xref: /freebsd/sys/kern/imgact_elf.c (revision 8f1ef87a6b93af292e68f8e33087e2df6325e9bb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/ptrace.h>
56 #include <sys/racct.h>
57 #include <sys/reg.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static bool __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
102     uint32_t *fctl0);
103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
105 static size_t __elfN(prepare_register_notes)(struct thread *td,
106     struct note_info_list *list, struct thread *target_td);
107 
108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
109     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
110     "");
111 
112 int __elfN(fallback_brand) = -1;
113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
114     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
115     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
116 
117 static int elf_legacy_coredump = 0;
118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
119     &elf_legacy_coredump, 0,
120     "include all and only RW pages in core dumps");
121 
122 int __elfN(nxstack) =
123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
124     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
125     defined(__riscv)
126 	1;
127 #else
128 	0;
129 #endif
130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
131     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
132     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
133 
134 #if defined(__amd64__)
135 static int __elfN(vdso) = 1;
136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
137     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
138     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
139 #else
140 static int __elfN(vdso) = 0;
141 #endif
142 
143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
144 int i386_read_exec = 0;
145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
146     "enable execution from readable segments");
147 #endif
148 
149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
150 static int
151 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
152 {
153 	u_long val;
154 	int error;
155 
156 	val = __elfN(pie_base);
157 	error = sysctl_handle_long(oidp, &val, 0, req);
158 	if (error != 0 || req->newptr == NULL)
159 		return (error);
160 	if ((val & PAGE_MASK) != 0)
161 		return (EINVAL);
162 	__elfN(pie_base) = val;
163 	return (0);
164 }
165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
166     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
167     sysctl_pie_base, "LU",
168     "PIE load base without randomization");
169 
170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "");
173 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
174 
175 /*
176  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
177  * have limited address space (which can cause issues for applications with
178  * high memory use) so we leave it off there.
179  */
180 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
182     &__elfN(aslr_enabled), 0,
183     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
184     ": enable address map randomization");
185 
186 /*
187  * Enable ASLR by default for 64-bit PIE binaries.
188  */
189 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
190 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
191     &__elfN(pie_aslr_enabled), 0,
192     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
193     ": enable address map randomization for PIE binaries");
194 
195 /*
196  * Sbrk is deprecated and it can be assumed that in most cases it will not be
197  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
198  * to use the bss grow region.
199  */
200 static int __elfN(aslr_honor_sbrk) = 0;
201 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
202     &__elfN(aslr_honor_sbrk), 0,
203     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
204 
205 static int __elfN(aslr_stack) = 1;
206 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
207     &__elfN(aslr_stack), 0,
208     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
209     ": enable stack address randomization");
210 
211 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
212 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
213     &__elfN(aslr_shared_page), 0,
214     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
215     ": enable shared page address randomization");
216 
217 static int __elfN(sigfastblock) = 1;
218 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
219     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
220     "enable sigfastblock for new processes");
221 
222 static bool __elfN(allow_wx) = true;
223 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
224     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
225     "Allow pages to be mapped simultaneously writable and executable");
226 
227 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
228 
229 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
230 
231 Elf_Brandnote __elfN(freebsd_brandnote) = {
232 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
233 	.hdr.n_descsz	= sizeof(int32_t),
234 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
235 	.vendor		= FREEBSD_ABI_VENDOR,
236 	.flags		= BN_TRANSLATE_OSREL,
237 	.trans_osrel	= __elfN(freebsd_trans_osrel)
238 };
239 
240 static bool
241 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
242 {
243 	uintptr_t p;
244 
245 	p = (uintptr_t)(note + 1);
246 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
247 	*osrel = *(const int32_t *)(p);
248 
249 	return (true);
250 }
251 
252 static const char GNU_ABI_VENDOR[] = "GNU";
253 static int GNU_KFREEBSD_ABI_DESC = 3;
254 
255 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
256 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
257 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
258 	.hdr.n_type	= 1,
259 	.vendor		= GNU_ABI_VENDOR,
260 	.flags		= BN_TRANSLATE_OSREL,
261 	.trans_osrel	= kfreebsd_trans_osrel
262 };
263 
264 static bool
265 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
266 {
267 	const Elf32_Word *desc;
268 	uintptr_t p;
269 
270 	p = (uintptr_t)(note + 1);
271 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
272 
273 	desc = (const Elf32_Word *)p;
274 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
275 		return (false);
276 
277 	/*
278 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
279 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
280 	 */
281 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
282 
283 	return (true);
284 }
285 
286 int
287 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
288 {
289 	int i;
290 
291 	for (i = 0; i < MAX_BRANDS; i++) {
292 		if (elf_brand_list[i] == NULL) {
293 			elf_brand_list[i] = entry;
294 			break;
295 		}
296 	}
297 	if (i == MAX_BRANDS) {
298 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
299 			__func__, entry);
300 		return (-1);
301 	}
302 	return (0);
303 }
304 
305 int
306 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
307 {
308 	int i;
309 
310 	for (i = 0; i < MAX_BRANDS; i++) {
311 		if (elf_brand_list[i] == entry) {
312 			elf_brand_list[i] = NULL;
313 			break;
314 		}
315 	}
316 	if (i == MAX_BRANDS)
317 		return (-1);
318 	return (0);
319 }
320 
321 bool
322 __elfN(brand_inuse)(Elf_Brandinfo *entry)
323 {
324 	struct proc *p;
325 	bool rval = false;
326 
327 	sx_slock(&allproc_lock);
328 	FOREACH_PROC_IN_SYSTEM(p) {
329 		if (p->p_sysent == entry->sysvec) {
330 			rval = true;
331 			break;
332 		}
333 	}
334 	sx_sunlock(&allproc_lock);
335 
336 	return (rval);
337 }
338 
339 static Elf_Brandinfo *
340 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
341     int32_t *osrel, uint32_t *fctl0)
342 {
343 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
344 	Elf_Brandinfo *bi, *bi_m;
345 	bool ret, has_fctl0;
346 	int i, interp_name_len;
347 
348 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
349 
350 	/*
351 	 * We support four types of branding -- (1) the ELF EI_OSABI field
352 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
353 	 * branding w/in the ELF header, (3) path of the `interp_path'
354 	 * field, and (4) the ".note.ABI-tag" ELF section.
355 	 */
356 
357 	/* Look for an ".note.ABI-tag" ELF section */
358 	bi_m = NULL;
359 	for (i = 0; i < MAX_BRANDS; i++) {
360 		bi = elf_brand_list[i];
361 		if (bi == NULL)
362 			continue;
363 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
364 			continue;
365 		if (hdr->e_machine == bi->machine && (bi->flags &
366 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
367 			has_fctl0 = false;
368 			*fctl0 = 0;
369 			*osrel = 0;
370 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
371 			    &has_fctl0, fctl0);
372 			/* Give brand a chance to veto check_note's guess */
373 			if (ret && bi->header_supported) {
374 				ret = bi->header_supported(imgp, osrel,
375 				    has_fctl0 ? fctl0 : NULL);
376 			}
377 			/*
378 			 * If note checker claimed the binary, but the
379 			 * interpreter path in the image does not
380 			 * match default one for the brand, try to
381 			 * search for other brands with the same
382 			 * interpreter.  Either there is better brand
383 			 * with the right interpreter, or, failing
384 			 * this, we return first brand which accepted
385 			 * our note and, optionally, header.
386 			 */
387 			if (ret && bi_m == NULL && interp != NULL &&
388 			    (bi->interp_path == NULL ||
389 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
390 			    strncmp(interp, bi->interp_path, interp_name_len)
391 			    != 0))) {
392 				bi_m = bi;
393 				ret = 0;
394 			}
395 			if (ret)
396 				return (bi);
397 		}
398 	}
399 	if (bi_m != NULL)
400 		return (bi_m);
401 
402 	/* If the executable has a brand, search for it in the brand list. */
403 	for (i = 0; i < MAX_BRANDS; i++) {
404 		bi = elf_brand_list[i];
405 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
406 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
407 			continue;
408 		if (hdr->e_machine == bi->machine &&
409 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
410 		    (bi->compat_3_brand != NULL &&
411 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
412 		    bi->compat_3_brand) == 0))) {
413 			/* Looks good, but give brand a chance to veto */
414 			if (bi->header_supported == NULL ||
415 			    bi->header_supported(imgp, NULL, NULL)) {
416 				/*
417 				 * Again, prefer strictly matching
418 				 * interpreter path.
419 				 */
420 				if (interp_name_len == 0 &&
421 				    bi->interp_path == NULL)
422 					return (bi);
423 				if (bi->interp_path != NULL &&
424 				    strlen(bi->interp_path) + 1 ==
425 				    interp_name_len && strncmp(interp,
426 				    bi->interp_path, interp_name_len) == 0)
427 					return (bi);
428 				if (bi_m == NULL)
429 					bi_m = bi;
430 			}
431 		}
432 	}
433 	if (bi_m != NULL)
434 		return (bi_m);
435 
436 	/* No known brand, see if the header is recognized by any brand */
437 	for (i = 0; i < MAX_BRANDS; i++) {
438 		bi = elf_brand_list[i];
439 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
440 		    bi->header_supported == NULL)
441 			continue;
442 		if (hdr->e_machine == bi->machine) {
443 			ret = bi->header_supported(imgp, NULL, NULL);
444 			if (ret)
445 				return (bi);
446 		}
447 	}
448 
449 	/* Lacking a known brand, search for a recognized interpreter. */
450 	if (interp != NULL) {
451 		for (i = 0; i < MAX_BRANDS; i++) {
452 			bi = elf_brand_list[i];
453 			if (bi == NULL || (bi->flags &
454 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
455 			    != 0)
456 				continue;
457 			if (hdr->e_machine == bi->machine &&
458 			    bi->interp_path != NULL &&
459 			    /* ELF image p_filesz includes terminating zero */
460 			    strlen(bi->interp_path) + 1 == interp_name_len &&
461 			    strncmp(interp, bi->interp_path, interp_name_len)
462 			    == 0 && (bi->header_supported == NULL ||
463 			    bi->header_supported(imgp, NULL, NULL)))
464 				return (bi);
465 		}
466 	}
467 
468 	/* Lacking a recognized interpreter, try the default brand */
469 	for (i = 0; i < MAX_BRANDS; i++) {
470 		bi = elf_brand_list[i];
471 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
472 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
473 			continue;
474 		if (hdr->e_machine == bi->machine &&
475 		    __elfN(fallback_brand) == bi->brand &&
476 		    (bi->header_supported == NULL ||
477 		    bi->header_supported(imgp, NULL, NULL)))
478 			return (bi);
479 	}
480 	return (NULL);
481 }
482 
483 static bool
484 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
485 {
486 	return (hdr->e_phoff <= PAGE_SIZE &&
487 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
488 }
489 
490 static int
491 __elfN(check_header)(const Elf_Ehdr *hdr)
492 {
493 	Elf_Brandinfo *bi;
494 	int i;
495 
496 	if (!IS_ELF(*hdr) ||
497 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
498 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
499 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
500 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
501 	    hdr->e_version != ELF_TARG_VER)
502 		return (ENOEXEC);
503 
504 	/*
505 	 * Make sure we have at least one brand for this machine.
