1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_gzio.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/gzio.h> 43 #include <sys/imgact.h> 44 #include <sys/imgact_elf.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/mman.h> 51 #include <sys/namei.h> 52 #include <sys/pioctl.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/racct.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sf_buf.h> 60 #include <sys/smp.h> 61 #include <sys/systm.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/sx.h> 65 #include <sys/syscall.h> 66 #include <sys/sysctl.h> 67 #include <sys/sysent.h> 68 #include <sys/vnode.h> 69 #include <sys/syslog.h> 70 #include <sys/eventhandler.h> 71 #include <sys/user.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #define CORE_BUF_SIZE (16 * 1024) 108 109 int __elfN(fallback_brand) = -1; 110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 111 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 112 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 113 114 static int elf_legacy_coredump = 0; 115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 116 &elf_legacy_coredump, 0, ""); 117 118 int __elfN(nxstack) = 119 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ 120 1; 121 #else 122 0; 123 #endif 124 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 125 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 126 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 127 128 #if __ELF_WORD_SIZE == 32 129 #if defined(__amd64__) 130 int i386_read_exec = 0; 131 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 132 "enable execution from readable segments"); 133 #endif 134 #endif 135 136 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 137 138 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 139 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 140 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 141 142 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 143 144 Elf_Brandnote __elfN(freebsd_brandnote) = { 145 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 146 .hdr.n_descsz = sizeof(int32_t), 147 .hdr.n_type = 1, 148 .vendor = FREEBSD_ABI_VENDOR, 149 .flags = BN_TRANSLATE_OSREL, 150 .trans_osrel = __elfN(freebsd_trans_osrel) 151 }; 152 153 static boolean_t 154 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 155 { 156 uintptr_t p; 157 158 p = (uintptr_t)(note + 1); 159 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 160 *osrel = *(const int32_t *)(p); 161 162 return (TRUE); 163 } 164 165 static const char GNU_ABI_VENDOR[] = "GNU"; 166 static int GNU_KFREEBSD_ABI_DESC = 3; 167 168 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 169 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 170 .hdr.n_descsz = 16, /* XXX at least 16 */ 171 .hdr.n_type = 1, 172 .vendor = GNU_ABI_VENDOR, 173 .flags = BN_TRANSLATE_OSREL, 174 .trans_osrel = kfreebsd_trans_osrel 175 }; 176 177 static boolean_t 178 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 179 { 180 const Elf32_Word *desc; 181 uintptr_t p; 182 183 p = (uintptr_t)(note + 1); 184 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 185 186 desc = (const Elf32_Word *)p; 187 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 188 return (FALSE); 189 190 /* 191 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 192 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 193 */ 194 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 195 196 return (TRUE); 197 } 198 199 int 200 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 201 { 202 int i; 203 204 for (i = 0; i < MAX_BRANDS; i++) { 205 if (elf_brand_list[i] == NULL) { 206 elf_brand_list[i] = entry; 207 break; 208 } 209 } 210 if (i == MAX_BRANDS) { 211 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 212 __func__, entry); 213 return (-1); 214 } 215 return (0); 216 } 217 218 int 219 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 220 { 221 int i; 222 223 for (i = 0; i < MAX_BRANDS; i++) { 224 if (elf_brand_list[i] == entry) { 225 elf_brand_list[i] = NULL; 226 break; 227 } 228 } 229 if (i == MAX_BRANDS) 230 return (-1); 231 return (0); 232 } 233 234 int 235 __elfN(brand_inuse)(Elf_Brandinfo *entry) 236 { 237 struct proc *p; 238 int rval = FALSE; 239 240 sx_slock(&allproc_lock); 241 FOREACH_PROC_IN_SYSTEM(p) { 242 if (p->p_sysent == entry->sysvec) { 243 rval = TRUE; 244 break; 245 } 246 } 247 sx_sunlock(&allproc_lock); 248 249 return (rval); 250 } 251 252 static Elf_Brandinfo * 253 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 254 int interp_name_len, int32_t *osrel) 255 { 256 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 257 Elf_Brandinfo *bi; 258 boolean_t ret; 259 int i; 260 261 /* 262 * We support four types of branding -- (1) the ELF EI_OSABI field 263 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 264 * branding w/in the ELF header, (3) path of the `interp_path' 265 * field, and (4) the ".note.ABI-tag" ELF section. 266 */ 267 268 /* Look for an ".note.ABI-tag" ELF section */ 269 for (i = 0; i < MAX_BRANDS; i++) { 270 bi = elf_brand_list[i]; 271 if (bi == NULL) 272 continue; 273 if (hdr->e_machine == bi->machine && (bi->flags & 274 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 275 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 276 if (ret) 277 return (bi); 278 } 279 } 280 281 /* If the executable has a brand, search for it in the brand list. */ 282 for (i = 0; i < MAX_BRANDS; i++) { 283 bi = elf_brand_list[i]; 284 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 285 continue; 286 if (hdr->e_machine == bi->machine && 287 (hdr->e_ident[EI_OSABI] == bi->brand || 288 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 289 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 290 return (bi); 291 } 292 293 /* No known brand, see if the header is recognized by any brand */ 294 for (i = 0; i < MAX_BRANDS; i++) { 295 bi = elf_brand_list[i]; 296 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 297 bi->header_supported == NULL) 298 continue; 299 if (hdr->e_machine == bi->machine) { 300 ret = bi->header_supported(imgp); 301 if (ret) 302 return (bi); 303 } 304 } 305 306 /* Lacking a known brand, search for a recognized interpreter. */ 307 if (interp != NULL) { 308 for (i = 0; i < MAX_BRANDS; i++) { 309 bi = elf_brand_list[i]; 310 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 311 continue; 312 if (hdr->e_machine == bi->machine && 313 /* ELF image p_filesz includes terminating zero */ 314 strlen(bi->interp_path) + 1 == interp_name_len && 315 strncmp(interp, bi->interp_path, interp_name_len) 316 == 0) 317 return (bi); 318 } 319 } 320 321 /* Lacking a recognized interpreter, try the default brand */ 322 for (i = 0; i < MAX_BRANDS; i++) { 323 bi = elf_brand_list[i]; 324 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 325 continue; 326 if (hdr->e_machine == bi->machine && 327 __elfN(fallback_brand) == bi->brand) 328 return (bi); 329 } 330 return (NULL); 331 } 332 333 static int 334 __elfN(check_header)(const Elf_Ehdr *hdr) 335 { 336 Elf_Brandinfo *bi; 337 int i; 338 339 if (!IS_ELF(*hdr) || 340 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 341 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 342 hdr->e_ident[EI_VERSION] != EV_CURRENT || 343 hdr->e_phentsize != sizeof(Elf_Phdr) || 344 hdr->e_version != ELF_TARG_VER) 345 return (ENOEXEC); 346 347 /* 348 * Make sure we have at least one brand for this machine. 