1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 106 ""); 107 108 #define CORE_BUF_SIZE (16 * 1024) 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0, 139 ""); 140 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 141 142 static int __elfN(aslr_enabled) = 0; 143 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 144 &__elfN(aslr_enabled), 0, 145 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 146 ": enable address map randomization"); 147 148 static int __elfN(pie_aslr_enabled) = 0; 149 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 150 &__elfN(pie_aslr_enabled), 0, 151 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 152 ": enable address map randomization for PIE binaries"); 153 154 static int __elfN(aslr_honor_sbrk) = 1; 155 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 156 &__elfN(aslr_honor_sbrk), 0, 157 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 158 159 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 160 161 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 162 163 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 164 165 Elf_Brandnote __elfN(freebsd_brandnote) = { 166 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 167 .hdr.n_descsz = sizeof(int32_t), 168 .hdr.n_type = NT_FREEBSD_ABI_TAG, 169 .vendor = FREEBSD_ABI_VENDOR, 170 .flags = BN_TRANSLATE_OSREL, 171 .trans_osrel = __elfN(freebsd_trans_osrel) 172 }; 173 174 static bool 175 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 176 { 177 uintptr_t p; 178 179 p = (uintptr_t)(note + 1); 180 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 181 *osrel = *(const int32_t *)(p); 182 183 return (true); 184 } 185 186 static const char GNU_ABI_VENDOR[] = "GNU"; 187 static int GNU_KFREEBSD_ABI_DESC = 3; 188 189 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 190 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 191 .hdr.n_descsz = 16, /* XXX at least 16 */ 192 .hdr.n_type = 1, 193 .vendor = GNU_ABI_VENDOR, 194 .flags = BN_TRANSLATE_OSREL, 195 .trans_osrel = kfreebsd_trans_osrel 196 }; 197 198 static bool 199 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 200 { 201 const Elf32_Word *desc; 202 uintptr_t p; 203 204 p = (uintptr_t)(note + 1); 205 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 206 207 desc = (const Elf32_Word *)p; 208 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 209 return (false); 210 211 /* 212 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 213 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 214 */ 215 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 216 217 return (true); 218 } 219 220 int 221 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 222 { 223 int i; 224 225 for (i = 0; i < MAX_BRANDS; i++) { 226 if (elf_brand_list[i] == NULL) { 227 elf_brand_list[i] = entry; 228 break; 229 } 230 } 231 if (i == MAX_BRANDS) { 232 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 233 __func__, entry); 234 return (-1); 235 } 236 return (0); 237 } 238 239 int 240 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 241 { 242 int i; 243 244 for (i = 0; i < MAX_BRANDS; i++) { 245 if (elf_brand_list[i] == entry) { 246 elf_brand_list[i] = NULL; 247 break; 248 } 249 } 250 if (i == MAX_BRANDS) 251 return (-1); 252 return (0); 253 } 254 255 int 256 __elfN(brand_inuse)(Elf_Brandinfo *entry) 257 { 258 struct proc *p; 259 int rval = FALSE; 260 261 sx_slock(&allproc_lock); 262 FOREACH_PROC_IN_SYSTEM(p) { 263 if (p->p_sysent == entry->sysvec) { 264 rval = TRUE; 265 break; 266 } 267 } 268 sx_sunlock(&allproc_lock); 269 270 return (rval); 271 } 272 273 static Elf_Brandinfo * 274 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 275 int32_t *osrel, uint32_t *fctl0) 276 { 277 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 278 Elf_Brandinfo *bi, *bi_m; 279 boolean_t ret; 280 int i, interp_name_len; 281 282 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 283 284 /* 285 * We support four types of branding -- (1) the ELF EI_OSABI field 286 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 287 * branding w/in the ELF header, (3) path of the `interp_path' 288 * field, and (4) the ".note.ABI-tag" ELF section. 289 */ 290 291 /* Look for an ".note.ABI-tag" ELF section */ 292 bi_m = NULL; 293 for (i = 0; i < MAX_BRANDS; i++) { 294 bi = elf_brand_list[i]; 295 if (bi == NULL) 296 continue; 297 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 298 continue; 299 if (hdr->e_machine == bi->machine && (bi->flags & 300 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 301 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 302 fctl0); 303 /* Give brand a chance to veto check_note's guess */ 304 if (ret && bi->header_supported) 305 ret = bi->header_supported(imgp); 306 /* 307 * If note checker claimed the binary, but the 308 * interpreter path in the image does not 309 * match default one for the brand, try to 310 * search for other brands with the same 311 * interpreter. Either there is better brand 312 * with the right interpreter, or, failing 313 * this, we return first brand which accepted 314 * our note and, optionally, header. 315 */ 316 if (ret && bi_m == NULL && interp != NULL && 317 (bi->interp_path == NULL || 318 (strlen(bi->interp_path) + 1 != interp_name_len || 319 strncmp(interp, bi->interp_path, interp_name_len) 320 != 0))) { 321 bi_m = bi; 322 ret = 0; 323 } 324 if (ret) 325 return (bi); 326 } 327 } 328 if (bi_m != NULL) 329 return (bi_m); 330 331 /* If the executable has a brand, search for it in the brand list. */ 332 for (i = 0; i < MAX_BRANDS; i++) { 333 bi = elf_brand_list[i]; 334 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 335 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 336 continue; 337 if (hdr->e_machine == bi->machine && 338 (hdr->e_ident[EI_OSABI] == bi->brand || 339 (bi->compat_3_brand != NULL && 340 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 341 bi->compat_3_brand) == 0))) { 342 /* Looks good, but give brand a chance to veto */ 343 if (bi->header_supported == NULL || 344 bi->header_supported(imgp)) { 345 /* 346 * Again, prefer strictly matching 347 * interpreter path. 348 */ 349 if (interp_name_len == 0 && 350 bi->interp_path == NULL) 351 return (bi); 352 if (bi->interp_path != NULL && 353 strlen(bi->interp_path) + 1 == 354 interp_name_len && strncmp(interp, 355 bi->interp_path, interp_name_len) == 0) 356 return (bi); 357 if (bi_m == NULL) 358 bi_m = bi; 359 } 360 } 361 } 362 if (bi_m != NULL) 363 return (bi_m); 364 365 /* No known brand, see if the header is recognized by any brand */ 366 for (i = 0; i < MAX_BRANDS; i++) { 367 bi = elf_brand_list[i]; 368 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 369 bi->header_supported == NULL) 370 continue; 371 if (hdr->e_machine == bi->machine) { 372 ret = bi->header_supported(imgp); 373 if (ret) 374 return (bi); 375 } 376 } 377 378 /* Lacking a known brand, search for a recognized interpreter. */ 379 if (interp != NULL) { 380 for (i = 0; i < MAX_BRANDS; i++) { 381 bi = elf_brand_list[i]; 382 if (bi == NULL || (bi->flags & 383 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 384 != 0) 385 continue; 386 if (hdr->e_machine == bi->machine && 387 bi->interp_path != NULL && 388 /* ELF image p_filesz includes terminating zero */ 389 strlen(bi->interp_path) + 1 == interp_name_len && 390 strncmp(interp, bi->interp_path, interp_name_len) 391 == 0 && (bi->header_supported == NULL || 392 bi->header_supported(imgp))) 393 return (bi); 394 } 395 } 396 397 /* Lacking a recognized interpreter, try the default brand */ 398 for (i = 0; i < MAX_BRANDS; i++) { 399 bi = elf_brand_list[i]; 400 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 401 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 402 continue; 403 if (hdr->e_machine == bi->machine && 404 __elfN(fallback_brand) == bi->brand && 405 (bi->header_supported == NULL || 406 bi->header_supported(imgp))) 407 return (bi); 408 } 409 return (NULL); 410 } 411 412 static int 413 __elfN(check_header)(const Elf_Ehdr *hdr) 414 { 415 Elf_Brandinfo *bi; 416 int i; 417 418 if (!IS_ELF(*hdr) || 419 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 420 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 421 hdr->e_ident[EI_VERSION] != EV_CURRENT || 422 hdr->e_phentsize != sizeof(Elf_Phdr) || 423 hdr->e_version != ELF_TARG_VER) 424 return (ENOEXEC); 425 426 /* 427 * Make sure we have at least one brand for this machine. 428 */ 429 430 for (i = 0; i < MAX_BRANDS; i++) { 431 bi = elf_brand_list[i]; 432 if (bi != NULL && bi->machine == hdr->e_machine) 433 break; 434 } 435 if (i == MAX_BRANDS) 436 return (ENOEXEC); 437 438 return (0); 439 } 440 441 static int 442 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 443 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 444 { 445 struct sf_buf *sf; 446 int error; 447 vm_offset_t off; 448 449 /* 450 * Create the page if it doesn't exist yet. Ignore errors. 451 */ 452 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 453 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 454 455 /* 456 * Find the page from the underlying object. 