506 	 */
507 
508 	for (i = 0; i < MAX_BRANDS; i++) {
509 		bi = elf_brand_list[i];
510 		if (bi != NULL && bi->machine == hdr->e_machine)
511 			break;
512 	}
513 	if (i == MAX_BRANDS)
514 		return (ENOEXEC);
515 
516 	return (0);
517 }
518 
519 static int
520 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
521     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
522 {
523 	struct sf_buf *sf;
524 	int error;
525 	vm_offset_t off;
526 
527 	/*
528 	 * Create the page if it doesn't exist yet. Ignore errors.
529 	 */
530 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
531 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
532 
533 	/*
534 	 * Find the page from the underlying object.
535 	 */
536 	if (object != NULL) {
537 		sf = vm_imgact_map_page(object, offset);
538 		if (sf == NULL)
539 			return (KERN_FAILURE);
540 		off = offset - trunc_page(offset);
541 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
542 		    end - start);
543 		vm_imgact_unmap_page(sf);
544 		if (error != 0)
545 			return (KERN_FAILURE);
546 	}
547 
548 	return (KERN_SUCCESS);
549 }
550 
551 static int
552 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
553     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
554     int cow)
555 {
556 	struct sf_buf *sf;
557 	vm_offset_t off;
558 	vm_size_t sz;
559 	int error, locked, rv;
560 
561 	if (start != trunc_page(start)) {
562 		rv = __elfN(map_partial)(map, object, offset, start,
563 		    round_page(start), prot);
564 		if (rv != KERN_SUCCESS)
565 			return (rv);
566 		offset += round_page(start) - start;
567 		start = round_page(start);
568 	}
569 	if (end != round_page(end)) {
570 		rv = __elfN(map_partial)(map, object, offset +
571 		    trunc_page(end) - start, trunc_page(end), end, prot);
572 		if (rv != KERN_SUCCESS)
573 			return (rv);
574 		end = trunc_page(end);
575 	}
576 	if (start >= end)
577 		return (KERN_SUCCESS);
578 	if ((offset & PAGE_MASK) != 0) {
579 		/*
580 		 * The mapping is not page aligned.  This means that we have
581 		 * to copy the data.
582 		 */
583 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
584 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
585 		if (rv != KERN_SUCCESS)
586 			return (rv);
587 		if (object == NULL)
588 			return (KERN_SUCCESS);
589 		for (; start < end; start += sz) {
590 			sf = vm_imgact_map_page(object, offset);
591 			if (sf == NULL)
592 				return (KERN_FAILURE);
593 			off = offset - trunc_page(offset);
594 			sz = end - start;
595 			if (sz > PAGE_SIZE - off)
596 				sz = PAGE_SIZE - off;
597 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
598 			    (caddr_t)start, sz);
599 			vm_imgact_unmap_page(sf);
600 			if (error != 0)
601 				return (KERN_FAILURE);
602 			offset += sz;
603 		}
604 	} else {
605 		vm_object_reference(object);
606 		rv = vm_map_fixed(map, object, offset, start, end - start,
607 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
608 		    (object != NULL ? MAP_VN_EXEC : 0));
609 		if (rv != KERN_SUCCESS) {
610 			locked = VOP_ISLOCKED(imgp->vp);
611 			VOP_UNLOCK(imgp->vp);
612 			vm_object_deallocate(object);
613 			vn_lock(imgp->vp, locked | LK_RETRY);
614 			return (rv);
615 		} else if (object != NULL) {
616 			MPASS(imgp->vp->v_object == object);
617 			VOP_SET_TEXT_CHECKED(imgp->vp);
618 		}
619 	}
620 	return (KERN_SUCCESS);
621 }
622 
623 static int
624 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
625     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
626 {
627 	struct sf_buf *sf;
628 	size_t map_len;
629 	vm_map_t map;
630 	vm_object_t object;
631 	vm_offset_t map_addr;
632 	int error, rv, cow;
633 	size_t copy_len;
634 	vm_ooffset_t file_addr;
635 
636 	/*
637 	 * It's necessary to fail if the filsz + offset taken from the
638 	 * header is greater than the actual file pager object's size.
639 	 * If we were to allow this, then the vm_map_find() below would
640 	 * walk right off the end of the file object and into the ether.
641 	 *
642 	 * While I'm here, might as well check for something else that
643 	 * is invalid: filsz cannot be greater than memsz.
644 	 */
645 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
646 	    filsz > memsz) {
647 		uprintf("elf_load_section: truncated ELF file\n");
648 		return (ENOEXEC);
649 	}
650 
651 	object = imgp->object;
652 	map = &imgp->proc->p_vmspace->vm_map;
653 	map_addr = trunc_page((vm_offset_t)vmaddr);
654 	file_addr = trunc_page(offset);
655 
656 	/*
657 	 * We have two choices.  We can either clear the data in the last page
658 	 * of an oversized mapping, or we can start the anon mapping a page
659 	 * early and copy the initialized data into that first page.  We
660 	 * choose the second.
661 	 */
662 	if (filsz == 0)
663 		map_len = 0;
664 	else if (memsz > filsz)
665 		map_len = trunc_page(offset + filsz) - file_addr;
666 	else
667 		map_len = round_page(offset + filsz) - file_addr;
668 
669 	if (map_len != 0) {
670 		/* cow flags: don't dump readonly sections in core */
671 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
672 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
673 
674 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
675 		    map_addr, map_addr + map_len, prot, cow);
676 		if (rv != KERN_SUCCESS)
677 			return (EINVAL);
678 
679 		/* we can stop now if we've covered it all */
680 		if (memsz == filsz)
681 			return (0);
682 	}
683 
684 	/*
685 	 * We have to get the remaining bit of the file into the first part
686 	 * of the oversized map segment.  This is normally because the .data
687 	 * segment in the file is extended to provide bss.  It's a neat idea
688 	 * to try and save a page, but it's a pain in the behind to implement.
689 	 */
690 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
691 	    filsz);
692 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
693 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
694 
695 	/* This had damn well better be true! */
696 	if (map_len != 0) {
697 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
698 		    map_addr + map_len, prot, 0);
699 		if (rv != KERN_SUCCESS)
700 			return (EINVAL);
701 	}
702 
703 	if (copy_len != 0) {
704 		sf = vm_imgact_map_page(object, offset + filsz);
705 		if (sf == NULL)
706 			return (EIO);
707 
708 		/* send the page fragment to user space */
709 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
710 		    copy_len);
711 		vm_imgact_unmap_page(sf);
712 		if (error != 0)
713 			return (error);
714 	}
715 
716 	/*
717 	 * Remove write access to the page if it was only granted by map_insert
718 	 * to allow copyout.
719 	 */
720 	if ((prot & VM_PROT_WRITE) == 0)
721 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
722 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
723 
724 	return (0);
725 }
726 
727 static int
728 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
729     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
730 {
731 	vm_prot_t prot;
732 	u_long base_addr;
733 	bool first;
734 	int error, i;
735 
736 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
737 
738 	base_addr = 0;
739 	first = true;
740 
741 	for (i = 0; i < hdr->e_phnum; i++) {
742 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
743 			continue;
744 
745 		/* Loadable segment */
746 		prot = __elfN(trans_prot)(phdr[i].p_flags);
747 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
748 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
749 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
750 		if (error != 0)
751 			return (error);
752 
753 		/*
754 		 * Establish the base address if this is the first segment.
755 		 */
756 		if (first) {
757   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
758 			first = false;
759 		}
760 	}
761 
762 	if (base_addrp != NULL)
763 		*base_addrp = base_addr;
764 
765 	return (0);
766 }
767 
768 /*
769  * Load the file "file" into memory.  It may be either a shared object
770  * or an executable.
771  *
772  * The "addr" reference parameter is in/out.  On entry, it specifies
773  * the address where a shared object should be loaded.  If the file is
774  * an executable, this value is ignored.  On exit, "addr" specifies
775  * where the file was actually loaded.
776  *
777  * The "entry" reference parameter is out only.  On exit, it specifies
778  * the entry point for the loaded file.
779  */
780 static int
781 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
782 	u_long *entry)
783 {
784 	struct {
785 		struct nameidata nd;
786 		struct vattr attr;
787 		struct image_params image_params;
788 	} *tempdata;
789 	const Elf_Ehdr *hdr = NULL;
790 	const Elf_Phdr *phdr = NULL;
791 	struct nameidata *nd;
792 	struct vattr *attr;
793 	struct image_params *imgp;
794 	u_long rbase;
795 	u_long base_addr = 0;
796 	int error;
797 
798 #ifdef CAPABILITY_MODE
799 	/*
800 	 * XXXJA: This check can go away once we are sufficiently confident
801 	 * that the checks in namei() are correct.
802 	 */
803 	if (IN_CAPABILITY_MODE(curthread))
804 		return (ECAPMODE);
805 #endif
806 
807 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
808 	nd = &tempdata->nd;
809 	attr = &tempdata->attr;
810 	imgp = &tempdata->image_params;
811 
812 	/*
813 	 * Initialize part of the common data
814 	 */
815 	imgp->proc = p;
816 	imgp->attr = attr;
817 
818 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
819 	    UIO_SYSSPACE, file);
820 	if ((error = namei(nd)) != 0) {
821 		nd->ni_vp = NULL;
822 		goto fail;
823 	}
824 	NDFREE_PNBUF(nd);
825 	imgp->vp = nd->ni_vp;
826 
827 	/*
828 	 * Check permissions, modes, uid, etc on the file, and "open" it.
