889 #endif
2890 	return (prot);
2891 }
2892 
2893 static Elf_Word
2894 __elfN(untrans_prot)(vm_prot_t prot)
2895 {
2896 	Elf_Word flags;
2897 
2898 	flags = 0;
2899 	if (prot & VM_PROT_EXECUTE)
2900 		flags |= PF_X;
2901 	if (prot & VM_PROT_READ)
2902 		flags |= PF_R;
2903 	if (prot & VM_PROT_WRITE)
2904 		flags |= PF_W;
2905 	return (flags);
2906 }
2907