1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/reg.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static bool __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 102 uint32_t *fctl0); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 static size_t __elfN(prepare_register_notes)(struct thread *td, 106 struct note_info_list *list, struct thread *target_td); 107 108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 109 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 110 ""); 111 112 int __elfN(fallback_brand) = -1; 113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 114 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 115 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 116 117 static int elf_legacy_coredump = 0; 118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 119 &elf_legacy_coredump, 0, 120 "include all and only RW pages in core dumps"); 121 122 int __elfN(nxstack) = 123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 124 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 125 defined(__riscv) 126 1; 127 #else 128 0; 129 #endif 130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 131 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 132 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 133 134 #if defined(__amd64__) 135 static int __elfN(vdso) = 1; 136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 137 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0, 138 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading"); 139 #else 140 static int __elfN(vdso) = 0; 141 #endif 142 143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 144 int i386_read_exec = 0; 145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 146 "enable execution from readable segments"); 147 #endif 148 149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 150 static int 151 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 152 { 153 u_long val; 154 int error; 155 156 val = __elfN(pie_base); 157 error = sysctl_handle_long(oidp, &val, 0, req); 158 if (error != 0 || req->newptr == NULL) 159 return (error); 160 if ((val & PAGE_MASK) != 0) 161 return (EINVAL); 162 __elfN(pie_base) = val; 163 return (0); 164 } 165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 166 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 167 sysctl_pie_base, "LU", 168 "PIE load base without randomization"); 169 170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 171 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 172 ""); 173 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 174 175 /* 176 * Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures 177 * have limited address space (which can cause issues for applications with 178 * high memory use) so we leave it off there. 179 */ 180 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 182 &__elfN(aslr_enabled), 0, 183 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 184 ": enable address map randomization"); 185 186 /* 187 * Enable ASLR by default for 64-bit PIE binaries. 188 */ 189 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 190 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 191 &__elfN(pie_aslr_enabled), 0, 192 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 193 ": enable address map randomization for PIE binaries"); 194 195 /* 196 * Sbrk is deprecated and it can be assumed that in most cases it will not be 197 * used anyway. This setting is valid only with ASLR enabled, and allows ASLR 198 * to use the bss grow region. 199 */ 200 static int __elfN(aslr_honor_sbrk) = 0; 201 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 202 &__elfN(aslr_honor_sbrk), 0, 203 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 204 205 static int __elfN(aslr_stack) = 1; 206 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN, 207 &__elfN(aslr_stack), 0, 208 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 209 ": enable stack address randomization"); 210 211 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64; 212 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN, 213 &__elfN(aslr_shared_page), 0, 214 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 215 ": enable shared page address randomization"); 216 217 static int __elfN(sigfastblock) = 1; 218 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 219 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 220 "enable sigfastblock for new processes"); 221 222 static bool __elfN(allow_wx) = true; 223 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 224 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 225 "Allow pages to be mapped simultaneously writable and executable"); 226 227 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 228 229 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 230 231 Elf_Brandnote __elfN(freebsd_brandnote) = { 232 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 233 .hdr.n_descsz = sizeof(int32_t), 234 .hdr.n_type = NT_FREEBSD_ABI_TAG, 235 .vendor = FREEBSD_ABI_VENDOR, 236 .flags = BN_TRANSLATE_OSREL, 237 .trans_osrel = __elfN(freebsd_trans_osrel) 238 }; 239 240 static bool 241 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 242 { 243 uintptr_t p; 244 245 p = (uintptr_t)(note + 1); 246 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 247 *osrel = *(const int32_t *)(p); 248 249 return (true); 250 } 251 252 static const char GNU_ABI_VENDOR[] = "GNU"; 253 static int GNU_KFREEBSD_ABI_DESC = 3; 254 255 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 256 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 257 .hdr.n_descsz = 16, /* XXX at least 16 */ 258 .hdr.n_type = 1, 259 .vendor = GNU_ABI_VENDOR, 260 .flags = BN_TRANSLATE_OSREL, 261 .trans_osrel = kfreebsd_trans_osrel 262 }; 263 264 static bool 265 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 266 { 267 const Elf32_Word *desc; 268 uintptr_t p; 269 270 p = (uintptr_t)(note + 1); 271 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 272 273 desc = (const Elf32_Word *)p; 274 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 275 return (false); 276 277 /* 278 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 279 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 280 */ 281 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 282 283 return (true); 284 } 285 286 int 287 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 288 { 289 int i; 290 291 for (i = 0; i < MAX_BRANDS; i++) { 292 if (elf_brand_list[i] == NULL) { 293 elf_brand_list[i] = entry; 294 break; 295 } 296 } 297 if (i == MAX_BRANDS) { 298 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 299 __func__, entry); 300 return (-1); 301 } 302 return (0); 303 } 304 305 int 306 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 307 { 308 int i; 309 310 for (i = 0; i < MAX_BRANDS; i++) { 311 if (elf_brand_list[i] == entry) { 312 elf_brand_list[i] = NULL; 313 break; 314 } 315 } 316 if (i == MAX_BRANDS) 317 return (-1); 318 return (0); 319 } 320 321 bool 322 __elfN(brand_inuse)(Elf_Brandinfo *entry) 323 { 324 struct proc *p; 325 bool rval = false; 326 327 sx_slock(&allproc_lock); 328 FOREACH_PROC_IN_SYSTEM(p) { 329 if (p->p_sysent == entry->sysvec) { 330 rval = true; 331 break; 332 } 333 } 334 sx_sunlock(&allproc_lock); 335 336 return (rval); 337 } 338 339 static Elf_Brandinfo * 340 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 341 int32_t *osrel, uint32_t *fctl0) 342 { 343 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 344 Elf_Brandinfo *bi, *bi_m; 345 bool ret, has_fctl0; 346 int i, interp_name_len; 347 348 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 349 350 /* 351 * We support four types of branding -- (1) the ELF EI_OSABI field 352 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 353 * branding w/in the ELF header, (3) path of the `interp_path' 354 * field, and (4) the ".note.ABI-tag" ELF section. 355 */ 356 357 /* Look for an ".note.ABI-tag" ELF section */ 358 bi_m = NULL; 359 for (i = 0; i < MAX_BRANDS; i++) { 360 bi = elf_brand_list[i]; 361 if (bi == NULL) 362 continue; 363 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 364 continue; 365 if (hdr->e_machine == bi->machine && (bi->flags & 366 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 367 has_fctl0 = false; 368 *fctl0 = 0; 369 *osrel = 0; 370 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 371 &has_fctl0, fctl0); 372 /* Give brand a chance to veto check_note's guess */ 373 if (ret && bi->header_supported) { 374 ret = bi->header_supported(imgp, osrel, 375 has_fctl0 ? fctl0 : NULL); 376 } 377 /* 378 * If note checker claimed the binary, but the 379 * interpreter path in the image does not 380 * match default one for the brand, try to 381 * search for other brands with the same 382 * interpreter. Either there is better brand 383 * with the right interpreter, or, failing 384 * this, we return first brand which accepted 385 * our note and, optionally, header. 