349 */ 350 351 for (i = 0; i < MAX_BRANDS; i++) { 352 bi = elf_brand_list[i]; 353 if (bi != NULL && bi->machine == hdr->e_machine) 354 break; 355 } 356 if (i == MAX_BRANDS) 357 return (ENOEXEC); 358 359 return (0); 360 } 361 362 static int 363 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 364 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 365 { 366 struct sf_buf *sf; 367 int error; 368 vm_offset_t off; 369 370 /* 371 * Create the page if it doesn't exist yet. Ignore errors. 372 */ 373 vm_map_lock(map); 374 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 375 VM_PROT_ALL, VM_PROT_ALL, 0); 376 vm_map_unlock(map); 377 378 /* 379 * Find the page from the underlying object. 380 */ 381 if (object) { 382 sf = vm_imgact_map_page(object, offset); 383 if (sf == NULL) 384 return (KERN_FAILURE); 385 off = offset - trunc_page(offset); 386 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 387 end - start); 388 vm_imgact_unmap_page(sf); 389 if (error) { 390 return (KERN_FAILURE); 391 } 392 } 393 394 return (KERN_SUCCESS); 395 } 396 397 static int 398 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 399 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 400 { 401 struct sf_buf *sf; 402 vm_offset_t off; 403 vm_size_t sz; 404 int error, rv; 405 406 if (start != trunc_page(start)) { 407 rv = __elfN(map_partial)(map, object, offset, start, 408 round_page(start), prot); 409 if (rv) 410 return (rv); 411 offset += round_page(start) - start; 412 start = round_page(start); 413 } 414 if (end != round_page(end)) { 415 rv = __elfN(map_partial)(map, object, offset + 416 trunc_page(end) - start, trunc_page(end), end, prot); 417 if (rv) 418 return (rv); 419 end = trunc_page(end); 420 } 421 if (end > start) { 422 if (offset & PAGE_MASK) { 423 /* 424 * The mapping is not page aligned. This means we have 425 * to copy the data. Sigh. 426 */ 427 rv = vm_map_find(map, NULL, 0, &start, end - start, 0, 428 VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL, 429 0); 430 if (rv) 431 return (rv); 432 if (object == NULL) 433 return (KERN_SUCCESS); 434 for (; start < end; start += sz) { 435 sf = vm_imgact_map_page(object, offset); 436 if (sf == NULL) 437 return (KERN_FAILURE); 438 off = offset - trunc_page(offset); 439 sz = end - start; 440 if (sz > PAGE_SIZE - off) 441 sz = PAGE_SIZE - off; 442 error = copyout((caddr_t)sf_buf_kva(sf) + off, 443 (caddr_t)start, sz); 444 vm_imgact_unmap_page(sf); 445 if (error) { 446 return (KERN_FAILURE); 447 } 448 offset += sz; 449 } 450 rv = KERN_SUCCESS; 451 } else { 452 vm_object_reference(object); 453 vm_map_lock(map); 454 rv = vm_map_insert(map, object, offset, start, end, 455 prot, VM_PROT_ALL, cow); 456 vm_map_unlock(map); 457 if (rv != KERN_SUCCESS) 458 vm_object_deallocate(object); 459 } 460 return (rv); 461 } else { 462 return (KERN_SUCCESS); 463 } 464 } 465 466 static int 467 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 468 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 469 size_t pagesize) 470 { 471 struct sf_buf *sf; 472 size_t map_len; 473 vm_map_t map; 474 vm_object_t object; 475 vm_offset_t map_addr; 476 int error, rv, cow; 477 size_t copy_len; 478 vm_offset_t file_addr; 479 480 /* 481 * It's necessary to fail if the filsz + offset taken from the 482 * header is greater than the actual file pager object's size. 483 * If we were to allow this, then the vm_map_find() below would 484 * walk right off the end of the file object and into the ether. 485 * 486 * While I'm here, might as well check for something else that 487 * is invalid: filsz cannot be greater than memsz. 488 */ 489 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 490 uprintf("elf_load_section: truncated ELF file\n"); 491 return (ENOEXEC); 492 } 493 494 object = imgp->object; 495 map = &imgp->proc->p_vmspace->vm_map; 496 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 497 file_addr = trunc_page_ps(offset, pagesize); 498 499 /* 500 * We have two choices. We can either clear the data in the last page 501 * of an oversized mapping, or we can start the anon mapping a page 502 * early and copy the initialized data into that first page. We 503 * choose the second.. 504 */ 505 if (memsz > filsz) 506 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 507 else 508 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 509 510 if (map_len != 0) { 511 /* cow flags: don't dump readonly sections in core */ 512 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 513 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 514 515 rv = __elfN(map_insert)(map, 516 object, 517 file_addr, /* file offset */ 518 map_addr, /* virtual start */ 519 map_addr + map_len,/* virtual end */ 520 prot, 521 cow); 522 if (rv != KERN_SUCCESS) 523 return (EINVAL); 524 525 /* we can stop now if we've covered it all */ 526 if (memsz == filsz) { 527 return (0); 528 } 529 } 530 531 532 /* 533 * We have to get the remaining bit of the file into the first part 534 * of the oversized map segment. This is normally because the .data 535 * segment in the file is extended to provide bss. It's a neat idea 536 * to try and save a page, but it's a pain in the behind to implement. 537 */ 538 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 539 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 540 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 541 map_addr; 542 543 /* This had damn well better be true! */ 544 if (map_len != 0) { 545 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr + 546 map_len, VM_PROT_ALL, 0); 547 if (rv != KERN_SUCCESS) { 548 return (EINVAL); 549 } 550 } 551 552 if (copy_len != 0) { 553 vm_offset_t off; 554 555 sf = vm_imgact_map_page(object, offset + filsz); 556 if (sf == NULL) 557 return (EIO); 558 559 /* send the page fragment to user space */ 560 off = trunc_page_ps(offset + filsz, pagesize) - 561 trunc_page(offset + filsz); 562 error = copyout((caddr_t)sf_buf_kva(sf) + off, 563 (caddr_t)map_addr, copy_len); 564 vm_imgact_unmap_page(sf); 565 if (error) { 566 return (error); 567 } 568 } 569 570 /* 571 * set it to the specified protection. 572 * XXX had better undo the damage from pasting over the cracks here! 573 */ 574 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 575 map_len), prot, FALSE); 576 577 return (0); 578 } 579 580 /* 581 * Load the file "file" into memory. It may be either a shared object 582 * or an executable. 583 * 584 * The "addr" reference parameter is in/out. On entry, it specifies 585 * the address where a shared object should be loaded. If the file is 586 * an executable, this value is ignored. On exit, "addr" specifies 587 * where the file was actually loaded. 588 * 589 * The "entry" reference parameter is out only. On exit, it specifies 590 * the entry point for the loaded file. 591 */ 592 static int 593 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 594 u_long *entry, size_t pagesize) 595 { 596 struct { 597 struct nameidata nd; 598 struct vattr attr; 599 struct image_params image_params; 600 } *tempdata; 601 const Elf_Ehdr *hdr = NULL; 602 const Elf_Phdr *phdr = NULL; 603 struct nameidata *nd; 604 struct vattr *attr; 605 struct image_params *imgp; 606 vm_prot_t prot; 607 u_long rbase; 608 u_long base_addr = 0; 609 int error, i, numsegs; 610 611 #ifdef CAPABILITY_MODE 612 /* 613 * XXXJA: This check can go away once we are sufficiently confident 614 * that the checks in namei() are correct. 