457 */ 458 if (object != NULL) { 459 sf = vm_imgact_map_page(object, offset); 460 if (sf == NULL) 461 return (KERN_FAILURE); 462 off = offset - trunc_page(offset); 463 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 464 end - start); 465 vm_imgact_unmap_page(sf); 466 if (error != 0) 467 return (KERN_FAILURE); 468 } 469 470 return (KERN_SUCCESS); 471 } 472 473 static int 474 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 475 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 476 int cow) 477 { 478 struct sf_buf *sf; 479 vm_offset_t off; 480 vm_size_t sz; 481 int error, locked, rv; 482 483 if (start != trunc_page(start)) { 484 rv = __elfN(map_partial)(map, object, offset, start, 485 round_page(start), prot); 486 if (rv != KERN_SUCCESS) 487 return (rv); 488 offset += round_page(start) - start; 489 start = round_page(start); 490 } 491 if (end != round_page(end)) { 492 rv = __elfN(map_partial)(map, object, offset + 493 trunc_page(end) - start, trunc_page(end), end, prot); 494 if (rv != KERN_SUCCESS) 495 return (rv); 496 end = trunc_page(end); 497 } 498 if (start >= end) 499 return (KERN_SUCCESS); 500 if ((offset & PAGE_MASK) != 0) { 501 /* 502 * The mapping is not page aligned. This means that we have 503 * to copy the data. 504 */ 505 rv = vm_map_fixed(map, NULL, 0, start, end - start, 506 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 507 if (rv != KERN_SUCCESS) 508 return (rv); 509 if (object == NULL) 510 return (KERN_SUCCESS); 511 for (; start < end; start += sz) { 512 sf = vm_imgact_map_page(object, offset); 513 if (sf == NULL) 514 return (KERN_FAILURE); 515 off = offset - trunc_page(offset); 516 sz = end - start; 517 if (sz > PAGE_SIZE - off) 518 sz = PAGE_SIZE - off; 519 error = copyout((caddr_t)sf_buf_kva(sf) + off, 520 (caddr_t)start, sz); 521 vm_imgact_unmap_page(sf); 522 if (error != 0) 523 return (KERN_FAILURE); 524 offset += sz; 525 } 526 } else { 527 vm_object_reference(object); 528 rv = vm_map_fixed(map, object, offset, start, end - start, 529 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 530 if (rv != KERN_SUCCESS) { 531 locked = VOP_ISLOCKED(imgp->vp); 532 VOP_UNLOCK(imgp->vp, 0); 533 vm_object_deallocate(object); 534 vn_lock(imgp->vp, locked | LK_RETRY); 535 return (rv); 536 } 537 } 538 return (KERN_SUCCESS); 539 } 540 541 static int 542 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 543 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 544 { 545 struct sf_buf *sf; 546 size_t map_len; 547 vm_map_t map; 548 vm_object_t object; 549 vm_offset_t off, map_addr; 550 int error, rv, cow; 551 size_t copy_len; 552 vm_ooffset_t file_addr; 553 554 /* 555 * It's necessary to fail if the filsz + offset taken from the 556 * header is greater than the actual file pager object's size. 557 * If we were to allow this, then the vm_map_find() below would 558 * walk right off the end of the file object and into the ether. 559 * 560 * While I'm here, might as well check for something else that 561 * is invalid: filsz cannot be greater than memsz. 562 */ 563 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 564 filsz > memsz) { 565 uprintf("elf_load_section: truncated ELF file\n"); 566 return (ENOEXEC); 567 } 568 569 object = imgp->object; 570 map = &imgp->proc->p_vmspace->vm_map; 571 map_addr = trunc_page((vm_offset_t)vmaddr); 572 file_addr = trunc_page(offset); 573 574 /* 575 * We have two choices. We can either clear the data in the last page 576 * of an oversized mapping, or we can start the anon mapping a page 577 * early and copy the initialized data into that first page. We 578 * choose the second. 579 */ 580 if (filsz == 0) 581 map_len = 0; 582 else if (memsz > filsz) 583 map_len = trunc_page(offset + filsz) - file_addr; 584 else 585 map_len = round_page(offset + filsz) - file_addr; 586 587 if (map_len != 0) { 588 /* cow flags: don't dump readonly sections in core */ 589 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 590 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 591 592 rv = __elfN(map_insert)(imgp, map, 593 object, 594 file_addr, /* file offset */ 595 map_addr, /* virtual start */ 596 map_addr + map_len,/* virtual end */ 597 prot, 598 cow); 599 if (rv != KERN_SUCCESS) 600 return (EINVAL); 601 602 /* we can stop now if we've covered it all */ 603 if (memsz == filsz) 604 return (0); 605 } 606 607 608 /* 609 * We have to get the remaining bit of the file into the first part 610 * of the oversized map segment. This is normally because the .data 611 * segment in the file is extended to provide bss. It's a neat idea 612 * to try and save a page, but it's a pain in the behind to implement. 613 */ 614 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 615 filsz); 616 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 617 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 618 619 /* This had damn well better be true! */ 620 if (map_len != 0) { 621 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 622 map_addr + map_len, prot, 0); 623 if (rv != KERN_SUCCESS) 624 return (EINVAL); 625 } 626 627 if (copy_len != 0) { 628 sf = vm_imgact_map_page(object, offset + filsz); 629 if (sf == NULL) 630 return (EIO); 631 632 /* send the page fragment to user space */ 633 off = trunc_page(offset + filsz) - trunc_page(offset + filsz); 634 error = copyout((caddr_t)sf_buf_kva(sf) + off, 635 (caddr_t)map_addr, copy_len); 636 vm_imgact_unmap_page(sf); 637 if (error != 0) 638 return (error); 639 } 640 641 /* 642 * Remove write access to the page if it was only granted by map_insert 643 * to allow copyout. 644 */ 645 if ((prot & VM_PROT_WRITE) == 0) 646 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 647 map_len), prot, FALSE); 648 649 return (0); 650 } 651 652 /* 653 * Load the file "file" into memory. It may be either a shared object 654 * or an executable. 655 * 656 * The "addr" reference parameter is in/out. On entry, it specifies 657 * the address where a shared object should be loaded. If the file is 658 * an executable, this value is ignored. On exit, "addr" specifies 659 * where the file was actually loaded. 660 * 661 * The "entry" reference parameter is out only. On exit, it specifies 662 * the entry point for the loaded file. 663 */ 664 static int 665 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 666 u_long *entry) 667 { 668 struct { 669 struct nameidata nd; 670 struct vattr attr; 671 struct image_params image_params; 672 } *tempdata; 673 const Elf_Ehdr *hdr = NULL; 674 const Elf_Phdr *phdr = NULL; 675 struct nameidata *nd; 676 struct vattr *attr; 677 struct image_params *imgp; 678 vm_prot_t prot; 679 u_long rbase; 680 u_long base_addr = 0; 681 int error, i, numsegs; 682 683 #ifdef CAPABILITY_MODE 684 /* 685 * XXXJA: This check can go away once we are sufficiently confident 686 * that the checks in namei() are correct. 687 */ 688 if (IN_CAPABILITY_MODE(curthread)) 689 return (ECAPMODE); 690 #endif 691 692 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 693 nd = &tempdata->nd; 694 attr = &tempdata->attr; 695 imgp = &tempdata->image_params; 696 697 /* 698 * Initialize part of the common data 699 */ 700 imgp->proc = p; 701 imgp->attr = attr; 702 imgp->firstpage = NULL; 703 imgp->image_header = NULL; 704 imgp->object = NULL; 705 imgp->execlabel = NULL; 706 707 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 708 if ((error = namei(nd)) != 0) { 709 nd->ni_vp = NULL; 710 goto fail; 711 } 712 NDFREE(nd, NDF_ONLY_PNBUF); 713 imgp->vp = nd->ni_vp; 714 715 /* 716 * Check permissions, modes, uid, etc on the file, and "open" it. 717 */ 718 error = exec_check_permissions(imgp); 719 if (error) 720 goto fail; 721 722 error = exec_map_first_page(imgp); 723 if (error) 724 goto fail; 725 726 /* 727 * Also make certain that the interpreter stays the same, so set 728 * its VV_TEXT flag, too. 729 */ 730 VOP_SET_TEXT(nd->ni_vp); 731 732 imgp->object = nd->ni_vp->v_object; 733 734 hdr = (const Elf_Ehdr *)imgp->image_header; 735 if ((error = __elfN(check_header)(hdr)) != 0) 736 goto fail; 737 if (hdr->e_type == ET_DYN) 738 rbase = *addr; 739 else if (hdr->e_type == ET_EXEC) 740 rbase = 0; 741 else { 742 error = ENOEXEC; 743 goto fail; 744 } 745 746 /* Only support headers that fit within first page for now */ 747 if ((hdr->e_phoff > PAGE_SIZE) || 748 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 749 error = ENOEXEC; 750 goto fail; 751 } 752 753 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 754 if (!aligned(phdr, Elf_Addr)) { 755 error = ENOEXEC; 756 goto fail; 757 } 758 759 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 760 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 761 /* Loadable segment */ 762 prot = __elfN(trans_prot)(phdr[i].p_flags); 763 error = __elfN(load_section)(imgp, phdr[i].p_offset, 764 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 765 phdr[i].p_memsz, phdr[i].p_filesz, prot); 766 if (error != 0) 767 goto fail; 768 /* 769 * Establish the base address if this is the 770 * first segment. 