386 */ 387 if (ret && bi_m == NULL && interp != NULL && 388 (bi->interp_path == NULL || 389 (strlen(bi->interp_path) + 1 != interp_name_len || 390 strncmp(interp, bi->interp_path, interp_name_len) 391 != 0))) { 392 bi_m = bi; 393 ret = 0; 394 } 395 if (ret) 396 return (bi); 397 } 398 } 399 if (bi_m != NULL) 400 return (bi_m); 401 402 /* If the executable has a brand, search for it in the brand list. */ 403 for (i = 0; i < MAX_BRANDS; i++) { 404 bi = elf_brand_list[i]; 405 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 406 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 407 continue; 408 if (hdr->e_machine == bi->machine && 409 (hdr->e_ident[EI_OSABI] == bi->brand || 410 (bi->compat_3_brand != NULL && 411 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 412 bi->compat_3_brand) == 0))) { 413 /* Looks good, but give brand a chance to veto */ 414 if (bi->header_supported == NULL || 415 bi->header_supported(imgp, NULL, NULL)) { 416 /* 417 * Again, prefer strictly matching 418 * interpreter path. 419 */ 420 if (interp_name_len == 0 && 421 bi->interp_path == NULL) 422 return (bi); 423 if (bi->interp_path != NULL && 424 strlen(bi->interp_path) + 1 == 425 interp_name_len && strncmp(interp, 426 bi->interp_path, interp_name_len) == 0) 427 return (bi); 428 if (bi_m == NULL) 429 bi_m = bi; 430 } 431 } 432 } 433 if (bi_m != NULL) 434 return (bi_m); 435 436 /* No known brand, see if the header is recognized by any brand */ 437 for (i = 0; i < MAX_BRANDS; i++) { 438 bi = elf_brand_list[i]; 439 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 440 bi->header_supported == NULL) 441 continue; 442 if (hdr->e_machine == bi->machine) { 443 ret = bi->header_supported(imgp, NULL, NULL); 444 if (ret) 445 return (bi); 446 } 447 } 448 449 /* Lacking a known brand, search for a recognized interpreter. */ 450 if (interp != NULL) { 451 for (i = 0; i < MAX_BRANDS; i++) { 452 bi = elf_brand_list[i]; 453 if (bi == NULL || (bi->flags & 454 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 455 != 0) 456 continue; 457 if (hdr->e_machine == bi->machine && 458 bi->interp_path != NULL && 459 /* ELF image p_filesz includes terminating zero */ 460 strlen(bi->interp_path) + 1 == interp_name_len && 461 strncmp(interp, bi->interp_path, interp_name_len) 462 == 0 && (bi->header_supported == NULL || 463 bi->header_supported(imgp, NULL, NULL))) 464 return (bi); 465 } 466 } 467 468 /* Lacking a recognized interpreter, try the default brand */ 469 for (i = 0; i < MAX_BRANDS; i++) { 470 bi = elf_brand_list[i]; 471 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 472 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 473 continue; 474 if (hdr->e_machine == bi->machine && 475 __elfN(fallback_brand) == bi->brand && 476 (bi->header_supported == NULL || 477 bi->header_supported(imgp, NULL, NULL))) 478 return (bi); 479 } 480 return (NULL); 481 } 482 483 static bool 484 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 485 { 486 return (hdr->e_phoff <= PAGE_SIZE && 487 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 488 } 489 490 static int 491 __elfN(check_header)(const Elf_Ehdr *hdr) 492 { 493 Elf_Brandinfo *bi; 494 int i; 495 496 if (!IS_ELF(*hdr) || 497 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 498 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 499 hdr->e_ident[EI_VERSION] != EV_CURRENT || 500 hdr->e_phentsize != sizeof(Elf_Phdr) || 501 hdr->e_version != ELF_TARG_VER) 502 return (ENOEXEC); 503 504 /* 505 * Make sure we have at least one brand for this machine. 506 */ 507 508 for (i = 0; i < MAX_BRANDS; i++) { 509 bi = elf_brand_list[i]; 510 if (bi != NULL && bi->machine == hdr->e_machine) 511 break; 512 } 513 if (i == MAX_BRANDS) 514 return (ENOEXEC); 515 516 return (0); 517 } 518 519 static int 520 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 521 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 522 { 523 struct sf_buf *sf; 524 int error; 525 vm_offset_t off; 526 527 /* 528 * Create the page if it doesn't exist yet. Ignore errors. 529 */ 530 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 531 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 532 533 /* 534 * Find the page from the underlying object. 535 */ 536 if (object != NULL) { 537 sf = vm_imgact_map_page(object, offset); 538 if (sf == NULL) 539 return (KERN_FAILURE); 540 off = offset - trunc_page(offset); 541 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 542 end - start); 543 vm_imgact_unmap_page(sf); 544 if (error != 0) 545 return (KERN_FAILURE); 546 } 547 548 return (KERN_SUCCESS); 549 } 550 551 static int 552 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 553 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 554 int cow) 555 { 556 struct sf_buf *sf; 557 vm_offset_t off; 558 vm_size_t sz; 559 int error, locked, rv; 560 561 if (start != trunc_page(start)) { 562 rv = __elfN(map_partial)(map, object, offset, start, 563 round_page(start), prot); 564 if (rv != KERN_SUCCESS) 565 return (rv); 566 offset += round_page(start) - start; 567 start = round_page(start); 568 } 569 if (end != round_page(end)) { 570 rv = __elfN(map_partial)(map, object, offset + 571 trunc_page(end) - start, trunc_page(end), end, prot); 572 if (rv != KERN_SUCCESS) 573 return (rv); 574 end = trunc_page(end); 575 } 576 if (start >= end) 577 return (KERN_SUCCESS); 578 if ((offset & PAGE_MASK) != 0) { 579 /* 580 * The mapping is not page aligned. This means that we have 581 * to copy the data. 582 */ 583 rv = vm_map_fixed(map, NULL, 0, start, end - start, 584 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 585 if (rv != KERN_SUCCESS) 586 return (rv); 587 if (object == NULL) 588 return (KERN_SUCCESS); 589 for (; start < end; start += sz) { 590 sf = vm_imgact_map_page(object, offset); 591 if (sf == NULL) 592 return (KERN_FAILURE); 593 off = offset - trunc_page(offset); 594 sz = end - start; 595 if (sz > PAGE_SIZE - off) 596 sz = PAGE_SIZE - off; 597 error = copyout((caddr_t)sf_buf_kva(sf) + off, 598 (caddr_t)start, sz); 599 vm_imgact_unmap_page(sf); 600 if (error != 0) 601 return (KERN_FAILURE); 602 offset += sz; 603 } 604 } else { 605 vm_object_reference(object); 606 rv = vm_map_fixed(map, object, offset, start, end - start, 607 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 608 (object != NULL ? MAP_VN_EXEC : 0)); 609 if (rv != KERN_SUCCESS) { 610 locked = VOP_ISLOCKED(imgp->vp); 611 VOP_UNLOCK(imgp->vp); 612 vm_object_deallocate(object); 613 vn_lock(imgp->vp, locked | LK_RETRY); 614 return (rv); 615 } else if (object != NULL) { 616 MPASS(imgp->vp->v_object == object); 617 VOP_SET_TEXT_CHECKED(imgp->vp); 618 } 619 } 620 return (KERN_SUCCESS); 621 } 622 623 static int 624 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 625 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 626 { 627 struct sf_buf *sf; 628 size_t map_len; 629 vm_map_t map; 630 vm_object_t object; 631 vm_offset_t map_addr; 632 int error, rv, cow; 633 size_t copy_len; 634 vm_ooffset_t file_addr; 635 636 /* 637 * It's necessary to fail if the filsz + offset taken from the 638 * header is greater than the actual file pager object's size. 639 * If we were to allow this, then the vm_map_find() below would 640 * walk right off the end of the file object and into the ether. 641 * 642 * While I'm here, might as well check for something else that 643 * is invalid: filsz cannot be greater than memsz. 644 */ 645 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 646 filsz > memsz) { 647 uprintf("elf_load_section: truncated ELF file\n"); 648 return (ENOEXEC); 649 } 650 651 object = imgp->object; 652 map = &imgp->proc->p_vmspace->vm_map; 653 map_addr = trunc_page((vm_offset_t)vmaddr); 654 file_addr = trunc_page(offset); 655 656 /* 657 * We have two choices. We can either clear the data in the last page 658 * of an oversized mapping, or we can start the anon mapping a page 659 * early and copy the initialized data into that first page. We 660 * choose the second. 661 */ 662 if (filsz == 0) 663 map_len = 0; 664 else if (memsz > filsz) 665 map_len = trunc_page(offset + filsz) - file_addr; 666 else 667 map_len = round_page(offset + filsz) - file_addr; 668 669 if (map_len != 0) { 670 /* cow flags: don't dump readonly sections in core */ 671 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 672 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 673 674 rv = __elfN(map_insert)(imgp, map, object, file_addr, 675 map_addr, map_addr + map_len, prot, cow); 676 if (rv != KERN_SUCCESS) 677 return (EINVAL); 678 679 /* we can stop now if we've covered it all */ 680 if (memsz == filsz) 681 return (0); 682 } 683 684 /* 685 * We have to get the remaining bit of the file into the first part 686 * of the oversized map segment. This is normally because the .data 687 * segment in the file is extended to provide bss. It's a neat idea 688 * to try and save a page, but it's a pain in the behind to implement. 689 */ 690 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 691 filsz); 692 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 693 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 694 695 /* This had damn well better be true! */ 696 if (map_len != 0) { 697 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 698 map_addr + map_len, prot, 0); 699 if (rv != KERN_SUCCESS) 700 return (EINVAL); 701 } 702 703 if (copy_len != 0) { 704 sf = vm_imgact_map_page(object, offset + filsz); 705 if (sf == NULL) 706 return (EIO); 707 708 /* send the page fragment to user space */ 709 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 710 copy_len); 711 vm_imgact_unmap_page(sf); 712 if (error != 0) 713 return (error); 714 } 715 716 /* 717 * Remove write access to the page if it was only granted by map_insert 718 * to allow copyout. 