xref: /freebsd/sys/kern/imgact_elf.c (revision 9cdd5c07ad924249d620437d00458c3b6434dbe5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/pioctl.h>
54 #include <sys/proc.h>
55 #include <sys/procfs.h>
56 #include <sys/ptrace.h>
57 #include <sys/racct.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static boolean_t __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0);
102 static vm_prot_t __elfN(trans_prot)(Elf_Word);
103 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104 
105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
106     "");
107 
108 #define	CORE_BUF_SIZE	(16 * 1024)
109 
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114 
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117     &elf_legacy_coredump, 0,
118     "include all and only RW pages in core dumps");
119 
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
123     defined(__riscv)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
131 
132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
133 int i386_read_exec = 0;
134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
135     "enable execution from readable segments");
136 #endif
137 
138 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0,
139     "");
140 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
141 
142 static int __elfN(aslr_enabled) = 0;
143 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
144     &__elfN(aslr_enabled), 0,
145     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
146     ": enable address map randomization");
147 
148 static int __elfN(pie_aslr_enabled) = 0;
149 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
150     &__elfN(pie_aslr_enabled), 0,
151     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
152     ": enable address map randomization for PIE binaries");
153 
154 static int __elfN(aslr_honor_sbrk) = 1;
155 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
156     &__elfN(aslr_honor_sbrk), 0,
157     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
158 
159 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
160 
161 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
162 
163 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
164 
165 Elf_Brandnote __elfN(freebsd_brandnote) = {
166 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
167 	.hdr.n_descsz	= sizeof(int32_t),
168 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
169 	.vendor		= FREEBSD_ABI_VENDOR,
170 	.flags		= BN_TRANSLATE_OSREL,
171 	.trans_osrel	= __elfN(freebsd_trans_osrel)
172 };
173 
174 static bool
175 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
176 {
177 	uintptr_t p;
178 
179 	p = (uintptr_t)(note + 1);
180 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
181 	*osrel = *(const int32_t *)(p);
182 
183 	return (true);
184 }
185 
186 static const char GNU_ABI_VENDOR[] = "GNU";
187 static int GNU_KFREEBSD_ABI_DESC = 3;
188 
189 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
190 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
191 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
192 	.hdr.n_type	= 1,
193 	.vendor		= GNU_ABI_VENDOR,
194 	.flags		= BN_TRANSLATE_OSREL,
195 	.trans_osrel	= kfreebsd_trans_osrel
196 };
197 
198 static bool
199 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
200 {
201 	const Elf32_Word *desc;
202 	uintptr_t p;
203 
204 	p = (uintptr_t)(note + 1);
205 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
206 
207 	desc = (const Elf32_Word *)p;
208 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
209 		return (false);
210 
211 	/*
212 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
213 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
214 	 */
215 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
216 
217 	return (true);
218 }
219 
220 int
221 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
222 {
223 	int i;
224 
225 	for (i = 0; i < MAX_BRANDS; i++) {
226 		if (elf_brand_list[i] == NULL) {
227 			elf_brand_list[i] = entry;
228 			break;
229 		}
230 	}
231 	if (i == MAX_BRANDS) {
232 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
233 			__func__, entry);
234 		return (-1);
235 	}
236 	return (0);
237 }
238 
239 int
240 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
241 {
242 	int i;
243 
244 	for (i = 0; i < MAX_BRANDS; i++) {
245 		if (elf_brand_list[i] == entry) {
246 			elf_brand_list[i] = NULL;
247 			break;
248 		}
249 	}
250 	if (i == MAX_BRANDS)
251 		return (-1);
252 	return (0);
253 }
254 
255 int
256 __elfN(brand_inuse)(Elf_Brandinfo *entry)
257 {
258 	struct proc *p;
259 	int rval = FALSE;
260 
261 	sx_slock(&allproc_lock);
262 	FOREACH_PROC_IN_SYSTEM(p) {
263 		if (p->p_sysent == entry->sysvec) {
264 			rval = TRUE;
265 			break;
266 		}
267 	}
268 	sx_sunlock(&allproc_lock);
269 
270 	return (rval);
271 }
272 
273 static Elf_Brandinfo *
274 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
275     int32_t *osrel, uint32_t *fctl0)
276 {
277 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
278 	Elf_Brandinfo *bi, *bi_m;
279 	boolean_t ret;
280 	int i, interp_name_len;
281 
282 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
283 
284 	/*
285 	 * We support four types of branding -- (1) the ELF EI_OSABI field
286 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
287 	 * branding w/in the ELF header, (3) path of the `interp_path'
288 	 * field, and (4) the ".note.ABI-tag" ELF section.
289 	 */
290 
291 	/* Look for an ".note.ABI-tag" ELF section */
292 	bi_m = NULL;
293 	for (i = 0; i < MAX_BRANDS; i++) {
294 		bi = elf_brand_list[i];
295 		if (bi == NULL)
296 			continue;
297 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
298 			continue;
299 		if (hdr->e_machine == bi->machine && (bi->flags &
300 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
301 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
302 			    fctl0);
303 			/* Give brand a chance to veto check_note's guess */
304 			if (ret && bi->header_supported)
305 				ret = bi->header_supported(imgp);
306 			/*
307 			 * If note checker claimed the binary, but the
308 			 * interpreter path in the image does not
309 			 * match default one for the brand, try to
310 			 * search for other brands with the same
311 			 * interpreter.  Either there is better brand
312 			 * with the right interpreter, or, failing
313 			 * this, we return first brand which accepted
314 			 * our note and, optionally, header.
315 			 */
316 			if (ret && bi_m == NULL && interp != NULL &&
317 			    (bi->interp_path == NULL ||
318 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
319 			    strncmp(interp, bi->interp_path, interp_name_len)
320 			    != 0))) {
321 				bi_m = bi;
322 				ret = 0;
323 			}
324 			if (ret)
325 				return (bi);
326 		}
327 	}
328 	if (bi_m != NULL)
329 		return (bi_m);
330 
331 	/* If the executable has a brand, search for it in the brand list. */
332 	for (i = 0; i < MAX_BRANDS; i++) {
333 		bi = elf_brand_list[i];
334 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
335 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
336 			continue;
337 		if (hdr->e_machine == bi->machine &&
338 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
339 		    (bi->compat_3_brand != NULL &&
340 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
341 		    bi->compat_3_brand) == 0))) {
342 			/* Looks good, but give brand a chance to veto */
343 			if (bi->header_supported == NULL ||
344 			    bi->header_supported(imgp)) {
345 				/*
346 				 * Again, prefer strictly matching
347 				 * interpreter path.
348 				 */
349 				if (interp_name_len == 0 &&
350 				    bi->interp_path == NULL)
351 					return (bi);
352 				if (bi->interp_path != NULL &&
353 				    strlen(bi->interp_path) + 1 ==
354 				    interp_name_len && strncmp(interp,
355 				    bi->interp_path, interp_name_len) == 0)
356 					return (bi);
357 				if (bi_m == NULL)
358 					bi_m = bi;
359 			}
360 		}
361 	}
362 	if (bi_m != NULL)
363 		return (bi_m);
364 
365 	/* No known brand, see if the header is recognized by any brand */
366 	for (i = 0; i < MAX_BRANDS; i++) {
367 		bi = elf_brand_list[i];
368 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
369 		    bi->header_supported == NULL)
370 			continue;
371 		if (hdr->e_machine == bi->machine) {
372 			ret = bi->header_supported(imgp);
373 			if (ret)
374 				return (bi);
375 		}
376 	}
377 
378 	/* Lacking a known brand, search for a recognized interpreter. */
379 	if (interp != NULL) {
380 		for (i = 0; i < MAX_BRANDS; i++) {
381 			bi = elf_brand_list[i];
382 			if (bi == NULL || (bi->flags &
383 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
384 			    != 0)
385 				continue;
386 			if (hdr->e_machine == bi->machine &&
387 			    bi->interp_path != NULL &&
388 			    /* ELF image p_filesz includes terminating zero */
389 			    strlen(bi->interp_path) + 1 == interp_name_len &&
390 			    strncmp(interp, bi->interp_path, interp_name_len)
391 			    == 0 && (bi->header_supported == NULL ||
392 			    bi->header_supported(imgp)))
393 				return (bi);
394 		}
395 	}
396 
397 	/* Lacking a recognized interpreter, try the default brand */
398 	for (i = 0; i < MAX_BRANDS; i++) {
399 		bi = elf_brand_list[i];
400 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
401 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
402 			continue;
403 		if (hdr->e_machine == bi->machine &&
404 		    __elfN(fallback_brand) == bi->brand &&
405 		    (bi->header_supported == NULL ||
406 		    bi->header_supported(imgp)))
407 			return (bi);
408 	}
409 	return (NULL);
410 }
411 
412 static int
413 __elfN(check_header)(const Elf_Ehdr *hdr)
414 {
415 	Elf_Brandinfo *bi;
416 	int i;
417 
418 	if (!IS_ELF(*hdr) ||
419 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
420 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
421 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
422 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
423 	    hdr->e_version != ELF_TARG_VER)
424 		return (ENOEXEC);
425 
426 	/*
427 	 * Make sure we have at least one brand for this machine.
428 	 */
429 
430 	for (i = 0; i < MAX_BRANDS; i++) {
431 		bi = elf_brand_list[i];
432 		if (bi != NULL && bi->machine == hdr->e_machine)
433 			break;
434 	}
435 	if (i == MAX_BRANDS)
436 		return (ENOEXEC);
437 
438 	return (0);
439 }
440 
441 static int
442 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
443     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
444 {
445 	struct sf_buf *sf;
446 	int error;
447 	vm_offset_t off;
448 
449 	/*
450 	 * Create the page if it doesn't exist yet. Ignore errors.
451 	 */
452 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
453 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
454 
455 	/*
456 	 * Find the page from the underlying object.