615 */ 616 if (IN_CAPABILITY_MODE(curthread)) 617 return (ECAPMODE); 618 #endif 619 620 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 621 nd = &tempdata->nd; 622 attr = &tempdata->attr; 623 imgp = &tempdata->image_params; 624 625 /* 626 * Initialize part of the common data 627 */ 628 imgp->proc = p; 629 imgp->attr = attr; 630 imgp->firstpage = NULL; 631 imgp->image_header = NULL; 632 imgp->object = NULL; 633 imgp->execlabel = NULL; 634 635 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 636 if ((error = namei(nd)) != 0) { 637 nd->ni_vp = NULL; 638 goto fail; 639 } 640 NDFREE(nd, NDF_ONLY_PNBUF); 641 imgp->vp = nd->ni_vp; 642 643 /* 644 * Check permissions, modes, uid, etc on the file, and "open" it. 645 */ 646 error = exec_check_permissions(imgp); 647 if (error) 648 goto fail; 649 650 error = exec_map_first_page(imgp); 651 if (error) 652 goto fail; 653 654 /* 655 * Also make certain that the interpreter stays the same, so set 656 * its VV_TEXT flag, too. 657 */ 658 VOP_SET_TEXT(nd->ni_vp); 659 660 imgp->object = nd->ni_vp->v_object; 661 662 hdr = (const Elf_Ehdr *)imgp->image_header; 663 if ((error = __elfN(check_header)(hdr)) != 0) 664 goto fail; 665 if (hdr->e_type == ET_DYN) 666 rbase = *addr; 667 else if (hdr->e_type == ET_EXEC) 668 rbase = 0; 669 else { 670 error = ENOEXEC; 671 goto fail; 672 } 673 674 /* Only support headers that fit within first page for now */ 675 if ((hdr->e_phoff > PAGE_SIZE) || 676 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 677 error = ENOEXEC; 678 goto fail; 679 } 680 681 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 682 if (!aligned(phdr, Elf_Addr)) { 683 error = ENOEXEC; 684 goto fail; 685 } 686 687 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 688 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 689 /* Loadable segment */ 690 prot = __elfN(trans_prot)(phdr[i].p_flags); 691 error = __elfN(load_section)(imgp, phdr[i].p_offset, 692 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 693 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 694 if (error != 0) 695 goto fail; 696 /* 697 * Establish the base address if this is the 698 * first segment. 699 */ 700 if (numsegs == 0) 701 base_addr = trunc_page(phdr[i].p_vaddr + 702 rbase); 703 numsegs++; 704 } 705 } 706 *addr = base_addr; 707 *entry = (unsigned long)hdr->e_entry + rbase; 708 709 fail: 710 if (imgp->firstpage) 711 exec_unmap_first_page(imgp); 712 713 if (nd->ni_vp) 714 vput(nd->ni_vp); 715 716 free(tempdata, M_TEMP); 717 718 return (error); 719 } 720 721 static int 722 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 723 { 724 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 725 const Elf_Phdr *phdr; 726 Elf_Auxargs *elf_auxargs; 727 struct vmspace *vmspace; 728 vm_prot_t prot; 729 u_long text_size = 0, data_size = 0, total_size = 0; 730 u_long text_addr = 0, data_addr = 0; 731 u_long seg_size, seg_addr; 732 u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; 733 int32_t osrel = 0; 734 int error = 0, i, n, interp_name_len = 0; 735 const char *interp = NULL, *newinterp = NULL; 736 Elf_Brandinfo *brand_info; 737 char *path; 738 struct sysentvec *sv; 739 740 /* 741 * Do we have a valid ELF header ? 742 * 743 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 744 * if particular brand doesn't support it. 745 */ 746 if (__elfN(check_header)(hdr) != 0 || 747 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 748 return (-1); 749 750 /* 751 * From here on down, we return an errno, not -1, as we've 752 * detected an ELF file. 753 */ 754 755 if ((hdr->e_phoff > PAGE_SIZE) || 756 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 757 /* Only support headers in first page for now */ 758 return (ENOEXEC); 759 } 760 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 761 if (!aligned(phdr, Elf_Addr)) 762 return (ENOEXEC); 763 n = 0; 764 baddr = 0; 765 for (i = 0; i < hdr->e_phnum; i++) { 766 switch (phdr[i].p_type) { 767 case PT_LOAD: 768 if (n == 0) 769 baddr = phdr[i].p_vaddr; 770 n++; 771 break; 772 case PT_INTERP: 773 /* Path to interpreter */ 774 if (phdr[i].p_filesz > MAXPATHLEN || 775 phdr[i].p_offset > PAGE_SIZE || 776 phdr[i].p_filesz > PAGE_SIZE - phdr[i].p_offset) 777 return (ENOEXEC); 778 interp = imgp->image_header + phdr[i].p_offset; 779 interp_name_len = phdr[i].p_filesz; 780 break; 781 case PT_GNU_STACK: 782 if (__elfN(nxstack)) 783 imgp->stack_prot = 784 __elfN(trans_prot)(phdr[i].p_flags); 785 imgp->stack_sz = phdr[i].p_memsz; 786 break; 787 } 788 } 789 790 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 791 &osrel); 792 if (brand_info == NULL) { 793 uprintf("ELF binary type \"%u\" not known.\n", 794 hdr->e_ident[EI_OSABI]); 795 return (ENOEXEC); 796 } 797 if (hdr->e_type == ET_DYN) { 798 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) 799 return (ENOEXEC); 800 /* 801 * Honour the base load address from the dso if it is 802 * non-zero for some reason. 803 */ 804 if (baddr == 0) 805 et_dyn_addr = ET_DYN_LOAD_ADDR; 806 else 807 et_dyn_addr = 0; 808 } else 809 et_dyn_addr = 0; 810 sv = brand_info->sysvec; 811 if (interp != NULL && brand_info->interp_newpath != NULL) 812 newinterp = brand_info->interp_newpath; 813 814 /* 815 * Avoid a possible deadlock if the current address space is destroyed 816 * and that address space maps the locked vnode. In the common case, 817 * the locked vnode's v_usecount is decremented but remains greater 818 * than zero. Consequently, the vnode lock is not needed by vrele(). 819 * However, in cases where the vnode lock is external, such as nullfs, 820 * v_usecount may become zero. 821 * 822 * The VV_TEXT flag prevents modifications to the executable while 823 * the vnode is unlocked. 824 */ 825 VOP_UNLOCK(imgp->vp, 0); 826 827 error = exec_new_vmspace(imgp, sv); 828 imgp->proc->p_sysent = sv; 829 830 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 831 if (error) 832 return (error); 833 834 for (i = 0; i < hdr->e_phnum; i++) { 835 switch (phdr[i].p_type) { 836 case PT_LOAD: /* Loadable segment */ 837 if (phdr[i].p_memsz == 0) 838 break; 839 prot = __elfN(trans_prot)(phdr[i].p_flags); 840 error = __elfN(load_section)(imgp, phdr[i].p_offset, 841 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 842 phdr[i].p_memsz, phdr[i].p_filesz, prot, 843 sv->sv_pagesize); 844 if (error != 0) 845 return (error); 846 847 /* 848 * If this segment contains the program headers, 849 * remember their virtual address for the AT_PHDR 850 * aux entry. Static binaries don't usually include 851 * a PT_PHDR entry. 852 */ 853 if (phdr[i].p_offset == 0 && 854 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 855 <= phdr[i].p_filesz) 856 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 857 et_dyn_addr; 858 859 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 860 seg_size = round_page(phdr[i].p_memsz + 861 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 862 863 /* 864 * Make the largest executable segment the official 865 * text segment and all others data. 866 * 867 * Note that obreak() assumes that data_addr + 868 * data_size == end of data load area, and the ELF 869 * file format expects segments to be sorted by 870 * address. If multiple data segments exist, the 871 * last one will be used. 872 */ 873 874 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 875 text_size = seg_size; 876 text_addr = seg_addr; 877 } else { 878 data_size = seg_size; 879 data_addr = seg_addr; 880 } 881 total_size += seg_size; 882 break; 883 case PT_PHDR: /* Program header table info */ 884 proghdr = phdr[i].p_vaddr + et_dyn_addr; 885 break; 886 default: 887 break; 888 } 889 } 890 891 if (data_addr == 0 && data_size == 0) { 892 data_addr = text_addr; 893 data_size = text_size; 894 } 895 896 entry = (u_long)hdr->e_entry + et_dyn_addr; 897 898 /* 899 * Check limits. It should be safe to check the 900 * limits after loading the segments since we do 901 * not actually fault in all the segments pages. 