771 */ 772 if (numsegs == 0) 773 base_addr = trunc_page(phdr[i].p_vaddr + 774 rbase); 775 numsegs++; 776 } 777 } 778 *addr = base_addr; 779 *entry = (unsigned long)hdr->e_entry + rbase; 780 781 fail: 782 if (imgp->firstpage) 783 exec_unmap_first_page(imgp); 784 785 if (nd->ni_vp) 786 vput(nd->ni_vp); 787 788 free(tempdata, M_TEMP); 789 790 return (error); 791 } 792 793 static u_long 794 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 795 u_int align) 796 { 797 u_long rbase, res; 798 799 MPASS(vm_map_min(map) <= minv); 800 MPASS(maxv <= vm_map_max(map)); 801 MPASS(minv < maxv); 802 MPASS(minv + align < maxv); 803 arc4rand(&rbase, sizeof(rbase), 0); 804 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 805 res &= ~((u_long)align - 1); 806 if (res >= maxv) 807 res -= align; 808 KASSERT(res >= minv, 809 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 810 res, minv, maxv, rbase)); 811 KASSERT(res < maxv, 812 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 813 res, maxv, minv, rbase)); 814 return (res); 815 } 816 817 static int 818 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 819 const Elf_Phdr *phdr, u_long et_dyn_addr) 820 { 821 struct vmspace *vmspace; 822 const char *err_str; 823 u_long text_size, data_size, total_size, text_addr, data_addr; 824 u_long seg_size, seg_addr; 825 int i; 826 827 err_str = NULL; 828 text_size = data_size = total_size = text_addr = data_addr = 0; 829 830 for (i = 0; i < hdr->e_phnum; i++) { 831 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 832 continue; 833 834 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 835 seg_size = round_page(phdr[i].p_memsz + 836 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 837 838 /* 839 * Make the largest executable segment the official 840 * text segment and all others data. 841 * 842 * Note that obreak() assumes that data_addr + data_size == end 843 * of data load area, and the ELF file format expects segments 844 * to be sorted by address. If multiple data segments exist, 845 * the last one will be used. 846 */ 847 848 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 849 text_size = seg_size; 850 text_addr = seg_addr; 851 } else { 852 data_size = seg_size; 853 data_addr = seg_addr; 854 } 855 total_size += seg_size; 856 } 857 858 if (data_addr == 0 && data_size == 0) { 859 data_addr = text_addr; 860 data_size = text_size; 861 } 862 863 /* 864 * Check limits. It should be safe to check the 865 * limits after loading the segments since we do 866 * not actually fault in all the segments pages. 867 */ 868 PROC_LOCK(imgp->proc); 869 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 870 err_str = "Data segment size exceeds process limit"; 871 else if (text_size > maxtsiz) 872 err_str = "Text segment size exceeds system limit"; 873 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 874 err_str = "Total segment size exceeds process limit"; 875 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 876 err_str = "Data segment size exceeds resource limit"; 877 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 878 err_str = "Total segment size exceeds resource limit"; 879 PROC_UNLOCK(imgp->proc); 880 if (err_str != NULL) { 881 uprintf("%s\n", err_str); 882 return (ENOMEM); 883 } 884 885 vmspace = imgp->proc->p_vmspace; 886 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 887 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 888 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 889 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 890 891 return (0); 892 } 893 894 static int 895 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 896 char **interpp, bool *free_interpp) 897 { 898 struct thread *td; 899 char *interp; 900 int error, interp_name_len; 901 902 KASSERT(phdr->p_type == PT_INTERP, 903 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 904 KASSERT(VOP_ISLOCKED(imgp->vp), 905 ("%s: vp %p is not locked", __func__, imgp->vp)); 906 907 td = curthread; 908 909 /* Path to interpreter */ 910 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 911 uprintf("Invalid PT_INTERP\n"); 912 return (ENOEXEC); 913 } 914 915 interp_name_len = phdr->p_filesz; 916 if (phdr->p_offset > PAGE_SIZE || 917 interp_name_len > PAGE_SIZE - phdr->p_offset) { 918 VOP_UNLOCK(imgp->vp, 0); 919 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 920 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 921 error = vn_rdwr(UIO_READ, imgp->vp, interp, 922 interp_name_len, phdr->p_offset, 923 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 924 NOCRED, NULL, td); 925 if (error != 0) { 926 free(interp, M_TEMP); 927 uprintf("i/o error PT_INTERP %d\n", error); 928 return (error); 929 } 930 interp[interp_name_len] = '\0'; 931 932 *interpp = interp; 933 *free_interpp = true; 934 return (0); 935 } 936 937 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 938 if (interp[interp_name_len - 1] != '\0') { 939 uprintf("Invalid PT_INTERP\n"); 940 return (ENOEXEC); 941 } 942 943 *interpp = interp; 944 *free_interpp = false; 945 return (0); 946 } 947 948 /* 949 * Impossible et_dyn_addr initial value indicating that the real base 950 * must be calculated later with some randomization applied. 951 */ 952 #define ET_DYN_ADDR_RAND 1 953 954 static int 955 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 956 { 957 struct thread *td; 958 const Elf_Ehdr *hdr; 959 const Elf_Phdr *phdr; 960 Elf_Auxargs *elf_auxargs; 961 struct vmspace *vmspace; 962 vm_map_t map; 963 const char *newinterp; 964 char *interp, *path; 965 Elf_Brandinfo *brand_info; 966 struct sysentvec *sv; 967 vm_prot_t prot; 968 u_long addr, baddr, et_dyn_addr, entry, proghdr; 969 u_long maxalign, mapsz, maxv, maxv1; 970 uint32_t fctl0; 971 int32_t osrel; 972 bool free_interp; 973 int error, i, n, have_interp; 974 975 hdr = (const Elf_Ehdr *)imgp->image_header; 976 977 /* 978 * Do we have a valid ELF header ? 979 * 980 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 981 * if particular brand doesn't support it. 982 */ 983 if (__elfN(check_header)(hdr) != 0 || 984 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 985 return (-1); 986 987 /* 988 * From here on down, we return an errno, not -1, as we've 989 * detected an ELF file. 990 */ 991 992 if ((hdr->e_phoff > PAGE_SIZE) || 993 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 994 /* Only support headers in first page for now */ 995 uprintf("Program headers not in the first page\n"); 996 return (ENOEXEC); 997 } 998 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 999 if (!aligned(phdr, Elf_Addr)) { 1000 uprintf("Unaligned program headers\n"); 1001 return (ENOEXEC); 1002 } 1003 1004 n = error = 0; 1005 baddr = 0; 1006 osrel = 0; 1007 fctl0 = 0; 1008 entry = proghdr = 0; 1009 newinterp = interp = NULL; 1010 free_interp = false; 1011 td = curthread; 1012 maxalign = PAGE_SIZE; 1013 mapsz = 0; 1014 1015 for (i = 0; i < hdr->e_phnum; i++) { 1016 switch (phdr[i].p_type) { 1017 case PT_LOAD: 1018 if (n == 0) 1019 baddr = phdr[i].p_vaddr; 1020 if (phdr[i].p_align > maxalign) 1021 maxalign = phdr[i].p_align; 1022 mapsz += phdr[i].p_memsz; 1023 n++; 1024 break; 1025 case PT_INTERP: 1026 /* Path to interpreter */ 1027 if (interp != NULL) { 1028 uprintf("Multiple PT_INTERP headers\n"); 1029 error = ENOEXEC; 1030 goto ret; 1031 } 1032 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1033 &free_interp); 1034 if (error != 0) 1035 goto ret; 1036 break; 1037 case PT_GNU_STACK: 1038 if (__elfN(nxstack)) 1039 imgp->stack_prot = 1040 __elfN(trans_prot)(phdr[i].p_flags); 1041 imgp->stack_sz = phdr[i].p_memsz; 1042 break; 1043 } 1044 } 1045 1046 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1047 if (brand_info == NULL) { 1048 uprintf("ELF binary type \"%u\" not known.\n", 1049 hdr->e_ident[EI_OSABI]); 1050 error = ENOEXEC; 1051 goto ret; 1052 } 1053 sv = brand_info->sysvec; 1054 et_dyn_addr = 0; 1055 if (hdr->e_type == ET_DYN) { 1056 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1057 uprintf("Cannot execute shared object\n"); 1058 error = ENOEXEC; 1059 goto ret; 1060 } 1061 /* 1062 * Honour the base load address from the dso if it is 1063 * non-zero for some reason. 1064 */ 1065 if (baddr == 0) { 1066 if ((sv->sv_flags & SV_ASLR) == 0 || 1067 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1068 et_dyn_addr = ET_DYN_LOAD_ADDR; 1069 else if ((__elfN(pie_aslr_enabled) && 1070 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1071 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1072 et_dyn_addr = ET_DYN_ADDR_RAND; 1073 else 1074 et_dyn_addr = ET_DYN_LOAD_ADDR; 1075 } 1076 } 1077 if (interp != NULL && brand_info->interp_newpath != NULL) 1078 newinterp = brand_info->interp_newpath; 1079 1080 /* 1081 * Avoid a possible deadlock if the current address space is destroyed 1082 * and that address space maps the locked vnode. In the common case, 1083 * the locked vnode's v_usecount is decremented but remains greater 1084 * than zero. Consequently, the vnode lock is not needed by vrele(). 1085 * However, in cases where the vnode lock is external, such as nullfs, 1086 * v_usecount may become zero. 1087 * 1088 * The VV_TEXT flag prevents modifications to the executable while 1089 * the vnode is unlocked. 1090 */ 1091 VOP_UNLOCK(imgp->vp, 0); 1092 1093 /* 1094 * Decide whether to enable randomization of user mappings. 1095 * First, reset user preferences for the setid binaries. 1096 * Then, account for the support of the randomization by the 1097 * ABI, by user preferences, and make special treatment for 1098 * PIE binaries. 1099 */ 1100 if (imgp->credential_setid) { 1101 PROC_LOCK(imgp->proc); 1102 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1103 PROC_UNLOCK(imgp->proc); 1104 } 1105 if ((sv->sv_flags & SV_ASLR) == 0 || 1106 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1107 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1108 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1109 ("et_dyn_addr == RAND and !ASLR")); 1110 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1111 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1112 et_dyn_addr == ET_DYN_ADDR_RAND) { 1113 imgp->map_flags |= MAP_ASLR; 1114 /* 1115 * If user does not care about sbrk, utilize the bss 1116 * grow region for mappings as well. We can select 1117 * the base for the image anywere and still not suffer 1118 * from the fragmentation. 1119 */ 1120 if (!