457 	 */
458 	if (object != NULL) {
459 		sf = vm_imgact_map_page(object, offset);
460 		if (sf == NULL)
461 			return (KERN_FAILURE);
462 		off = offset - trunc_page(offset);
463 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
464 		    end - start);
465 		vm_imgact_unmap_page(sf);
466 		if (error != 0)
467 			return (KERN_FAILURE);
468 	}
469 
470 	return (KERN_SUCCESS);
471 }
472 
473 static int
474 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
475     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
476     int cow)
477 {
478 	struct sf_buf *sf;
479 	vm_offset_t off;
480 	vm_size_t sz;
481 	int error, locked, rv;
482 
483 	if (start != trunc_page(start)) {
484 		rv = __elfN(map_partial)(map, object, offset, start,
485 		    round_page(start), prot);
486 		if (rv != KERN_SUCCESS)
487 			return (rv);
488 		offset += round_page(start) - start;
489 		start = round_page(start);
490 	}
491 	if (end != round_page(end)) {
492 		rv = __elfN(map_partial)(map, object, offset +
493 		    trunc_page(end) - start, trunc_page(end), end, prot);
494 		if (rv != KERN_SUCCESS)
495 			return (rv);
496 		end = trunc_page(end);
497 	}
498 	if (start >= end)
499 		return (KERN_SUCCESS);
500 	if ((offset & PAGE_MASK) != 0) {
501 		/*
502 		 * The mapping is not page aligned.  This means that we have
503 		 * to copy the data.
504 		 */
505 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
506 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
507 		if (rv != KERN_SUCCESS)
508 			return (rv);
509 		if (object == NULL)
510 			return (KERN_SUCCESS);
511 		for (; start < end; start += sz) {
512 			sf = vm_imgact_map_page(object, offset);
513 			if (sf == NULL)
514 				return (KERN_FAILURE);
515 			off = offset - trunc_page(offset);
516 			sz = end - start;
517 			if (sz > PAGE_SIZE - off)
518 				sz = PAGE_SIZE - off;
519 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
520 			    (caddr_t)start, sz);
521 			vm_imgact_unmap_page(sf);
522 			if (error != 0)
523 				return (KERN_FAILURE);
524 			offset += sz;
525 		}
526 	} else {
527 		vm_object_reference(object);
528 		rv = vm_map_fixed(map, object, offset, start, end - start,
529 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL);
530 		if (rv != KERN_SUCCESS) {
531 			locked = VOP_ISLOCKED(imgp->vp);
532 			VOP_UNLOCK(imgp->vp, 0);
533 			vm_object_deallocate(object);
534 			vn_lock(imgp->vp, locked | LK_RETRY);
535 			return (rv);
536 		}
537 	}
538 	return (KERN_SUCCESS);
539 }
540 
541 static int
542 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
543     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
544 {
545 	struct sf_buf *sf;
546 	size_t map_len;
547 	vm_map_t map;
548 	vm_object_t object;
549 	vm_offset_t off, map_addr;
550 	int error, rv, cow;
551 	size_t copy_len;
552 	vm_ooffset_t file_addr;
553 
554 	/*
555 	 * It's necessary to fail if the filsz + offset taken from the
556 	 * header is greater than the actual file pager object's size.
557 	 * If we were to allow this, then the vm_map_find() below would
558 	 * walk right off the end of the file object and into the ether.
559 	 *
560 	 * While I'm here, might as well check for something else that
561 	 * is invalid: filsz cannot be greater than memsz.
562 	 */
563 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
564 	    filsz > memsz) {
565 		uprintf("elf_load_section: truncated ELF file\n");
566 		return (ENOEXEC);
567 	}
568 
569 	object = imgp->object;
570 	map = &imgp->proc->p_vmspace->vm_map;
571 	map_addr = trunc_page((vm_offset_t)vmaddr);
572 	file_addr = trunc_page(offset);
573 
574 	/*
575 	 * We have two choices.  We can either clear the data in the last page
576 	 * of an oversized mapping, or we can start the anon mapping a page
577 	 * early and copy the initialized data into that first page.  We
578 	 * choose the second.
579 	 */
580 	if (filsz == 0)
581 		map_len = 0;
582 	else if (memsz > filsz)
583 		map_len = trunc_page(offset + filsz) - file_addr;
584 	else
585 		map_len = round_page(offset + filsz) - file_addr;
586 
587 	if (map_len != 0) {
588 		/* cow flags: don't dump readonly sections in core */
589 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
590 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
591 
592 		rv = __elfN(map_insert)(imgp, map,
593 				      object,
594 				      file_addr,	/* file offset */
595 				      map_addr,		/* virtual start */
596 				      map_addr + map_len,/* virtual end */
597 				      prot,
598 				      cow);
599 		if (rv != KERN_SUCCESS)
600 			return (EINVAL);
601 
602 		/* we can stop now if we've covered it all */
603 		if (memsz == filsz)
604 			return (0);
605 	}
606 
607 
608 	/*
609 	 * We have to get the remaining bit of the file into the first part
610 	 * of the oversized map segment.  This is normally because the .data
611 	 * segment in the file is extended to provide bss.  It's a neat idea
612 	 * to try and save a page, but it's a pain in the behind to implement.
613 	 */
614 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
615 	    filsz);
616 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
617 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
618 
619 	/* This had damn well better be true! */
620 	if (map_len != 0) {
621 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
622 		    map_addr + map_len, prot, 0);
623 		if (rv != KERN_SUCCESS)
624 			return (EINVAL);
625 	}
626 
627 	if (copy_len != 0) {
628 		sf = vm_imgact_map_page(object, offset + filsz);
629 		if (sf == NULL)
630 			return (EIO);
631 
632 		/* send the page fragment to user space */
633 		off = trunc_page(offset + filsz) - trunc_page(offset + filsz);
634 		error = copyout((caddr_t)sf_buf_kva(sf) + off,
635 		    (caddr_t)map_addr, copy_len);
636 		vm_imgact_unmap_page(sf);
637 		if (error != 0)
638 			return (error);
639 	}
640 
641 	/*
642 	 * Remove write access to the page if it was only granted by map_insert
643 	 * to allow copyout.
644 	 */
645 	if ((prot & VM_PROT_WRITE) == 0)
646 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
647 		    map_len), prot, FALSE);
648 
649 	return (0);
650 }
651 
652 /*
653  * Load the file "file" into memory.  It may be either a shared object
654  * or an executable.
655  *
656  * The "addr" reference parameter is in/out.  On entry, it specifies
657  * the address where a shared object should be loaded.  If the file is
658  * an executable, this value is ignored.  On exit, "addr" specifies
659  * where the file was actually loaded.
660  *
661  * The "entry" reference parameter is out only.  On exit, it specifies
662  * the entry point for the loaded file.
663  */
664 static int
665 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
666 	u_long *entry)
667 {
668 	struct {
669 		struct nameidata nd;
670 		struct vattr attr;
671 		struct image_params image_params;
672 	} *tempdata;
673 	const Elf_Ehdr *hdr = NULL;
674 	const Elf_Phdr *phdr = NULL;
675 	struct nameidata *nd;
676 	struct vattr *attr;
677 	struct image_params *imgp;
678 	vm_prot_t prot;
679 	u_long rbase;
680 	u_long base_addr = 0;
681 	int error, i, numsegs;
682 
683 #ifdef CAPABILITY_MODE
684 	/*
685 	 * XXXJA: This check can go away once we are sufficiently confident
686 	 * that the checks in namei() are correct.
687 	 */
688 	if (IN_CAPABILITY_MODE(curthread))
689 		return (ECAPMODE);
690 #endif
691 
692 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
693 	nd = &tempdata->nd;
694 	attr = &tempdata->attr;
695 	imgp = &tempdata->image_params;
696 
697 	/*
698 	 * Initialize part of the common data
699 	 */
700 	imgp->proc = p;
701 	imgp->attr = attr;
702 	imgp->firstpage = NULL;
703 	imgp->image_header = NULL;
704 	imgp->object = NULL;
705 	imgp->execlabel = NULL;
706 
707 	NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread);
708 	if ((error = namei(nd)) != 0) {
709 		nd->ni_vp = NULL;
710 		goto fail;
711 	}
712 	NDFREE(nd, NDF_ONLY_PNBUF);
713 	imgp->vp = nd->ni_vp;
714 
715 	/*
716 	 * Check permissions, modes, uid, etc on the file, and "open" it.
717 	 */
718 	error = exec_check_permissions(imgp);
719 	if (error)
720 		goto fail;
721 
722 	error = exec_map_first_page(imgp);
723 	if (error)
724 		goto fail;
725 
726 	/*
727 	 * Also make certain that the interpreter stays the same, so set
728 	 * its VV_TEXT flag, too.
729 	 */
730 	VOP_SET_TEXT(nd->ni_vp);
731 
732 	imgp->object = nd->ni_vp->v_object;
733 
734 	hdr = (const Elf_Ehdr *)imgp->image_header;
735 	if ((error = __elfN(check_header)(hdr)) != 0)
736 		goto fail;
737 	if (hdr->e_type == ET_DYN)
738 		rbase = *addr;
739 	else if (hdr->e_type == ET_EXEC)
740 		rbase = 0;
741 	else {
742 		error = ENOEXEC;
743 		goto fail;
744 	}
745 
746 	/* Only support headers that fit within first page for now      */
747 	if ((hdr->e_phoff > PAGE_SIZE) ||
748 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
749 		error = ENOEXEC;
750 		goto fail;
751 	}
752 
753 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
754 	if (!aligned(phdr, Elf_Addr)) {
755 		error = ENOEXEC;
756 		goto fail;
757 	}
758 
759 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
760 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
761 			/* Loadable segment */
762 			prot = __elfN(trans_prot)(phdr[i].p_flags);
763 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
764 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
765 			    phdr[i].p_memsz, phdr[i].p_filesz, prot);
766 			if (error != 0)
767 				goto fail;
768 			/*
769 			 * Establish the base address if this is the
770 			 * first segment.