902 */ 903 PROC_LOCK(imgp->proc); 904 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 905 text_size > maxtsiz || 906 total_size > lim_cur(imgp->proc, RLIMIT_VMEM) || 907 racct_set(imgp->proc, RACCT_DATA, data_size) != 0 || 908 racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) { 909 PROC_UNLOCK(imgp->proc); 910 return (ENOMEM); 911 } 912 913 vmspace = imgp->proc->p_vmspace; 914 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 915 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 916 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 917 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 918 919 /* 920 * We load the dynamic linker where a userland call 921 * to mmap(0, ...) would put it. The rationale behind this 922 * calculation is that it leaves room for the heap to grow to 923 * its maximum allowed size. 924 */ 925 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc, 926 RLIMIT_DATA)); 927 PROC_UNLOCK(imgp->proc); 928 929 imgp->entry_addr = entry; 930 931 if (interp != NULL) { 932 int have_interp = FALSE; 933 VOP_UNLOCK(imgp->vp, 0); 934 if (brand_info->emul_path != NULL && 935 brand_info->emul_path[0] != '\0') { 936 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 937 snprintf(path, MAXPATHLEN, "%s%s", 938 brand_info->emul_path, interp); 939 error = __elfN(load_file)(imgp->proc, path, &addr, 940 &imgp->entry_addr, sv->sv_pagesize); 941 free(path, M_TEMP); 942 if (error == 0) 943 have_interp = TRUE; 944 } 945 if (!have_interp && newinterp != NULL) { 946 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 947 &imgp->entry_addr, sv->sv_pagesize); 948 if (error == 0) 949 have_interp = TRUE; 950 } 951 if (!have_interp) { 952 error = __elfN(load_file)(imgp->proc, interp, &addr, 953 &imgp->entry_addr, sv->sv_pagesize); 954 } 955 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 956 if (error != 0) { 957 uprintf("ELF interpreter %s not found\n", interp); 958 return (error); 959 } 960 } else 961 addr = et_dyn_addr; 962 963 /* 964 * Construct auxargs table (used by the fixup routine) 965 */ 966 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 967 elf_auxargs->execfd = -1; 968 elf_auxargs->phdr = proghdr; 969 elf_auxargs->phent = hdr->e_phentsize; 970 elf_auxargs->phnum = hdr->e_phnum; 971 elf_auxargs->pagesz = PAGE_SIZE; 972 elf_auxargs->base = addr; 973 elf_auxargs->flags = 0; 974 elf_auxargs->entry = entry; 975 976 imgp->auxargs = elf_auxargs; 977 imgp->interpreted = 0; 978 imgp->reloc_base = addr; 979 imgp->proc->p_osrel = osrel; 980 981 return (error); 982 } 983 984 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 985 986 int 987 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 988 { 989 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 990 Elf_Addr *base; 991 Elf_Addr *pos; 992 993 base = (Elf_Addr *)*stack_base; 994 pos = base + (imgp->args->argc + imgp->args->envc + 2); 995 996 if (args->execfd != -1) 997 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 998 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 999 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1000 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1001 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1002 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1003 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1004 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1005 if (imgp->execpathp != 0) 1006 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1007 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1008 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1009 if (imgp->canary != 0) { 1010 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1011 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1012 } 1013 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1014 if (imgp->pagesizes != 0) { 1015 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1016 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1017 } 1018 if (imgp->sysent->sv_timekeep_base != 0) { 1019 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1020 imgp->sysent->sv_timekeep_base); 1021 } 1022 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1023 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1024 imgp->sysent->sv_stackprot); 1025 AUXARGS_ENTRY(pos, AT_NULL, 0); 1026 1027 free(imgp->auxargs, M_TEMP); 1028 imgp->auxargs = NULL; 1029 1030 base--; 1031 suword(base, (long)imgp->args->argc); 1032 *stack_base = (register_t *)base; 1033 return (0); 1034 } 1035 1036 /* 1037 * Code for generating ELF core dumps. 1038 */ 1039 1040 typedef void (*segment_callback)(vm_map_entry_t, void *); 1041 1042 /* Closure for cb_put_phdr(). */ 1043 struct phdr_closure { 1044 Elf_Phdr *phdr; /* Program header to fill in */ 1045 Elf_Off offset; /* Offset of segment in core file */ 1046 }; 1047 1048 /* Closure for cb_size_segment(). */ 1049 struct sseg_closure { 1050 int count; /* Count of writable segments. */ 1051 size_t size; /* Total size of all writable segments. */ 1052 }; 1053 1054 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1055 1056 struct note_info { 1057 int type; /* Note type. */ 1058 outfunc_t outfunc; /* Output function. */ 1059 void *outarg; /* Argument for the output function. */ 1060 size_t outsize; /* Output size. */ 1061 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1062 }; 1063 1064 TAILQ_HEAD(note_info_list, note_info); 1065 1066 /* Coredump output parameters. */ 1067 struct coredump_params { 1068 off_t offset; 1069 struct ucred *active_cred; 1070 struct ucred *file_cred; 1071 struct thread *td; 1072 struct vnode *vp; 1073 struct gzio_stream *gzs; 1074 }; 1075 1076 static void cb_put_phdr(vm_map_entry_t, void *); 1077 static void cb_size_segment(vm_map_entry_t, void *); 1078 static int core_write(struct coredump_params *, void *, size_t, off_t, 1079 enum uio_seg); 1080 static void each_writable_segment(struct thread *, segment_callback, void *); 1081 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1082 struct note_info_list *, size_t); 1083 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1084 size_t *); 1085 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1086 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1087 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1088 static int sbuf_drain_core_output(void *, const char *, int); 1089 static int sbuf_drain_count(void *arg, const char *data, int len); 1090 1091 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1092 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1093 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1094 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1095 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1096 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1097 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1098 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1099 static void note_procstat_files(void *, struct sbuf *, size_t *); 1100 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1101 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1102 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1103 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1104 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1105 1106 #ifdef GZIO 1107 extern int compress_user_cores_gzlevel; 1108 1109 /* 1110 * Write out a core segment to the compression stream. 