__elfN(aslr_honor_sbrk) || 1121 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1122 imgp->map_flags |= MAP_ASLR_IGNSTART; 1123 } 1124 1125 error = exec_new_vmspace(imgp, sv); 1126 vmspace = imgp->proc->p_vmspace; 1127 map = &vmspace->vm_map; 1128 1129 imgp->proc->p_sysent = sv; 1130 1131 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1132 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1133 KASSERT((map->flags & MAP_ASLR) != 0, 1134 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1135 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1136 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1137 /* reserve half of the address space to interpreter */ 1138 maxv / 2, 1UL << flsl(maxalign)); 1139 } 1140 1141 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1142 if (error != 0) 1143 goto ret; 1144 1145 for (i = 0; i < hdr->e_phnum; i++) { 1146 switch (phdr[i].p_type) { 1147 case PT_LOAD: /* Loadable segment */ 1148 if (phdr[i].p_memsz == 0) 1149 break; 1150 prot = __elfN(trans_prot)(phdr[i].p_flags); 1151 error = __elfN(load_section)(imgp, phdr[i].p_offset, 1152 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 1153 phdr[i].p_memsz, phdr[i].p_filesz, prot); 1154 if (error != 0) 1155 goto ret; 1156 1157 /* 1158 * If this segment contains the program headers, 1159 * remember their virtual address for the AT_PHDR 1160 * aux entry. Static binaries don't usually include 1161 * a PT_PHDR entry. 1162 */ 1163 if (phdr[i].p_offset == 0 && 1164 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1165 <= phdr[i].p_filesz) 1166 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 1167 et_dyn_addr; 1168 break; 1169 case PT_PHDR: /* Program header table info */ 1170 proghdr = phdr[i].p_vaddr + et_dyn_addr; 1171 break; 1172 default: 1173 break; 1174 } 1175 } 1176 1177 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1178 if (error != 0) 1179 goto ret; 1180 1181 entry = (u_long)hdr->e_entry + et_dyn_addr; 1182 1183 /* 1184 * We load the dynamic linker where a userland call 1185 * to mmap(0, ...) would put it. The rationale behind this 1186 * calculation is that it leaves room for the heap to grow to 1187 * its maximum allowed size. 1188 */ 1189 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1190 RLIMIT_DATA)); 1191 if ((map->flags & MAP_ASLR) != 0) { 1192 maxv1 = maxv / 2 + addr / 2; 1193 MPASS(maxv1 >= addr); /* No overflow */ 1194 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1195 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1196 } else { 1197 map->anon_loc = addr; 1198 } 1199 1200 imgp->entry_addr = entry; 1201 1202 if (interp != NULL) { 1203 have_interp = FALSE; 1204 VOP_UNLOCK(imgp->vp, 0); 1205 if ((map->flags & MAP_ASLR) != 0) { 1206 /* Assume that interpeter fits into 1/4 of AS */ 1207 maxv1 = maxv / 2 + addr / 2; 1208 MPASS(maxv1 >= addr); /* No overflow */ 1209 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1210 maxv1, PAGE_SIZE); 1211 } 1212 if (brand_info->emul_path != NULL && 1213 brand_info->emul_path[0] != '\0') { 1214 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1215 snprintf(path, MAXPATHLEN, "%s%s", 1216 brand_info->emul_path, interp); 1217 error = __elfN(load_file)(imgp->proc, path, &addr, 1218 &imgp->entry_addr); 1219 free(path, M_TEMP); 1220 if (error == 0) 1221 have_interp = TRUE; 1222 } 1223 if (!have_interp && newinterp != NULL && 1224 (brand_info->interp_path == NULL || 1225 strcmp(interp, brand_info->interp_path) == 0)) { 1226 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1227 &imgp->entry_addr); 1228 if (error == 0) 1229 have_interp = TRUE; 1230 } 1231 if (!have_interp) { 1232 error = __elfN(load_file)(imgp->proc, interp, &addr, 1233 &imgp->entry_addr); 1234 } 1235 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1236 if (error != 0) { 1237 uprintf("ELF interpreter %s not found, error %d\n", 1238 interp, error); 1239 goto ret; 1240 } 1241 } else 1242 addr = et_dyn_addr; 1243 1244 /* 1245 * Construct auxargs table (used by the fixup routine) 1246 */ 1247 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1248 elf_auxargs->execfd = -1; 1249 elf_auxargs->phdr = proghdr; 1250 elf_auxargs->phent = hdr->e_phentsize; 1251 elf_auxargs->phnum = hdr->e_phnum; 1252 elf_auxargs->pagesz = PAGE_SIZE; 1253 elf_auxargs->base = addr; 1254 elf_auxargs->flags = 0; 1255 elf_auxargs->entry = entry; 1256 elf_auxargs->hdr_eflags = hdr->e_flags; 1257 1258 imgp->auxargs = elf_auxargs; 1259 imgp->interpreted = 0; 1260 imgp->reloc_base = addr; 1261 imgp->proc->p_osrel = osrel; 1262 imgp->proc->p_fctl0 = fctl0; 1263 imgp->proc->p_elf_machine = hdr->e_machine; 1264 imgp->proc->p_elf_flags = hdr->e_flags; 1265 1266 ret: 1267 if (free_interp) 1268 free(interp, M_TEMP); 1269 return (error); 1270 } 1271 1272 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1273 1274 int 1275 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1276 { 1277 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1278 Elf_Auxinfo *argarray, *pos; 1279 Elf_Addr *base, *auxbase; 1280 int error; 1281 1282 base = (Elf_Addr *)*stack_base; 1283 auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1; 1284 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1285 M_WAITOK | M_ZERO); 1286 1287 if (args->execfd != -1) 1288 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1289 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1290 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1291 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1292 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1293 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1294 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1295 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1296 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1297 if (imgp->execpathp != 0) 1298 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1299 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1300 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1301 if (imgp->canary != 0) { 1302 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1303 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1304 } 1305 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1306 if (imgp->pagesizes != 0) { 1307 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1308 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1309 } 1310 if (imgp->sysent->sv_timekeep_base != 0) { 1311 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1312 imgp->sysent->sv_timekeep_base); 1313 } 1314 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1315 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1316 imgp->sysent->sv_stackprot); 1317 if (imgp->sysent->sv_hwcap != NULL) 1318 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1319 if (imgp->sysent->sv_hwcap2 != NULL) 1320 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1321 AUXARGS_ENTRY(pos, AT_NULL, 0); 1322 1323 free(imgp->auxargs, M_TEMP); 1324 imgp->auxargs = NULL; 1325 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1326 1327 error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT); 1328 free(argarray, M_TEMP); 1329 if (error != 0) 1330 return (error); 1331 1332 base--; 1333 if (suword(base, imgp->args->argc) == -1) 1334 return (EFAULT); 1335 *stack_base = (register_t *)base; 1336 return (0); 1337 } 1338 1339 /* 1340 * Code for generating ELF core dumps. 1341 */ 1342 1343 typedef void (*segment_callback)(vm_map_entry_t, void *); 1344 1345 /* Closure for cb_put_phdr(). */ 1346 struct phdr_closure { 1347 Elf_Phdr *phdr; /* Program header to fill in */ 1348 Elf_Off offset; /* Offset of segment in core file */ 1349 }; 1350 1351 /* Closure for cb_size_segment(). */ 1352 struct sseg_closure { 1353 int count; /* Count of writable segments. */ 1354 size_t size; /* Total size of all writable segments. */ 1355 }; 1356 1357 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1358 1359 struct note_info { 1360 int type; /* Note type. */ 1361 outfunc_t outfunc; /* Output function. */ 1362 void *outarg; /* Argument for the output function. */ 1363 size_t outsize; /* Output size. */ 1364 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1365 }; 1366 1367 TAILQ_HEAD(note_info_list, note_info); 1368 1369 /* Coredump output parameters. */ 1370 struct coredump_params { 1371 off_t offset; 1372 struct ucred *active_cred; 1373 struct ucred *file_cred; 1374 struct thread *td; 1375 struct vnode *vp; 1376 struct compressor *comp; 1377 }; 1378 1379 extern int compress_user_cores; 1380 extern int compress_user_cores_level; 1381 1382 static void cb_put_phdr(vm_map_entry_t, void *); 1383 static void cb_size_segment(vm_map_entry_t, void *); 1384 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1385 enum uio_seg); 1386 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1387 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1388 struct note_info_list *, size_t); 1389 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1390 size_t *); 1391 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1392 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1393 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1394 static int sbuf_drain_core_output(void *, const char *, int); 1395 static int sbuf_drain_count(void *arg, const char *data, int len); 1396 1397 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1398 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1399 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1400 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1401 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1402 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1403 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1404 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1405 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1406 static void note_procstat_files(void *, struct sbuf *, size_t *); 1407 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1408 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1409 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1410 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1411 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1412 1413 /* 1414 * Write out a core segment to the compression stream. 