771 			 */
772 			if (numsegs == 0)
773   				base_addr = trunc_page(phdr[i].p_vaddr +
774 				    rbase);
775 			numsegs++;
776 		}
777 	}
778 	*addr = base_addr;
779 	*entry = (unsigned long)hdr->e_entry + rbase;
780 
781 fail:
782 	if (imgp->firstpage)
783 		exec_unmap_first_page(imgp);
784 
785 	if (nd->ni_vp)
786 		vput(nd->ni_vp);
787 
788 	free(tempdata, M_TEMP);
789 
790 	return (error);
791 }
792 
793 static u_long
794 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv,
795     u_int align)
796 {
797 	u_long rbase, res;
798 
799 	MPASS(vm_map_min(map) <= minv);
800 	MPASS(maxv <= vm_map_max(map));
801 	MPASS(minv < maxv);
802 	MPASS(minv + align < maxv);
803 	arc4rand(&rbase, sizeof(rbase), 0);
804 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
805 	res &= ~((u_long)align - 1);
806 	if (res >= maxv)
807 		res -= align;
808 	KASSERT(res >= minv,
809 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
810 	    res, minv, maxv, rbase));
811 	KASSERT(res < maxv,
812 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
813 	    res, maxv, minv, rbase));
814 	return (res);
815 }
816 
817 static int
818 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
819     const Elf_Phdr *phdr, u_long et_dyn_addr)
820 {
821 	struct vmspace *vmspace;
822 	const char *err_str;
823 	u_long text_size, data_size, total_size, text_addr, data_addr;
824 	u_long seg_size, seg_addr;
825 	int i;
826 
827 	err_str = NULL;
828 	text_size = data_size = total_size = text_addr = data_addr = 0;
829 
830 	for (i = 0; i < hdr->e_phnum; i++) {
831 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
832 			continue;
833 
834 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
835 		seg_size = round_page(phdr[i].p_memsz +
836 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
837 
838 		/*
839 		 * Make the largest executable segment the official
840 		 * text segment and all others data.
841 		 *
842 		 * Note that obreak() assumes that data_addr + data_size == end
843 		 * of data load area, and the ELF file format expects segments
844 		 * to be sorted by address.  If multiple data segments exist,
845 		 * the last one will be used.
846 		 */
847 
848 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
849 			text_size = seg_size;
850 			text_addr = seg_addr;
851 		} else {
852 			data_size = seg_size;
853 			data_addr = seg_addr;
854 		}
855 		total_size += seg_size;
856 	}
857 
858 	if (data_addr == 0 && data_size == 0) {
859 		data_addr = text_addr;
860 		data_size = text_size;
861 	}
862 
863 	/*
864 	 * Check limits.  It should be safe to check the
865 	 * limits after loading the segments since we do
866 	 * not actually fault in all the segments pages.
867 	 */
868 	PROC_LOCK(imgp->proc);
869 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
870 		err_str = "Data segment size exceeds process limit";
871 	else if (text_size > maxtsiz)
872 		err_str = "Text segment size exceeds system limit";
873 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
874 		err_str = "Total segment size exceeds process limit";
875 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
876 		err_str = "Data segment size exceeds resource limit";
877 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
878 		err_str = "Total segment size exceeds resource limit";
879 	PROC_UNLOCK(imgp->proc);
880 	if (err_str != NULL) {
881 		uprintf("%s\n", err_str);
882 		return (ENOMEM);
883 	}
884 
885 	vmspace = imgp->proc->p_vmspace;
886 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
887 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
888 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
889 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
890 
891 	return (0);
892 }
893 
894 static int
895 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
896     char **interpp, bool *free_interpp)
897 {
898 	struct thread *td;
899 	char *interp;
900 	int error, interp_name_len;
901 
902 	KASSERT(phdr->p_type == PT_INTERP,
903 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
904 	KASSERT(VOP_ISLOCKED(imgp->vp),
905 	    ("%s: vp %p is not locked", __func__, imgp->vp));
906 
907 	td = curthread;
908 
909 	/* Path to interpreter */
910 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
911 		uprintf("Invalid PT_INTERP\n");
912 		return (ENOEXEC);
913 	}
914 
915 	interp_name_len = phdr->p_filesz;
916 	if (phdr->p_offset > PAGE_SIZE ||
917 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
918 		VOP_UNLOCK(imgp->vp, 0);
919 		interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
920 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
921 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
922 		    interp_name_len, phdr->p_offset,
923 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
924 		    NOCRED, NULL, td);
925 		if (error != 0) {
926 			free(interp, M_TEMP);
927 			uprintf("i/o error PT_INTERP %d\n", error);
928 			return (error);
929 		}
930 		interp[interp_name_len] = '\0';
931 
932 		*interpp = interp;
933 		*free_interpp = true;
934 		return (0);
935 	}
936 
937 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
938 	if (interp[interp_name_len - 1] != '\0') {
939 		uprintf("Invalid PT_INTERP\n");
940 		return (ENOEXEC);
941 	}
942 
943 	*interpp = interp;
944 	*free_interpp = false;
945 	return (0);
946 }
947 
948 /*
949  * Impossible et_dyn_addr initial value indicating that the real base
950  * must be calculated later with some randomization applied.
951  */
952 #define	ET_DYN_ADDR_RAND	1
953 
954 static int
955 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
956 {
957 	struct thread *td;
958 	const Elf_Ehdr *hdr;
959 	const Elf_Phdr *phdr;
960 	Elf_Auxargs *elf_auxargs;
961 	struct vmspace *vmspace;
962 	vm_map_t map;
963 	const char *newinterp;
964 	char *interp, *path;
965 	Elf_Brandinfo *brand_info;
966 	struct sysentvec *sv;
967 	vm_prot_t prot;
968 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
969 	u_long maxalign, mapsz, maxv, maxv1;
970 	uint32_t fctl0;
971 	int32_t osrel;
972 	bool free_interp;
973 	int error, i, n, have_interp;
974 
975 	hdr = (const Elf_Ehdr *)imgp->image_header;
976 
977 	/*
978 	 * Do we have a valid ELF header ?
979 	 *
980 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
981 	 * if particular brand doesn't support it.
982 	 */
983 	if (__elfN(check_header)(hdr) != 0 ||
984 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
985 		return (-1);
986 
987 	/*
988 	 * From here on down, we return an errno, not -1, as we've
989 	 * detected an ELF file.
990 	 */
991 
992 	if ((hdr->e_phoff > PAGE_SIZE) ||
993 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
994 		/* Only support headers in first page for now */
995 		uprintf("Program headers not in the first page\n");
996 		return (ENOEXEC);
997 	}
998 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
999 	if (!aligned(phdr, Elf_Addr)) {
1000 		uprintf("Unaligned program headers\n");
1001 		return (ENOEXEC);
1002 	}
1003 
1004 	n = error = 0;
1005 	baddr = 0;
1006 	osrel = 0;
1007 	fctl0 = 0;
1008 	entry = proghdr = 0;
1009 	newinterp = interp = NULL;
1010 	free_interp = false;
1011 	td = curthread;
1012 	maxalign = PAGE_SIZE;
1013 	mapsz = 0;
1014 
1015 	for (i = 0; i < hdr->e_phnum; i++) {
1016 		switch (phdr[i].p_type) {
1017 		case PT_LOAD:
1018 			if (n == 0)
1019 				baddr = phdr[i].p_vaddr;
1020 			if (phdr[i].p_align > maxalign)
1021 				maxalign = phdr[i].p_align;
1022 			mapsz += phdr[i].p_memsz;
1023 			n++;
1024 			break;
1025 		case PT_INTERP:
1026 			/* Path to interpreter */
1027 			if (interp != NULL) {
1028 				uprintf("Multiple PT_INTERP headers\n");
1029 				error = ENOEXEC;
1030 				goto ret;
1031 			}
1032 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1033 			    &free_interp);
1034 			if (error != 0)
1035 				goto ret;
1036 			break;
1037 		case PT_GNU_STACK:
1038 			if (__elfN(nxstack))
1039 				imgp->stack_prot =
1040 				    __elfN(trans_prot)(phdr[i].p_flags);
1041 			imgp->stack_sz = phdr[i].p_memsz;
1042 			break;
1043 		}
1044 	}
1045 
1046 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1047 	if (brand_info == NULL) {
1048 		uprintf("ELF binary type \"%u\" not known.\n",
1049 		    hdr->e_ident[EI_OSABI]);
1050 		error = ENOEXEC;
1051 		goto ret;
1052 	}
1053 	sv = brand_info->sysvec;
1054 	et_dyn_addr = 0;
1055 	if (hdr->e_type == ET_DYN) {
1056 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1057 			uprintf("Cannot execute shared object\n");
1058 			error = ENOEXEC;
1059 			goto ret;
1060 		}
1061 		/*
1062 		 * Honour the base load address from the dso if it is
1063 		 * non-zero for some reason.
1064 		 */
1065 		if (baddr == 0) {
1066 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1067 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1068 				et_dyn_addr = ET_DYN_LOAD_ADDR;
1069 			else if ((__elfN(pie_aslr_enabled) &&
1070 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1071 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1072 				et_dyn_addr = ET_DYN_ADDR_RAND;
1073 			else
1074 				et_dyn_addr = ET_DYN_LOAD_ADDR;
1075 		}
1076 	}
1077 	if (interp != NULL && brand_info->interp_newpath != NULL)
1078 		newinterp = brand_info->interp_newpath;
1079 
1080 	/*
1081 	 * Avoid a possible deadlock if the current address space is destroyed
1082 	 * and that address space maps the locked vnode.  In the common case,
1083 	 * the locked vnode's v_usecount is decremented but remains greater
1084 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1085 	 * However, in cases where the vnode lock is external, such as nullfs,
1086 	 * v_usecount may become zero.
1087 	 *
1088 	 * The VV_TEXT flag prevents modifications to the executable while
1089 	 * the vnode is unlocked.
1090 	 */
1091 	VOP_UNLOCK(imgp->vp, 0);
1092 
1093 	/*
1094 	 * Decide whether to enable randomization of user mappings.
1095 	 * First, reset user preferences for the setid binaries.
1096 	 * Then, account for the support of the randomization by the
1097 	 * ABI, by user preferences, and make special treatment for
1098 	 * PIE binaries.