719 */ 720 if ((prot & VM_PROT_WRITE) == 0) 721 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 722 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 723 724 return (0); 725 } 726 727 static int 728 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 729 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 730 { 731 vm_prot_t prot; 732 u_long base_addr; 733 bool first; 734 int error, i; 735 736 ASSERT_VOP_LOCKED(imgp->vp, __func__); 737 738 base_addr = 0; 739 first = true; 740 741 for (i = 0; i < hdr->e_phnum; i++) { 742 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 743 continue; 744 745 /* Loadable segment */ 746 prot = __elfN(trans_prot)(phdr[i].p_flags); 747 error = __elfN(load_section)(imgp, phdr[i].p_offset, 748 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 749 phdr[i].p_memsz, phdr[i].p_filesz, prot); 750 if (error != 0) 751 return (error); 752 753 /* 754 * Establish the base address if this is the first segment. 755 */ 756 if (first) { 757 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 758 first = false; 759 } 760 } 761 762 if (base_addrp != NULL) 763 *base_addrp = base_addr; 764 765 return (0); 766 } 767 768 /* 769 * Load the file "file" into memory. It may be either a shared object 770 * or an executable. 771 * 772 * The "addr" reference parameter is in/out. On entry, it specifies 773 * the address where a shared object should be loaded. If the file is 774 * an executable, this value is ignored. On exit, "addr" specifies 775 * where the file was actually loaded. 776 * 777 * The "entry" reference parameter is out only. On exit, it specifies 778 * the entry point for the loaded file. 779 */ 780 static int 781 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 782 u_long *entry) 783 { 784 struct { 785 struct nameidata nd; 786 struct vattr attr; 787 struct image_params image_params; 788 } *tempdata; 789 const Elf_Ehdr *hdr = NULL; 790 const Elf_Phdr *phdr = NULL; 791 struct nameidata *nd; 792 struct vattr *attr; 793 struct image_params *imgp; 794 u_long rbase; 795 u_long base_addr = 0; 796 int error; 797 798 #ifdef CAPABILITY_MODE 799 /* 800 * XXXJA: This check can go away once we are sufficiently confident 801 * that the checks in namei() are correct. 802 */ 803 if (IN_CAPABILITY_MODE(curthread)) 804 return (ECAPMODE); 805 #endif 806 807 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 808 nd = &tempdata->nd; 809 attr = &tempdata->attr; 810 imgp = &tempdata->image_params; 811 812 /* 813 * Initialize part of the common data 814 */ 815 imgp->proc = p; 816 imgp->attr = attr; 817 818 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 819 UIO_SYSSPACE, file); 820 if ((error = namei(nd)) != 0) { 821 nd->ni_vp = NULL; 822 goto fail; 823 } 824 NDFREE_PNBUF(nd); 825 imgp->vp = nd->ni_vp; 826 827 /* 828 * Check permissions, modes, uid, etc on the file, and "open" it. 829 */ 830 error = exec_check_permissions(imgp); 831 if (error) 832 goto fail; 833 834 error = exec_map_first_page(imgp); 835 if (error) 836 goto fail; 837 838 imgp->object = nd->ni_vp->v_object; 839 840 hdr = (const Elf_Ehdr *)imgp->image_header; 841 if ((error = __elfN(check_header)(hdr)) != 0) 842 goto fail; 843 if (hdr->e_type == ET_DYN) 844 rbase = *addr; 845 else if (hdr->e_type == ET_EXEC) 846 rbase = 0; 847 else { 848 error = ENOEXEC; 849 goto fail; 850 } 851 852 /* Only support headers that fit within first page for now */ 853 if (!__elfN(phdr_in_zero_page)(hdr)) { 854 error = ENOEXEC; 855 goto fail; 856 } 857 858 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 859 if (!aligned(phdr, Elf_Addr)) { 860 error = ENOEXEC; 861 goto fail; 862 } 863 864 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 865 if (error != 0) 866 goto fail; 867 868 *addr = base_addr; 869 *entry = (unsigned long)hdr->e_entry + rbase; 870 871 fail: 872 if (imgp->firstpage) 873 exec_unmap_first_page(imgp); 874 875 if (nd->ni_vp) { 876 if (imgp->textset) 877 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 878 vput(nd->ni_vp); 879 } 880 free(tempdata, M_TEMP); 881 882 return (error); 883 } 884 885 /* 886 * Select randomized valid address in the map map, between minv and 887 * maxv, with specified alignment. The [minv, maxv) range must belong 888 * to the map. Note that function only allocates the address, it is 889 * up to caller to clamp maxv in a way that the final allocation 890 * length fit into the map. 891 * 892 * Result is returned in *resp, error code indicates that arguments 893 * did not pass sanity checks for overflow and range correctness. 894 */ 895 static int 896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv, 897 u_int align, u_long *resp) 898 { 899 u_long rbase, res; 900 901 MPASS(vm_map_min(map) <= minv); 902 903 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) { 904 uprintf("Invalid ELF segments layout\n"); 905 return (ENOEXEC); 906 } 907 908 arc4rand(&rbase, sizeof(rbase), 0); 909 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 910 res &= ~((u_long)align - 1); 911 if (res >= maxv) 912 res -= align; 913 914 KASSERT(res >= minv, 915 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 916 res, minv, maxv, rbase)); 917 KASSERT(res < maxv, 918 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 919 res, maxv, minv, rbase)); 920 921 *resp = res; 922 return (0); 923 } 924 925 static int 926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 927 const Elf_Phdr *phdr, u_long et_dyn_addr) 928 { 929 struct vmspace *vmspace; 930 const char *err_str; 931 u_long text_size, data_size, total_size, text_addr, data_addr; 932 u_long seg_size, seg_addr; 933 int i; 934 935 err_str = NULL; 936 text_size = data_size = total_size = text_addr = data_addr = 0; 937 938 for (i = 0; i < hdr->e_phnum; i++) { 939 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 940 continue; 941 942 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 943 seg_size = round_page(phdr[i].p_memsz + 944 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 945 946 /* 947 * Make the largest executable segment the official 948 * text segment and all others data. 949 * 950 * Note that obreak() assumes that data_addr + data_size == end 951 * of data load area, and the ELF file format expects segments 952 * to be sorted by address. If multiple data segments exist, 953 * the last one will be used. 954 */ 955 956 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 957 text_size = seg_size; 958 text_addr = seg_addr; 959 } else { 960 data_size = seg_size; 961 data_addr = seg_addr; 962 } 963 total_size += seg_size; 964 } 965 966 if (data_addr == 0 && data_size == 0) { 967 data_addr = text_addr; 968 data_size = text_size; 969 } 970 971 /* 972 * Check limits. It should be safe to check the 973 * limits after loading the segments since we do 974 * not actually fault in all the segments pages. 975 */ 976 PROC_LOCK(imgp->proc); 977 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 978 err_str = "Data segment size exceeds process limit"; 979 else if (text_size > maxtsiz) 980 err_str = "Text segment size exceeds system limit"; 981 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 982 err_str = "Total segment size exceeds process limit"; 983 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 984 err_str = "Data segment size exceeds resource limit"; 985 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 986 err_str = "Total segment size exceeds resource limit"; 987 PROC_UNLOCK(imgp->proc); 988 if (err_str != NULL) { 989 uprintf("%s\n", err_str); 990 return (ENOMEM); 991 } 992 993 vmspace = imgp->proc->p_vmspace; 994 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 995 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 996 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 997 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 998 999 return (0); 1000 } 1001 1002 static int 1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 1004 char **interpp, bool *free_interpp) 1005 { 1006 struct thread *td; 1007 char *interp; 1008 int error, interp_name_len; 1009 1010 KASSERT(phdr->p_type == PT_INTERP, 1011 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 1012 ASSERT_VOP_LOCKED(imgp->vp, __func__); 1013 1014 td = curthread; 1015 1016 /* Path to interpreter */ 1017 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 1018 uprintf("Invalid PT_INTERP\n"); 1019 return (ENOEXEC); 1020 } 1021 1022 interp_name_len = phdr->p_filesz; 1023 if (phdr->p_offset > PAGE_SIZE || 1024 interp_name_len > PAGE_SIZE - phdr->p_offset) { 1025 /* 1026 * The vnode lock might be needed by the pagedaemon to 1027 * clean pages owned by the vnode. Do not allow sleep 1028 * waiting for memory with the vnode locked, instead 1029 * try non-sleepable allocation first, and if it 1030 * fails, go to the slow path were we drop the lock 1031 * and do M_WAITOK. A text reference prevents 1032 * modifications to the vnode content. 