1415 */ 1416 static int 1417 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1418 { 1419 u_int chunk_len; 1420 int error; 1421 1422 while (len > 0) { 1423 chunk_len = MIN(len, CORE_BUF_SIZE); 1424 1425 /* 1426 * We can get EFAULT error here. 1427 * In that case zero out the current chunk of the segment. 1428 */ 1429 error = copyin(base, buf, chunk_len); 1430 if (error != 0) 1431 bzero(buf, chunk_len); 1432 error = compressor_write(p->comp, buf, chunk_len); 1433 if (error != 0) 1434 break; 1435 base += chunk_len; 1436 len -= chunk_len; 1437 } 1438 return (error); 1439 } 1440 1441 static int 1442 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1443 { 1444 1445 return (core_write((struct coredump_params *)arg, base, len, offset, 1446 UIO_SYSSPACE)); 1447 } 1448 1449 static int 1450 core_write(struct coredump_params *p, const void *base, size_t len, 1451 off_t offset, enum uio_seg seg) 1452 { 1453 1454 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1455 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1456 p->active_cred, p->file_cred, NULL, p->td)); 1457 } 1458 1459 static int 1460 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1461 void *tmpbuf) 1462 { 1463 int error; 1464 1465 if (p->comp != NULL) 1466 return (compress_chunk(p, base, tmpbuf, len)); 1467 1468 /* 1469 * EFAULT is a non-fatal error that we can get, for example, 1470 * if the segment is backed by a file but extends beyond its 1471 * end. 1472 */ 1473 error = core_write(p, base, len, offset, UIO_USERSPACE); 1474 if (error == EFAULT) { 1475 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1476 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1477 "for process %s\n", base, len, offset, curproc->p_comm); 1478 1479 /* 1480 * Write a "real" zero byte at the end of the target region 1481 * in the case this is the last segment. 1482 * The intermediate space will be implicitly zero-filled. 1483 */ 1484 error = core_write(p, zero_region, 1, offset + len - 1, 1485 UIO_SYSSPACE); 1486 } 1487 return (error); 1488 } 1489 1490 /* 1491 * Drain into a core file. 1492 */ 1493 static int 1494 sbuf_drain_core_output(void *arg, const char *data, int len) 1495 { 1496 struct coredump_params *p; 1497 int error, locked; 1498 1499 p = (struct coredump_params *)arg; 1500 1501 /* 1502 * Some kern_proc out routines that print to this sbuf may 1503 * call us with the process lock held. Draining with the 1504 * non-sleepable lock held is unsafe. The lock is needed for 1505 * those routines when dumping a live process. In our case we 1506 * can safely release the lock before draining and acquire 1507 * again after. 1508 */ 1509 locked = PROC_LOCKED(p->td->td_proc); 1510 if (locked) 1511 PROC_UNLOCK(p->td->td_proc); 1512 if (p->comp != NULL) 1513 error = compressor_write(p->comp, __DECONST(char *, data), len); 1514 else 1515 error = core_write(p, __DECONST(void *, data), len, p->offset, 1516 UIO_SYSSPACE); 1517 if (locked) 1518 PROC_LOCK(p->td->td_proc); 1519 if (error != 0) 1520 return (-error); 1521 p->offset += len; 1522 return (len); 1523 } 1524 1525 /* 1526 * Drain into a counter. 1527 */ 1528 static int 1529 sbuf_drain_count(void *arg, const char *data __unused, int len) 1530 { 1531 size_t *sizep; 1532 1533 sizep = (size_t *)arg; 1534 *sizep += len; 1535 return (len); 1536 } 1537 1538 int 1539 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1540 { 1541 struct ucred *cred = td->td_ucred; 1542 int error = 0; 1543 struct sseg_closure seginfo; 1544 struct note_info_list notelst; 1545 struct coredump_params params; 1546 struct note_info *ninfo; 1547 void *hdr, *tmpbuf; 1548 size_t hdrsize, notesz, coresize; 1549 1550 hdr = NULL; 1551 tmpbuf = NULL; 1552 TAILQ_INIT(¬elst); 1553 1554 /* Size the program segments. */ 1555 seginfo.count = 0; 1556 seginfo.size = 0; 1557 each_dumpable_segment(td, cb_size_segment, &seginfo); 1558 1559 /* 1560 * Collect info about the core file header area. 1561 */ 1562 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1563 if (seginfo.count + 1 >= PN_XNUM) 1564 hdrsize += sizeof(Elf_Shdr); 1565 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1566 coresize = round_page(hdrsize + notesz) + seginfo.size; 1567 1568 /* Set up core dump parameters. */ 1569 params.offset = 0; 1570 params.active_cred = cred; 1571 params.file_cred = NOCRED; 1572 params.td = td; 1573 params.vp = vp; 1574 params.comp = NULL; 1575 1576 #ifdef RACCT 1577 if (racct_enable) { 1578 PROC_LOCK(td->td_proc); 1579 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1580 PROC_UNLOCK(td->td_proc); 1581 if (error != 0) { 1582 error = EFAULT; 1583 goto done; 1584 } 1585 } 1586 #endif 1587 if (coresize >= limit) { 1588 error = EFAULT; 1589 goto done; 1590 } 1591 1592 /* Create a compression stream if necessary. */ 1593 if (compress_user_cores != 0) { 1594 params.comp = compressor_init(core_compressed_write, 1595 compress_user_cores, CORE_BUF_SIZE, 1596 compress_user_cores_level, ¶ms); 1597 if (params.comp == NULL) { 1598 error = EFAULT; 1599 goto done; 1600 } 1601 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1602 } 1603 1604 /* 1605 * Allocate memory for building the header, fill it up, 1606 * and write it out following the notes. 1607 */ 1608 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1609 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1610 notesz); 1611 1612 /* Write the contents of all of the writable segments. */ 1613 if (error == 0) { 1614 Elf_Phdr *php; 1615 off_t offset; 1616 int i; 1617 1618 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1619 offset = round_page(hdrsize + notesz); 1620 for (i = 0; i < seginfo.count; i++) { 1621 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1622 php->p_filesz, offset, ¶ms, tmpbuf); 1623 if (error != 0) 1624 break; 1625 offset += php->p_filesz; 1626 php++; 1627 } 1628 if (error == 0 && params.comp != NULL) 1629 error = compressor_flush(params.comp); 1630 } 1631 if (error) { 1632 log(LOG_WARNING, 1633 "Failed to write core file for process %s (error %d)\n", 1634 curproc->p_comm, error); 1635 } 1636 1637 done: 1638 free(tmpbuf, M_TEMP); 1639 if (params.comp != NULL) 1640 compressor_fini(params.comp); 1641 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1642 TAILQ_REMOVE(¬elst, ninfo, link); 1643 free(ninfo, M_TEMP); 1644 } 1645 if (hdr != NULL) 1646 free(hdr, M_TEMP); 1647 1648 return (error); 1649 } 1650 1651 /* 1652 * A callback for each_dumpable_segment() to write out the segment's 1653 * program header entry. 1654 */ 1655 static void 1656 cb_put_phdr(vm_map_entry_t entry, void *closure) 1657 { 1658 struct phdr_closure *phc = (struct phdr_closure *)closure; 1659 Elf_Phdr *phdr = phc->phdr; 1660 1661 phc->offset = round_page(phc->offset); 1662 1663 phdr->p_type = PT_LOAD; 1664 phdr->p_offset = phc->offset; 1665 phdr->p_vaddr = entry->start; 1666 phdr->p_paddr = 0; 1667 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1668 phdr->p_align = PAGE_SIZE; 1669 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1670 1671 phc->offset += phdr->p_filesz; 1672 phc->phdr++; 1673 } 1674 1675 /* 1676 * A callback for each_dumpable_segment() to gather information about 1677 * the number of segments and their total size. 1678 */ 1679 static void 1680 cb_size_segment(vm_map_entry_t entry, void *closure) 1681 { 1682 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1683 1684 ssc->count++; 1685 ssc->size += entry->end - entry->start; 1686 } 1687 1688 /* 1689 * For each writable segment in the process's memory map, call the given 1690 * function with a pointer to the map entry and some arbitrary 1691 * caller-supplied data. 1692 */ 1693 static void 1694 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1695 { 1696 struct proc *p = td->td_proc; 1697 vm_map_t map = &p->p_vmspace->vm_map; 1698 vm_map_entry_t entry; 1699 vm_object_t backing_object, object; 1700 boolean_t ignore_entry; 1701 1702 vm_map_lock_read(map); 1703 for (entry = map->header.next; entry != &map->header; 1704 entry = entry->next) { 1705 /* 1706 * Don't dump inaccessible mappings, deal with legacy 1707 * coredump mode. 1708 * 1709 * Note that read-only segments related to the elf binary 1710 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1711 * need to arbitrarily ignore such segments. 1712 */ 1713 if (elf_legacy_coredump) { 1714 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1715 continue; 1716 } else { 1717 if ((entry->protection & VM_PROT_ALL) == 0) 1718 continue; 1719 } 1720 1721 /* 1722 * Dont include memory segment in the coredump if 1723 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1724 * madvise(2). Do not dump submaps (i.e. parts of the 1725 * kernel map). 