1099 	 */
1100 	if (imgp->credential_setid) {
1101 		PROC_LOCK(imgp->proc);
1102 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
1103 		PROC_UNLOCK(imgp->proc);
1104 	}
1105 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1106 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1107 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1108 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1109 		    ("et_dyn_addr == RAND and !ASLR"));
1110 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1111 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1112 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1113 		imgp->map_flags |= MAP_ASLR;
1114 		/*
1115 		 * If user does not care about sbrk, utilize the bss
1116 		 * grow region for mappings as well.  We can select
1117 		 * the base for the image anywere and still not suffer
1118 		 * from the fragmentation.
1119 		 */
1120 		if (!__elfN(aslr_honor_sbrk) ||
1121 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1122 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1123 	}
1124 
1125 	error = exec_new_vmspace(imgp, sv);
1126 	vmspace = imgp->proc->p_vmspace;
1127 	map = &vmspace->vm_map;
1128 
1129 	imgp->proc->p_sysent = sv;
1130 
1131 	maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK);
1132 	if (et_dyn_addr == ET_DYN_ADDR_RAND) {
1133 		KASSERT((map->flags & MAP_ASLR) != 0,
1134 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1135 		et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map,
1136 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1137 		    /* reserve half of the address space to interpreter */
1138 		    maxv / 2, 1UL << flsl(maxalign));
1139 	}
1140 
1141 	vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
1142 	if (error != 0)
1143 		goto ret;
1144 
1145 	for (i = 0; i < hdr->e_phnum; i++) {
1146 		switch (phdr[i].p_type) {
1147 		case PT_LOAD:	/* Loadable segment */
1148 			if (phdr[i].p_memsz == 0)
1149 				break;
1150 			prot = __elfN(trans_prot)(phdr[i].p_flags);
1151 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
1152 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr,
1153 			    phdr[i].p_memsz, phdr[i].p_filesz, prot);
1154 			if (error != 0)
1155 				goto ret;
1156 
1157 			/*
1158 			 * If this segment contains the program headers,
1159 			 * remember their virtual address for the AT_PHDR
1160 			 * aux entry. Static binaries don't usually include
1161 			 * a PT_PHDR entry.
1162 			 */
1163 			if (phdr[i].p_offset == 0 &&
1164 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
1165 				<= phdr[i].p_filesz)
1166 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
1167 				    et_dyn_addr;
1168 			break;
1169 		case PT_PHDR: 	/* Program header table info */
1170 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
1171 			break;
1172 		default:
1173 			break;
1174 		}
1175 	}
1176 
1177 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1178 	if (error != 0)
1179 		goto ret;
1180 
1181 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1182 
1183 	/*
1184 	 * We load the dynamic linker where a userland call
1185 	 * to mmap(0, ...) would put it.  The rationale behind this
1186 	 * calculation is that it leaves room for the heap to grow to
1187 	 * its maximum allowed size.
1188 	 */
1189 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1190 	    RLIMIT_DATA));
1191 	if ((map->flags & MAP_ASLR) != 0) {
1192 		maxv1 = maxv / 2 + addr / 2;
1193 		MPASS(maxv1 >= addr);	/* No overflow */
1194 		map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1195 		    MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]);
1196 	} else {
1197 		map->anon_loc = addr;
1198 	}
1199 
1200 	imgp->entry_addr = entry;
1201 
1202 	if (interp != NULL) {
1203 		have_interp = FALSE;
1204 		VOP_UNLOCK(imgp->vp, 0);
1205 		if ((map->flags & MAP_ASLR) != 0) {
1206 			/* Assume that interpeter fits into 1/4 of AS */
1207 			maxv1 = maxv / 2 + addr / 2;
1208 			MPASS(maxv1 >= addr);	/* No overflow */
1209 			addr = __CONCAT(rnd_, __elfN(base))(map, addr,
1210 			    maxv1, PAGE_SIZE);
1211 		}
1212 		if (brand_info->emul_path != NULL &&
1213 		    brand_info->emul_path[0] != '\0') {
1214 			path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1215 			snprintf(path, MAXPATHLEN, "%s%s",
1216 			    brand_info->emul_path, interp);
1217 			error = __elfN(load_file)(imgp->proc, path, &addr,
1218 			    &imgp->entry_addr);
1219 			free(path, M_TEMP);
1220 			if (error == 0)
1221 				have_interp = TRUE;
1222 		}
1223 		if (!have_interp && newinterp != NULL &&
1224 		    (brand_info->interp_path == NULL ||
1225 		    strcmp(interp, brand_info->interp_path) == 0)) {
1226 			error = __elfN(load_file)(imgp->proc, newinterp, &addr,
1227 			    &imgp->entry_addr);
1228 			if (error == 0)
1229 				have_interp = TRUE;
1230 		}
1231 		if (!have_interp) {
1232 			error = __elfN(load_file)(imgp->proc, interp, &addr,
1233 			    &imgp->entry_addr);
1234 		}
1235 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
1236 		if (error != 0) {
1237 			uprintf("ELF interpreter %s not found, error %d\n",
1238 			    interp, error);
1239 			goto ret;
1240 		}
1241 	} else
1242 		addr = et_dyn_addr;
1243 
1244 	/*
1245 	 * Construct auxargs table (used by the fixup routine)
1246 	 */
1247 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1248 	elf_auxargs->execfd = -1;
1249 	elf_auxargs->phdr = proghdr;
1250 	elf_auxargs->phent = hdr->e_phentsize;
1251 	elf_auxargs->phnum = hdr->e_phnum;
1252 	elf_auxargs->pagesz = PAGE_SIZE;
1253 	elf_auxargs->base = addr;
1254 	elf_auxargs->flags = 0;
1255 	elf_auxargs->entry = entry;
1256 	elf_auxargs->hdr_eflags = hdr->e_flags;
1257 
1258 	imgp->auxargs = elf_auxargs;
1259 	imgp->interpreted = 0;
1260 	imgp->reloc_base = addr;
1261 	imgp->proc->p_osrel = osrel;
1262 	imgp->proc->p_fctl0 = fctl0;
1263 	imgp->proc->p_elf_machine = hdr->e_machine;
1264 	imgp->proc->p_elf_flags = hdr->e_flags;
1265 
1266 ret:
1267 	if (free_interp)
1268 		free(interp, M_TEMP);
1269 	return (error);
1270 }
1271 
1272 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1273 
1274 int
1275 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
1276 {
1277 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1278 	Elf_Auxinfo *argarray, *pos;
1279 	Elf_Addr *base, *auxbase;
1280 	int error;
1281 
1282 	base = (Elf_Addr *)*stack_base;
1283 	auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1;
1284 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1285 	    M_WAITOK | M_ZERO);
1286 
1287 	if (args->execfd != -1)
1288 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1289 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1290 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1291 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1292 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1293 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1294 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1295 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1296 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1297 	if (imgp->execpathp != 0)
1298 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1299 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1300 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1301 	if (imgp->canary != 0) {
1302 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1303 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1304 	}
1305 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1306 	if (imgp->pagesizes != 0) {
1307 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1308 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1309 	}
1310 	if (imgp->sysent->sv_timekeep_base != 0) {
1311 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1312 		    imgp->sysent->sv_timekeep_base);
1313 	}
1314 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1315 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1316 	    imgp->sysent->sv_stackprot);
1317 	if (imgp->sysent->sv_hwcap != NULL)
1318 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1319 	if (imgp->sysent->sv_hwcap2 != NULL)
1320 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1321 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1322 
1323 	free(imgp->auxargs, M_TEMP);
1324 	imgp->auxargs = NULL;
1325 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1326 
1327 	error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT);
1328 	free(argarray, M_TEMP);
1329 	if (error != 0)
1330 		return (error);
1331 
1332 	base--;
1333 	if (suword(base, imgp->args->argc) == -1)
1334 		return (EFAULT);
1335 	*stack_base = (register_t *)base;
1336 	return (0);
1337 }
1338 
1339 /*
1340  * Code for generating ELF core dumps.
1341  */
1342 
1343 typedef void (*segment_callback)(vm_map_entry_t, void *);
1344 
1345 /* Closure for cb_put_phdr(). */
1346 struct phdr_closure {
1347 	Elf_Phdr *phdr;		/* Program header to fill in */
1348 	Elf_Off offset;		/* Offset of segment in core file */
1349 };
1350 
1351 /* Closure for cb_size_segment(). */
1352 struct sseg_closure {
1353 	int count;		/* Count of writable segments. */
1354 	size_t size;		/* Total size of all writable segments. */
1355 };
1356 
1357 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1358 
1359 struct note_info {
1360 	int		type;		/* Note type. */
1361 	outfunc_t 	outfunc; 	/* Output function. */
1362 	void		*outarg;	/* Argument for the output function. */
1363 	size_t		outsize;	/* Output size. */
1364 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1365 };
1366 
1367 TAILQ_HEAD(note_info_list, note_info);
1368 
1369 /* Coredump output parameters. */
1370 struct coredump_params {
1371 	off_t		offset;
1372 	struct ucred	*active_cred;
1373 	struct ucred	*file_cred;
1374 	struct thread	*td;
1375 	struct vnode	*vp;
1376 	struct compressor *comp;
1377 };
1378 
1379 extern int compress_user_cores;
1380 extern int compress_user_cores_level;
1381 
1382 static void cb_put_phdr(vm_map_entry_t, void *);
1383 static void cb_size_segment(vm_map_entry_t, void *);
1384 static int core_write(struct coredump_params *, const void *, size_t, off_t,
1385     enum uio_seg);
1386 static void each_dumpable_segment(struct thread *, segment_callback, void *);
1387 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1388     struct note_info_list *, size_t);
1389 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1390     size_t *);
1391 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1392 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1393 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1394 static int sbuf_drain_core_output(void *, const char *, int);
1395 static int sbuf_drain_count(void *arg, const char *data, int len);
1396 
1397 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1398 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1399 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1400 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1401 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1402 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
1403 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1404 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1405 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1406 static void note_procstat_files(void *, struct sbuf *, size_t *);
1407 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1408 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1409 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1410 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1411 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1412 
1413 /*
1414  * Write out a core segment to the compression stream.