1033 */ 1034 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1035 if (interp == NULL) { 1036 VOP_UNLOCK(imgp->vp); 1037 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1038 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1039 } 1040 1041 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1042 interp_name_len, phdr->p_offset, 1043 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1044 NOCRED, NULL, td); 1045 if (error != 0) { 1046 free(interp, M_TEMP); 1047 uprintf("i/o error PT_INTERP %d\n", error); 1048 return (error); 1049 } 1050 interp[interp_name_len] = '\0'; 1051 1052 *interpp = interp; 1053 *free_interpp = true; 1054 return (0); 1055 } 1056 1057 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1058 if (interp[interp_name_len - 1] != '\0') { 1059 uprintf("Invalid PT_INTERP\n"); 1060 return (ENOEXEC); 1061 } 1062 1063 *interpp = interp; 1064 *free_interpp = false; 1065 return (0); 1066 } 1067 1068 static int 1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1070 const char *interp, u_long *addr, u_long *entry) 1071 { 1072 int error; 1073 1074 if (brand_info->interp_newpath != NULL && 1075 (brand_info->interp_path == NULL || 1076 strcmp(interp, brand_info->interp_path) == 0)) { 1077 error = __elfN(load_file)(imgp->proc, 1078 brand_info->interp_newpath, addr, entry); 1079 if (error == 0) 1080 return (0); 1081 } 1082 1083 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1084 if (error == 0) 1085 return (0); 1086 1087 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1088 return (error); 1089 } 1090 1091 /* 1092 * Impossible et_dyn_addr initial value indicating that the real base 1093 * must be calculated later with some randomization applied. 1094 */ 1095 #define ET_DYN_ADDR_RAND 1 1096 1097 static int 1098 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1099 { 1100 struct thread *td; 1101 const Elf_Ehdr *hdr; 1102 const Elf_Phdr *phdr; 1103 Elf_Auxargs *elf_auxargs; 1104 struct vmspace *vmspace; 1105 vm_map_t map; 1106 char *interp; 1107 Elf_Brandinfo *brand_info; 1108 struct sysentvec *sv; 1109 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1110 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc; 1111 uint32_t fctl0; 1112 int32_t osrel; 1113 bool free_interp; 1114 int error, i, n; 1115 1116 hdr = (const Elf_Ehdr *)imgp->image_header; 1117 1118 /* 1119 * Do we have a valid ELF header ? 1120 * 1121 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1122 * if particular brand doesn't support it. 1123 */ 1124 if (__elfN(check_header)(hdr) != 0 || 1125 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1126 return (-1); 1127 1128 /* 1129 * From here on down, we return an errno, not -1, as we've 1130 * detected an ELF file. 1131 */ 1132 1133 if (!__elfN(phdr_in_zero_page)(hdr)) { 1134 uprintf("Program headers not in the first page\n"); 1135 return (ENOEXEC); 1136 } 1137 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1138 if (!aligned(phdr, Elf_Addr)) { 1139 uprintf("Unaligned program headers\n"); 1140 return (ENOEXEC); 1141 } 1142 1143 n = error = 0; 1144 baddr = 0; 1145 osrel = 0; 1146 fctl0 = 0; 1147 entry = proghdr = 0; 1148 interp = NULL; 1149 free_interp = false; 1150 td = curthread; 1151 1152 /* 1153 * Somewhat arbitrary, limit accepted max alignment for the 1154 * loadable segment to the max supported superpage size. Too 1155 * large alignment requests are not useful and are indicators 1156 * of corrupted or outright malicious binary. 1157 */ 1158 maxalign = PAGE_SIZE; 1159 maxsalign = PAGE_SIZE * 1024; 1160 for (i = MAXPAGESIZES - 1; i > 0; i--) { 1161 if (pagesizes[i] > maxsalign) 1162 maxsalign = pagesizes[i]; 1163 } 1164 1165 mapsz = 0; 1166 1167 for (i = 0; i < hdr->e_phnum; i++) { 1168 switch (phdr[i].p_type) { 1169 case PT_LOAD: 1170 if (n == 0) 1171 baddr = phdr[i].p_vaddr; 1172 if (!powerof2(phdr[i].p_align) || 1173 phdr[i].p_align > maxsalign) { 1174 uprintf("Invalid segment alignment\n"); 1175 error = ENOEXEC; 1176 goto ret; 1177 } 1178 if (phdr[i].p_align > maxalign) 1179 maxalign = phdr[i].p_align; 1180 if (mapsz + phdr[i].p_memsz < mapsz) { 1181 uprintf("Mapsize overflow\n"); 1182 error = ENOEXEC; 1183 goto ret; 1184 } 1185 mapsz += phdr[i].p_memsz; 1186 n++; 1187 1188 /* 1189 * If this segment contains the program headers, 1190 * remember their virtual address for the AT_PHDR 1191 * aux entry. Static binaries don't usually include 1192 * a PT_PHDR entry. 1193 */ 1194 if (phdr[i].p_offset == 0 && 1195 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= 1196 phdr[i].p_filesz) 1197 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1198 break; 1199 case PT_INTERP: 1200 /* Path to interpreter */ 1201 if (interp != NULL) { 1202 uprintf("Multiple PT_INTERP headers\n"); 1203 error = ENOEXEC; 1204 goto ret; 1205 } 1206 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1207 &free_interp); 1208 if (error != 0) 1209 goto ret; 1210 break; 1211 case PT_GNU_STACK: 1212 if (__elfN(nxstack)) { 1213 imgp->stack_prot = 1214 __elfN(trans_prot)(phdr[i].p_flags); 1215 if ((imgp->stack_prot & VM_PROT_RW) != 1216 VM_PROT_RW) { 1217 uprintf("Invalid PT_GNU_STACK\n"); 1218 error = ENOEXEC; 1219 goto ret; 1220 } 1221 } 1222 imgp->stack_sz = phdr[i].p_memsz; 1223 break; 1224 case PT_PHDR: /* Program header table info */ 1225 proghdr = phdr[i].p_vaddr; 1226 break; 1227 } 1228 } 1229 1230 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1231 if (brand_info == NULL) { 1232 uprintf("ELF binary type \"%u\" not known.\n", 1233 hdr->e_ident[EI_OSABI]); 1234 error = ENOEXEC; 1235 goto ret; 1236 } 1237 sv = brand_info->sysvec; 1238 et_dyn_addr = 0; 1239 if (hdr->e_type == ET_DYN) { 1240 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1241 uprintf("Cannot execute shared object\n"); 1242 error = ENOEXEC; 1243 goto ret; 1244 } 1245 /* 1246 * Honour the base load address from the dso if it is 1247 * non-zero for some reason. 1248 */ 1249 if (baddr == 0) { 1250 if ((sv->sv_flags & SV_ASLR) == 0 || 1251 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1252 et_dyn_addr = __elfN(pie_base); 1253 else if ((__elfN(pie_aslr_enabled) && 1254 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1255 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1256 et_dyn_addr = ET_DYN_ADDR_RAND; 1257 else 1258 et_dyn_addr = __elfN(pie_base); 1259 } 1260 } 1261 1262 /* 1263 * Avoid a possible deadlock if the current address space is destroyed 1264 * and that address space maps the locked vnode. In the common case, 1265 * the locked vnode's v_usecount is decremented but remains greater 1266 * than zero. Consequently, the vnode lock is not needed by vrele(). 1267 * However, in cases where the vnode lock is external, such as nullfs, 1268 * v_usecount may become zero. 1269 * 1270 * The VV_TEXT flag prevents modifications to the executable while 1271 * the vnode is unlocked. 1272 */ 1273 VOP_UNLOCK(imgp->vp); 1274 1275 /* 1276 * Decide whether to enable randomization of user mappings. 1277 * First, reset user preferences for the setid binaries. 1278 * Then, account for the support of the randomization by the 1279 * ABI, by user preferences, and make special treatment for 1280 * PIE binaries. 1281 */ 1282 if (imgp->credential_setid) { 1283 PROC_LOCK(imgp->proc); 1284 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1285 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1286 PROC_UNLOCK(imgp->proc); 1287 } 1288 if ((sv->sv_flags & SV_ASLR) == 0 || 1289 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1290 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1291 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1292 ("et_dyn_addr == RAND and !ASLR")); 1293 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1294 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1295 et_dyn_addr == ET_DYN_ADDR_RAND) { 1296 imgp->map_flags |= MAP_ASLR; 1297 /* 1298 * If user does not care about sbrk, utilize the bss 1299 * grow region for mappings as well. We can select 1300 * the base for the image anywere and still not suffer 1301 * from the fragmentation. 1302 */ 1303 if (!__elfN(aslr_honor_sbrk) || 1304 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1305 imgp->map_flags |= MAP_ASLR_IGNSTART; 1306 if (__elfN(aslr_stack)) 1307 imgp->map_flags |= MAP_ASLR_STACK; 1308 if (__elfN(aslr_shared_page)) 1309 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE; 1310 } 1311 1312 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1313 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1314 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1315 imgp->map_flags |= MAP_WXORX; 1316 1317 error = exec_new_vmspace(imgp, sv); 1318 1319 imgp->proc->p_sysent = sv; 1320 imgp->proc->p_elf_brandinfo = brand_info; 1321 1322 vmspace = imgp->proc->p_vmspace; 1323 map = &vmspace->vm_map; 1324 maxv = sv->sv_usrstack; 1325 if ((imgp->map_flags & MAP_ASLR_STACK) == 0) 1326 maxv -= lim_max(td, RLIMIT_STACK); 1327 if (error == 0 && mapsz >= maxv - vm_map_min(map)) { 1328 uprintf("Excessive mapping size\n"); 1329 error = ENOEXEC; 1330 } 1331 1332 if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) { 1333 KASSERT((map->flags & MAP_ASLR) != 0, 1334 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1335 error = __CONCAT(rnd_, __elfN(base))(map, 1336 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1337 /* reserve half of the address space to interpreter */ 1338 maxv / 2, maxalign, &et_dyn_addr); 1339 } 1340 1341 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1342 if (error != 0) 1343 goto ret; 1344 1345 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1346 if (error != 0) 1347 goto ret; 1348 1349 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1350 if (error != 0) 1351 goto ret; 1352 1353 /* 1354 * We load the dynamic linker where a userland call 1355 * to mmap(0, ...) would put it. The rationale behind this 1356 * calculation is that it leaves room for the heap to grow to 1357 * its maximum allowed size. 1358 */ 1359 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1360 RLIMIT_DATA)); 1361 if ((map->flags & MAP_ASLR) != 0) { 1362 maxv1 = maxv / 2 + addr / 2; 1363 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1364 (MAXPAGESIZES > 1 && pagesizes[1] != 0) ? 