829 	 */
830 	error = exec_check_permissions(imgp);
831 	if (error)
832 		goto fail;
833 
834 	error = exec_map_first_page(imgp);
835 	if (error)
836 		goto fail;
837 
838 	imgp->object = nd->ni_vp->v_object;
839 
840 	hdr = (const Elf_Ehdr *)imgp->image_header;
841 	if ((error = __elfN(check_header)(hdr)) != 0)
842 		goto fail;
843 	if (hdr->e_type == ET_DYN)
844 		rbase = *addr;
845 	else if (hdr->e_type == ET_EXEC)
846 		rbase = 0;
847 	else {
848 		error = ENOEXEC;
849 		goto fail;
850 	}
851 
852 	/* Only support headers that fit within first page for now      */
853 	if (!__elfN(phdr_in_zero_page)(hdr)) {
854 		error = ENOEXEC;
855 		goto fail;
856 	}
857 
858 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
859 	if (!aligned(phdr, Elf_Addr)) {
860 		error = ENOEXEC;
861 		goto fail;
862 	}
863 
864 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
865 	if (error != 0)
866 		goto fail;
867 
868 	*addr = base_addr;
869 	*entry = (unsigned long)hdr->e_entry + rbase;
870 
871 fail:
872 	if (imgp->firstpage)
873 		exec_unmap_first_page(imgp);
874 
875 	if (nd->ni_vp) {
876 		if (imgp->textset)
877 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
878 		vput(nd->ni_vp);
879 	}
880 	free(tempdata, M_TEMP);
881 
882 	return (error);
883 }
884 
885 /*
886  * Select randomized valid address in the map map, between minv and
887  * maxv, with specified alignment.  The [minv, maxv) range must belong
888  * to the map.  Note that function only allocates the address, it is
889  * up to caller to clamp maxv in a way that the final allocation
890  * length fit into the map.
891  *
892  * Result is returned in *resp, error code indicates that arguments
893  * did not pass sanity checks for overflow and range correctness.
894  */
895 static int
896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
897     u_int align, u_long *resp)
898 {
899 	u_long rbase, res;
900 
901 	MPASS(vm_map_min(map) <= minv);
902 
903 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
904 		uprintf("Invalid ELF segments layout\n");
905 		return (ENOEXEC);
906 	}
907 
908 	arc4rand(&rbase, sizeof(rbase), 0);
909 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
910 	res &= ~((u_long)align - 1);
911 	if (res >= maxv)
912 		res -= align;
913 
914 	KASSERT(res >= minv,
915 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
916 	    res, minv, maxv, rbase));
917 	KASSERT(res < maxv,
918 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
919 	    res, maxv, minv, rbase));
920 
921 	*resp = res;
922 	return (0);
923 }
924 
925 static int
926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
927     const Elf_Phdr *phdr, u_long et_dyn_addr)
928 {
929 	struct vmspace *vmspace;
930 	const char *err_str;
931 	u_long text_size, data_size, total_size, text_addr, data_addr;
932 	u_long seg_size, seg_addr;
933 	int i;
934 
935 	err_str = NULL;
936 	text_size = data_size = total_size = text_addr = data_addr = 0;
937 
938 	for (i = 0; i < hdr->e_phnum; i++) {
939 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
940 			continue;
941 
942 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
943 		seg_size = round_page(phdr[i].p_memsz +
944 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
945 
946 		/*
947 		 * Make the largest executable segment the official
948 		 * text segment and all others data.
949 		 *
950 		 * Note that obreak() assumes that data_addr + data_size == end
951 		 * of data load area, and the ELF file format expects segments
952 		 * to be sorted by address.  If multiple data segments exist,
953 		 * the last one will be used.
954 		 */
955 
956 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
957 			text_size = seg_size;
958 			text_addr = seg_addr;
959 		} else {
960 			data_size = seg_size;
961 			data_addr = seg_addr;
962 		}
963 		total_size += seg_size;
964 	}
965 
966 	if (data_addr == 0 && data_size == 0) {
967 		data_addr = text_addr;
968 		data_size = text_size;
969 	}
970 
971 	/*
972 	 * Check limits.  It should be safe to check the
973 	 * limits after loading the segments since we do
974 	 * not actually fault in all the segments pages.
975 	 */
976 	PROC_LOCK(imgp->proc);
977 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
978 		err_str = "Data segment size exceeds process limit";
979 	else if (text_size > maxtsiz)
980 		err_str = "Text segment size exceeds system limit";
981 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
982 		err_str = "Total segment size exceeds process limit";
983 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
984 		err_str = "Data segment size exceeds resource limit";
985 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
986 		err_str = "Total segment size exceeds resource limit";
987 	PROC_UNLOCK(imgp->proc);
988 	if (err_str != NULL) {
989 		uprintf("%s\n", err_str);
990 		return (ENOMEM);
991 	}
992 
993 	vmspace = imgp->proc->p_vmspace;
994 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
995 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
996 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
997 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
998 
999 	return (0);
1000 }
1001 
1002 static int
1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1004     char **interpp, bool *free_interpp)
1005 {
1006 	struct thread *td;
1007 	char *interp;
1008 	int error, interp_name_len;
1009 
1010 	KASSERT(phdr->p_type == PT_INTERP,
1011 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1012 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1013 
1014 	td = curthread;
1015 
1016 	/* Path to interpreter */
1017 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1018 		uprintf("Invalid PT_INTERP\n");
1019 		return (ENOEXEC);
1020 	}
1021 
1022 	interp_name_len = phdr->p_filesz;
1023 	if (phdr->p_offset > PAGE_SIZE ||
1024 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1025 		/*
1026 		 * The vnode lock might be needed by the pagedaemon to
1027 		 * clean pages owned by the vnode.  Do not allow sleep
1028 		 * waiting for memory with the vnode locked, instead
1029 		 * try non-sleepable allocation first, and if it
1030 		 * fails, go to the slow path were we drop the lock
1031 		 * and do M_WAITOK.  A text reference prevents
1032 		 * modifications to the vnode content.
1033 		 */
1034 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1035 		if (interp == NULL) {
1036 			VOP_UNLOCK(imgp->vp);
1037 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1038 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1039 		}
1040 
1041 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1042 		    interp_name_len, phdr->p_offset,
1043 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1044 		    NOCRED, NULL, td);
1045 		if (error != 0) {
1046 			free(interp, M_TEMP);
1047 			uprintf("i/o error PT_INTERP %d\n", error);
1048 			return (error);
1049 		}
1050 		interp[interp_name_len] = '\0';
1051 
1052 		*interpp = interp;
1053 		*free_interpp = true;
1054 		return (0);
1055 	}
1056 
1057 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1058 	if (interp[interp_name_len - 1] != '\0') {
1059 		uprintf("Invalid PT_INTERP\n");
1060 		return (ENOEXEC);
1061 	}
1062 
1063 	*interpp = interp;
1064 	*free_interpp = false;
1065 	return (0);
1066 }
1067 
1068 static int
1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1070     const char *interp, u_long *addr, u_long *entry)
1071 {
1072 	int error;
1073 
1074 	if (brand_info->interp_newpath != NULL &&
1075 	    (brand_info->interp_path == NULL ||
1076 	    strcmp(interp, brand_info->interp_path) == 0)) {
1077 		error = __elfN(load_file)(imgp->proc,
1078 		    brand_info->interp_newpath, addr, entry);
1079 		if (error == 0)
1080 			return (0);
1081 	}
1082 
1083 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1084 	if (error == 0)
1085 		return (0);
1086 
1087 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1088 	return (error);
1089 }
1090 
1091 /*
1092  * Impossible et_dyn_addr initial value indicating that the real base
1093  * must be calculated later with some randomization applied.
1094  */
1095 #define	ET_DYN_ADDR_RAND	1
1096 
1097 static int
1098 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1099 {
1100 	struct thread *td;
1101 	const Elf_Ehdr *hdr;
1102 	const Elf_Phdr *phdr;
1103 	Elf_Auxargs *elf_auxargs;
1104 	struct vmspace *vmspace;
1105 	vm_map_t map;
1106 	char *interp;
1107 	Elf_Brandinfo *brand_info;
1108 	struct sysentvec *sv;
1109 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1110 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1111 	uint32_t fctl0;
1112 	int32_t osrel;
1113 	bool free_interp;
1114 	int error, i, n;
1115 
1116 	hdr = (const Elf_Ehdr *)imgp->image_header;
1117 
1118 	/*
1119 	 * Do we have a valid ELF header ?
1120 	 *
1121 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1122 	 * if particular brand doesn't support it.
1123 	 */
1124 	if (__elfN(check_header)(hdr) != 0 ||
1125 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1126 		return (-1);
1127 
1128 	/*
1129 	 * From here on down, we return an errno, not -1, as we've
1130 	 * detected an ELF file.
1131 	 */
1132 
1133 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1134 		uprintf("Program headers not in the first page\n");
1135 		return (ENOEXEC);
1136 	}
1137 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1138 	if (!aligned(phdr, Elf_Addr)) {
1139 		uprintf("Unaligned program headers\n");
1140 		return (ENOEXEC);
1141 	}
1142 
1143 	n = error = 0;
1144 	baddr = 0;
1145 	osrel = 0;
1146 	fctl0 = 0;
1147 	entry = proghdr = 0;
1148 	interp = NULL;
1149 	free_interp = false;
1150 	td = curthread;
1151 
1152 	/*
1153 	 * Somewhat arbitrary, limit accepted max alignment for the
1154 	 * loadable segment to the max supported superpage size. Too
1155 	 * large alignment requests are not useful and are indicators
1156 	 * of corrupted or outright malicious binary.
1157 	 */
1158 	maxalign = PAGE_SIZE;
1159 	maxsalign = PAGE_SIZE * 1024;
1160 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1161 		if (pagesizes[i] > maxsalign)
1162 			maxsalign = pagesizes[i];
1163 	}
1164 
1165 	mapsz = 0;
1166 
1167 	for (i = 0; i < hdr->e_phnum; i++) {
1168 		switch (phdr[i].p_type) {
1169 		case PT_LOAD:
1170 			if (n == 0)
1171 				baddr = phdr[i].p_vaddr;
1172 			if (!powerof2(phdr[i].p_align) ||
1173 			    phdr[i].p_align > maxsalign) {
1174 				uprintf("Invalid segment alignment\n");
1175 				error = ENOEXEC;
1176 				goto ret;
1177 			}
1178 			if (phdr[i].p_align > maxalign)
1179 				maxalign = phdr[i].p_align;
1180 			if (mapsz + phdr[i].p_memsz < mapsz) {
1181 				uprintf("Mapsize overflow\n");
1182 				error = ENOEXEC;
1183 				goto ret;
1184 			}
1185 			mapsz += phdr[i].p_memsz;
1186 			n++;
1187 
1188 			/*
1189 			 * If this segment contains the program headers,
1190 			 * remember their virtual address for the AT_PHDR
1191 			 * aux entry. Static binaries don't usually include
1192 			 * a PT_PHDR entry.