1726 */ 1727 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1728 continue; 1729 1730 if ((object = entry->object.vm_object) == NULL) 1731 continue; 1732 1733 /* Ignore memory-mapped devices and such things. */ 1734 VM_OBJECT_RLOCK(object); 1735 while ((backing_object = object->backing_object) != NULL) { 1736 VM_OBJECT_RLOCK(backing_object); 1737 VM_OBJECT_RUNLOCK(object); 1738 object = backing_object; 1739 } 1740 ignore_entry = object->type != OBJT_DEFAULT && 1741 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1742 object->type != OBJT_PHYS; 1743 VM_OBJECT_RUNLOCK(object); 1744 if (ignore_entry) 1745 continue; 1746 1747 (*func)(entry, closure); 1748 } 1749 vm_map_unlock_read(map); 1750 } 1751 1752 /* 1753 * Write the core file header to the file, including padding up to 1754 * the page boundary. 1755 */ 1756 static int 1757 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1758 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1759 { 1760 struct note_info *ninfo; 1761 struct sbuf *sb; 1762 int error; 1763 1764 /* Fill in the header. */ 1765 bzero(hdr, hdrsize); 1766 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1767 1768 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1769 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1770 sbuf_start_section(sb, NULL); 1771 sbuf_bcat(sb, hdr, hdrsize); 1772 TAILQ_FOREACH(ninfo, notelst, link) 1773 __elfN(putnote)(ninfo, sb); 1774 /* Align up to a page boundary for the program segments. */ 1775 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1776 error = sbuf_finish(sb); 1777 sbuf_delete(sb); 1778 1779 return (error); 1780 } 1781 1782 static void 1783 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1784 size_t *sizep) 1785 { 1786 struct proc *p; 1787 struct thread *thr; 1788 size_t size; 1789 1790 p = td->td_proc; 1791 size = 0; 1792 1793 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1794 1795 /* 1796 * To have the debugger select the right thread (LWP) as the initial 1797 * thread, we dump the state of the thread passed to us in td first. 1798 * This is the thread that causes the core dump and thus likely to 1799 * be the right thread one wants to have selected in the debugger. 1800 */ 1801 thr = td; 1802 while (thr != NULL) { 1803 size += register_note(list, NT_PRSTATUS, 1804 __elfN(note_prstatus), thr); 1805 size += register_note(list, NT_FPREGSET, 1806 __elfN(note_fpregset), thr); 1807 size += register_note(list, NT_THRMISC, 1808 __elfN(note_thrmisc), thr); 1809 size += register_note(list, NT_PTLWPINFO, 1810 __elfN(note_ptlwpinfo), thr); 1811 size += register_note(list, -1, 1812 __elfN(note_threadmd), thr); 1813 1814 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1815 TAILQ_NEXT(thr, td_plist); 1816 if (thr == td) 1817 thr = TAILQ_NEXT(thr, td_plist); 1818 } 1819 1820 size += register_note(list, NT_PROCSTAT_PROC, 1821 __elfN(note_procstat_proc), p); 1822 size += register_note(list, NT_PROCSTAT_FILES, 1823 note_procstat_files, p); 1824 size += register_note(list, NT_PROCSTAT_VMMAP, 1825 note_procstat_vmmap, p); 1826 size += register_note(list, NT_PROCSTAT_GROUPS, 1827 note_procstat_groups, p); 1828 size += register_note(list, NT_PROCSTAT_UMASK, 1829 note_procstat_umask, p); 1830 size += register_note(list, NT_PROCSTAT_RLIMIT, 1831 note_procstat_rlimit, p); 1832 size += register_note(list, NT_PROCSTAT_OSREL, 1833 note_procstat_osrel, p); 1834 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1835 __elfN(note_procstat_psstrings), p); 1836 size += register_note(list, NT_PROCSTAT_AUXV, 1837 __elfN(note_procstat_auxv), p); 1838 1839 *sizep = size; 1840 } 1841 1842 static void 1843 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1844 size_t notesz) 1845 { 1846 Elf_Ehdr *ehdr; 1847 Elf_Phdr *phdr; 1848 Elf_Shdr *shdr; 1849 struct phdr_closure phc; 1850 1851 ehdr = (Elf_Ehdr *)hdr; 1852 1853 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1854 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1855 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1856 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1857 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1858 ehdr->e_ident[EI_DATA] = ELF_DATA; 1859 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1860 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1861 ehdr->e_ident[EI_ABIVERSION] = 0; 1862 ehdr->e_ident[EI_PAD] = 0; 1863 ehdr->e_type = ET_CORE; 1864 ehdr->e_machine = td->td_proc->p_elf_machine; 1865 ehdr->e_version = EV_CURRENT; 1866 ehdr->e_entry = 0; 1867 ehdr->e_phoff = sizeof(Elf_Ehdr); 1868 ehdr->e_flags = td->td_proc->p_elf_flags; 1869 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1870 ehdr->e_phentsize = sizeof(Elf_Phdr); 1871 ehdr->e_shentsize = sizeof(Elf_Shdr); 1872 ehdr->e_shstrndx = SHN_UNDEF; 1873 if (numsegs + 1 < PN_XNUM) { 1874 ehdr->e_phnum = numsegs + 1; 1875 ehdr->e_shnum = 0; 1876 } else { 1877 ehdr->e_phnum = PN_XNUM; 1878 ehdr->e_shnum = 1; 1879 1880 ehdr->e_shoff = ehdr->e_phoff + 1881 (numsegs + 1) * ehdr->e_phentsize; 1882 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1883 ("e_shoff: %zu, hdrsize - shdr: %zu", 1884 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1885 1886 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1887 memset(shdr, 0, sizeof(*shdr)); 1888 /* 1889 * A special first section is used to hold large segment and 1890 * section counts. This was proposed by Sun Microsystems in 1891 * Solaris and has been adopted by Linux; the standard ELF 1892 * tools are already familiar with the technique. 1893 * 1894 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1895 * (or 12-7 depending on the version of the document) for more 1896 * details. 1897 */ 1898 shdr->sh_type = SHT_NULL; 1899 shdr->sh_size = ehdr->e_shnum; 1900 shdr->sh_link = ehdr->e_shstrndx; 1901 shdr->sh_info = numsegs + 1; 1902 } 1903 1904 /* 1905 * Fill in the program header entries. 1906 */ 1907 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1908 1909 /* The note segement. */ 1910 phdr->p_type = PT_NOTE; 1911 phdr->p_offset = hdrsize; 1912 phdr->p_vaddr = 0; 1913 phdr->p_paddr = 0; 1914 phdr->p_filesz = notesz; 1915 phdr->p_memsz = 0; 1916 phdr->p_flags = PF_R; 1917 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1918 phdr++; 1919 1920 /* All the writable segments from the program. */ 1921 phc.phdr = phdr; 1922 phc.offset = round_page(hdrsize + notesz); 1923 each_dumpable_segment(td, cb_put_phdr, &phc); 1924 } 1925 1926 static size_t 1927 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1928 { 1929 struct note_info *ninfo; 1930 size_t size, notesize; 1931 1932 size = 0; 1933 out(arg, NULL, &size); 1934 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1935 ninfo->type = type; 1936 ninfo->outfunc = out; 1937 ninfo->outarg = arg; 1938 ninfo->outsize = size; 1939 TAILQ_INSERT_TAIL(list, ninfo, link); 1940 1941 if (type == -1) 1942 return (size); 1943 1944 notesize = sizeof(Elf_Note) + /* note header */ 1945 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1946 /* note name */ 1947 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1948 1949 return (notesize); 1950 } 1951 1952 static size_t 1953 append_note_data(const void *src, void *dst, size_t len) 1954 { 1955 size_t padded_len; 1956 1957 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1958 if (dst != NULL) { 1959 bcopy(src, dst, len); 1960 bzero((char *)dst + len, padded_len - len); 1961 } 1962 return (padded_len); 1963 } 1964 1965 size_t 1966 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1967 { 1968 Elf_Note *note; 1969 char *buf; 1970 size_t notesize; 1971 1972 buf = dst; 1973 if (buf != NULL) { 1974 note = (Elf_Note *)buf; 1975 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1976 note->n_descsz = size; 1977 note->n_type = type; 1978 buf += sizeof(*note); 1979 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1980 sizeof(FREEBSD_ABI_VENDOR)); 1981 append_note_data(src, buf, size); 1982 if (descp != NULL) 1983 *descp = buf; 1984 } 1985 1986 notesize = sizeof(Elf_Note) + /* note header */ 1987 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1988 /* note name */ 1989 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1990 1991 return (notesize); 1992 } 1993 1994 static void 1995 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1996 { 1997 Elf_Note note; 1998 ssize_t old_len, sect_len; 1999 size_t new_len, descsz, i; 2000 2001 if (ninfo->type == -1) { 2002 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2003 return; 2004 } 2005 2006 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2007 note.n_descsz = ninfo->outsize; 2008 note.n_type = ninfo->type; 2009 2010 sbuf_bcat(sb, ¬e, sizeof(note)); 2011 sbuf_start_section(sb, &old_len); 2012 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2013 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2014 if (note.n_descsz == 0) 2015 return; 2016 sbuf_start_section(sb, &old_len); 2017 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2018 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2019 if (sect_len < 0) 2020 return; 2021 2022 new_len = (size_t)sect_len; 2023 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2024 if (new_len < descsz) { 2025 /* 2026 * It is expected that individual note emitters will correctly 2027 * predict their expected output size and fill up to that size 2028 * themselves, padding in a format-specific way if needed. 2029 * However, in case they don't, just do it here with zeros. 2030 */ 2031 for (i = 0; i < descsz - new_len; i++) 2032 sbuf_putc(sb, 0); 2033 } else if (new_len > descsz) { 2034 /* 2035 * We can't always truncate sb -- we may have drained some 2036 * of it already. 2037 */ 2038 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2039 "read it (%zu > %zu). Since it is longer than " 2040 "expected, this coredump's notes are corrupt. THIS " 2041 "IS A BUG in the note_procstat routine for type %u.