1365 pagesizes[1] : pagesizes[0], &anon_loc); 1366 if (error != 0) 1367 goto ret; 1368 map->anon_loc = anon_loc; 1369 } else { 1370 map->anon_loc = addr; 1371 } 1372 1373 entry = (u_long)hdr->e_entry + et_dyn_addr; 1374 imgp->entry_addr = entry; 1375 1376 if (interp != NULL) { 1377 VOP_UNLOCK(imgp->vp); 1378 if ((map->flags & MAP_ASLR) != 0) { 1379 /* Assume that interpreter fits into 1/4 of AS */ 1380 maxv1 = maxv / 2 + addr / 2; 1381 error = __CONCAT(rnd_, __elfN(base))(map, addr, 1382 maxv1, PAGE_SIZE, &addr); 1383 } 1384 if (error == 0) { 1385 error = __elfN(load_interp)(imgp, brand_info, interp, 1386 &addr, &imgp->entry_addr); 1387 } 1388 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1389 if (error != 0) 1390 goto ret; 1391 } else 1392 addr = et_dyn_addr; 1393 1394 error = exec_map_stack(imgp); 1395 if (error != 0) 1396 goto ret; 1397 1398 /* 1399 * Construct auxargs table (used by the copyout_auxargs routine) 1400 */ 1401 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1402 if (elf_auxargs == NULL) { 1403 VOP_UNLOCK(imgp->vp); 1404 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1405 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1406 } 1407 elf_auxargs->execfd = -1; 1408 elf_auxargs->phdr = proghdr + et_dyn_addr; 1409 elf_auxargs->phent = hdr->e_phentsize; 1410 elf_auxargs->phnum = hdr->e_phnum; 1411 elf_auxargs->pagesz = PAGE_SIZE; 1412 elf_auxargs->base = addr; 1413 elf_auxargs->flags = 0; 1414 elf_auxargs->entry = entry; 1415 elf_auxargs->hdr_eflags = hdr->e_flags; 1416 1417 imgp->auxargs = elf_auxargs; 1418 imgp->interpreted = 0; 1419 imgp->reloc_base = addr; 1420 imgp->proc->p_osrel = osrel; 1421 imgp->proc->p_fctl0 = fctl0; 1422 imgp->proc->p_elf_flags = hdr->e_flags; 1423 1424 ret: 1425 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock"); 1426 if (free_interp) 1427 free(interp, M_TEMP); 1428 return (error); 1429 } 1430 1431 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1432 1433 int 1434 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1435 { 1436 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1437 Elf_Auxinfo *argarray, *pos; 1438 struct vmspace *vmspace; 1439 rlim_t stacksz; 1440 int error, bsdflags, oc; 1441 1442 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1443 M_WAITOK | M_ZERO); 1444 1445 vmspace = imgp->proc->p_vmspace; 1446 1447 if (args->execfd != -1) 1448 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1449 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1450 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1451 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1452 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1453 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1454 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1455 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1456 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1457 if (imgp->execpathp != 0) 1458 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1459 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1460 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1461 if (imgp->canary != 0) { 1462 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1463 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1464 } 1465 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1466 if (imgp->pagesizes != 0) { 1467 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1468 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1469 } 1470 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) { 1471 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1472 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset); 1473 } 1474 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1475 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1476 imgp->sysent->sv_stackprot); 1477 if (imgp->sysent->sv_hwcap != NULL) 1478 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1479 if (imgp->sysent->sv_hwcap2 != NULL) 1480 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1481 bsdflags = 0; 1482 bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0; 1483 oc = atomic_load_int(&vm_overcommit); 1484 bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) != 1485 0 ? ELF_BSDF_VMNOOVERCOMMIT : 0; 1486 AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags); 1487 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1488 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1489 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1490 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1491 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1492 #ifdef RANDOM_FENESTRASX 1493 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) { 1494 AUXARGS_ENTRY(pos, AT_FXRNG, 1495 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset); 1496 } 1497 #endif 1498 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) { 1499 AUXARGS_ENTRY(pos, AT_KPRELOAD, 1500 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset); 1501 } 1502 AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop)); 1503 stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 1504 AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz); 1505 AUXARGS_ENTRY(pos, AT_NULL, 0); 1506 1507 free(imgp->auxargs, M_TEMP); 1508 imgp->auxargs = NULL; 1509 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1510 1511 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1512 free(argarray, M_TEMP); 1513 return (error); 1514 } 1515 1516 int 1517 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1518 { 1519 Elf_Addr *base; 1520 1521 base = (Elf_Addr *)*stack_base; 1522 base--; 1523 if (elf_suword(base, imgp->args->argc) == -1) 1524 return (EFAULT); 1525 *stack_base = (uintptr_t)base; 1526 return (0); 1527 } 1528 1529 /* 1530 * Code for generating ELF core dumps. 1531 */ 1532 1533 typedef void (*segment_callback)(vm_map_entry_t, void *); 1534 1535 /* Closure for cb_put_phdr(). */ 1536 struct phdr_closure { 1537 Elf_Phdr *phdr; /* Program header to fill in */ 1538 Elf_Off offset; /* Offset of segment in core file */ 1539 }; 1540 1541 struct note_info { 1542 int type; /* Note type. */ 1543 struct regset *regset; /* Register set. */ 1544 outfunc_t outfunc; /* Output function. */ 1545 void *outarg; /* Argument for the output function. */ 1546 size_t outsize; /* Output size. */ 1547 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1548 }; 1549 1550 TAILQ_HEAD(note_info_list, note_info); 1551 1552 extern int compress_user_cores; 1553 extern int compress_user_cores_level; 1554 1555 static void cb_put_phdr(vm_map_entry_t, void *); 1556 static void cb_size_segment(vm_map_entry_t, void *); 1557 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1558 int); 1559 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1560 struct note_info_list *, size_t, int); 1561 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1562 1563 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1564 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1565 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1566 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1567 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1568 static void note_procstat_files(void *, struct sbuf *, size_t *); 1569 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1570 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1571 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1572 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1573 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1574 1575 static int 1576 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1577 { 1578 1579 return (core_write((struct coredump_params *)arg, base, len, offset, 1580 UIO_SYSSPACE, NULL)); 1581 } 1582 1583 int 1584 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1585 { 1586 struct ucred *cred = td->td_ucred; 1587 int compm, error = 0; 1588 struct sseg_closure seginfo; 1589 struct note_info_list notelst; 1590 struct coredump_params params; 1591 struct note_info *ninfo; 1592 void *hdr, *tmpbuf; 1593 size_t hdrsize, notesz, coresize; 1594 1595 hdr = NULL; 1596 tmpbuf = NULL; 1597 TAILQ_INIT(¬elst); 1598 1599 /* Size the program segments. */ 1600 __elfN(size_segments)(td, &seginfo, flags); 1601 1602 /* 1603 * Collect info about the core file header area. 1604 */ 1605 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1606 if (seginfo.count + 1 >= PN_XNUM) 1607 hdrsize += sizeof(Elf_Shdr); 1608 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1609 coresize = round_page(hdrsize + notesz) + seginfo.size; 1610 1611 /* Set up core dump parameters. */ 1612 params.offset = 0; 1613 params.active_cred = cred; 1614 params.file_cred = NOCRED; 1615 params.td = td; 1616 params.vp = vp; 1617 params.comp = NULL; 1618 1619 #ifdef RACCT 1620 if (racct_enable) { 1621 PROC_LOCK(td->td_proc); 1622 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1623 PROC_UNLOCK(td->td_proc); 1624 if (error != 0) { 1625 error = EFAULT; 1626 goto done; 1627 } 1628 } 1629 #endif 1630 if (coresize >= limit) { 1631 error = EFAULT; 1632 goto done; 1633 } 1634 1635 /* Create a compression stream if necessary. */ 1636 compm = compress_user_cores; 1637 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1638 compm == 0) 1639 compm = COMPRESS_GZIP; 1640 if (compm != 0) { 1641 params.comp = compressor_init(core_compressed_write, 1642 compm, CORE_BUF_SIZE, 1643 compress_user_cores_level, ¶ms); 1644 if (params.comp == NULL) { 1645 error = EFAULT; 1646 goto done; 1647 } 1648 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1649 } 1650 1651 /* 1652 * Allocate memory for building the header, fill it up, 1653 * and write it out following the notes. 