1415  */
1416 static int
1417 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1418 {
1419 	u_int chunk_len;
1420 	int error;
1421 
1422 	while (len > 0) {
1423 		chunk_len = MIN(len, CORE_BUF_SIZE);
1424 
1425 		/*
1426 		 * We can get EFAULT error here.
1427 		 * In that case zero out the current chunk of the segment.
1428 		 */
1429 		error = copyin(base, buf, chunk_len);
1430 		if (error != 0)
1431 			bzero(buf, chunk_len);
1432 		error = compressor_write(p->comp, buf, chunk_len);
1433 		if (error != 0)
1434 			break;
1435 		base += chunk_len;
1436 		len -= chunk_len;
1437 	}
1438 	return (error);
1439 }
1440 
1441 static int
1442 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1443 {
1444 
1445 	return (core_write((struct coredump_params *)arg, base, len, offset,
1446 	    UIO_SYSSPACE));
1447 }
1448 
1449 static int
1450 core_write(struct coredump_params *p, const void *base, size_t len,
1451     off_t offset, enum uio_seg seg)
1452 {
1453 
1454 	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1455 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1456 	    p->active_cred, p->file_cred, NULL, p->td));
1457 }
1458 
1459 static int
1460 core_output(void *base, size_t len, off_t offset, struct coredump_params *p,
1461     void *tmpbuf)
1462 {
1463 	int error;
1464 
1465 	if (p->comp != NULL)
1466 		return (compress_chunk(p, base, tmpbuf, len));
1467 
1468 	/*
1469 	 * EFAULT is a non-fatal error that we can get, for example,
1470 	 * if the segment is backed by a file but extends beyond its
1471 	 * end.
1472 	 */
1473 	error = core_write(p, base, len, offset, UIO_USERSPACE);
1474 	if (error == EFAULT) {
1475 		log(LOG_WARNING, "Failed to fully fault in a core file segment "
1476 		    "at VA %p with size 0x%zx to be written at offset 0x%jx "
1477 		    "for process %s\n", base, len, offset, curproc->p_comm);
1478 
1479 		/*
1480 		 * Write a "real" zero byte at the end of the target region
1481 		 * in the case this is the last segment.
1482 		 * The intermediate space will be implicitly zero-filled.
1483 		 */
1484 		error = core_write(p, zero_region, 1, offset + len - 1,
1485 		    UIO_SYSSPACE);
1486 	}
1487 	return (error);
1488 }
1489 
1490 /*
1491  * Drain into a core file.
1492  */
1493 static int
1494 sbuf_drain_core_output(void *arg, const char *data, int len)
1495 {
1496 	struct coredump_params *p;
1497 	int error, locked;
1498 
1499 	p = (struct coredump_params *)arg;
1500 
1501 	/*
1502 	 * Some kern_proc out routines that print to this sbuf may
1503 	 * call us with the process lock held. Draining with the
1504 	 * non-sleepable lock held is unsafe. The lock is needed for
1505 	 * those routines when dumping a live process. In our case we
1506 	 * can safely release the lock before draining and acquire
1507 	 * again after.
1508 	 */
1509 	locked = PROC_LOCKED(p->td->td_proc);
1510 	if (locked)
1511 		PROC_UNLOCK(p->td->td_proc);
1512 	if (p->comp != NULL)
1513 		error = compressor_write(p->comp, __DECONST(char *, data), len);
1514 	else
1515 		error = core_write(p, __DECONST(void *, data), len, p->offset,
1516 		    UIO_SYSSPACE);
1517 	if (locked)
1518 		PROC_LOCK(p->td->td_proc);
1519 	if (error != 0)
1520 		return (-error);
1521 	p->offset += len;
1522 	return (len);
1523 }
1524 
1525 /*
1526  * Drain into a counter.
1527  */
1528 static int
1529 sbuf_drain_count(void *arg, const char *data __unused, int len)
1530 {
1531 	size_t *sizep;
1532 
1533 	sizep = (size_t *)arg;
1534 	*sizep += len;
1535 	return (len);
1536 }
1537 
1538 int
1539 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1540 {
1541 	struct ucred *cred = td->td_ucred;
1542 	int error = 0;
1543 	struct sseg_closure seginfo;
1544 	struct note_info_list notelst;
1545 	struct coredump_params params;
1546 	struct note_info *ninfo;
1547 	void *hdr, *tmpbuf;
1548 	size_t hdrsize, notesz, coresize;
1549 
1550 	hdr = NULL;
1551 	tmpbuf = NULL;
1552 	TAILQ_INIT(&notelst);
1553 
1554 	/* Size the program segments. */
1555 	seginfo.count = 0;
1556 	seginfo.size = 0;
1557 	each_dumpable_segment(td, cb_size_segment, &seginfo);
1558 
1559 	/*
1560 	 * Collect info about the core file header area.
1561 	 */
1562 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1563 	if (seginfo.count + 1 >= PN_XNUM)
1564 		hdrsize += sizeof(Elf_Shdr);
1565 	__elfN(prepare_notes)(td, &notelst, &notesz);
1566 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1567 
1568 	/* Set up core dump parameters. */
1569 	params.offset = 0;
1570 	params.active_cred = cred;
1571 	params.file_cred = NOCRED;
1572 	params.td = td;
1573 	params.vp = vp;
1574 	params.comp = NULL;
1575 
1576 #ifdef RACCT
1577 	if (racct_enable) {
1578 		PROC_LOCK(td->td_proc);
1579 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1580 		PROC_UNLOCK(td->td_proc);
1581 		if (error != 0) {
1582 			error = EFAULT;
1583 			goto done;
1584 		}
1585 	}
1586 #endif
1587 	if (coresize >= limit) {
1588 		error = EFAULT;
1589 		goto done;
1590 	}
1591 
1592 	/* Create a compression stream if necessary. */
1593 	if (compress_user_cores != 0) {
1594 		params.comp = compressor_init(core_compressed_write,
1595 		    compress_user_cores, CORE_BUF_SIZE,
1596 		    compress_user_cores_level, &params);
1597 		if (params.comp == NULL) {
1598 			error = EFAULT;
1599 			goto done;
1600 		}
1601 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1602         }
1603 
1604 	/*
1605 	 * Allocate memory for building the header, fill it up,
1606 	 * and write it out following the notes.
1607 	 */
1608 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1609 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1610 	    notesz);
1611 
1612 	/* Write the contents of all of the writable segments. */
1613 	if (error == 0) {
1614 		Elf_Phdr *php;
1615 		off_t offset;
1616 		int i;
1617 
1618 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1619 		offset = round_page(hdrsize + notesz);
1620 		for (i = 0; i < seginfo.count; i++) {
1621 			error = core_output((caddr_t)(uintptr_t)php->p_vaddr,
1622 			    php->p_filesz, offset, &params, tmpbuf);
1623 			if (error != 0)
1624 				break;
1625 			offset += php->p_filesz;
1626 			php++;
1627 		}
1628 		if (error == 0 && params.comp != NULL)
1629 			error = compressor_flush(params.comp);
1630 	}
1631 	if (error) {
1632 		log(LOG_WARNING,
1633 		    "Failed to write core file for process %s (error %d)\n",
1634 		    curproc->p_comm, error);
1635 	}
1636 
1637 done:
1638 	free(tmpbuf, M_TEMP);
1639 	if (params.comp != NULL)
1640 		compressor_fini(params.comp);
1641 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1642 		TAILQ_REMOVE(&notelst, ninfo, link);
1643 		free(ninfo, M_TEMP);
1644 	}
1645 	if (hdr != NULL)
1646 		free(hdr, M_TEMP);
1647 
1648 	return (error);
1649 }
1650 
1651 /*
1652  * A callback for each_dumpable_segment() to write out the segment's
1653  * program header entry.
1654  */
1655 static void
1656 cb_put_phdr(vm_map_entry_t entry, void *closure)
1657 {
1658 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1659 	Elf_Phdr *phdr = phc->phdr;
1660 
1661 	phc->offset = round_page(phc->offset);
1662 
1663 	phdr->p_type = PT_LOAD;
1664 	phdr->p_offset = phc->offset;
1665 	phdr->p_vaddr = entry->start;
1666 	phdr->p_paddr = 0;
1667 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1668 	phdr->p_align = PAGE_SIZE;
1669 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1670 
1671 	phc->offset += phdr->p_filesz;
1672 	phc->phdr++;
1673 }
1674 
1675 /*
1676  * A callback for each_dumpable_segment() to gather information about
1677  * the number of segments and their total size.
1678  */
1679 static void
1680 cb_size_segment(vm_map_entry_t entry, void *closure)
1681 {
1682 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1683 
1684 	ssc->count++;
1685 	ssc->size += entry->end - entry->start;
1686 }
1687 
1688 /*
1689  * For each writable segment in the process's memory map, call the given
1690  * function with a pointer to the map entry and some arbitrary
1691  * caller-supplied data.
1692  */
1693 static void
1694 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
1695 {
1696 	struct proc *p = td->td_proc;
1697 	vm_map_t map = &p->p_vmspace->vm_map;
1698 	vm_map_entry_t entry;
1699 	vm_object_t backing_object, object;
1700 	boolean_t ignore_entry;
1701 
1702 	vm_map_lock_read(map);
1703 	for (entry = map->header.next; entry != &map->header;
1704 	    entry = entry->next) {
1705 		/*
1706 		 * Don't dump inaccessible mappings, deal with legacy
1707 		 * coredump mode.
1708 		 *
1709 		 * Note that read-only segments related to the elf binary
1710 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1711 		 * need to arbitrarily ignore such segments.
1712 		 */
1713 		if (elf_legacy_coredump) {
1714 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1715 				continue;
1716 		} else {
1717 			if ((entry->protection & VM_PROT_ALL) == 0)
1718 				continue;
1719 		}
1720 
1721 		/*
1722 		 * Dont include memory segment in the coredump if
1723 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1724 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1725 		 * kernel map).