1193 			 */
1194 			if (phdr[i].p_offset == 0 &&
1195 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1196 			    phdr[i].p_filesz)
1197 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1198 			break;
1199 		case PT_INTERP:
1200 			/* Path to interpreter */
1201 			if (interp != NULL) {
1202 				uprintf("Multiple PT_INTERP headers\n");
1203 				error = ENOEXEC;
1204 				goto ret;
1205 			}
1206 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1207 			    &free_interp);
1208 			if (error != 0)
1209 				goto ret;
1210 			break;
1211 		case PT_GNU_STACK:
1212 			if (__elfN(nxstack)) {
1213 				imgp->stack_prot =
1214 				    __elfN(trans_prot)(phdr[i].p_flags);
1215 				if ((imgp->stack_prot & VM_PROT_RW) !=
1216 				    VM_PROT_RW) {
1217 					uprintf("Invalid PT_GNU_STACK\n");
1218 					error = ENOEXEC;
1219 					goto ret;
1220 				}
1221 			}
1222 			imgp->stack_sz = phdr[i].p_memsz;
1223 			break;
1224 		case PT_PHDR: 	/* Program header table info */
1225 			proghdr = phdr[i].p_vaddr;
1226 			break;
1227 		}
1228 	}
1229 
1230 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1231 	if (brand_info == NULL) {
1232 		uprintf("ELF binary type \"%u\" not known.\n",
1233 		    hdr->e_ident[EI_OSABI]);
1234 		error = ENOEXEC;
1235 		goto ret;
1236 	}
1237 	sv = brand_info->sysvec;
1238 	et_dyn_addr = 0;
1239 	if (hdr->e_type == ET_DYN) {
1240 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1241 			uprintf("Cannot execute shared object\n");
1242 			error = ENOEXEC;
1243 			goto ret;
1244 		}
1245 		/*
1246 		 * Honour the base load address from the dso if it is
1247 		 * non-zero for some reason.
1248 		 */
1249 		if (baddr == 0) {
1250 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1251 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1252 				et_dyn_addr = __elfN(pie_base);
1253 			else if ((__elfN(pie_aslr_enabled) &&
1254 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1255 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1256 				et_dyn_addr = ET_DYN_ADDR_RAND;
1257 			else
1258 				et_dyn_addr = __elfN(pie_base);
1259 		}
1260 	}
1261 
1262 	/*
1263 	 * Avoid a possible deadlock if the current address space is destroyed
1264 	 * and that address space maps the locked vnode.  In the common case,
1265 	 * the locked vnode's v_usecount is decremented but remains greater
1266 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1267 	 * However, in cases where the vnode lock is external, such as nullfs,
1268 	 * v_usecount may become zero.
1269 	 *
1270 	 * The VV_TEXT flag prevents modifications to the executable while
1271 	 * the vnode is unlocked.
1272 	 */
1273 	VOP_UNLOCK(imgp->vp);
1274 
1275 	/*
1276 	 * Decide whether to enable randomization of user mappings.
1277 	 * First, reset user preferences for the setid binaries.
1278 	 * Then, account for the support of the randomization by the
1279 	 * ABI, by user preferences, and make special treatment for
1280 	 * PIE binaries.
1281 	 */
1282 	if (imgp->credential_setid) {
1283 		PROC_LOCK(imgp->proc);
1284 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1285 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1286 		PROC_UNLOCK(imgp->proc);
1287 	}
1288 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1289 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1290 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1291 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1292 		    ("et_dyn_addr == RAND and !ASLR"));
1293 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1294 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1295 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1296 		imgp->map_flags |= MAP_ASLR;
1297 		/*
1298 		 * If user does not care about sbrk, utilize the bss
1299 		 * grow region for mappings as well.  We can select
1300 		 * the base for the image anywere and still not suffer
1301 		 * from the fragmentation.
1302 		 */
1303 		if (!__elfN(aslr_honor_sbrk) ||
1304 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1305 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1306 		if (__elfN(aslr_stack))
1307 			imgp->map_flags |= MAP_ASLR_STACK;
1308 		if (__elfN(aslr_shared_page))
1309 			imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1310 	}
1311 
1312 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1313 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1314 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1315 		imgp->map_flags |= MAP_WXORX;
1316 
1317 	error = exec_new_vmspace(imgp, sv);
1318 
1319 	imgp->proc->p_sysent = sv;
1320 	imgp->proc->p_elf_brandinfo = brand_info;
1321 
1322 	vmspace = imgp->proc->p_vmspace;
1323 	map = &vmspace->vm_map;
1324 	maxv = sv->sv_usrstack;
1325 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1326 		maxv -= lim_max(td, RLIMIT_STACK);
1327 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1328 		uprintf("Excessive mapping size\n");
1329 		error = ENOEXEC;
1330 	}
1331 
1332 	if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) {
1333 		KASSERT((map->flags & MAP_ASLR) != 0,
1334 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1335 		error = __CONCAT(rnd_, __elfN(base))(map,
1336 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1337 		    /* reserve half of the address space to interpreter */
1338 		    maxv / 2, maxalign, &et_dyn_addr);
1339 	}
1340 
1341 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1342 	if (error != 0)
1343 		goto ret;
1344 
1345 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1346 	if (error != 0)
1347 		goto ret;
1348 
1349 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1350 	if (error != 0)
1351 		goto ret;
1352 
1353 	/*
1354 	 * We load the dynamic linker where a userland call
1355 	 * to mmap(0, ...) would put it.  The rationale behind this
1356 	 * calculation is that it leaves room for the heap to grow to
1357 	 * its maximum allowed size.
1358 	 */
1359 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1360 	    RLIMIT_DATA));
1361 	if ((map->flags & MAP_ASLR) != 0) {
1362 		maxv1 = maxv / 2 + addr / 2;
1363 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1364 		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1365 		    pagesizes[1] : pagesizes[0], &anon_loc);
1366 		if (error != 0)
1367 			goto ret;
1368 		map->anon_loc = anon_loc;
1369 	} else {
1370 		map->anon_loc = addr;
1371 	}
1372 
1373 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1374 	imgp->entry_addr = entry;
1375 
1376 	if (interp != NULL) {
1377 		VOP_UNLOCK(imgp->vp);
1378 		if ((map->flags & MAP_ASLR) != 0) {
1379 			/* Assume that interpreter fits into 1/4 of AS */
1380 			maxv1 = maxv / 2 + addr / 2;
1381 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1382 			    maxv1, PAGE_SIZE, &addr);
1383 		}
1384 		if (error == 0) {
1385 			error = __elfN(load_interp)(imgp, brand_info, interp,
1386 			    &addr, &imgp->entry_addr);
1387 		}
1388 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1389 		if (error != 0)
1390 			goto ret;
1391 	} else
1392 		addr = et_dyn_addr;
1393 
1394 	error = exec_map_stack(imgp);
1395 	if (error != 0)
1396 		goto ret;
1397 
1398 	/*
1399 	 * Construct auxargs table (used by the copyout_auxargs routine)
1400 	 */
1401 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1402 	if (elf_auxargs == NULL) {
1403 		VOP_UNLOCK(imgp->vp);
1404 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1405 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1406 	}
1407 	elf_auxargs->execfd = -1;
1408 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1409 	elf_auxargs->phent = hdr->e_phentsize;
1410 	elf_auxargs->phnum = hdr->e_phnum;
1411 	elf_auxargs->pagesz = PAGE_SIZE;
1412 	elf_auxargs->base = addr;
1413 	elf_auxargs->flags = 0;
1414 	elf_auxargs->entry = entry;
1415 	elf_auxargs->hdr_eflags = hdr->e_flags;
1416 
1417 	imgp->auxargs = elf_auxargs;
1418 	imgp->interpreted = 0;
1419 	imgp->reloc_base = addr;
1420 	imgp->proc->p_osrel = osrel;
1421 	imgp->proc->p_fctl0 = fctl0;
1422 	imgp->proc->p_elf_flags = hdr->e_flags;
1423 
1424 ret:
1425 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1426 	if (free_interp)
1427 		free(interp, M_TEMP);
1428 	return (error);
1429 }
1430 
1431 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1432 
1433 int
1434 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1435 {
1436 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1437 	Elf_Auxinfo *argarray, *pos;
1438 	struct vmspace *vmspace;
1439 	rlim_t stacksz;
1440 	int error, bsdflags, oc;
1441 
1442 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1443 	    M_WAITOK | M_ZERO);
1444 
1445 	vmspace = imgp->proc->p_vmspace;
1446 
1447 	if (args->execfd != -1)
1448 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1449 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1450 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1451 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1452 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1453 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1454 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1455 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1456 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1457 	if (imgp->execpathp != 0)
1458 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1459 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1460 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1461 	if (imgp->canary != 0) {
1462 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1463 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1464 	}
1465 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1466 	if (imgp->pagesizes != 0) {
1467 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1468 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1469 	}
1470 	if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1471 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1472 		    vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1473 	}
1474 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1475 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1476 	    imgp->sysent->sv_stackprot);
1477 	if (imgp->sysent->sv_hwcap != NULL)
1478 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1479 	if (imgp->sysent->sv_hwcap2 != NULL)
1480 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1481 	bsdflags = 0;
1482 	bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1483 	oc = atomic_load_int(&vm_overcommit);
1484 	bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1485 	    0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1486 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1487 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1488 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1489 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1490 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1491 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1492 #ifdef RANDOM_FENESTRASX
1493 	if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1494 		AUXARGS_ENTRY(pos, AT_FXRNG,
1495 		    vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1496 	}
1497 #endif
1498 	if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1499 		AUXARGS_ENTRY(pos, AT_KPRELOAD,
1500 		    vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1501 	}
1502 	AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1503 	stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1504 	AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1505 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1506 
1507 	free(imgp->auxargs, M_TEMP);
1508 	imgp->auxargs = NULL;
1509 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1510 
1511 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1512 	free(argarray, M_TEMP);
1513 	return (error);
1514 }
1515 
1516 int
1517 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1518 {
1519 	Elf_Addr *base;
1520 
1521 	base = (Elf_Addr *)*stack_base;
1522 	base--;
1523 	if (elf_suword(base, imgp->args->argc) == -1)
1524 		return (EFAULT);
1525 	*stack_base = (uintptr_t)base;
1526 	return (0);
1527 }
1528 
1529 /*
1530  * Code for generating ELF core dumps.