1111 */ 1112 static int 1113 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1114 { 1115 u_int chunk_len; 1116 int error; 1117 1118 while (len > 0) { 1119 chunk_len = MIN(len, CORE_BUF_SIZE); 1120 copyin(base, buf, chunk_len); 1121 error = gzio_write(p->gzs, buf, chunk_len); 1122 if (error != 0) 1123 break; 1124 base += chunk_len; 1125 len -= chunk_len; 1126 } 1127 return (error); 1128 } 1129 1130 static int 1131 core_gz_write(void *base, size_t len, off_t offset, void *arg) 1132 { 1133 1134 return (core_write((struct coredump_params *)arg, base, len, offset, 1135 UIO_SYSSPACE)); 1136 } 1137 #endif /* GZIO */ 1138 1139 static int 1140 core_write(struct coredump_params *p, void *base, size_t len, off_t offset, 1141 enum uio_seg seg) 1142 { 1143 1144 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, base, len, offset, 1145 seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1146 p->active_cred, p->file_cred, NULL, p->td)); 1147 } 1148 1149 static int 1150 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1151 void *tmpbuf) 1152 { 1153 1154 #ifdef GZIO 1155 if (p->gzs != NULL) 1156 return (compress_chunk(p, base, tmpbuf, len)); 1157 #endif 1158 return (core_write(p, base, len, offset, UIO_USERSPACE)); 1159 } 1160 1161 /* 1162 * Drain into a core file. 1163 */ 1164 static int 1165 sbuf_drain_core_output(void *arg, const char *data, int len) 1166 { 1167 struct coredump_params *p; 1168 int error, locked; 1169 1170 p = (struct coredump_params *)arg; 1171 1172 /* 1173 * Some kern_proc out routines that print to this sbuf may 1174 * call us with the process lock held. Draining with the 1175 * non-sleepable lock held is unsafe. The lock is needed for 1176 * those routines when dumping a live process. In our case we 1177 * can safely release the lock before draining and acquire 1178 * again after. 1179 */ 1180 locked = PROC_LOCKED(p->td->td_proc); 1181 if (locked) 1182 PROC_UNLOCK(p->td->td_proc); 1183 #ifdef GZIO 1184 if (p->gzs != NULL) 1185 error = gzio_write(p->gzs, __DECONST(char *, data), len); 1186 else 1187 #endif 1188 error = core_write(p, __DECONST(void *, data), len, p->offset, 1189 UIO_SYSSPACE); 1190 if (locked) 1191 PROC_LOCK(p->td->td_proc); 1192 if (error != 0) 1193 return (-error); 1194 p->offset += len; 1195 return (len); 1196 } 1197 1198 /* 1199 * Drain into a counter. 1200 */ 1201 static int 1202 sbuf_drain_count(void *arg, const char *data __unused, int len) 1203 { 1204 size_t *sizep; 1205 1206 sizep = (size_t *)arg; 1207 *sizep += len; 1208 return (len); 1209 } 1210 1211 int 1212 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1213 { 1214 struct ucred *cred = td->td_ucred; 1215 int error = 0; 1216 struct sseg_closure seginfo; 1217 struct note_info_list notelst; 1218 struct coredump_params params; 1219 struct note_info *ninfo; 1220 void *hdr, *tmpbuf; 1221 size_t hdrsize, notesz, coresize; 1222 boolean_t compress; 1223 1224 compress = (flags & IMGACT_CORE_COMPRESS) != 0; 1225 hdr = NULL; 1226 TAILQ_INIT(¬elst); 1227 1228 /* Size the program segments. */ 1229 seginfo.count = 0; 1230 seginfo.size = 0; 1231 each_writable_segment(td, cb_size_segment, &seginfo); 1232 1233 /* 1234 * Collect info about the core file header area. 1235 */ 1236 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1237 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1238 coresize = round_page(hdrsize + notesz) + seginfo.size; 1239 1240 #ifdef RACCT 1241 PROC_LOCK(td->td_proc); 1242 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1243 PROC_UNLOCK(td->td_proc); 1244 if (error != 0) { 1245 error = EFAULT; 1246 goto done; 1247 } 1248 #endif 1249 if (coresize >= limit) { 1250 error = EFAULT; 1251 goto done; 1252 } 1253 1254 /* Set up core dump parameters. */ 1255 params.offset = 0; 1256 params.active_cred = cred; 1257 params.file_cred = NOCRED; 1258 params.td = td; 1259 params.vp = vp; 1260 params.gzs = NULL; 1261 1262 tmpbuf = NULL; 1263 #ifdef GZIO 1264 /* Create a compression stream if necessary. */ 1265 if (compress) { 1266 params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE, 1267 CORE_BUF_SIZE, compress_user_cores_gzlevel, ¶ms); 1268 if (params.gzs == NULL) { 1269 error = EFAULT; 1270 goto done; 1271 } 1272 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1273 } 1274 #endif 1275 1276 /* 1277 * Allocate memory for building the header, fill it up, 1278 * and write it out following the notes. 1279 */ 1280 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1281 if (hdr == NULL) { 1282 error = EINVAL; 1283 goto done; 1284 } 1285 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1286 notesz); 1287 1288 /* Write the contents of all of the writable segments. */ 1289 if (error == 0) { 1290 Elf_Phdr *php; 1291 off_t offset; 1292 int i; 1293 1294 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1295 offset = round_page(hdrsize + notesz); 1296 for (i = 0; i < seginfo.count; i++) { 1297 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1298 php->p_filesz, offset, ¶ms, tmpbuf); 1299 if (error != 0) 1300 break; 1301 offset += php->p_filesz; 1302 php++; 1303 } 1304 #ifdef GZIO 1305 if (error == 0 && compress) 1306 error = gzio_flush(params.gzs); 1307 #endif 1308 } 1309 if (error) { 1310 log(LOG_WARNING, 1311 "Failed to write core file for process %s (error %d)\n", 1312 curproc->p_comm, error); 1313 } 1314 1315 done: 1316 #ifdef GZIO 1317 if (compress) { 1318 free(tmpbuf, M_TEMP); 1319 gzio_fini(params.gzs); 1320 } 1321 #endif 1322 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1323 TAILQ_REMOVE(¬elst, ninfo, link); 1324 free(ninfo, M_TEMP); 1325 } 1326 if (hdr != NULL) 1327 free(hdr, M_TEMP); 1328 1329 return (error); 1330 } 1331 1332 /* 1333 * A callback for each_writable_segment() to write out the segment's 1334 * program header entry. 1335 */ 1336 static void 1337 cb_put_phdr(entry, closure) 1338 vm_map_entry_t entry; 1339 void *closure; 1340 { 1341 struct phdr_closure *phc = (struct phdr_closure *)closure; 1342 Elf_Phdr *phdr = phc->phdr; 1343 1344 phc->offset = round_page(phc->offset); 1345 1346 phdr->p_type = PT_LOAD; 1347 phdr->p_offset = phc->offset; 1348 phdr->p_vaddr = entry->start; 1349 phdr->p_paddr = 0; 1350 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1351 phdr->p_align = PAGE_SIZE; 1352 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1353 1354 phc->offset += phdr->p_filesz; 1355 phc->phdr++; 1356 } 1357 1358 /* 1359 * A callback for each_writable_segment() to gather information about 1360 * the number of segments and their total size. 1361 */ 1362 static void 1363 cb_size_segment(entry, closure) 1364 vm_map_entry_t entry; 1365 void *closure; 1366 { 1367 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1368 1369 ssc->count++; 1370 ssc->size += entry->end - entry->start; 1371 } 1372 1373 /* 1374 * For each writable segment in the process's memory map, call the given 1375 * function with a pointer to the map entry and some arbitrary 1376 * caller-supplied data. 1377 */ 1378 static void 1379 each_writable_segment(td, func, closure) 1380 struct thread *td; 1381 segment_callback func; 1382 void *closure; 1383 { 1384 struct proc *p = td->td_proc; 1385 vm_map_t map = &p->p_vmspace->vm_map; 1386 vm_map_entry_t entry; 1387 vm_object_t backing_object, object; 1388 boolean_t ignore_entry; 1389 1390 vm_map_lock_read(map); 1391 for (entry = map->header.next; entry != &map->header; 1392 entry = entry->next) { 1393 /* 1394 * Don't dump inaccessible mappings, deal with legacy 1395 * coredump mode. 1396 * 1397 * Note that read-only segments related to the elf binary 1398 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1399 * need to arbitrarily ignore such segments. 