1726 		 */
1727 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1728 			continue;
1729 
1730 		if ((object = entry->object.vm_object) == NULL)
1731 			continue;
1732 
1733 		/* Ignore memory-mapped devices and such things. */
1734 		VM_OBJECT_RLOCK(object);
1735 		while ((backing_object = object->backing_object) != NULL) {
1736 			VM_OBJECT_RLOCK(backing_object);
1737 			VM_OBJECT_RUNLOCK(object);
1738 			object = backing_object;
1739 		}
1740 		ignore_entry = object->type != OBJT_DEFAULT &&
1741 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1742 		    object->type != OBJT_PHYS;
1743 		VM_OBJECT_RUNLOCK(object);
1744 		if (ignore_entry)
1745 			continue;
1746 
1747 		(*func)(entry, closure);
1748 	}
1749 	vm_map_unlock_read(map);
1750 }
1751 
1752 /*
1753  * Write the core file header to the file, including padding up to
1754  * the page boundary.
1755  */
1756 static int
1757 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1758     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
1759 {
1760 	struct note_info *ninfo;
1761 	struct sbuf *sb;
1762 	int error;
1763 
1764 	/* Fill in the header. */
1765 	bzero(hdr, hdrsize);
1766 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
1767 
1768 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1769 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1770 	sbuf_start_section(sb, NULL);
1771 	sbuf_bcat(sb, hdr, hdrsize);
1772 	TAILQ_FOREACH(ninfo, notelst, link)
1773 	    __elfN(putnote)(ninfo, sb);
1774 	/* Align up to a page boundary for the program segments. */
1775 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1776 	error = sbuf_finish(sb);
1777 	sbuf_delete(sb);
1778 
1779 	return (error);
1780 }
1781 
1782 static void
1783 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1784     size_t *sizep)
1785 {
1786 	struct proc *p;
1787 	struct thread *thr;
1788 	size_t size;
1789 
1790 	p = td->td_proc;
1791 	size = 0;
1792 
1793 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1794 
1795 	/*
1796 	 * To have the debugger select the right thread (LWP) as the initial
1797 	 * thread, we dump the state of the thread passed to us in td first.
1798 	 * This is the thread that causes the core dump and thus likely to
1799 	 * be the right thread one wants to have selected in the debugger.
1800 	 */
1801 	thr = td;
1802 	while (thr != NULL) {
1803 		size += register_note(list, NT_PRSTATUS,
1804 		    __elfN(note_prstatus), thr);
1805 		size += register_note(list, NT_FPREGSET,
1806 		    __elfN(note_fpregset), thr);
1807 		size += register_note(list, NT_THRMISC,
1808 		    __elfN(note_thrmisc), thr);
1809 		size += register_note(list, NT_PTLWPINFO,
1810 		    __elfN(note_ptlwpinfo), thr);
1811 		size += register_note(list, -1,
1812 		    __elfN(note_threadmd), thr);
1813 
1814 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1815 		    TAILQ_NEXT(thr, td_plist);
1816 		if (thr == td)
1817 			thr = TAILQ_NEXT(thr, td_plist);
1818 	}
1819 
1820 	size += register_note(list, NT_PROCSTAT_PROC,
1821 	    __elfN(note_procstat_proc), p);
1822 	size += register_note(list, NT_PROCSTAT_FILES,
1823 	    note_procstat_files, p);
1824 	size += register_note(list, NT_PROCSTAT_VMMAP,
1825 	    note_procstat_vmmap, p);
1826 	size += register_note(list, NT_PROCSTAT_GROUPS,
1827 	    note_procstat_groups, p);
1828 	size += register_note(list, NT_PROCSTAT_UMASK,
1829 	    note_procstat_umask, p);
1830 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1831 	    note_procstat_rlimit, p);
1832 	size += register_note(list, NT_PROCSTAT_OSREL,
1833 	    note_procstat_osrel, p);
1834 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1835 	    __elfN(note_procstat_psstrings), p);
1836 	size += register_note(list, NT_PROCSTAT_AUXV,
1837 	    __elfN(note_procstat_auxv), p);
1838 
1839 	*sizep = size;
1840 }
1841 
1842 static void
1843 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1844     size_t notesz)
1845 {
1846 	Elf_Ehdr *ehdr;
1847 	Elf_Phdr *phdr;
1848 	Elf_Shdr *shdr;
1849 	struct phdr_closure phc;
1850 
1851 	ehdr = (Elf_Ehdr *)hdr;
1852 
1853 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1854 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1855 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1856 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1857 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1858 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1859 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1860 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1861 	ehdr->e_ident[EI_ABIVERSION] = 0;
1862 	ehdr->e_ident[EI_PAD] = 0;
1863 	ehdr->e_type = ET_CORE;
1864 	ehdr->e_machine = td->td_proc->p_elf_machine;
1865 	ehdr->e_version = EV_CURRENT;
1866 	ehdr->e_entry = 0;
1867 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1868 	ehdr->e_flags = td->td_proc->p_elf_flags;
1869 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1870 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1871 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1872 	ehdr->e_shstrndx = SHN_UNDEF;
1873 	if (numsegs + 1 < PN_XNUM) {
1874 		ehdr->e_phnum = numsegs + 1;
1875 		ehdr->e_shnum = 0;
1876 	} else {
1877 		ehdr->e_phnum = PN_XNUM;
1878 		ehdr->e_shnum = 1;
1879 
1880 		ehdr->e_shoff = ehdr->e_phoff +
1881 		    (numsegs + 1) * ehdr->e_phentsize;
1882 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1883 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1884 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1885 
1886 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1887 		memset(shdr, 0, sizeof(*shdr));
1888 		/*
1889 		 * A special first section is used to hold large segment and
1890 		 * section counts.  This was proposed by Sun Microsystems in
1891 		 * Solaris and has been adopted by Linux; the standard ELF
1892 		 * tools are already familiar with the technique.
1893 		 *
1894 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1895 		 * (or 12-7 depending on the version of the document) for more
1896 		 * details.
1897 		 */
1898 		shdr->sh_type = SHT_NULL;
1899 		shdr->sh_size = ehdr->e_shnum;
1900 		shdr->sh_link = ehdr->e_shstrndx;
1901 		shdr->sh_info = numsegs + 1;
1902 	}
1903 
1904 	/*
1905 	 * Fill in the program header entries.
1906 	 */
1907 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1908 
1909 	/* The note segement. */
1910 	phdr->p_type = PT_NOTE;
1911 	phdr->p_offset = hdrsize;
1912 	phdr->p_vaddr = 0;
1913 	phdr->p_paddr = 0;
1914 	phdr->p_filesz = notesz;
1915 	phdr->p_memsz = 0;
1916 	phdr->p_flags = PF_R;
1917 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1918 	phdr++;
1919 
1920 	/* All the writable segments from the program. */
1921 	phc.phdr = phdr;
1922 	phc.offset = round_page(hdrsize + notesz);
1923 	each_dumpable_segment(td, cb_put_phdr, &phc);
1924 }
1925 
1926 static size_t
1927 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1928 {
1929 	struct note_info *ninfo;
1930 	size_t size, notesize;
1931 
1932 	size = 0;
1933 	out(arg, NULL, &size);
1934 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1935 	ninfo->type = type;
1936 	ninfo->outfunc = out;
1937 	ninfo->outarg = arg;
1938 	ninfo->outsize = size;
1939 	TAILQ_INSERT_TAIL(list, ninfo, link);
1940 
1941 	if (type == -1)
1942 		return (size);
1943 
1944 	notesize = sizeof(Elf_Note) +		/* note header */
1945 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1946 						/* note name */
1947 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1948 
1949 	return (notesize);
1950 }
1951 
1952 static size_t
1953 append_note_data(const void *src, void *dst, size_t len)
1954 {
1955 	size_t padded_len;
1956 
1957 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1958 	if (dst != NULL) {
1959 		bcopy(src, dst, len);
1960 		bzero((char *)dst + len, padded_len - len);
1961 	}
1962 	return (padded_len);
1963 }
1964 
1965 size_t
1966 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
1967 {
1968 	Elf_Note *note;
1969 	char *buf;
1970 	size_t notesize;
1971 
1972 	buf = dst;
1973 	if (buf != NULL) {
1974 		note = (Elf_Note *)buf;
1975 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1976 		note->n_descsz = size;
1977 		note->n_type = type;
1978 		buf += sizeof(*note);
1979 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
1980 		    sizeof(FREEBSD_ABI_VENDOR));
1981 		append_note_data(src, buf, size);
1982 		if (descp != NULL)
1983 			*descp = buf;
1984 	}
1985 
1986 	notesize = sizeof(Elf_Note) +		/* note header */
1987 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1988 						/* note name */
1989 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1990 
1991 	return (notesize);
1992 }
1993 
1994 static void
1995 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
1996 {
1997 	Elf_Note note;
1998 	ssize_t old_len, sect_len;
1999 	size_t new_len, descsz, i;
2000 
2001 	if (ninfo->type == -1) {
2002 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2003 		return;
2004 	}
2005 
2006 	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2007 	note.n_descsz = ninfo->outsize;
2008 	note.n_type = ninfo->type;
2009 
2010 	sbuf_bcat(sb, &note, sizeof(note));
2011 	sbuf_start_section(sb, &old_len);
2012 	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
2013 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2014 	if (note.n_descsz == 0)
2015 		return;
2016 	sbuf_start_section(sb, &old_len);
2017 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2018 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2019 	if (sect_len < 0)
2020 		return;
2021 
2022 	new_len = (size_t)sect_len;
2023 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2024 	if (new_len < descsz) {
2025 		/*
2026 		 * It is expected that individual note emitters will correctly
2027 		 * predict their expected output size and fill up to that size
2028 		 * themselves, padding in a format-specific way if needed.
2029 		 * However, in case they don't, just do it here with zeros.
2030 		 */
2031 		for (i = 0; i < descsz - new_len; i++)
2032 			sbuf_putc(sb, 0);
2033 	} else if (new_len > descsz) {
2034 		/*
2035 		 * We can't always truncate sb -- we may have drained some
2036 		 * of it already.
2037 		 */
2038 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2039 		    "read it (%zu > %zu).  Since it is longer than "
2040 		    "expected, this coredump's notes are corrupt.  THIS "
2041 		    "IS A BUG in the note_procstat routine for type %u.\n",
2042 		    __func__, (unsigned)note.n_type, new_len, descsz,
2043 		    (unsigned)note.n_type));
2044 	}
2045 }
2046 
2047 /*
2048  * Miscellaneous note out functions.