1531  */
1532 
1533 typedef void (*segment_callback)(vm_map_entry_t, void *);
1534 
1535 /* Closure for cb_put_phdr(). */
1536 struct phdr_closure {
1537 	Elf_Phdr *phdr;		/* Program header to fill in */
1538 	Elf_Off offset;		/* Offset of segment in core file */
1539 };
1540 
1541 struct note_info {
1542 	int		type;		/* Note type. */
1543 	struct regset	*regset;	/* Register set. */
1544 	outfunc_t 	outfunc; 	/* Output function. */
1545 	void		*outarg;	/* Argument for the output function. */
1546 	size_t		outsize;	/* Output size. */
1547 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1548 };
1549 
1550 TAILQ_HEAD(note_info_list, note_info);
1551 
1552 extern int compress_user_cores;
1553 extern int compress_user_cores_level;
1554 
1555 static void cb_put_phdr(vm_map_entry_t, void *);
1556 static void cb_size_segment(vm_map_entry_t, void *);
1557 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1558     int);
1559 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1560     struct note_info_list *, size_t, int);
1561 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1562 
1563 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1564 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1565 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1566 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1567 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1568 static void note_procstat_files(void *, struct sbuf *, size_t *);
1569 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1570 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1571 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1572 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1573 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1574 
1575 static int
1576 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1577 {
1578 
1579 	return (core_write((struct coredump_params *)arg, base, len, offset,
1580 	    UIO_SYSSPACE, NULL));
1581 }
1582 
1583 int
1584 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1585 {
1586 	struct ucred *cred = td->td_ucred;
1587 	int compm, error = 0;
1588 	struct sseg_closure seginfo;
1589 	struct note_info_list notelst;
1590 	struct coredump_params params;
1591 	struct note_info *ninfo;
1592 	void *hdr, *tmpbuf;
1593 	size_t hdrsize, notesz, coresize;
1594 
1595 	hdr = NULL;
1596 	tmpbuf = NULL;
1597 	TAILQ_INIT(&notelst);
1598 
1599 	/* Size the program segments. */
1600 	__elfN(size_segments)(td, &seginfo, flags);
1601 
1602 	/*
1603 	 * Collect info about the core file header area.
1604 	 */
1605 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1606 	if (seginfo.count + 1 >= PN_XNUM)
1607 		hdrsize += sizeof(Elf_Shdr);
1608 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1609 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1610 
1611 	/* Set up core dump parameters. */
1612 	params.offset = 0;
1613 	params.active_cred = cred;
1614 	params.file_cred = NOCRED;
1615 	params.td = td;
1616 	params.vp = vp;
1617 	params.comp = NULL;
1618 
1619 #ifdef RACCT
1620 	if (racct_enable) {
1621 		PROC_LOCK(td->td_proc);
1622 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1623 		PROC_UNLOCK(td->td_proc);
1624 		if (error != 0) {
1625 			error = EFAULT;
1626 			goto done;
1627 		}
1628 	}
1629 #endif
1630 	if (coresize >= limit) {
1631 		error = EFAULT;
1632 		goto done;
1633 	}
1634 
1635 	/* Create a compression stream if necessary. */
1636 	compm = compress_user_cores;
1637 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1638 	    compm == 0)
1639 		compm = COMPRESS_GZIP;
1640 	if (compm != 0) {
1641 		params.comp = compressor_init(core_compressed_write,
1642 		    compm, CORE_BUF_SIZE,
1643 		    compress_user_cores_level, &params);
1644 		if (params.comp == NULL) {
1645 			error = EFAULT;
1646 			goto done;
1647 		}
1648 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1649         }
1650 
1651 	/*
1652 	 * Allocate memory for building the header, fill it up,
1653 	 * and write it out following the notes.
1654 	 */
1655 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1656 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1657 	    notesz, flags);
1658 
1659 	/* Write the contents of all of the writable segments. */
1660 	if (error == 0) {
1661 		Elf_Phdr *php;
1662 		off_t offset;
1663 		int i;
1664 
1665 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1666 		offset = round_page(hdrsize + notesz);
1667 		for (i = 0; i < seginfo.count; i++) {
1668 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1669 			    php->p_filesz, offset, &params, tmpbuf);
1670 			if (error != 0)
1671 				break;
1672 			offset += php->p_filesz;
1673 			php++;
1674 		}
1675 		if (error == 0 && params.comp != NULL)
1676 			error = compressor_flush(params.comp);
1677 	}
1678 	if (error) {
1679 		log(LOG_WARNING,
1680 		    "Failed to write core file for process %s (error %d)\n",
1681 		    curproc->p_comm, error);
1682 	}
1683 
1684 done:
1685 	free(tmpbuf, M_TEMP);
1686 	if (params.comp != NULL)
1687 		compressor_fini(params.comp);
1688 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1689 		TAILQ_REMOVE(&notelst, ninfo, link);
1690 		free(ninfo, M_TEMP);
1691 	}
1692 	if (hdr != NULL)
1693 		free(hdr, M_TEMP);
1694 
1695 	return (error);
1696 }
1697 
1698 /*
1699  * A callback for each_dumpable_segment() to write out the segment's
1700  * program header entry.
1701  */
1702 static void
1703 cb_put_phdr(vm_map_entry_t entry, void *closure)
1704 {
1705 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1706 	Elf_Phdr *phdr = phc->phdr;
1707 
1708 	phc->offset = round_page(phc->offset);
1709 
1710 	phdr->p_type = PT_LOAD;
1711 	phdr->p_offset = phc->offset;
1712 	phdr->p_vaddr = entry->start;
1713 	phdr->p_paddr = 0;
1714 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1715 	phdr->p_align = PAGE_SIZE;
1716 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1717 
1718 	phc->offset += phdr->p_filesz;
1719 	phc->phdr++;
1720 }
1721 
1722 /*
1723  * A callback for each_dumpable_segment() to gather information about
1724  * the number of segments and their total size.
1725  */
1726 static void
1727 cb_size_segment(vm_map_entry_t entry, void *closure)
1728 {
1729 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1730 
1731 	ssc->count++;
1732 	ssc->size += entry->end - entry->start;
1733 }
1734 
1735 void
1736 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1737     int flags)
1738 {
1739 	seginfo->count = 0;
1740 	seginfo->size = 0;
1741 
1742 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1743 }
1744 
1745 /*
1746  * For each writable segment in the process's memory map, call the given
1747  * function with a pointer to the map entry and some arbitrary
1748  * caller-supplied data.
1749  */
1750 static void
1751 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1752     int flags)
1753 {
1754 	struct proc *p = td->td_proc;
1755 	vm_map_t map = &p->p_vmspace->vm_map;
1756 	vm_map_entry_t entry;
1757 	vm_object_t backing_object, object;
1758 	bool ignore_entry;
1759 
1760 	vm_map_lock_read(map);
1761 	VM_MAP_ENTRY_FOREACH(entry, map) {
1762 		/*
1763 		 * Don't dump inaccessible mappings, deal with legacy
1764 		 * coredump mode.
1765 		 *
1766 		 * Note that read-only segments related to the elf binary
1767 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1768 		 * need to arbitrarily ignore such segments.
1769 		 */
1770 		if ((flags & SVC_ALL) == 0) {
1771 			if (elf_legacy_coredump) {
1772 				if ((entry->protection & VM_PROT_RW) !=
1773 				    VM_PROT_RW)
1774 					continue;
1775 			} else {
1776 				if ((entry->protection & VM_PROT_ALL) == 0)
1777 					continue;
1778 			}
1779 		}
1780 
1781 		/*
1782 		 * Dont include memory segment in the coredump if
1783 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1784 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1785 		 * kernel map).
1786 		 */
1787 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1788 			continue;
1789 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1790 		    (flags & SVC_ALL) == 0)
1791 			continue;
1792 		if ((object = entry->object.vm_object) == NULL)
1793 			continue;
1794 
1795 		/* Ignore memory-mapped devices and such things. */
1796 		VM_OBJECT_RLOCK(object);
1797 		while ((backing_object = object->backing_object) != NULL) {
1798 			VM_OBJECT_RLOCK(backing_object);
1799 			VM_OBJECT_RUNLOCK(object);
1800 			object = backing_object;
1801 		}
1802 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1803 		VM_OBJECT_RUNLOCK(object);
1804 		if (ignore_entry)
1805 			continue;
1806 
1807 		(*func)(entry, closure);
1808 	}
1809 	vm_map_unlock_read(map);
1810 }
1811 
1812 /*
1813  * Write the core file header to the file, including padding up to
1814  * the page boundary.
1815  */
1816 static int
1817 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1818     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1819     int flags)
1820 {
1821 	struct note_info *ninfo;
1822 	struct sbuf *sb;
1823 	int error;
1824 
1825 	/* Fill in the header. */
1826 	bzero(hdr, hdrsize);
1827 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1828 
1829 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1830 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1831 	sbuf_start_section(sb, NULL);
1832 	sbuf_bcat(sb, hdr, hdrsize);
1833 	TAILQ_FOREACH(ninfo, notelst, link)
1834 	    __elfN(putnote)(p->td, ninfo, sb);
1835 	/* Align up to a page boundary for the program segments. */
1836 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1837 	error = sbuf_finish(sb);
1838 	sbuf_delete(sb);
1839 
1840 	return (error);
1841 }
1842 
1843 void
1844 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1845     size_t *sizep)
1846 {
1847 	struct proc *p;
1848 	struct thread *thr;
1849 	size_t size;
1850 
1851 	p = td->td_proc;
1852 	size = 0;
1853 
1854 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1855 	    __elfN(note_prpsinfo), p);
1856 
1857 	/*
1858 	 * To have the debugger select the right thread (LWP) as the initial
1859 	 * thread, we dump the state of the thread passed to us in td first.
1860 	 * This is the thread that causes the core dump and thus likely to
1861 	 * be the right thread one wants to have selected in the debugger.