1400 */ 1401 if (elf_legacy_coredump) { 1402 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1403 continue; 1404 } else { 1405 if ((entry->protection & VM_PROT_ALL) == 0) 1406 continue; 1407 } 1408 1409 /* 1410 * Dont include memory segment in the coredump if 1411 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1412 * madvise(2). Do not dump submaps (i.e. parts of the 1413 * kernel map). 1414 */ 1415 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1416 continue; 1417 1418 if ((object = entry->object.vm_object) == NULL) 1419 continue; 1420 1421 /* Ignore memory-mapped devices and such things. */ 1422 VM_OBJECT_RLOCK(object); 1423 while ((backing_object = object->backing_object) != NULL) { 1424 VM_OBJECT_RLOCK(backing_object); 1425 VM_OBJECT_RUNLOCK(object); 1426 object = backing_object; 1427 } 1428 ignore_entry = object->type != OBJT_DEFAULT && 1429 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1430 object->type != OBJT_PHYS; 1431 VM_OBJECT_RUNLOCK(object); 1432 if (ignore_entry) 1433 continue; 1434 1435 (*func)(entry, closure); 1436 } 1437 vm_map_unlock_read(map); 1438 } 1439 1440 /* 1441 * Write the core file header to the file, including padding up to 1442 * the page boundary. 1443 */ 1444 static int 1445 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1446 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1447 { 1448 struct note_info *ninfo; 1449 struct sbuf *sb; 1450 int error; 1451 1452 /* Fill in the header. */ 1453 bzero(hdr, hdrsize); 1454 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1455 1456 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1457 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1458 sbuf_start_section(sb, NULL); 1459 sbuf_bcat(sb, hdr, hdrsize); 1460 TAILQ_FOREACH(ninfo, notelst, link) 1461 __elfN(putnote)(ninfo, sb); 1462 /* Align up to a page boundary for the program segments. */ 1463 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1464 error = sbuf_finish(sb); 1465 sbuf_delete(sb); 1466 1467 return (error); 1468 } 1469 1470 static void 1471 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1472 size_t *sizep) 1473 { 1474 struct proc *p; 1475 struct thread *thr; 1476 size_t size; 1477 1478 p = td->td_proc; 1479 size = 0; 1480 1481 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1482 1483 /* 1484 * To have the debugger select the right thread (LWP) as the initial 1485 * thread, we dump the state of the thread passed to us in td first. 1486 * This is the thread that causes the core dump and thus likely to 1487 * be the right thread one wants to have selected in the debugger. 1488 */ 1489 thr = td; 1490 while (thr != NULL) { 1491 size += register_note(list, NT_PRSTATUS, 1492 __elfN(note_prstatus), thr); 1493 size += register_note(list, NT_FPREGSET, 1494 __elfN(note_fpregset), thr); 1495 size += register_note(list, NT_THRMISC, 1496 __elfN(note_thrmisc), thr); 1497 size += register_note(list, -1, 1498 __elfN(note_threadmd), thr); 1499 1500 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1501 TAILQ_NEXT(thr, td_plist); 1502 if (thr == td) 1503 thr = TAILQ_NEXT(thr, td_plist); 1504 } 1505 1506 size += register_note(list, NT_PROCSTAT_PROC, 1507 __elfN(note_procstat_proc), p); 1508 size += register_note(list, NT_PROCSTAT_FILES, 1509 note_procstat_files, p); 1510 size += register_note(list, NT_PROCSTAT_VMMAP, 1511 note_procstat_vmmap, p); 1512 size += register_note(list, NT_PROCSTAT_GROUPS, 1513 note_procstat_groups, p); 1514 size += register_note(list, NT_PROCSTAT_UMASK, 1515 note_procstat_umask, p); 1516 size += register_note(list, NT_PROCSTAT_RLIMIT, 1517 note_procstat_rlimit, p); 1518 size += register_note(list, NT_PROCSTAT_OSREL, 1519 note_procstat_osrel, p); 1520 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1521 __elfN(note_procstat_psstrings), p); 1522 size += register_note(list, NT_PROCSTAT_AUXV, 1523 __elfN(note_procstat_auxv), p); 1524 1525 *sizep = size; 1526 } 1527 1528 static void 1529 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1530 size_t notesz) 1531 { 1532 Elf_Ehdr *ehdr; 1533 Elf_Phdr *phdr; 1534 struct phdr_closure phc; 1535 1536 ehdr = (Elf_Ehdr *)hdr; 1537 phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)); 1538 1539 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1540 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1541 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1542 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1543 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1544 ehdr->e_ident[EI_DATA] = ELF_DATA; 1545 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1546 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1547 ehdr->e_ident[EI_ABIVERSION] = 0; 1548 ehdr->e_ident[EI_PAD] = 0; 1549 ehdr->e_type = ET_CORE; 1550 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1551 ehdr->e_machine = ELF_ARCH32; 1552 #else 1553 ehdr->e_machine = ELF_ARCH; 1554 #endif 1555 ehdr->e_version = EV_CURRENT; 1556 ehdr->e_entry = 0; 1557 ehdr->e_phoff = sizeof(Elf_Ehdr); 1558 ehdr->e_flags = 0; 1559 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1560 ehdr->e_phentsize = sizeof(Elf_Phdr); 1561 ehdr->e_phnum = numsegs + 1; 1562 ehdr->e_shentsize = sizeof(Elf_Shdr); 1563 ehdr->e_shnum = 0; 1564 ehdr->e_shstrndx = SHN_UNDEF; 1565 1566 /* 1567 * Fill in the program header entries. 1568 */ 1569 1570 /* The note segement. */ 1571 phdr->p_type = PT_NOTE; 1572 phdr->p_offset = hdrsize; 1573 phdr->p_vaddr = 0; 1574 phdr->p_paddr = 0; 1575 phdr->p_filesz = notesz; 1576 phdr->p_memsz = 0; 1577 phdr->p_flags = PF_R; 1578 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1579 phdr++; 1580 1581 /* All the writable segments from the program. */ 1582 phc.phdr = phdr; 1583 phc.offset = round_page(hdrsize + notesz); 1584 each_writable_segment(td, cb_put_phdr, &phc); 1585 } 1586 1587 static size_t 1588 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1589 { 1590 struct note_info *ninfo; 1591 size_t size, notesize; 1592 1593 size = 0; 1594 out(arg, NULL, &size); 1595 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1596 ninfo->type = type; 1597 ninfo->outfunc = out; 1598 ninfo->outarg = arg; 1599 ninfo->outsize = size; 1600 TAILQ_INSERT_TAIL(list, ninfo, link); 1601 1602 if (type == -1) 1603 return (size); 1604 1605 notesize = sizeof(Elf_Note) + /* note header */ 1606 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1607 /* note name */ 1608 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1609 1610 return (notesize); 1611 } 1612 1613 static size_t 1614 append_note_data(const void *src, void *dst, size_t len) 1615 { 1616 size_t padded_len; 1617 1618 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1619 if (dst != NULL) { 1620 bcopy(src, dst, len); 1621 bzero((char *)dst + len, padded_len - len); 1622 } 1623 return (padded_len); 1624 } 1625 1626 size_t 1627 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1628 { 1629 Elf_Note *note; 1630 char *buf; 1631 size_t notesize; 1632 1633 buf = dst; 1634 if (buf != NULL) { 1635 note = (Elf_Note *)buf; 1636 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1637 