1654 */ 1655 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1656 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1657 notesz, flags); 1658 1659 /* Write the contents of all of the writable segments. */ 1660 if (error == 0) { 1661 Elf_Phdr *php; 1662 off_t offset; 1663 int i; 1664 1665 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1666 offset = round_page(hdrsize + notesz); 1667 for (i = 0; i < seginfo.count; i++) { 1668 error = core_output((char *)(uintptr_t)php->p_vaddr, 1669 php->p_filesz, offset, ¶ms, tmpbuf); 1670 if (error != 0) 1671 break; 1672 offset += php->p_filesz; 1673 php++; 1674 } 1675 if (error == 0 && params.comp != NULL) 1676 error = compressor_flush(params.comp); 1677 } 1678 if (error) { 1679 log(LOG_WARNING, 1680 "Failed to write core file for process %s (error %d)\n", 1681 curproc->p_comm, error); 1682 } 1683 1684 done: 1685 free(tmpbuf, M_TEMP); 1686 if (params.comp != NULL) 1687 compressor_fini(params.comp); 1688 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1689 TAILQ_REMOVE(¬elst, ninfo, link); 1690 free(ninfo, M_TEMP); 1691 } 1692 if (hdr != NULL) 1693 free(hdr, M_TEMP); 1694 1695 return (error); 1696 } 1697 1698 /* 1699 * A callback for each_dumpable_segment() to write out the segment's 1700 * program header entry. 1701 */ 1702 static void 1703 cb_put_phdr(vm_map_entry_t entry, void *closure) 1704 { 1705 struct phdr_closure *phc = (struct phdr_closure *)closure; 1706 Elf_Phdr *phdr = phc->phdr; 1707 1708 phc->offset = round_page(phc->offset); 1709 1710 phdr->p_type = PT_LOAD; 1711 phdr->p_offset = phc->offset; 1712 phdr->p_vaddr = entry->start; 1713 phdr->p_paddr = 0; 1714 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1715 phdr->p_align = PAGE_SIZE; 1716 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1717 1718 phc->offset += phdr->p_filesz; 1719 phc->phdr++; 1720 } 1721 1722 /* 1723 * A callback for each_dumpable_segment() to gather information about 1724 * the number of segments and their total size. 1725 */ 1726 static void 1727 cb_size_segment(vm_map_entry_t entry, void *closure) 1728 { 1729 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1730 1731 ssc->count++; 1732 ssc->size += entry->end - entry->start; 1733 } 1734 1735 void 1736 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1737 int flags) 1738 { 1739 seginfo->count = 0; 1740 seginfo->size = 0; 1741 1742 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1743 } 1744 1745 /* 1746 * For each writable segment in the process's memory map, call the given 1747 * function with a pointer to the map entry and some arbitrary 1748 * caller-supplied data. 1749 */ 1750 static void 1751 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1752 int flags) 1753 { 1754 struct proc *p = td->td_proc; 1755 vm_map_t map = &p->p_vmspace->vm_map; 1756 vm_map_entry_t entry; 1757 vm_object_t backing_object, object; 1758 bool ignore_entry; 1759 1760 vm_map_lock_read(map); 1761 VM_MAP_ENTRY_FOREACH(entry, map) { 1762 /* 1763 * Don't dump inaccessible mappings, deal with legacy 1764 * coredump mode. 1765 * 1766 * Note that read-only segments related to the elf binary 1767 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1768 * need to arbitrarily ignore such segments. 1769 */ 1770 if ((flags & SVC_ALL) == 0) { 1771 if (elf_legacy_coredump) { 1772 if ((entry->protection & VM_PROT_RW) != 1773 VM_PROT_RW) 1774 continue; 1775 } else { 1776 if ((entry->protection & VM_PROT_ALL) == 0) 1777 continue; 1778 } 1779 } 1780 1781 /* 1782 * Dont include memory segment in the coredump if 1783 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1784 * madvise(2). Do not dump submaps (i.e. parts of the 1785 * kernel map). 1786 */ 1787 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1788 continue; 1789 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1790 (flags & SVC_ALL) == 0) 1791 continue; 1792 if ((object = entry->object.vm_object) == NULL) 1793 continue; 1794 1795 /* Ignore memory-mapped devices and such things. */ 1796 VM_OBJECT_RLOCK(object); 1797 while ((backing_object = object->backing_object) != NULL) { 1798 VM_OBJECT_RLOCK(backing_object); 1799 VM_OBJECT_RUNLOCK(object); 1800 object = backing_object; 1801 } 1802 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1803 VM_OBJECT_RUNLOCK(object); 1804 if (ignore_entry) 1805 continue; 1806 1807 (*func)(entry, closure); 1808 } 1809 vm_map_unlock_read(map); 1810 } 1811 1812 /* 1813 * Write the core file header to the file, including padding up to 1814 * the page boundary. 1815 */ 1816 static int 1817 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1818 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1819 int flags) 1820 { 1821 struct note_info *ninfo; 1822 struct sbuf *sb; 1823 int error; 1824 1825 /* Fill in the header. */ 1826 bzero(hdr, hdrsize); 1827 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1828 1829 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1830 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1831 sbuf_start_section(sb, NULL); 1832 sbuf_bcat(sb, hdr, hdrsize); 1833 TAILQ_FOREACH(ninfo, notelst, link) 1834 __elfN(putnote)(p->td, ninfo, sb); 1835 /* Align up to a page boundary for the program segments. */ 1836 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1837 error = sbuf_finish(sb); 1838 sbuf_delete(sb); 1839 1840 return (error); 1841 } 1842 1843 void 1844 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1845 size_t *sizep) 1846 { 1847 struct proc *p; 1848 struct thread *thr; 1849 size_t size; 1850 1851 p = td->td_proc; 1852 size = 0; 1853 1854 size += __elfN(register_note)(td, list, NT_PRPSINFO, 1855 __elfN(note_prpsinfo), p); 1856 1857 /* 1858 * To have the debugger select the right thread (LWP) as the initial 1859 * thread, we dump the state of the thread passed to us in td first. 1860 * This is the thread that causes the core dump and thus likely to 1861 * be the right thread one wants to have selected in the debugger. 1862 */ 1863 thr = td; 1864 while (thr != NULL) { 1865 size += __elfN(prepare_register_notes)(td, list, thr); 1866 size += __elfN(register_note)(td, list, -1, 1867 __elfN(note_threadmd), thr); 1868 1869 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1870 TAILQ_NEXT(thr, td_plist); 1871 if (thr == td) 1872 thr = TAILQ_NEXT(thr, td_plist); 1873 } 1874 1875 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1876 __elfN(note_procstat_proc), p); 1877 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1878 note_procstat_files, p); 1879 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1880 note_procstat_vmmap, p); 1881 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1882 note_procstat_groups, p); 1883 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1884 note_procstat_umask, p); 1885 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1886 note_procstat_rlimit, p); 1887 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1888 note_procstat_osrel, p); 1889 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1890 __elfN(note_procstat_psstrings), p); 1891 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1892 __elfN(note_procstat_auxv), p); 1893 1894 *sizep = size; 1895 } 1896 1897 void 1898 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1899 size_t notesz, int flags) 1900 { 1901 Elf_Ehdr *ehdr; 1902 Elf_Phdr *phdr; 1903 Elf_Shdr *shdr; 1904 struct phdr_closure phc; 1905 Elf_Brandinfo *bi; 1906 1907 ehdr = (Elf_Ehdr *)hdr; 1908 bi = td->td_proc->p_elf_brandinfo; 1909 1910 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1911 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1912 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1913 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1914 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1915 ehdr->e_ident[EI_DATA] = ELF_DATA; 1916 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1917 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1918 ehdr->e_ident[EI_ABIVERSION] = 0; 1919 ehdr->e_ident[EI_PAD] = 0; 1920 ehdr->e_type = ET_CORE; 1921 ehdr->e_machine = bi->machine; 1922 ehdr->e_version = EV_CURRENT; 1923 ehdr->e_entry = 0; 1924 ehdr->e_phoff = sizeof(Elf_Ehdr); 1925 ehdr->e_flags = td->td_proc->p_elf_flags; 1926 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1927 ehdr->e_phentsize = sizeof(Elf_Phdr); 1928 ehdr->e_shentsize = sizeof(Elf_Shdr); 1929 ehdr->e_shstrndx = SHN_UNDEF; 1930 if (numsegs + 1 < PN_XNUM) { 1931 ehdr->e_phnum = numsegs + 1; 1932 ehdr->e_shnum = 0; 1933 } else { 1934 ehdr->e_phnum = PN_XNUM; 1935 ehdr->e_shnum = 1; 1936 1937 ehdr->e_shoff = ehdr->e_phoff + 1938 (numsegs + 1) * ehdr->e_phentsize; 1939 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1940 ("e_shoff: %zu, hdrsize - shdr: %zu", 1941 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1942 1943 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1944 memset(shdr, 0, sizeof(*shdr)); 1945 /* 1946 * A special first section is used to hold large segment and 1947 * section counts. This was proposed by Sun Microsystems in 1948 * Solaris and has been adopted by Linux; the standard ELF 1949 * tools are already familiar with the technique. 