\n", 2042 __func__, (unsigned)note.n_type, new_len, descsz, 2043 (unsigned)note.n_type)); 2044 } 2045 } 2046 2047 /* 2048 * Miscellaneous note out functions. 2049 */ 2050 2051 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2052 #include <compat/freebsd32/freebsd32.h> 2053 #include <compat/freebsd32/freebsd32_signal.h> 2054 2055 typedef struct prstatus32 elf_prstatus_t; 2056 typedef struct prpsinfo32 elf_prpsinfo_t; 2057 typedef struct fpreg32 elf_prfpregset_t; 2058 typedef struct fpreg32 elf_fpregset_t; 2059 typedef struct reg32 elf_gregset_t; 2060 typedef struct thrmisc32 elf_thrmisc_t; 2061 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2062 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2063 typedef uint32_t elf_ps_strings_t; 2064 #else 2065 typedef prstatus_t elf_prstatus_t; 2066 typedef prpsinfo_t elf_prpsinfo_t; 2067 typedef prfpregset_t elf_prfpregset_t; 2068 typedef prfpregset_t elf_fpregset_t; 2069 typedef gregset_t elf_gregset_t; 2070 typedef thrmisc_t elf_thrmisc_t; 2071 #define ELF_KERN_PROC_MASK 0 2072 typedef struct kinfo_proc elf_kinfo_proc_t; 2073 typedef vm_offset_t elf_ps_strings_t; 2074 #endif 2075 2076 static void 2077 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2078 { 2079 struct sbuf sbarg; 2080 size_t len; 2081 char *cp, *end; 2082 struct proc *p; 2083 elf_prpsinfo_t *psinfo; 2084 int error; 2085 2086 p = (struct proc *)arg; 2087 if (sb != NULL) { 2088 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2089 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2090 psinfo->pr_version = PRPSINFO_VERSION; 2091 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2092 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2093 PROC_LOCK(p); 2094 if (p->p_args != NULL) { 2095 len = sizeof(psinfo->pr_psargs) - 1; 2096 if (len > p->p_args->ar_length) 2097 len = p->p_args->ar_length; 2098 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2099 PROC_UNLOCK(p); 2100 error = 0; 2101 } else { 2102 _PHOLD(p); 2103 PROC_UNLOCK(p); 2104 sbuf_new(&sbarg, psinfo->pr_psargs, 2105 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2106 error = proc_getargv(curthread, p, &sbarg); 2107 PRELE(p); 2108 if (sbuf_finish(&sbarg) == 0) 2109 len = sbuf_len(&sbarg) - 1; 2110 else 2111 len = sizeof(psinfo->pr_psargs) - 1; 2112 sbuf_delete(&sbarg); 2113 } 2114 if (error || len == 0) 2115 strlcpy(psinfo->pr_psargs, p->p_comm, 2116 sizeof(psinfo->pr_psargs)); 2117 else { 2118 KASSERT(len < sizeof(psinfo->pr_psargs), 2119 ("len is too long: %zu vs %zu", len, 2120 sizeof(psinfo->pr_psargs))); 2121 cp = psinfo->pr_psargs; 2122 end = cp + len - 1; 2123 for (;;) { 2124 cp = memchr(cp, '\0', end - cp); 2125 if (cp == NULL) 2126 break; 2127 *cp = ' '; 2128 } 2129 } 2130 psinfo->pr_pid = p->p_pid; 2131 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2132 free(psinfo, M_TEMP); 2133 } 2134 *sizep = sizeof(*psinfo); 2135 } 2136 2137 static void 2138 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2139 { 2140 struct thread *td; 2141 elf_prstatus_t *status; 2142 2143 td = (struct thread *)arg; 2144 if (sb != NULL) { 2145 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2146 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2147 status->pr_version = PRSTATUS_VERSION; 2148 status->pr_statussz = sizeof(elf_prstatus_t); 2149 status->pr_gregsetsz = sizeof(elf_gregset_t); 2150 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2151 status->pr_osreldate = osreldate; 2152 status->pr_cursig = td->td_proc->p_sig; 2153 status->pr_pid = td->td_tid; 2154 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2155 fill_regs32(td, &status->pr_reg); 2156 #else 2157 fill_regs(td, &status->pr_reg); 2158 #endif 2159 sbuf_bcat(sb, status, sizeof(*status)); 2160 free(status, M_TEMP); 2161 } 2162 *sizep = sizeof(*status); 2163 } 2164 2165 static void 2166 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2167 { 2168 struct thread *td; 2169 elf_prfpregset_t *fpregset; 2170 2171 td = (struct thread *)arg; 2172 if (sb != NULL) { 2173 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2174 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2175 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2176 fill_fpregs32(td, fpregset); 2177 #else 2178 fill_fpregs(td, fpregset); 2179 #endif 2180 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2181 free(fpregset, M_TEMP); 2182 } 2183 *sizep = sizeof(*fpregset); 2184 } 2185 2186 static void 2187 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2188 { 2189 struct thread *td; 2190 elf_thrmisc_t thrmisc; 2191 2192 td = (struct thread *)arg; 2193 if (sb != NULL) { 2194 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2195 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2196 strcpy(thrmisc.pr_tname, td->td_name); 2197 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2198 } 2199 *sizep = sizeof(thrmisc); 2200 } 2201 2202 static void 2203 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2204 { 2205 struct thread *td; 2206 size_t size; 2207 int structsize; 2208 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2209 struct ptrace_lwpinfo32 pl; 2210 #else 2211 struct ptrace_lwpinfo pl; 2212 #endif 2213 2214 td = (struct thread *)arg; 2215 size = sizeof(structsize) + sizeof(pl); 2216 if (sb != NULL) { 2217 KASSERT(*sizep == size, ("invalid size")); 2218 structsize = sizeof(pl); 2219 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2220 bzero(&pl, sizeof(pl)); 2221 pl.pl_lwpid = td->td_tid; 2222 pl.pl_event = PL_EVENT_NONE; 2223 pl.pl_sigmask = td->td_sigmask; 2224 pl.pl_siglist = td->td_siglist; 2225 if (td->td_si.si_signo != 0) { 2226 pl.pl_event = PL_EVENT_SIGNAL; 2227 pl.pl_flags |= PL_FLAG_SI; 2228 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2229 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2230 #else 2231 pl.pl_siginfo = td->td_si; 2232 #endif 2233 } 2234 strcpy(pl.pl_tdname, td->td_name); 2235 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2236 sbuf_bcat(sb, &pl, sizeof(pl)); 2237 } 2238 *sizep = size; 2239 } 2240 2241 /* 2242 * Allow for MD specific notes, as well as any MD 2243 * specific preparations for writing MI notes. 2244 */ 2245 static void 2246 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2247 { 2248 struct thread *td; 2249 void *buf; 2250 size_t size; 2251 2252 td = (struct thread *)arg; 2253 size = *sizep; 2254 if (size != 0 && sb != NULL) 2255 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2256 else 2257 buf = NULL; 2258 size = 0; 2259 __elfN(dump_thread)(td, buf, &size); 2260 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2261 if (size != 0 && sb != NULL) 2262 sbuf_bcat(sb, buf, size); 2263 free(buf, M_TEMP); 2264 *sizep = size; 2265 } 2266 2267 #ifdef KINFO_PROC_SIZE 2268 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2269 #endif 2270 2271 static void 2272 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2273 { 2274 struct proc *p; 2275 size_t size; 2276 int structsize; 2277 2278 p = (struct proc *)arg; 2279 size = sizeof(structsize) + p->p_numthreads * 2280 sizeof(elf_kinfo_proc_t); 2281 2282 if (sb != NULL) { 2283 KASSERT(*sizep == size, ("invalid size")); 2284 structsize = sizeof(elf_kinfo_proc_t); 2285 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2286 PROC_LOCK(p); 2287 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2288 } 2289 *sizep = size; 2290 } 2291 2292 #ifdef KINFO_FILE_SIZE 2293 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2294 #endif 2295 2296 static void 2297 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2298 { 2299 struct proc *p; 2300 size_t size, sect_sz, i; 2301 ssize_t start_len, sect_len; 2302 int structsize, filedesc_flags; 2303 2304 if (coredump_pack_fileinfo) 2305 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2306 else 2307 filedesc_flags = 0; 2308 2309 p = (struct proc *)arg; 2310 structsize = sizeof(struct kinfo_file); 2311 if (sb == NULL) { 2312 size = 0; 2313 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2314 sbuf_set_drain(sb, sbuf_drain_count, &size); 2315 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2316 PROC_LOCK(p); 2317 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2318 sbuf_finish(sb); 2319 sbuf_delete(sb); 2320 *sizep = size; 2321 } else { 2322 sbuf_start_section(sb, &start_len); 2323 2324 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2325 PROC_LOCK(p); 2326 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2327 filedesc_flags); 2328 2329 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2330 if (sect_len < 0) 2331 return; 2332 sect_sz = sect_len; 2333 2334 KASSERT(sect_sz <= *sizep, 2335 ("kern_proc_filedesc_out did not respect maxlen; " 2336 "requested %zu, got %zu", *sizep - sizeof(structsize), 2337 sect_sz - sizeof(structsize))); 2338 2339 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2340 sbuf_putc(sb, 0); 2341 } 2342 } 2343 2344 #ifdef KINFO_VMENTRY_SIZE 2345 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2346 #endif 2347 2348 static void 2349 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2350 { 2351 struct proc *p; 2352 size_t size; 2353 int structsize, vmmap_flags; 2354 2355 if (coredump_pack_vmmapinfo) 2356 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2357 else 2358 vmmap_flags = 0; 2359 2360 p = (struct proc *)arg; 2361 structsize = sizeof(struct kinfo_vmentry); 2362 if (sb == NULL) { 2363 size = 0; 2364 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2365 sbuf_set_drain(sb, sbuf_drain_count, &size); 2366 