1862 	 */
1863 	thr = td;
1864 	while (thr != NULL) {
1865 		size += __elfN(prepare_register_notes)(td, list, thr);
1866 		size += __elfN(register_note)(td, list, -1,
1867 		    __elfN(note_threadmd), thr);
1868 
1869 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1870 		    TAILQ_NEXT(thr, td_plist);
1871 		if (thr == td)
1872 			thr = TAILQ_NEXT(thr, td_plist);
1873 	}
1874 
1875 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1876 	    __elfN(note_procstat_proc), p);
1877 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1878 	    note_procstat_files, p);
1879 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1880 	    note_procstat_vmmap, p);
1881 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1882 	    note_procstat_groups, p);
1883 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1884 	    note_procstat_umask, p);
1885 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1886 	    note_procstat_rlimit, p);
1887 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1888 	    note_procstat_osrel, p);
1889 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1890 	    __elfN(note_procstat_psstrings), p);
1891 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1892 	    __elfN(note_procstat_auxv), p);
1893 
1894 	*sizep = size;
1895 }
1896 
1897 void
1898 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1899     size_t notesz, int flags)
1900 {
1901 	Elf_Ehdr *ehdr;
1902 	Elf_Phdr *phdr;
1903 	Elf_Shdr *shdr;
1904 	struct phdr_closure phc;
1905 	Elf_Brandinfo *bi;
1906 
1907 	ehdr = (Elf_Ehdr *)hdr;
1908 	bi = td->td_proc->p_elf_brandinfo;
1909 
1910 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1911 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1912 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1913 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1914 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1915 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1916 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1917 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1918 	ehdr->e_ident[EI_ABIVERSION] = 0;
1919 	ehdr->e_ident[EI_PAD] = 0;
1920 	ehdr->e_type = ET_CORE;
1921 	ehdr->e_machine = bi->machine;
1922 	ehdr->e_version = EV_CURRENT;
1923 	ehdr->e_entry = 0;
1924 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1925 	ehdr->e_flags = td->td_proc->p_elf_flags;
1926 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1927 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1928 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1929 	ehdr->e_shstrndx = SHN_UNDEF;
1930 	if (numsegs + 1 < PN_XNUM) {
1931 		ehdr->e_phnum = numsegs + 1;
1932 		ehdr->e_shnum = 0;
1933 	} else {
1934 		ehdr->e_phnum = PN_XNUM;
1935 		ehdr->e_shnum = 1;
1936 
1937 		ehdr->e_shoff = ehdr->e_phoff +
1938 		    (numsegs + 1) * ehdr->e_phentsize;
1939 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1940 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1941 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1942 
1943 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1944 		memset(shdr, 0, sizeof(*shdr));
1945 		/*
1946 		 * A special first section is used to hold large segment and
1947 		 * section counts.  This was proposed by Sun Microsystems in
1948 		 * Solaris and has been adopted by Linux; the standard ELF
1949 		 * tools are already familiar with the technique.
1950 		 *
1951 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1952 		 * (or 12-7 depending on the version of the document) for more
1953 		 * details.
1954 		 */
1955 		shdr->sh_type = SHT_NULL;
1956 		shdr->sh_size = ehdr->e_shnum;
1957 		shdr->sh_link = ehdr->e_shstrndx;
1958 		shdr->sh_info = numsegs + 1;
1959 	}
1960 
1961 	/*
1962 	 * Fill in the program header entries.
1963 	 */
1964 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1965 
1966 	/* The note segement. */
1967 	phdr->p_type = PT_NOTE;
1968 	phdr->p_offset = hdrsize;
1969 	phdr->p_vaddr = 0;
1970 	phdr->p_paddr = 0;
1971 	phdr->p_filesz = notesz;
1972 	phdr->p_memsz = 0;
1973 	phdr->p_flags = PF_R;
1974 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1975 	phdr++;
1976 
1977 	/* All the writable segments from the program. */
1978 	phc.phdr = phdr;
1979 	phc.offset = round_page(hdrsize + notesz);
1980 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1981 }
1982 
1983 static size_t
1984 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
1985     struct regset *regset, struct thread *target_td)
1986 {
1987 	const struct sysentvec *sv;
1988 	struct note_info *ninfo;
1989 	size_t size, notesize;
1990 
1991 	size = 0;
1992 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
1993 		return (0);
1994 
1995 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1996 	ninfo->type = regset->note;
1997 	ninfo->regset = regset;
1998 	ninfo->outarg = target_td;
1999 	ninfo->outsize = size;
2000 	TAILQ_INSERT_TAIL(list, ninfo, link);
2001 
2002 	sv = td->td_proc->p_sysent;
2003 	notesize = sizeof(Elf_Note) +		/* note header */
2004 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2005 						/* note name */
2006 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2007 
2008 	return (notesize);
2009 }
2010 
2011 size_t
2012 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2013     int type, outfunc_t out, void *arg)
2014 {
2015 	const struct sysentvec *sv;
2016 	struct note_info *ninfo;
2017 	size_t size, notesize;
2018 
2019 	sv = td->td_proc->p_sysent;
2020 	size = 0;
2021 	out(arg, NULL, &size);
2022 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2023 	ninfo->type = type;
2024 	ninfo->outfunc = out;
2025 	ninfo->outarg = arg;
2026 	ninfo->outsize = size;
2027 	TAILQ_INSERT_TAIL(list, ninfo, link);
2028 
2029 	if (type == -1)
2030 		return (size);
2031 
2032 	notesize = sizeof(Elf_Note) +		/* note header */
2033 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2034 						/* note name */
2035 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2036 
2037 	return (notesize);
2038 }
2039 
2040 static size_t
2041 append_note_data(const void *src, void *dst, size_t len)
2042 {
2043 	size_t padded_len;
2044 
2045 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2046 	if (dst != NULL) {
2047 		bcopy(src, dst, len);
2048 		bzero((char *)dst + len, padded_len - len);
2049 	}
2050 	return (padded_len);
2051 }
2052 
2053 size_t
2054 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2055 {
2056 	Elf_Note *note;
2057 	char *buf;
2058 	size_t notesize;
2059 
2060 	buf = dst;
2061 	if (buf != NULL) {
2062 		note = (Elf_Note *)buf;
2063 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2064 		note->n_descsz = size;
2065 		note->n_type = type;
2066 		buf += sizeof(*note);
2067 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2068 		    sizeof(FREEBSD_ABI_VENDOR));
2069 		append_note_data(src, buf, size);
2070 		if (descp != NULL)
2071 			*descp = buf;
2072 	}
2073 
2074 	notesize = sizeof(Elf_Note) +		/* note header */
2075 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2076 						/* note name */
2077 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2078 
2079 	return (notesize);
2080 }
2081 
2082 static void
2083 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2084 {
2085 	Elf_Note note;
2086 	const struct sysentvec *sv;
2087 	ssize_t old_len, sect_len;
2088 	size_t new_len, descsz, i;
2089 
2090 	if (ninfo->type == -1) {
2091 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2092 		return;
2093 	}
2094 
2095 	sv = td->td_proc->p_sysent;
2096 
2097 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2098 	note.n_descsz = ninfo->outsize;
2099 	note.n_type = ninfo->type;
2100 
2101 	sbuf_bcat(sb, &note, sizeof(note));
2102 	sbuf_start_section(sb, &old_len);
2103 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2104 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2105 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2106 	if (note.n_descsz == 0)
2107 		return;
2108 	sbuf_start_section(sb, &old_len);
2109 	if (ninfo->regset != NULL) {
2110 		struct regset *regset = ninfo->regset;
2111 		void *buf;
2112 
2113 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2114 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2115 		sbuf_bcat(sb, buf, ninfo->outsize);
2116 		free(buf, M_TEMP);
2117 	} else
2118 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2119 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2120 	if (sect_len < 0)
2121 		return;
2122 
2123 	new_len = (size_t)sect_len;
2124 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2125 	if (new_len < descsz) {
2126 		/*
2127 		 * It is expected that individual note emitters will correctly
2128 		 * predict their expected output size and fill up to that size
2129 		 * themselves, padding in a format-specific way if needed.
2130 		 * However, in case they don't, just do it here with zeros.
2131 		 */
2132 		for (i = 0; i < descsz - new_len; i++)
2133 			sbuf_putc(sb, 0);
2134 	} else if (new_len > descsz) {
2135 		/*
2136 		 * We can't always truncate sb -- we may have drained some
2137 		 * of it already.
2138 		 */
2139 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2140 		    "read it (%zu > %zu).  Since it is longer than "
2141 		    "expected, this coredump's notes are corrupt.  THIS "
2142 		    "IS A BUG in the note_procstat routine for type %u.\n",
2143 		    __func__, (unsigned)note.n_type, new_len, descsz,
2144 		    (unsigned)note.n_type));
2145 	}
2146 }
2147 
2148 /*
2149  * Miscellaneous note out functions.