1950 * 1951 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1952 * (or 12-7 depending on the version of the document) for more 1953 * details. 1954 */ 1955 shdr->sh_type = SHT_NULL; 1956 shdr->sh_size = ehdr->e_shnum; 1957 shdr->sh_link = ehdr->e_shstrndx; 1958 shdr->sh_info = numsegs + 1; 1959 } 1960 1961 /* 1962 * Fill in the program header entries. 1963 */ 1964 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1965 1966 /* The note segement. */ 1967 phdr->p_type = PT_NOTE; 1968 phdr->p_offset = hdrsize; 1969 phdr->p_vaddr = 0; 1970 phdr->p_paddr = 0; 1971 phdr->p_filesz = notesz; 1972 phdr->p_memsz = 0; 1973 phdr->p_flags = PF_R; 1974 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1975 phdr++; 1976 1977 /* All the writable segments from the program. */ 1978 phc.phdr = phdr; 1979 phc.offset = round_page(hdrsize + notesz); 1980 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1981 } 1982 1983 static size_t 1984 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list, 1985 struct regset *regset, struct thread *target_td) 1986 { 1987 const struct sysentvec *sv; 1988 struct note_info *ninfo; 1989 size_t size, notesize; 1990 1991 size = 0; 1992 if (!regset->get(regset, target_td, NULL, &size) || size == 0) 1993 return (0); 1994 1995 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1996 ninfo->type = regset->note; 1997 ninfo->regset = regset; 1998 ninfo->outarg = target_td; 1999 ninfo->outsize = size; 2000 TAILQ_INSERT_TAIL(list, ninfo, link); 2001 2002 sv = td->td_proc->p_sysent; 2003 notesize = sizeof(Elf_Note) + /* note header */ 2004 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2005 /* note name */ 2006 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2007 2008 return (notesize); 2009 } 2010 2011 size_t 2012 __elfN(register_note)(struct thread *td, struct note_info_list *list, 2013 int type, outfunc_t out, void *arg) 2014 { 2015 const struct sysentvec *sv; 2016 struct note_info *ninfo; 2017 size_t size, notesize; 2018 2019 sv = td->td_proc->p_sysent; 2020 size = 0; 2021 out(arg, NULL, &size); 2022 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2023 ninfo->type = type; 2024 ninfo->outfunc = out; 2025 ninfo->outarg = arg; 2026 ninfo->outsize = size; 2027 TAILQ_INSERT_TAIL(list, ninfo, link); 2028 2029 if (type == -1) 2030 return (size); 2031 2032 notesize = sizeof(Elf_Note) + /* note header */ 2033 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2034 /* note name */ 2035 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2036 2037 return (notesize); 2038 } 2039 2040 static size_t 2041 append_note_data(const void *src, void *dst, size_t len) 2042 { 2043 size_t padded_len; 2044 2045 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2046 if (dst != NULL) { 2047 bcopy(src, dst, len); 2048 bzero((char *)dst + len, padded_len - len); 2049 } 2050 return (padded_len); 2051 } 2052 2053 size_t 2054 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2055 { 2056 Elf_Note *note; 2057 char *buf; 2058 size_t notesize; 2059 2060 buf = dst; 2061 if (buf != NULL) { 2062 note = (Elf_Note *)buf; 2063 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2064 note->n_descsz = size; 2065 note->n_type = type; 2066 buf += sizeof(*note); 2067 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2068 sizeof(FREEBSD_ABI_VENDOR)); 2069 append_note_data(src, buf, size); 2070 if (descp != NULL) 2071 *descp = buf; 2072 } 2073 2074 notesize = sizeof(Elf_Note) + /* note header */ 2075 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2076 /* note name */ 2077 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2078 2079 return (notesize); 2080 } 2081 2082 static void 2083 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 2084 { 2085 Elf_Note note; 2086 const struct sysentvec *sv; 2087 ssize_t old_len, sect_len; 2088 size_t new_len, descsz, i; 2089 2090 if (ninfo->type == -1) { 2091 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2092 return; 2093 } 2094 2095 sv = td->td_proc->p_sysent; 2096 2097 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 2098 note.n_descsz = ninfo->outsize; 2099 note.n_type = ninfo->type; 2100 2101 sbuf_bcat(sb, ¬e, sizeof(note)); 2102 sbuf_start_section(sb, &old_len); 2103 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 2104 strlen(sv->sv_elf_core_abi_vendor) + 1); 2105 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2106 if (note.n_descsz == 0) 2107 return; 2108 sbuf_start_section(sb, &old_len); 2109 if (ninfo->regset != NULL) { 2110 struct regset *regset = ninfo->regset; 2111 void *buf; 2112 2113 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK); 2114 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize); 2115 sbuf_bcat(sb, buf, ninfo->outsize); 2116 free(buf, M_TEMP); 2117 } else 2118 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2119 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2120 if (sect_len < 0) 2121 return; 2122 2123 new_len = (size_t)sect_len; 2124 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2125 if (new_len < descsz) { 2126 /* 2127 * It is expected that individual note emitters will correctly 2128 * predict their expected output size and fill up to that size 2129 * themselves, padding in a format-specific way if needed. 2130 * However, in case they don't, just do it here with zeros. 2131 */ 2132 for (i = 0; i < descsz - new_len; i++) 2133 sbuf_putc(sb, 0); 2134 } else if (new_len > descsz) { 2135 /* 2136 * We can't always truncate sb -- we may have drained some 2137 * of it already. 2138 */ 2139 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2140 "read it (%zu > %zu). Since it is longer than " 2141 "expected, this coredump's notes are corrupt. THIS " 2142 "IS A BUG in the note_procstat routine for type %u.\n", 2143 __func__, (unsigned)note.n_type, new_len, descsz, 2144 (unsigned)note.n_type)); 2145 } 2146 } 2147 2148 /* 2149 * Miscellaneous note out functions. 2150 */ 2151 2152 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2153 #include <compat/freebsd32/freebsd32.h> 2154 #include <compat/freebsd32/freebsd32_signal.h> 2155 2156 typedef struct prstatus32 elf_prstatus_t; 2157 typedef struct prpsinfo32 elf_prpsinfo_t; 2158 typedef struct fpreg32 elf_prfpregset_t; 2159 typedef struct fpreg32 elf_fpregset_t; 2160 typedef struct reg32 elf_gregset_t; 2161 typedef struct thrmisc32 elf_thrmisc_t; 2162 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t; 2163 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2164 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2165 typedef uint32_t elf_ps_strings_t; 2166 #else 2167 typedef prstatus_t elf_prstatus_t; 2168 typedef prpsinfo_t elf_prpsinfo_t; 2169 typedef prfpregset_t elf_prfpregset_t; 2170 typedef prfpregset_t elf_fpregset_t; 2171 typedef gregset_t elf_gregset_t; 2172 typedef thrmisc_t elf_thrmisc_t; 2173 typedef struct ptrace_lwpinfo elf_lwpinfo_t; 2174 #define ELF_KERN_PROC_MASK 0 2175 typedef struct kinfo_proc elf_kinfo_proc_t; 2176 typedef vm_offset_t elf_ps_strings_t; 2177 #endif 2178 2179 static void 2180 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2181 { 2182 struct sbuf sbarg; 2183 size_t len; 2184 char *cp, *end; 2185 struct proc *p; 2186 elf_prpsinfo_t *psinfo; 2187 int error; 2188 2189 p = arg; 2190 if (sb != NULL) { 2191 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2192 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2193 psinfo->pr_version = PRPSINFO_VERSION; 2194 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2195 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2196 PROC_LOCK(p); 2197 if (p->p_args != NULL) { 2198 len = sizeof(psinfo->pr_psargs) - 1; 2199 if (len > p->p_args->ar_length) 2200 len = p->p_args->ar_length; 2201 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2202 PROC_UNLOCK(p); 2203 error = 0; 2204 } else { 2205 _PHOLD(p); 2206 PROC_UNLOCK(p); 2207 sbuf_new(&sbarg, psinfo->pr_psargs, 2208 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2209 error = proc_getargv(curthread, p, &sbarg); 2210 PRELE(p); 2211 if (sbuf_finish(&sbarg) == 0) { 2212 len = sbuf_len(&sbarg); 2213 if (len > 0) 2214 len--; 2215 } else { 2216 len = sizeof(psinfo->pr_psargs) - 1; 2217 } 2218 sbuf_delete(&sbarg); 2219 } 2220 if (error != 0 || len == 0 || (ssize_t)len == -1) 2221 strlcpy(psinfo->pr_psargs, p->p_comm, 2222 sizeof(psinfo->pr_psargs)); 2223 else { 2224 KASSERT(len < sizeof(psinfo->pr_psargs), 2225 ("len is too long: %zu vs %zu", len, 2226 sizeof(psinfo->pr_psargs))); 2227 cp = psinfo->pr_psargs; 2228 end = cp + len - 1; 2229 for (;;) { 2230 cp = memchr(cp, '\0', end - cp); 2231 if (cp == NULL) 2232 break; 2233 *cp = ' '; 2234 } 2235 } 2236 psinfo->pr_pid = p->p_pid; 2237 