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2367 PROC_LOCK(p); 2368 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2369 sbuf_finish(sb); 2370 sbuf_delete(sb); 2371 *sizep = size; 2372 } else { 2373 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2374 PROC_LOCK(p); 2375 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2376 vmmap_flags); 2377 } 2378 } 2379 2380 static void 2381 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2382 { 2383 struct proc *p; 2384 size_t size; 2385 int structsize; 2386 2387 p = (struct proc *)arg; 2388 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2389 if (sb != NULL) { 2390 KASSERT(*sizep == size, ("invalid size")); 2391 structsize = sizeof(gid_t); 2392 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2393 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2394 sizeof(gid_t)); 2395 } 2396 *sizep = size; 2397 } 2398 2399 static void 2400 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2401 { 2402 struct proc *p; 2403 size_t size; 2404 int structsize; 2405 2406 p = (struct proc *)arg; 2407 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2408 if (sb != NULL) { 2409 KASSERT(*sizep == size, ("invalid size")); 2410 structsize = sizeof(p->p_fd->fd_cmask); 2411 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2412 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2413 } 2414 *sizep = size; 2415 } 2416 2417 static void 2418 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2419 { 2420 struct proc *p; 2421 struct rlimit rlim[RLIM_NLIMITS]; 2422 size_t size; 2423 int structsize, i; 2424 2425 p = (struct proc *)arg; 2426 size = sizeof(structsize) + sizeof(rlim); 2427 if (sb != NULL) { 2428 KASSERT(*sizep == size, ("invalid size")); 2429 structsize = sizeof(rlim); 2430 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2431 PROC_LOCK(p); 2432 for (i = 0; i < RLIM_NLIMITS; i++) 2433 lim_rlimit_proc(p, i, &rlim[i]); 2434 PROC_UNLOCK(p); 2435 sbuf_bcat(sb, rlim, sizeof(rlim)); 2436 } 2437 *sizep = size; 2438 } 2439 2440 static void 2441 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2442 { 2443 struct proc *p; 2444 size_t size; 2445 int structsize; 2446 2447 p = (struct proc *)arg; 2448 size = sizeof(structsize) + sizeof(p->p_osrel); 2449 if (sb != NULL) { 2450 KASSERT(*sizep == size, ("invalid size")); 2451 structsize = sizeof(p->p_osrel); 2452 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2453 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2454 } 2455 *sizep = size; 2456 } 2457 2458 static void 2459 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2460 { 2461 struct proc *p; 2462 elf_ps_strings_t ps_strings; 2463 size_t size; 2464 int structsize; 2465 2466 p = (struct proc *)arg; 2467 size = sizeof(structsize) + sizeof(ps_strings); 2468 if (sb != NULL) { 2469 KASSERT(*sizep == size, ("invalid size")); 2470 structsize = sizeof(ps_strings); 2471 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2472 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2473 #else 2474 ps_strings = p->p_sysent->sv_psstrings; 2475 #endif 2476 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2477 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2478 } 2479 *sizep = size; 2480 } 2481 2482 static void 2483 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2484 { 2485 struct proc *p; 2486 size_t size; 2487 int structsize; 2488 2489 p = (struct proc *)arg; 2490 if (sb == NULL) { 2491 size = 0; 2492 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2493 sbuf_set_drain(sb, sbuf_drain_count, &size); 2494 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2495 PHOLD(p); 2496 proc_getauxv(curthread, p, sb); 2497 PRELE(p); 2498 sbuf_finish(sb); 2499 sbuf_delete(sb); 2500 *sizep = size; 2501 } else { 2502 structsize = sizeof(Elf_Auxinfo); 2503 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2504 PHOLD(p); 2505 proc_getauxv(curthread, p, sb); 2506 PRELE(p); 2507 } 2508 } 2509 2510 static boolean_t 2511 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2512 const char *note_vendor, const Elf_Phdr *pnote, 2513 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2514 { 2515 const Elf_Note *note, *note0, *note_end; 2516 const char *note_name; 2517 char *buf; 2518 int i, error; 2519 boolean_t res; 2520 2521 /* We need some limit, might as well use PAGE_SIZE. */ 2522 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2523 return (FALSE); 2524 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2525 if (pnote->p_offset > PAGE_SIZE || 2526 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2527 VOP_UNLOCK(imgp->vp, 0); 2528 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2529 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2530 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2531 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2532 curthread->td_ucred, NOCRED, NULL, curthread); 2533 if (error != 0) { 2534 uprintf("i/o error PT_NOTE\n"); 2535 goto retf; 2536 } 2537 note = note0 = (const Elf_Note *)buf; 2538 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2539 } else { 2540 note = note0 = (const Elf_Note *)(imgp->image_header + 2541 pnote->p_offset); 2542 note_end = (const Elf_Note *)(imgp->image_header + 2543 pnote->p_offset + pnote->p_filesz); 2544 buf = NULL; 2545 } 2546 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2547 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2548 (const char *)note < sizeof(Elf_Note)) { 2549 goto retf; 2550 } 2551 if (note->n_namesz != checknote->n_namesz || 2552 note->n_descsz != checknote->n_descsz || 2553 note->n_type != checknote->n_type) 2554 goto nextnote; 2555 note_name = (const char *)(note + 1); 2556 if (note_name + checknote->n_namesz >= 2557 (const char *)note_end || strncmp(note_vendor, 2558 note_name, checknote->n_namesz) != 0) 2559 goto nextnote; 2560 2561 if (cb(note, cb_arg, &res)) 2562 goto ret; 2563 nextnote: 2564 note = (const Elf_Note *)((const char *)(note + 1) + 2565 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2566 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2567 } 2568 retf: 2569 res = FALSE; 2570 ret: 2571 free(buf, M_TEMP); 2572 return (res); 2573 } 2574 2575 struct brandnote_cb_arg { 2576 Elf_Brandnote *brandnote; 2577 int32_t *osrel; 2578 }; 2579 2580 static boolean_t 2581 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2582 { 2583 struct brandnote_cb_arg *arg; 2584 2585 arg = arg0; 2586 2587 /* 2588 * Fetch the osreldate for binary from the ELF OSABI-note if 2589 * necessary. 2590 */ 2591 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2592 arg->brandnote->trans_osrel != NULL ? 2593 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2594 2595 return (TRUE); 2596 } 2597 2598 static Elf_Note fctl_note = { 2599 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2600 .n_descsz = sizeof(uint32_t), 2601 .n_type = NT_FREEBSD_FEATURE_CTL, 2602 }; 2603 2604 struct fctl_cb_arg { 2605 uint32_t *fctl0; 2606 }; 2607 2608 static boolean_t 2609 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2610 { 2611 struct fctl_cb_arg *arg; 2612 const Elf32_Word *desc; 2613 uintptr_t p; 2614 2615 arg = arg0; 2616 p = (uintptr_t)(note + 1); 2617 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2618 desc = (const Elf32_Word *)p; 2619 *arg->fctl0 = desc[0]; 2620 return (TRUE); 2621 } 2622 2623 /* 2624 * Try to find the appropriate ABI-note section for checknote, fetch 2625 * the osreldate and feature control flags for binary from the ELF 2626 * OSABI-note. Only the first page of the image is searched, the same 2627 * as for headers. 2628 */ 2629 static boolean_t 2630 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2631 int32_t *osrel, uint32_t *fctl0) 2632 { 2633 const Elf_Phdr *phdr; 2634 const Elf_Ehdr *hdr; 2635 struct brandnote_cb_arg b_arg; 2636 struct fctl_cb_arg f_arg; 2637 int i, j; 2638 2639 hdr = (const Elf_Ehdr *)imgp->image_header; 2640 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2641 b_arg.brandnote = brandnote; 2642 b_arg.osrel = osrel; 2643 f_arg.fctl0 = fctl0; 2644 2645 for (i = 0; i < hdr->e_phnum; i++) { 2646 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2647 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2648 &b_arg)) { 2649 for (j = 0; j < hdr->e_phnum; j++) { 2650 if (phdr[j].p_type == PT_NOTE && 2651 __elfN(parse_notes)(imgp, &fctl_note, 2652 FREEBSD_ABI_VENDOR, &phdr[j], 2653 note_fctl_cb, &f_arg)) 2654 break; 2655 } 2656 return (TRUE); 2657 } 2658 } 2659 return (FALSE); 2660 2661 } 2662 2663 /* 2664 * Tell kern_execve.c about it, with a little help from the linker. 2665 */ 2666 static struct execsw __elfN(execsw) = { 2667 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2668 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2669 }; 2670 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2671 2672 static vm_prot_t 2673 __elfN(trans_prot)(Elf_Word flags) 2674 { 2675 vm_prot_t prot; 2676 2677 prot = 0; 2678 if (flags & PF_X) 2679 prot |= VM_PROT_EXECUTE; 2680 if (flags & PF_W) 2681 prot |= VM_PROT_WRITE; 2682 if (flags & PF_R) 2683 prot |= VM_PROT_READ; 2684 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2685 if (i386_read_exec && (flags & PF_R)) 2686 prot |= VM_PROT_EXECUTE; 2687 #endif 2688 return (prot); 2689 } 2690 2691 static Elf_Word 2692 __elfN(untrans_prot)(vm_prot_t prot) 2693 { 2694 Elf_Word flags; 2695 2696 flags = 0; 2697 if (prot & VM_PROT_EXECUTE) 2698 flags |= PF_X; 2699 if (prot & VM_PROT_READ) 2700 flags |= PF_R; 2701 if (prot & VM_PROT_WRITE) 2702 flags |= PF_W; 2703 return (flags); 2704 } 2705