note->n_descsz = size; 1638 note->n_type = type; 1639 buf += sizeof(*note); 1640 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1641 sizeof(FREEBSD_ABI_VENDOR)); 1642 append_note_data(src, buf, size); 1643 if (descp != NULL) 1644 *descp = buf; 1645 } 1646 1647 notesize = sizeof(Elf_Note) + /* note header */ 1648 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1649 /* note name */ 1650 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1651 1652 return (notesize); 1653 } 1654 1655 static void 1656 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1657 { 1658 Elf_Note note; 1659 ssize_t old_len; 1660 1661 if (ninfo->type == -1) { 1662 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1663 return; 1664 } 1665 1666 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1667 note.n_descsz = ninfo->outsize; 1668 note.n_type = ninfo->type; 1669 1670 sbuf_bcat(sb, ¬e, sizeof(note)); 1671 sbuf_start_section(sb, &old_len); 1672 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1673 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1674 if (note.n_descsz == 0) 1675 return; 1676 sbuf_start_section(sb, &old_len); 1677 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1678 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1679 } 1680 1681 /* 1682 * Miscellaneous note out functions. 1683 */ 1684 1685 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1686 #include <compat/freebsd32/freebsd32.h> 1687 1688 typedef struct prstatus32 elf_prstatus_t; 1689 typedef struct prpsinfo32 elf_prpsinfo_t; 1690 typedef struct fpreg32 elf_prfpregset_t; 1691 typedef struct fpreg32 elf_fpregset_t; 1692 typedef struct reg32 elf_gregset_t; 1693 typedef struct thrmisc32 elf_thrmisc_t; 1694 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1695 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1696 typedef uint32_t elf_ps_strings_t; 1697 #else 1698 typedef prstatus_t elf_prstatus_t; 1699 typedef prpsinfo_t elf_prpsinfo_t; 1700 typedef prfpregset_t elf_prfpregset_t; 1701 typedef prfpregset_t elf_fpregset_t; 1702 typedef gregset_t elf_gregset_t; 1703 typedef thrmisc_t elf_thrmisc_t; 1704 #define ELF_KERN_PROC_MASK 0 1705 typedef struct kinfo_proc elf_kinfo_proc_t; 1706 typedef vm_offset_t elf_ps_strings_t; 1707 #endif 1708 1709 static void 1710 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1711 { 1712 struct proc *p; 1713 elf_prpsinfo_t *psinfo; 1714 1715 p = (struct proc *)arg; 1716 if (sb != NULL) { 1717 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1718 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1719 psinfo->pr_version = PRPSINFO_VERSION; 1720 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1721 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1722 /* 1723 * XXX - We don't fill in the command line arguments properly 1724 * yet. 1725 */ 1726 strlcpy(psinfo->pr_psargs, p->p_comm, 1727 sizeof(psinfo->pr_psargs)); 1728 1729 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1730 free(psinfo, M_TEMP); 1731 } 1732 *sizep = sizeof(*psinfo); 1733 } 1734 1735 static void 1736 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1737 { 1738 struct thread *td; 1739 elf_prstatus_t *status; 1740 1741 td = (struct thread *)arg; 1742 if (sb != NULL) { 1743 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1744 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1745 status->pr_version = PRSTATUS_VERSION; 1746 status->pr_statussz = sizeof(elf_prstatus_t); 1747 status->pr_gregsetsz = sizeof(elf_gregset_t); 1748 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1749 status->pr_osreldate = osreldate; 1750 status->pr_cursig = td->td_proc->p_sig; 1751 status->pr_pid = td->td_tid; 1752 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1753 fill_regs32(td, &status->pr_reg); 1754 #else 1755 fill_regs(td, &status->pr_reg); 1756 #endif 1757 sbuf_bcat(sb, status, sizeof(*status)); 1758 free(status, M_TEMP); 1759 } 1760 *sizep = sizeof(*status); 1761 } 1762 1763 static void 1764 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1765 { 1766 struct thread *td; 1767 elf_prfpregset_t *fpregset; 1768 1769 td = (struct thread *)arg; 1770 if (sb != NULL) { 1771 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1772 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1773 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1774 fill_fpregs32(td, fpregset); 1775 #else 1776 fill_fpregs(td, fpregset); 1777 #endif 1778 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1779 free(fpregset, M_TEMP); 1780 } 1781 *sizep = sizeof(*fpregset); 1782 } 1783 1784 static void 1785 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1786 { 1787 struct thread *td; 1788 elf_thrmisc_t thrmisc; 1789 1790 td = (struct thread *)arg; 1791 if (sb != NULL) { 1792 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1793 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1794 strcpy(thrmisc.pr_tname, td->td_name); 1795 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1796 } 1797 *sizep = sizeof(thrmisc); 1798 } 1799 1800 /* 1801 * Allow for MD specific notes, as well as any MD 1802 * specific preparations for writing MI notes. 1803 */ 1804 static void 1805 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 1806 { 1807 struct thread *td; 1808 void *buf; 1809 size_t size; 1810 1811 td = (struct thread *)arg; 1812 size = *sizep; 1813 if (size != 0 && sb != NULL) 1814 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 1815 else 1816 buf = NULL; 1817 size = 0; 1818 __elfN(dump_thread)(td, buf, &size); 1819 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 1820 if (size != 0 && sb != NULL) 1821 sbuf_bcat(sb, buf, size); 1822 free(buf, M_TEMP); 1823 *sizep = size; 1824 } 1825 1826 #ifdef KINFO_PROC_SIZE 1827 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 1828 #endif 1829 1830 static void 1831 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 1832 { 1833 struct proc *p; 1834 size_t size; 1835 int structsize; 1836 1837 p = (struct proc *)arg; 1838 size = sizeof(structsize) + p->p_numthreads * 1839 sizeof(elf_kinfo_proc_t); 1840 1841 if (sb != NULL) { 1842 KASSERT(*sizep == size, ("invalid size")); 1843 structsize = sizeof(elf_kinfo_proc_t); 1844 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1845 sx_slock(&proctree_lock); 1846 PROC_LOCK(p); 1847 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 1848 sx_sunlock(&proctree_lock); 1849 } 1850 *sizep = size; 1851 } 1852 1853 #ifdef KINFO_FILE_SIZE 1854 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 1855 #endif 1856 1857 static void 1858 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 1859 { 1860 struct proc *p; 1861 size_t size; 1862 int structsize; 1863 1864 p = (struct proc *)arg; 1865 if (sb == NULL) { 1866 size = 0; 1867 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1868 sbuf_set_drain(sb, sbuf_drain_count, &size); 1869 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1870 PROC_LOCK(p); 1871 kern_proc_filedesc_out(p, sb, -1); 1872 sbuf_finish(sb); 1873 sbuf_delete(sb); 1874 *sizep = size; 1875 } else { 1876 structsize = sizeof(struct kinfo_file); 1877 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1878 PROC_LOCK(p); 1879 kern_proc_filedesc_out(p, sb, -1); 1880 } 1881 } 1882 1883 #ifdef KINFO_VMENTRY_SIZE 1884 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1885 #endif 1886 1887 static void 1888 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 1889 { 1890 struct proc *p; 1891 size_t size; 1892 