2049  */
2050 
2051 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2052 #include <compat/freebsd32/freebsd32.h>
2053 #include <compat/freebsd32/freebsd32_signal.h>
2054 
2055 typedef struct prstatus32 elf_prstatus_t;
2056 typedef struct prpsinfo32 elf_prpsinfo_t;
2057 typedef struct fpreg32 elf_prfpregset_t;
2058 typedef struct fpreg32 elf_fpregset_t;
2059 typedef struct reg32 elf_gregset_t;
2060 typedef struct thrmisc32 elf_thrmisc_t;
2061 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2062 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2063 typedef uint32_t elf_ps_strings_t;
2064 #else
2065 typedef prstatus_t elf_prstatus_t;
2066 typedef prpsinfo_t elf_prpsinfo_t;
2067 typedef prfpregset_t elf_prfpregset_t;
2068 typedef prfpregset_t elf_fpregset_t;
2069 typedef gregset_t elf_gregset_t;
2070 typedef thrmisc_t elf_thrmisc_t;
2071 #define ELF_KERN_PROC_MASK	0
2072 typedef struct kinfo_proc elf_kinfo_proc_t;
2073 typedef vm_offset_t elf_ps_strings_t;
2074 #endif
2075 
2076 static void
2077 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2078 {
2079 	struct sbuf sbarg;
2080 	size_t len;
2081 	char *cp, *end;
2082 	struct proc *p;
2083 	elf_prpsinfo_t *psinfo;
2084 	int error;
2085 
2086 	p = (struct proc *)arg;
2087 	if (sb != NULL) {
2088 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2089 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2090 		psinfo->pr_version = PRPSINFO_VERSION;
2091 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2092 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2093 		PROC_LOCK(p);
2094 		if (p->p_args != NULL) {
2095 			len = sizeof(psinfo->pr_psargs) - 1;
2096 			if (len > p->p_args->ar_length)
2097 				len = p->p_args->ar_length;
2098 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2099 			PROC_UNLOCK(p);
2100 			error = 0;
2101 		} else {
2102 			_PHOLD(p);
2103 			PROC_UNLOCK(p);
2104 			sbuf_new(&sbarg, psinfo->pr_psargs,
2105 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2106 			error = proc_getargv(curthread, p, &sbarg);
2107 			PRELE(p);
2108 			if (sbuf_finish(&sbarg) == 0)
2109 				len = sbuf_len(&sbarg) - 1;
2110 			else
2111 				len = sizeof(psinfo->pr_psargs) - 1;
2112 			sbuf_delete(&sbarg);
2113 		}
2114 		if (error || len == 0)
2115 			strlcpy(psinfo->pr_psargs, p->p_comm,
2116 			    sizeof(psinfo->pr_psargs));
2117 		else {
2118 			KASSERT(len < sizeof(psinfo->pr_psargs),
2119 			    ("len is too long: %zu vs %zu", len,
2120 			    sizeof(psinfo->pr_psargs)));
2121 			cp = psinfo->pr_psargs;
2122 			end = cp + len - 1;
2123 			for (;;) {
2124 				cp = memchr(cp, '\0', end - cp);
2125 				if (cp == NULL)
2126 					break;
2127 				*cp = ' ';
2128 			}
2129 		}
2130 		psinfo->pr_pid = p->p_pid;
2131 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2132 		free(psinfo, M_TEMP);
2133 	}
2134 	*sizep = sizeof(*psinfo);
2135 }
2136 
2137 static void
2138 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
2139 {
2140 	struct thread *td;
2141 	elf_prstatus_t *status;
2142 
2143 	td = (struct thread *)arg;
2144 	if (sb != NULL) {
2145 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
2146 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
2147 		status->pr_version = PRSTATUS_VERSION;
2148 		status->pr_statussz = sizeof(elf_prstatus_t);
2149 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2150 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2151 		status->pr_osreldate = osreldate;
2152 		status->pr_cursig = td->td_proc->p_sig;
2153 		status->pr_pid = td->td_tid;
2154 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2155 		fill_regs32(td, &status->pr_reg);
2156 #else
2157 		fill_regs(td, &status->pr_reg);
2158 #endif
2159 		sbuf_bcat(sb, status, sizeof(*status));
2160 		free(status, M_TEMP);
2161 	}
2162 	*sizep = sizeof(*status);
2163 }
2164 
2165 static void
2166 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
2167 {
2168 	struct thread *td;
2169 	elf_prfpregset_t *fpregset;
2170 
2171 	td = (struct thread *)arg;
2172 	if (sb != NULL) {
2173 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
2174 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
2175 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2176 		fill_fpregs32(td, fpregset);
2177 #else
2178 		fill_fpregs(td, fpregset);
2179 #endif
2180 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
2181 		free(fpregset, M_TEMP);
2182 	}
2183 	*sizep = sizeof(*fpregset);
2184 }
2185 
2186 static void
2187 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2188 {
2189 	struct thread *td;
2190 	elf_thrmisc_t thrmisc;
2191 
2192 	td = (struct thread *)arg;
2193 	if (sb != NULL) {
2194 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2195 		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
2196 		strcpy(thrmisc.pr_tname, td->td_name);
2197 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2198 	}
2199 	*sizep = sizeof(thrmisc);
2200 }
2201 
2202 static void
2203 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2204 {
2205 	struct thread *td;
2206 	size_t size;
2207 	int structsize;
2208 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2209 	struct ptrace_lwpinfo32 pl;
2210 #else
2211 	struct ptrace_lwpinfo pl;
2212 #endif
2213 
2214 	td = (struct thread *)arg;
2215 	size = sizeof(structsize) + sizeof(pl);
2216 	if (sb != NULL) {
2217 		KASSERT(*sizep == size, ("invalid size"));
2218 		structsize = sizeof(pl);
2219 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2220 		bzero(&pl, sizeof(pl));
2221 		pl.pl_lwpid = td->td_tid;
2222 		pl.pl_event = PL_EVENT_NONE;
2223 		pl.pl_sigmask = td->td_sigmask;
2224 		pl.pl_siglist = td->td_siglist;
2225 		if (td->td_si.si_signo != 0) {
2226 			pl.pl_event = PL_EVENT_SIGNAL;
2227 			pl.pl_flags |= PL_FLAG_SI;
2228 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2229 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2230 #else
2231 			pl.pl_siginfo = td->td_si;
2232 #endif
2233 		}
2234 		strcpy(pl.pl_tdname, td->td_name);
2235 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2236 		sbuf_bcat(sb, &pl, sizeof(pl));
2237 	}
2238 	*sizep = size;
2239 }
2240 
2241 /*
2242  * Allow for MD specific notes, as well as any MD
2243  * specific preparations for writing MI notes.
2244  */
2245 static void
2246 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2247 {
2248 	struct thread *td;
2249 	void *buf;
2250 	size_t size;
2251 
2252 	td = (struct thread *)arg;
2253 	size = *sizep;
2254 	if (size != 0 && sb != NULL)
2255 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2256 	else
2257 		buf = NULL;
2258 	size = 0;
2259 	__elfN(dump_thread)(td, buf, &size);
2260 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2261 	if (size != 0 && sb != NULL)
2262 		sbuf_bcat(sb, buf, size);
2263 	free(buf, M_TEMP);
2264 	*sizep = size;
2265 }
2266 
2267 #ifdef KINFO_PROC_SIZE
2268 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2269 #endif
2270 
2271 static void
2272 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2273 {
2274 	struct proc *p;
2275 	size_t size;
2276 	int structsize;
2277 
2278 	p = (struct proc *)arg;
2279 	size = sizeof(structsize) + p->p_numthreads *
2280 	    sizeof(elf_kinfo_proc_t);
2281 
2282 	if (sb != NULL) {
2283 		KASSERT(*sizep == size, ("invalid size"));
2284 		structsize = sizeof(elf_kinfo_proc_t);
2285 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2286 		PROC_LOCK(p);
2287 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2288 	}
2289 	*sizep = size;
2290 }
2291 
2292 #ifdef KINFO_FILE_SIZE
2293 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2294 #endif
2295 
2296 static void
2297 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2298 {
2299 	struct proc *p;
2300 	size_t size, sect_sz, i;
2301 	ssize_t start_len, sect_len;
2302 	int structsize, filedesc_flags;
2303 
2304 	if (coredump_pack_fileinfo)
2305 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2306 	else
2307 		filedesc_flags = 0;
2308 
2309 	p = (struct proc *)arg;
2310 	structsize = sizeof(struct kinfo_file);
2311 	if (sb == NULL) {
2312 		size = 0;
2313 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2314 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2315 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2316 		PROC_LOCK(p);
2317 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2318 		sbuf_finish(sb);
2319 		sbuf_delete(sb);
2320 		*sizep = size;
2321 	} else {
2322 		sbuf_start_section(sb, &start_len);
2323 
2324 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2325 		PROC_LOCK(p);
2326 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2327 		    filedesc_flags);
2328 
2329 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2330 		if (sect_len < 0)
2331 			return;
2332 		sect_sz = sect_len;
2333 
2334 		KASSERT(sect_sz <= *sizep,
2335 		    ("kern_proc_filedesc_out did not respect maxlen; "
2336 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2337 		     sect_sz - sizeof(structsize)));
2338 
2339 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2340 			sbuf_putc(sb, 0);
2341 	}
2342 }
2343 
2344 #ifdef KINFO_VMENTRY_SIZE
2345 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2346 #endif
2347 
2348 static void
2349 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2350 {
2351 	struct proc *p;
2352 	size_t size;
2353 	int structsize, vmmap_flags;
2354 
2355 	if (coredump_pack_vmmapinfo)
2356 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2357 	else
2358 		vmmap_flags = 0;
2359 
2360 	p = (struct proc *)arg;
2361 	structsize = sizeof(struct kinfo_vmentry);
2362 	if (sb == NULL) {
2363 		size = 0;
2364 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2365 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2366 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2367 		PROC_LOCK(p);
2368 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2369 		sbuf_finish(sb);