2150  */
2151 
2152 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2153 #include <compat/freebsd32/freebsd32.h>
2154 #include <compat/freebsd32/freebsd32_signal.h>
2155 
2156 typedef struct prstatus32 elf_prstatus_t;
2157 typedef struct prpsinfo32 elf_prpsinfo_t;
2158 typedef struct fpreg32 elf_prfpregset_t;
2159 typedef struct fpreg32 elf_fpregset_t;
2160 typedef struct reg32 elf_gregset_t;
2161 typedef struct thrmisc32 elf_thrmisc_t;
2162 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2163 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2164 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2165 typedef uint32_t elf_ps_strings_t;
2166 #else
2167 typedef prstatus_t elf_prstatus_t;
2168 typedef prpsinfo_t elf_prpsinfo_t;
2169 typedef prfpregset_t elf_prfpregset_t;
2170 typedef prfpregset_t elf_fpregset_t;
2171 typedef gregset_t elf_gregset_t;
2172 typedef thrmisc_t elf_thrmisc_t;
2173 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2174 #define ELF_KERN_PROC_MASK	0
2175 typedef struct kinfo_proc elf_kinfo_proc_t;
2176 typedef vm_offset_t elf_ps_strings_t;
2177 #endif
2178 
2179 static void
2180 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2181 {
2182 	struct sbuf sbarg;
2183 	size_t len;
2184 	char *cp, *end;
2185 	struct proc *p;
2186 	elf_prpsinfo_t *psinfo;
2187 	int error;
2188 
2189 	p = arg;
2190 	if (sb != NULL) {
2191 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2192 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2193 		psinfo->pr_version = PRPSINFO_VERSION;
2194 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2195 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2196 		PROC_LOCK(p);
2197 		if (p->p_args != NULL) {
2198 			len = sizeof(psinfo->pr_psargs) - 1;
2199 			if (len > p->p_args->ar_length)
2200 				len = p->p_args->ar_length;
2201 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2202 			PROC_UNLOCK(p);
2203 			error = 0;
2204 		} else {
2205 			_PHOLD(p);
2206 			PROC_UNLOCK(p);
2207 			sbuf_new(&sbarg, psinfo->pr_psargs,
2208 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2209 			error = proc_getargv(curthread, p, &sbarg);
2210 			PRELE(p);
2211 			if (sbuf_finish(&sbarg) == 0) {
2212 				len = sbuf_len(&sbarg);
2213 				if (len > 0)
2214 					len--;
2215 			} else {
2216 				len = sizeof(psinfo->pr_psargs) - 1;
2217 			}
2218 			sbuf_delete(&sbarg);
2219 		}
2220 		if (error != 0 || len == 0 || (ssize_t)len == -1)
2221 			strlcpy(psinfo->pr_psargs, p->p_comm,
2222 			    sizeof(psinfo->pr_psargs));
2223 		else {
2224 			KASSERT(len < sizeof(psinfo->pr_psargs),
2225 			    ("len is too long: %zu vs %zu", len,
2226 			    sizeof(psinfo->pr_psargs)));
2227 			cp = psinfo->pr_psargs;
2228 			end = cp + len - 1;
2229 			for (;;) {
2230 				cp = memchr(cp, '\0', end - cp);
2231 				if (cp == NULL)
2232 					break;
2233 				*cp = ' ';
2234 			}
2235 		}
2236 		psinfo->pr_pid = p->p_pid;
2237 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2238 		free(psinfo, M_TEMP);
2239 	}
2240 	*sizep = sizeof(*psinfo);
2241 }
2242 
2243 static bool
2244 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2245     size_t *sizep)
2246 {
2247 	elf_prstatus_t *status;
2248 
2249 	if (buf != NULL) {
2250 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2251 		    __func__));
2252 		status = buf;
2253 		memset(status, 0, *sizep);
2254 		status->pr_version = PRSTATUS_VERSION;
2255 		status->pr_statussz = sizeof(elf_prstatus_t);
2256 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2257 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2258 		status->pr_osreldate = osreldate;
2259 		status->pr_cursig = td->td_proc->p_sig;
2260 		status->pr_pid = td->td_tid;
2261 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2262 		fill_regs32(td, &status->pr_reg);
2263 #else
2264 		fill_regs(td, &status->pr_reg);
2265 #endif
2266 	}
2267 	*sizep = sizeof(*status);
2268 	return (true);
2269 }
2270 
2271 static bool
2272 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2273     size_t size)
2274 {
2275 	elf_prstatus_t *status;
2276 
2277 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2278 	status = buf;
2279 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2280 	set_regs32(td, &status->pr_reg);
2281 #else
2282 	set_regs(td, &status->pr_reg);
2283 #endif
2284 	return (true);
2285 }
2286 
2287 static struct regset __elfN(regset_prstatus) = {
2288 	.note = NT_PRSTATUS,
2289 	.size = sizeof(elf_prstatus_t),
2290 	.get = __elfN(get_prstatus),
2291 	.set = __elfN(set_prstatus),
2292 };
2293 ELF_REGSET(__elfN(regset_prstatus));
2294 
2295 static bool
2296 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2297     size_t *sizep)
2298 {
2299 	elf_prfpregset_t *fpregset;
2300 
2301 	if (buf != NULL) {
2302 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2303 		    __func__));
2304 		fpregset = buf;
2305 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2306 		fill_fpregs32(td, fpregset);
2307 #else
2308 		fill_fpregs(td, fpregset);
2309 #endif
2310 	}
2311 	*sizep = sizeof(*fpregset);
2312 	return (true);
2313 }
2314 
2315 static bool
2316 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2317     size_t size)
2318 {
2319 	elf_prfpregset_t *fpregset;
2320 
2321 	fpregset = buf;
2322 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2323 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2324 	set_fpregs32(td, fpregset);
2325 #else
2326 	set_fpregs(td, fpregset);
2327 #endif
2328 	return (true);
2329 }
2330 
2331 static struct regset __elfN(regset_fpregset) = {
2332 	.note = NT_FPREGSET,
2333 	.size = sizeof(elf_prfpregset_t),
2334 	.get = __elfN(get_fpregset),
2335 	.set = __elfN(set_fpregset),
2336 };
2337 ELF_REGSET(__elfN(regset_fpregset));
2338 
2339 static bool
2340 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2341     size_t *sizep)
2342 {
2343 	elf_thrmisc_t *thrmisc;
2344 
2345 	if (buf != NULL) {
2346 		KASSERT(*sizep == sizeof(*thrmisc),
2347 		    ("%s: invalid size", __func__));
2348 		thrmisc = buf;
2349 		bzero(thrmisc, sizeof(*thrmisc));
2350 		strcpy(thrmisc->pr_tname, td->td_name);
2351 	}
2352 	*sizep = sizeof(*thrmisc);
2353 	return (true);
2354 }
2355 
2356 static struct regset __elfN(regset_thrmisc) = {
2357 	.note = NT_THRMISC,
2358 	.size = sizeof(elf_thrmisc_t),
2359 	.get = __elfN(get_thrmisc),
2360 };
2361 ELF_REGSET(__elfN(regset_thrmisc));
2362 
2363 static bool
2364 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2365     size_t *sizep)
2366 {
2367 	elf_lwpinfo_t pl;
2368 	size_t size;
2369 	int structsize;
2370 
2371 	size = sizeof(structsize) + sizeof(pl);
2372 	if (buf != NULL) {
2373 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2374 		structsize = sizeof(pl);
2375 		memcpy(buf, &structsize, sizeof(structsize));
2376 		bzero(&pl, sizeof(pl));
2377 		pl.pl_lwpid = td->td_tid;
2378 		pl.pl_event = PL_EVENT_NONE;
2379 		pl.pl_sigmask = td->td_sigmask;
2380 		pl.pl_siglist = td->td_siglist;
2381 		if (td->td_si.si_signo != 0) {
2382 			pl.pl_event = PL_EVENT_SIGNAL;
2383 			pl.pl_flags |= PL_FLAG_SI;
2384 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2385 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2386 #else
2387 			pl.pl_siginfo = td->td_si;
2388 #endif
2389 		}
2390 		strcpy(pl.pl_tdname, td->td_name);
2391 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2392 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2393 	}
2394 	*sizep = size;
2395 	return (true);
2396 }
2397 
2398 static struct regset __elfN(regset_lwpinfo) = {
2399 	.note = NT_PTLWPINFO,
2400 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2401 	.get = __elfN(get_lwpinfo),
2402 };
2403 ELF_REGSET(__elfN(regset_lwpinfo));
2404 
2405 static size_t
2406 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2407     struct thread *target_td)
2408 {
2409 	struct sysentvec *sv = td->td_proc->p_sysent;
2410 	struct regset **regsetp, **regset_end, *regset;
2411 	size_t size;
2412 
2413 	size = 0;
2414 
2415 	/* NT_PRSTATUS must be the first register set note. */
2416 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2417 	    target_td);
2418 
2419 	regsetp = sv->sv_regset_begin;
2420 	if (regsetp == NULL) {
2421 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2422 		size += __elfN(register_regset_note)(td, list,
2423 		    &__elfN(regset_fpregset), target_td);
2424 		return (size);
2425 	}
2426 	regset_end = sv->sv_regset_end;
2427 	MPASS(regset_end != NULL);
2428 	for (; regsetp < regset_end; regsetp++) {
2429 		regset = *regsetp;
2430 		if (regset->note == NT_PRSTATUS)
2431 			continue;
2432 		size += __elfN(register_regset_note)(td, list, regset,
2433 		    target_td);
2434 	}
2435 	return (size);
2436 }
2437 
2438 /*
2439  * Allow for MD specific notes, as well as any MD
2440  * specific preparations for writing MI notes.