int structsize; 1893 1894 p = (struct proc *)arg; 1895 if (sb == NULL) { 1896 size = 0; 1897 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1898 sbuf_set_drain(sb, sbuf_drain_count, &size); 1899 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1900 PROC_LOCK(p); 1901 kern_proc_vmmap_out(p, sb); 1902 sbuf_finish(sb); 1903 sbuf_delete(sb); 1904 *sizep = size; 1905 } else { 1906 structsize = sizeof(struct kinfo_vmentry); 1907 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1908 PROC_LOCK(p); 1909 kern_proc_vmmap_out(p, sb); 1910 } 1911 } 1912 1913 static void 1914 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 1915 { 1916 struct proc *p; 1917 size_t size; 1918 int structsize; 1919 1920 p = (struct proc *)arg; 1921 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 1922 if (sb != NULL) { 1923 KASSERT(*sizep == size, ("invalid size")); 1924 structsize = sizeof(gid_t); 1925 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1926 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 1927 sizeof(gid_t)); 1928 } 1929 *sizep = size; 1930 } 1931 1932 static void 1933 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 1934 { 1935 struct proc *p; 1936 size_t size; 1937 int structsize; 1938 1939 p = (struct proc *)arg; 1940 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 1941 if (sb != NULL) { 1942 KASSERT(*sizep == size, ("invalid size")); 1943 structsize = sizeof(p->p_fd->fd_cmask); 1944 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1945 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 1946 } 1947 *sizep = size; 1948 } 1949 1950 static void 1951 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 1952 { 1953 struct proc *p; 1954 struct rlimit rlim[RLIM_NLIMITS]; 1955 size_t size; 1956 int structsize, i; 1957 1958 p = (struct proc *)arg; 1959 size = sizeof(structsize) + sizeof(rlim); 1960 if (sb != NULL) { 1961 KASSERT(*sizep == size, ("invalid size")); 1962 structsize = sizeof(rlim); 1963 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1964 PROC_LOCK(p); 1965 for (i = 0; i < RLIM_NLIMITS; i++) 1966 lim_rlimit(p, i, &rlim[i]); 1967 PROC_UNLOCK(p); 1968 sbuf_bcat(sb, rlim, sizeof(rlim)); 1969 } 1970 *sizep = size; 1971 } 1972 1973 static void 1974 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 1975 { 1976 struct proc *p; 1977 size_t size; 1978 int structsize; 1979 1980 p = (struct proc *)arg; 1981 size = sizeof(structsize) + sizeof(p->p_osrel); 1982 if (sb != NULL) { 1983 KASSERT(*sizep == size, ("invalid size")); 1984 structsize = sizeof(p->p_osrel); 1985 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1986 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 1987 } 1988 *sizep = size; 1989 } 1990 1991 static void 1992 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 1993 { 1994 struct proc *p; 1995 elf_ps_strings_t ps_strings; 1996 size_t size; 1997 int structsize; 1998 1999 p = (struct proc *)arg; 2000 size = sizeof(structsize) + sizeof(ps_strings); 2001 if (sb != NULL) { 2002 KASSERT(*sizep == size, ("invalid size")); 2003 structsize = sizeof(ps_strings); 2004 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2005 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2006 #else 2007 ps_strings = p->p_sysent->sv_psstrings; 2008 #endif 2009 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2010 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2011 } 2012 *sizep = size; 2013 } 2014 2015 static void 2016 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2017 { 2018 struct proc *p; 2019 size_t size; 2020 int structsize; 2021 2022 p = (struct proc *)arg; 2023 if (sb == NULL) { 2024 size = 0; 2025 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2026 sbuf_set_drain(sb, sbuf_drain_count, &size); 2027 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2028 PHOLD(p); 2029 proc_getauxv(curthread, p, sb); 2030 PRELE(p); 2031 sbuf_finish(sb); 2032 sbuf_delete(sb); 2033 *sizep = size; 2034 } else { 2035 structsize = sizeof(Elf_Auxinfo); 2036 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2037 PHOLD(p); 2038 proc_getauxv(curthread, p, sb); 2039 PRELE(p); 2040 } 2041 } 2042 2043 static boolean_t 2044 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2045 int32_t *osrel, const Elf_Phdr *pnote) 2046 { 2047 const Elf_Note *note, *note0, *note_end; 2048 const char *note_name; 2049 int i; 2050 2051 if (pnote == NULL || pnote->p_offset > PAGE_SIZE || 2052 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) 2053 return (FALSE); 2054 2055 note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); 2056 note_end = (const Elf_Note *)(imgp->image_header + 2057 pnote->p_offset + pnote->p_filesz); 2058 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2059 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2060 (const char *)note < sizeof(Elf_Note)) 2061 return (FALSE); 2062 if (note->n_namesz != checknote->hdr.n_namesz || 2063 note->n_descsz != checknote->hdr.n_descsz || 2064 note->n_type != checknote->hdr.n_type) 2065 goto nextnote; 2066 note_name = (const char *)(note + 1); 2067 if (note_name + checknote->hdr.n_namesz >= 2068 (const char *)note_end || strncmp(checknote->vendor, 2069 note_name, checknote->hdr.n_namesz) != 0) 2070 goto nextnote; 2071 2072 /* 2073 * Fetch the osreldate for binary 2074 * from the ELF OSABI-note if necessary. 2075 */ 2076 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2077 checknote->trans_osrel != NULL) 2078 return (checknote->trans_osrel(note, osrel)); 2079 return (TRUE); 2080 2081 nextnote: 2082 note = (const Elf_Note *)((const char *)(note + 1) + 2083 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2084 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2085 } 2086 2087 return (FALSE); 2088 } 2089 2090 /* 2091 * Try to find the appropriate ABI-note section for checknote, 2092 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2093 * first page of the image is searched, the same as for headers. 2094 */ 2095 static boolean_t 2096 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2097 int32_t *osrel) 2098 { 2099 const Elf_Phdr *phdr; 2100 const Elf_Ehdr *hdr; 2101 int i; 2102 2103 hdr = (const Elf_Ehdr *)imgp->image_header; 2104 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2105 2106 for (i = 0; i < hdr->e_phnum; i++) { 2107 if (phdr[i].p_type == PT_NOTE && 2108 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2109 return (TRUE); 2110 } 2111 return (FALSE); 2112 2113 } 2114 2115 /* 2116 * Tell kern_execve.c about it, with a little help from the linker. 2117 */ 2118 static struct execsw __elfN(execsw) = { 2119 __CONCAT(exec_, __elfN(imgact)), 2120 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2121 }; 2122 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2123 2124 static vm_prot_t 2125 __elfN(trans_prot)(Elf_Word flags) 2126 { 2127 vm_prot_t prot; 2128 2129 prot = 0; 2130 if (flags & PF_X) 2131 prot |= VM_PROT_EXECUTE; 2132 if (flags & PF_W) 2133 prot |= VM_PROT_WRITE; 2134 if (flags & PF_R) 2135 prot |= VM_PROT_READ; 2136 #if __ELF_WORD_SIZE == 32 2137 #if defined(__amd64__) 2138 if (i386_read_exec && (flags & PF_R)) 2139 prot |= VM_PROT_EXECUTE; 2140 #endif 2141 #endif 2142 return (prot); 2143 } 2144 2145 static Elf_Word 2146 __elfN(untrans_prot)(vm_prot_t prot) 2147 { 2148 Elf_Word flags; 2149 2150 flags = 0; 2151 if (prot & VM_PROT_EXECUTE) 2152 flags |= PF_X; 2153 if (prot & VM_PROT_READ) 2154 flags |= PF_R; 2155 if (prot & VM_PROT_WRITE) 2156 flags |= PF_W; 2157 return (flags); 2158 } 2159