2370 		sbuf_delete(sb);
2371 		*sizep = size;
2372 	} else {
2373 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2374 		PROC_LOCK(p);
2375 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2376 		    vmmap_flags);
2377 	}
2378 }
2379 
2380 static void
2381 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2382 {
2383 	struct proc *p;
2384 	size_t size;
2385 	int structsize;
2386 
2387 	p = (struct proc *)arg;
2388 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2389 	if (sb != NULL) {
2390 		KASSERT(*sizep == size, ("invalid size"));
2391 		structsize = sizeof(gid_t);
2392 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2393 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2394 		    sizeof(gid_t));
2395 	}
2396 	*sizep = size;
2397 }
2398 
2399 static void
2400 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2401 {
2402 	struct proc *p;
2403 	size_t size;
2404 	int structsize;
2405 
2406 	p = (struct proc *)arg;
2407 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2408 	if (sb != NULL) {
2409 		KASSERT(*sizep == size, ("invalid size"));
2410 		structsize = sizeof(p->p_fd->fd_cmask);
2411 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2412 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2413 	}
2414 	*sizep = size;
2415 }
2416 
2417 static void
2418 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2419 {
2420 	struct proc *p;
2421 	struct rlimit rlim[RLIM_NLIMITS];
2422 	size_t size;
2423 	int structsize, i;
2424 
2425 	p = (struct proc *)arg;
2426 	size = sizeof(structsize) + sizeof(rlim);
2427 	if (sb != NULL) {
2428 		KASSERT(*sizep == size, ("invalid size"));
2429 		structsize = sizeof(rlim);
2430 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2431 		PROC_LOCK(p);
2432 		for (i = 0; i < RLIM_NLIMITS; i++)
2433 			lim_rlimit_proc(p, i, &rlim[i]);
2434 		PROC_UNLOCK(p);
2435 		sbuf_bcat(sb, rlim, sizeof(rlim));
2436 	}
2437 	*sizep = size;
2438 }
2439 
2440 static void
2441 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2442 {
2443 	struct proc *p;
2444 	size_t size;
2445 	int structsize;
2446 
2447 	p = (struct proc *)arg;
2448 	size = sizeof(structsize) + sizeof(p->p_osrel);
2449 	if (sb != NULL) {
2450 		KASSERT(*sizep == size, ("invalid size"));
2451 		structsize = sizeof(p->p_osrel);
2452 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2453 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2454 	}
2455 	*sizep = size;
2456 }
2457 
2458 static void
2459 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2460 {
2461 	struct proc *p;
2462 	elf_ps_strings_t ps_strings;
2463 	size_t size;
2464 	int structsize;
2465 
2466 	p = (struct proc *)arg;
2467 	size = sizeof(structsize) + sizeof(ps_strings);
2468 	if (sb != NULL) {
2469 		KASSERT(*sizep == size, ("invalid size"));
2470 		structsize = sizeof(ps_strings);
2471 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2472 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2473 #else
2474 		ps_strings = p->p_sysent->sv_psstrings;
2475 #endif
2476 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2477 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2478 	}
2479 	*sizep = size;
2480 }
2481 
2482 static void
2483 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2484 {
2485 	struct proc *p;
2486 	size_t size;
2487 	int structsize;
2488 
2489 	p = (struct proc *)arg;
2490 	if (sb == NULL) {
2491 		size = 0;
2492 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2493 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2494 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2495 		PHOLD(p);
2496 		proc_getauxv(curthread, p, sb);
2497 		PRELE(p);
2498 		sbuf_finish(sb);
2499 		sbuf_delete(sb);
2500 		*sizep = size;
2501 	} else {
2502 		structsize = sizeof(Elf_Auxinfo);
2503 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2504 		PHOLD(p);
2505 		proc_getauxv(curthread, p, sb);
2506 		PRELE(p);
2507 	}
2508 }
2509 
2510 static boolean_t
2511 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2512     const char *note_vendor, const Elf_Phdr *pnote,
2513     boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg)
2514 {
2515 	const Elf_Note *note, *note0, *note_end;
2516 	const char *note_name;
2517 	char *buf;
2518 	int i, error;
2519 	boolean_t res;
2520 
2521 	/* We need some limit, might as well use PAGE_SIZE. */
2522 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2523 		return (FALSE);
2524 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2525 	if (pnote->p_offset > PAGE_SIZE ||
2526 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2527 		VOP_UNLOCK(imgp->vp, 0);
2528 		buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2529 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
2530 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2531 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2532 		    curthread->td_ucred, NOCRED, NULL, curthread);
2533 		if (error != 0) {
2534 			uprintf("i/o error PT_NOTE\n");
2535 			goto retf;
2536 		}
2537 		note = note0 = (const Elf_Note *)buf;
2538 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2539 	} else {
2540 		note = note0 = (const Elf_Note *)(imgp->image_header +
2541 		    pnote->p_offset);
2542 		note_end = (const Elf_Note *)(imgp->image_header +
2543 		    pnote->p_offset + pnote->p_filesz);
2544 		buf = NULL;
2545 	}
2546 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2547 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2548 		    (const char *)note < sizeof(Elf_Note)) {
2549 			goto retf;
2550 		}
2551 		if (note->n_namesz != checknote->n_namesz ||
2552 		    note->n_descsz != checknote->n_descsz ||
2553 		    note->n_type != checknote->n_type)
2554 			goto nextnote;
2555 		note_name = (const char *)(note + 1);
2556 		if (note_name + checknote->n_namesz >=
2557 		    (const char *)note_end || strncmp(note_vendor,
2558 		    note_name, checknote->n_namesz) != 0)
2559 			goto nextnote;
2560 
2561 		if (cb(note, cb_arg, &res))
2562 			goto ret;
2563 nextnote:
2564 		note = (const Elf_Note *)((const char *)(note + 1) +
2565 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2566 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2567 	}
2568 retf:
2569 	res = FALSE;
2570 ret:
2571 	free(buf, M_TEMP);
2572 	return (res);
2573 }
2574 
2575 struct brandnote_cb_arg {
2576 	Elf_Brandnote *brandnote;
2577 	int32_t *osrel;
2578 };
2579 
2580 static boolean_t
2581 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2582 {
2583 	struct brandnote_cb_arg *arg;
2584 
2585 	arg = arg0;
2586 
2587 	/*
2588 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2589 	 * necessary.
2590 	 */
2591 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2592 	    arg->brandnote->trans_osrel != NULL ?
2593 	    arg->brandnote->trans_osrel(note, arg->osrel) : TRUE;
2594 
2595 	return (TRUE);
2596 }
2597 
2598 static Elf_Note fctl_note = {
2599 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2600 	.n_descsz = sizeof(uint32_t),
2601 	.n_type = NT_FREEBSD_FEATURE_CTL,
2602 };
2603 
2604 struct fctl_cb_arg {
2605 	uint32_t *fctl0;
2606 };
2607 
2608 static boolean_t
2609 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2610 {
2611 	struct fctl_cb_arg *arg;
2612 	const Elf32_Word *desc;
2613 	uintptr_t p;
2614 
2615 	arg = arg0;
2616 	p = (uintptr_t)(note + 1);
2617 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2618 	desc = (const Elf32_Word *)p;
2619 	*arg->fctl0 = desc[0];
2620 	return (TRUE);
2621 }
2622 
2623 /*
2624  * Try to find the appropriate ABI-note section for checknote, fetch
2625  * the osreldate and feature control flags for binary from the ELF
2626  * OSABI-note.  Only the first page of the image is searched, the same
2627  * as for headers.
2628  */
2629 static boolean_t
2630 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2631     int32_t *osrel, uint32_t *fctl0)
2632 {
2633 	const Elf_Phdr *phdr;
2634 	const Elf_Ehdr *hdr;
2635 	struct brandnote_cb_arg b_arg;
2636 	struct fctl_cb_arg f_arg;
2637 	int i, j;
2638 
2639 	hdr = (const Elf_Ehdr *)imgp->image_header;
2640 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2641 	b_arg.brandnote = brandnote;
2642 	b_arg.osrel = osrel;
2643 	f_arg.fctl0 = fctl0;
2644 
2645 	for (i = 0; i < hdr->e_phnum; i++) {
2646 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2647 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2648 		    &b_arg)) {
2649 			for (j = 0; j < hdr->e_phnum; j++) {
2650 				if (phdr[j].p_type == PT_NOTE &&
2651 				    __elfN(parse_notes)(imgp, &fctl_note,
2652 				    FREEBSD_ABI_VENDOR, &phdr[j],
2653 				    note_fctl_cb, &f_arg))
2654 					break;
2655 			}
2656 			return (TRUE);
2657 		}
2658 	}
2659 	return (FALSE);
2660 
2661 }
2662 
2663 /*
2664  * Tell kern_execve.c about it, with a little help from the linker.
2665  */
2666 static struct execsw __elfN(execsw) = {
2667 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2668 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2669 };
2670 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2671 
2672 static vm_prot_t
2673 __elfN(trans_prot)(Elf_Word flags)
2674 {
2675 	vm_prot_t prot;
2676 
2677 	prot = 0;
2678 	if (flags & PF_X)
2679 		prot |= VM_PROT_EXECUTE;
2680 	if (flags & PF_W)
2681 		prot |= VM_PROT_WRITE;
2682 	if (flags & PF_R)
2683 		prot |= VM_PROT_READ;
2684 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2685 	if (i386_read_exec && (flags & PF_R))
2686 		prot |= VM_PROT_EXECUTE;
2687 #endif
2688 	return (prot);
2689 }
2690 
2691 static Elf_Word
2692 __elfN(untrans_prot)(vm_prot_t prot)
2693 {
2694 	Elf_Word flags;
2695 
2696 	flags = 0;
2697 	if (prot & VM_PROT_EXECUTE)
2698 		flags |= PF_X;
2699 	if (prot & VM_PROT_READ)
2700 		flags |= PF_R;
2701 	if (prot & VM_PROT_WRITE)
2702 		flags |= PF_W;
2703 	return (flags);
2704 }
2705