2441  */
2442 static void
2443 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2444 {
2445 	struct thread *td;
2446 	void *buf;
2447 	size_t size;
2448 
2449 	td = (struct thread *)arg;
2450 	size = *sizep;
2451 	if (size != 0 && sb != NULL)
2452 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2453 	else
2454 		buf = NULL;
2455 	size = 0;
2456 	__elfN(dump_thread)(td, buf, &size);
2457 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2458 	if (size != 0 && sb != NULL)
2459 		sbuf_bcat(sb, buf, size);
2460 	free(buf, M_TEMP);
2461 	*sizep = size;
2462 }
2463 
2464 #ifdef KINFO_PROC_SIZE
2465 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2466 #endif
2467 
2468 static void
2469 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2470 {
2471 	struct proc *p;
2472 	size_t size;
2473 	int structsize;
2474 
2475 	p = arg;
2476 	size = sizeof(structsize) + p->p_numthreads *
2477 	    sizeof(elf_kinfo_proc_t);
2478 
2479 	if (sb != NULL) {
2480 		KASSERT(*sizep == size, ("invalid size"));
2481 		structsize = sizeof(elf_kinfo_proc_t);
2482 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2483 		sx_slock(&proctree_lock);
2484 		PROC_LOCK(p);
2485 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2486 		sx_sunlock(&proctree_lock);
2487 	}
2488 	*sizep = size;
2489 }
2490 
2491 #ifdef KINFO_FILE_SIZE
2492 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2493 #endif
2494 
2495 static void
2496 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2497 {
2498 	struct proc *p;
2499 	size_t size, sect_sz, i;
2500 	ssize_t start_len, sect_len;
2501 	int structsize, filedesc_flags;
2502 
2503 	if (coredump_pack_fileinfo)
2504 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2505 	else
2506 		filedesc_flags = 0;
2507 
2508 	p = arg;
2509 	structsize = sizeof(struct kinfo_file);
2510 	if (sb == NULL) {
2511 		size = 0;
2512 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2513 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2514 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2515 		PROC_LOCK(p);
2516 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2517 		sbuf_finish(sb);
2518 		sbuf_delete(sb);
2519 		*sizep = size;
2520 	} else {
2521 		sbuf_start_section(sb, &start_len);
2522 
2523 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2524 		PROC_LOCK(p);
2525 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2526 		    filedesc_flags);
2527 
2528 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2529 		if (sect_len < 0)
2530 			return;
2531 		sect_sz = sect_len;
2532 
2533 		KASSERT(sect_sz <= *sizep,
2534 		    ("kern_proc_filedesc_out did not respect maxlen; "
2535 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2536 		     sect_sz - sizeof(structsize)));
2537 
2538 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2539 			sbuf_putc(sb, 0);
2540 	}
2541 }
2542 
2543 #ifdef KINFO_VMENTRY_SIZE
2544 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2545 #endif
2546 
2547 static void
2548 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2549 {
2550 	struct proc *p;
2551 	size_t size;
2552 	int structsize, vmmap_flags;
2553 
2554 	if (coredump_pack_vmmapinfo)
2555 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2556 	else
2557 		vmmap_flags = 0;
2558 
2559 	p = arg;
2560 	structsize = sizeof(struct kinfo_vmentry);
2561 	if (sb == NULL) {
2562 		size = 0;
2563 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2564 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2565 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2566 		PROC_LOCK(p);
2567 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2568 		sbuf_finish(sb);
2569 		sbuf_delete(sb);
2570 		*sizep = size;
2571 	} else {
2572 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2573 		PROC_LOCK(p);
2574 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2575 		    vmmap_flags);
2576 	}
2577 }
2578 
2579 static void
2580 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2581 {
2582 	struct proc *p;
2583 	size_t size;
2584 	int structsize;
2585 
2586 	p = arg;
2587 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2588 	if (sb != NULL) {
2589 		KASSERT(*sizep == size, ("invalid size"));
2590 		structsize = sizeof(gid_t);
2591 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2592 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2593 		    sizeof(gid_t));
2594 	}
2595 	*sizep = size;
2596 }
2597 
2598 static void
2599 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2600 {
2601 	struct proc *p;
2602 	size_t size;
2603 	int structsize;
2604 
2605 	p = arg;
2606 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2607 	if (sb != NULL) {
2608 		KASSERT(*sizep == size, ("invalid size"));
2609 		structsize = sizeof(p->p_pd->pd_cmask);
2610 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2611 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2612 	}
2613 	*sizep = size;
2614 }
2615 
2616 static void
2617 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2618 {
2619 	struct proc *p;
2620 	struct rlimit rlim[RLIM_NLIMITS];
2621 	size_t size;
2622 	int structsize, i;
2623 
2624 	p = arg;
2625 	size = sizeof(structsize) + sizeof(rlim);
2626 	if (sb != NULL) {
2627 		KASSERT(*sizep == size, ("invalid size"));
2628 		structsize = sizeof(rlim);
2629 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2630 		PROC_LOCK(p);
2631 		for (i = 0; i < RLIM_NLIMITS; i++)
2632 			lim_rlimit_proc(p, i, &rlim[i]);
2633 		PROC_UNLOCK(p);
2634 		sbuf_bcat(sb, rlim, sizeof(rlim));
2635 	}
2636 	*sizep = size;
2637 }
2638 
2639 static void
2640 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2641 {
2642 	struct proc *p;
2643 	size_t size;
2644 	int structsize;
2645 
2646 	p = arg;
2647 	size = sizeof(structsize) + sizeof(p->p_osrel);
2648 	if (sb != NULL) {
2649 		KASSERT(*sizep == size, ("invalid size"));
2650 		structsize = sizeof(p->p_osrel);
2651 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2652 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2653 	}
2654 	*sizep = size;
2655 }
2656 
2657 static void
2658 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2659 {
2660 	struct proc *p;
2661 	elf_ps_strings_t ps_strings;
2662 	size_t size;
2663 	int structsize;
2664 
2665 	p = arg;
2666 	size = sizeof(structsize) + sizeof(ps_strings);
2667 	if (sb != NULL) {
2668 		KASSERT(*sizep == size, ("invalid size"));
2669 		structsize = sizeof(ps_strings);
2670 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2671 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2672 #else
2673 		ps_strings = PROC_PS_STRINGS(p);
2674 #endif
2675 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2676 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2677 	}
2678 	*sizep = size;
2679 }
2680 
2681 static void
2682 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2683 {
2684 	struct proc *p;
2685 	size_t size;
2686 	int structsize;
2687 
2688 	p = arg;
2689 	if (sb == NULL) {
2690 		size = 0;
2691 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2692 		    SBUF_FIXEDLEN);
2693 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2694 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2695 		PHOLD(p);
2696 		proc_getauxv(curthread, p, sb);
2697 		PRELE(p);
2698 		sbuf_finish(sb);
2699 		sbuf_delete(sb);
2700 		*sizep = size;
2701 	} else {
2702 		structsize = sizeof(Elf_Auxinfo);
2703 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2704 		PHOLD(p);
2705 		proc_getauxv(curthread, p, sb);
2706 		PRELE(p);
2707 	}
2708 }
2709 
2710 static bool
2711 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2712     const char *note_vendor, const Elf_Phdr *pnote,
2713     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2714 {
2715 	const Elf_Note *note, *note0, *note_end;
2716 	const char *note_name;
2717 	char *buf;
2718 	int i, error;
2719 	bool res;
2720 
2721 	/* We need some limit, might as well use PAGE_SIZE. */
2722 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2723 		return (false);
2724 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2725 	if (pnote->p_offset > PAGE_SIZE ||
2726 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2727 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2728 		if (buf == NULL) {
2729 			VOP_UNLOCK(imgp->vp);
2730 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2731 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2732 		}
2733 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2734 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2735 		    curthread->td_ucred, NOCRED, NULL, curthread);
2736 		if (error != 0) {
2737 			uprintf("i/o error PT_NOTE\n");
2738 			goto retf;
2739 		}
2740 		note = note0 = (const Elf_Note *)buf;
2741 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2742 	} else {
2743 		note = note0 = (const Elf_Note *)(imgp->image_header +
2744 		    pnote->p_offset);
2745 		note_end = (const Elf_Note *)(imgp->image_header +
2746 		    pnote->p_offset + pnote->p_filesz);
2747 		buf = NULL;
2748 	}
2749 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2750 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2751 		    (const char *)note < sizeof(Elf_Note)) {
2752 			goto retf;
2753 		}
2754 		if (note->n_namesz != checknote->n_namesz ||
2755 		    note->n_descsz != checknote->n_descsz ||
2756 		    note->n_type != checknote->n_type)
2757 			goto nextnote;
2758 		note_name = (const char *)(note + 1);
2759 		if (note_name + checknote->n_namesz >=
2760 		    (const char *)note_end || strncmp(note_vendor,
2761 		    note_name, checknote->n_namesz) != 0)
2762 			goto nextnote;
2763 
2764 		if (cb(note, cb_arg, &res))
2765 			goto ret;
2766 nextnote:
2767 		note = (const Elf_Note *)((const char *)(note + 1) +
2768 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2769 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2770 	}
2771 retf:
2772 	res = false;
2773 ret:
2774 	free(buf, M_TEMP);
2775 	return (res);
2776 }
2777 
2778 struct brandnote_cb_arg {
2779 	Elf_Brandnote *brandnote;
2780 	int32_t *osrel;
2781 };
2782 
2783 static bool
2784 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2785 {
2786 	struct brandnote_cb_arg *arg;
2787 
2788 	arg = arg0;
2789 
2790 	/*
2791 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2792 	 * necessary.
2793 	 */
2794 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2795 	    arg->brandnote->trans_osrel != NULL ?
2796 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2797 
2798 	return (true);
2799 }
2800 
2801 static Elf_Note fctl_note = {
2802 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2803 	.n_descsz = sizeof(uint32_t),
2804 	.n_type = NT_FREEBSD_FEATURE_CTL,
2805 };
2806 
2807 struct fctl_cb_arg {
2808 	bool *has_fctl0;
2809 	uint32_t *fctl0;
2810 };
2811 
2812 static bool
2813 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2814 {
2815 	struct fctl_cb_arg *arg;
2816 	const Elf32_Word *desc;
2817 	uintptr_t p;
2818 
2819 	arg = arg0;
2820 	p = (uintptr_t)(note + 1);
2821 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2822 	desc = (const Elf32_Word *)p;
2823 	*arg->has_fctl0 = true;
2824 	*arg->fctl0 = desc[0];
2825 	*res = true;
2826 	return (true);
2827 }
2828 
2829 /*
2830  * Try to find the appropriate ABI-note section for checknote, fetch
2831  * the osreldate and feature control flags for binary from the ELF
2832  * OSABI-note.  Only the first page of the image is searched, the same
2833  * as for headers.
2834  */
2835 static bool
2836 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2837     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2838 {
2839 	const Elf_Phdr *phdr;
2840 	const Elf_Ehdr *hdr;
2841 	struct brandnote_cb_arg b_arg;
2842 	struct fctl_cb_arg f_arg;
2843 	int i, j;
2844 
2845 	hdr = (const Elf_Ehdr *)imgp->image_header;
2846 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2847 	b_arg.brandnote = brandnote;
2848 	b_arg.osrel = osrel;
2849 	f_arg.has_fctl0 = has_fctl0;
2850 	f_arg.fctl0 = fctl0;
2851 
2852 	for (i = 0; i < hdr->e_phnum; i++) {
2853 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2854 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2855 		    &b_arg)) {
2856 			for (j = 0; j < hdr->e_phnum; j++) {
2857 				if (phdr[j].p_type == PT_NOTE &&
2858 				    __elfN(parse_notes)(imgp, &fctl_note,
2859 				    FREEBSD_ABI_VENDOR, &phdr[j],
2860 				    note_fctl_cb, &f_arg))
2861 					break;
2862 			}
2863 			return (true);
2864 		}
2865 	}
2866 	return (false);
2867 
2868 }
2869 
2870 /*
2871  * Tell kern_execve.c about it, with a little help from the linker.
2872  */
2873 static struct execsw __elfN(execsw) = {
2874 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2875 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2876 };
2877 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2878 
2879 static vm_prot_t
2880 __elfN(trans_prot)(Elf_Word flags)
2881 {
2882 	vm_prot_t prot;
2883 
2884 	prot = 0;
2885 	if (flags & PF_X)
2886 		prot |= VM_PROT_EXECUTE;
2887 	if (flags & PF_W)
2888 		prot |= VM_PROT_WRITE;
2889 	if (flags & PF_R)
2890 		prot |= VM_PROT_READ;
2891 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2892 	if (i386_read_exec && (flags & PF_R))
2893 		prot |= VM_PROT_EXECUTE;
2894 #endif
2895 	return (prot);
2896 }
2897 
2898 static Elf_Word
2899 __elfN(untrans_prot)(vm_prot_t prot)
2900 {
2901 	Elf_Word flags;
2902 
2903 	flags = 0;
2904 	if (prot & VM_PROT_EXECUTE)
2905 		flags |= PF_X;
2906 	if (prot & VM_PROT_READ)
2907 		flags |= PF_R;
2908 	if (prot & VM_PROT_WRITE)
2909 		flags |= PF_W;
2910 	return (flags);
2911 }
2912