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2238 free(psinfo, M_TEMP); 2239 } 2240 *sizep = sizeof(*psinfo); 2241 } 2242 2243 static bool 2244 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf, 2245 size_t *sizep) 2246 { 2247 elf_prstatus_t *status; 2248 2249 if (buf != NULL) { 2250 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2251 __func__)); 2252 status = buf; 2253 memset(status, 0, *sizep); 2254 status->pr_version = PRSTATUS_VERSION; 2255 status->pr_statussz = sizeof(elf_prstatus_t); 2256 status->pr_gregsetsz = sizeof(elf_gregset_t); 2257 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2258 status->pr_osreldate = osreldate; 2259 status->pr_cursig = td->td_proc->p_sig; 2260 status->pr_pid = td->td_tid; 2261 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2262 fill_regs32(td, &status->pr_reg); 2263 #else 2264 fill_regs(td, &status->pr_reg); 2265 #endif 2266 } 2267 *sizep = sizeof(*status); 2268 return (true); 2269 } 2270 2271 static bool 2272 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf, 2273 size_t size) 2274 { 2275 elf_prstatus_t *status; 2276 2277 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__)); 2278 status = buf; 2279 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2280 set_regs32(td, &status->pr_reg); 2281 #else 2282 set_regs(td, &status->pr_reg); 2283 #endif 2284 return (true); 2285 } 2286 2287 static struct regset __elfN(regset_prstatus) = { 2288 .note = NT_PRSTATUS, 2289 .size = sizeof(elf_prstatus_t), 2290 .get = __elfN(get_prstatus), 2291 .set = __elfN(set_prstatus), 2292 }; 2293 ELF_REGSET(__elfN(regset_prstatus)); 2294 2295 static bool 2296 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf, 2297 size_t *sizep) 2298 { 2299 elf_prfpregset_t *fpregset; 2300 2301 if (buf != NULL) { 2302 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size", 2303 __func__)); 2304 fpregset = buf; 2305 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2306 fill_fpregs32(td, fpregset); 2307 #else 2308 fill_fpregs(td, fpregset); 2309 #endif 2310 } 2311 *sizep = sizeof(*fpregset); 2312 return (true); 2313 } 2314 2315 static bool 2316 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf, 2317 size_t size) 2318 { 2319 elf_prfpregset_t *fpregset; 2320 2321 fpregset = buf; 2322 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__)); 2323 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2324 set_fpregs32(td, fpregset); 2325 #else 2326 set_fpregs(td, fpregset); 2327 #endif 2328 return (true); 2329 } 2330 2331 static struct regset __elfN(regset_fpregset) = { 2332 .note = NT_FPREGSET, 2333 .size = sizeof(elf_prfpregset_t), 2334 .get = __elfN(get_fpregset), 2335 .set = __elfN(set_fpregset), 2336 }; 2337 ELF_REGSET(__elfN(regset_fpregset)); 2338 2339 static bool 2340 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf, 2341 size_t *sizep) 2342 { 2343 elf_thrmisc_t *thrmisc; 2344 2345 if (buf != NULL) { 2346 KASSERT(*sizep == sizeof(*thrmisc), 2347 ("%s: invalid size", __func__)); 2348 thrmisc = buf; 2349 bzero(thrmisc, sizeof(*thrmisc)); 2350 strcpy(thrmisc->pr_tname, td->td_name); 2351 } 2352 *sizep = sizeof(*thrmisc); 2353 return (true); 2354 } 2355 2356 static struct regset __elfN(regset_thrmisc) = { 2357 .note = NT_THRMISC, 2358 .size = sizeof(elf_thrmisc_t), 2359 .get = __elfN(get_thrmisc), 2360 }; 2361 ELF_REGSET(__elfN(regset_thrmisc)); 2362 2363 static bool 2364 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf, 2365 size_t *sizep) 2366 { 2367 elf_lwpinfo_t pl; 2368 size_t size; 2369 int structsize; 2370 2371 size = sizeof(structsize) + sizeof(pl); 2372 if (buf != NULL) { 2373 KASSERT(*sizep == size, ("%s: invalid size", __func__)); 2374 structsize = sizeof(pl); 2375 memcpy(buf, &structsize, sizeof(structsize)); 2376 bzero(&pl, sizeof(pl)); 2377 pl.pl_lwpid = td->td_tid; 2378 pl.pl_event = PL_EVENT_NONE; 2379 pl.pl_sigmask = td->td_sigmask; 2380 pl.pl_siglist = td->td_siglist; 2381 if (td->td_si.si_signo != 0) { 2382 pl.pl_event = PL_EVENT_SIGNAL; 2383 pl.pl_flags |= PL_FLAG_SI; 2384 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2385 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2386 #else 2387 pl.pl_siginfo = td->td_si; 2388 #endif 2389 } 2390 strcpy(pl.pl_tdname, td->td_name); 2391 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2392 memcpy((int *)buf + 1, &pl, sizeof(pl)); 2393 } 2394 *sizep = size; 2395 return (true); 2396 } 2397 2398 static struct regset __elfN(regset_lwpinfo) = { 2399 .note = NT_PTLWPINFO, 2400 .size = sizeof(int) + sizeof(elf_lwpinfo_t), 2401 .get = __elfN(get_lwpinfo), 2402 }; 2403 ELF_REGSET(__elfN(regset_lwpinfo)); 2404 2405 static size_t 2406 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list, 2407 struct thread *target_td) 2408 { 2409 struct sysentvec *sv = td->td_proc->p_sysent; 2410 struct regset **regsetp, **regset_end, *regset; 2411 size_t size; 2412 2413 size = 0; 2414 2415 /* NT_PRSTATUS must be the first register set note. */ 2416 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus), 2417 target_td); 2418 2419 regsetp = sv->sv_regset_begin; 2420 if (regsetp == NULL) { 2421 /* XXX: This shouldn't be true for any FreeBSD ABIs. */ 2422 size += __elfN(register_regset_note)(td, list, 2423 &__elfN(regset_fpregset), target_td); 2424 return (size); 2425 } 2426 regset_end = sv->sv_regset_end; 2427 MPASS(regset_end != NULL); 2428 for (; regsetp < regset_end; regsetp++) { 2429 regset = *regsetp; 2430 if (regset->note == NT_PRSTATUS) 2431 continue; 2432 size += __elfN(register_regset_note)(td, list, regset, 2433 target_td); 2434 } 2435 return (size); 2436 } 2437 2438 /* 2439 * Allow for MD specific notes, as well as any MD 2440 * specific preparations for writing MI notes. 2441 */ 2442 static void 2443 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2444 { 2445 struct thread *td; 2446 void *buf; 2447 size_t size; 2448 2449 td = (struct thread *)arg; 2450 size = *sizep; 2451 if (size != 0 && sb != NULL) 2452 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2453 else 2454 buf = NULL; 2455 size = 0; 2456 __elfN(dump_thread)(td, buf, &size); 2457 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2458 if (size != 0 && sb != NULL) 2459 sbuf_bcat(sb, buf, size); 2460 free(buf, M_TEMP); 2461 *sizep = size; 2462 } 2463 2464 #ifdef KINFO_PROC_SIZE 2465 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2466 #endif 2467 2468 static void 2469 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2470 { 2471 struct proc *p; 2472 size_t size; 2473 int structsize; 2474 2475 p = arg; 2476 size = sizeof(structsize) + p->p_numthreads * 2477 sizeof(elf_kinfo_proc_t); 2478 2479 if (sb != NULL) { 2480 KASSERT(*sizep == size, ("invalid size")); 2481 structsize = sizeof(elf_kinfo_proc_t); 2482 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2483 sx_slock(&proctree_lock); 2484 PROC_LOCK(p); 2485 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2486 sx_sunlock(&proctree_lock); 2487 } 2488 *sizep = size; 2489 } 2490 2491 #ifdef KINFO_FILE_SIZE 2492 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2493 #endif 2494 2495 static void 2496 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2497 { 2498 struct proc *p; 2499 size_t size, sect_sz, i; 2500 ssize_t start_len, sect_len; 2501 int structsize, filedesc_flags; 2502 2503 if (coredump_pack_fileinfo) 2504 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2505 else 2506 filedesc_flags = 0; 2507 2508 p = arg; 2509 structsize = sizeof(struct kinfo_file); 2510 if (sb == NULL) { 2511 size = 0; 2512 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2513 sbuf_set_drain(sb, sbuf_count_drain, &size); 2514 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2515 PROC_LOCK(p); 2516 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2517 sbuf_finish(sb); 2518 sbuf_delete(sb); 2519 *sizep = size; 2520 } else { 2521 sbuf_start_section(sb, &start_len); 2522 2523 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2524 PROC_LOCK(p); 2525 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2526 filedesc_flags); 2527 2528 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2529 if (sect_len < 0) 2530 return; 2531 sect_sz = sect_len; 2532 2533 KASSERT(sect_sz <= *sizep, 2534 ("kern_proc_filedesc_out did not respect maxlen; " 2535 "requested %zu, got %zu", *sizep - sizeof(structsize), 2536 sect_sz - sizeof(structsize))); 2537 2538 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2539 sbuf_putc(sb, 0); 2540 } 2541 } 2542 2543 #ifdef KINFO_VMENTRY_SIZE 2544 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2545 #endif 2546 2547 static void 2548 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2549 { 2550 struct proc *p; 2551 size_t size; 2552 int structsize, vmmap_flags; 2553 2554 if (coredump_pack_vmmapinfo) 2555 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2556 else 2557 vmmap_flags = 0; 2558 2559 p = arg; 2560 structsize = sizeof(struct kinfo_vmentry); 2561 if (sb == NULL) { 2562 size = 0; 2563 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2564 sbuf_set_drain(sb, sbuf_count_drain, &size); 2565 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2566 PROC_LOCK(p); 2567 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2568 sbuf_finish(sb); 2569 sbuf_delete(sb); 2570 *sizep = size; 2571 } else { 2572 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2573 PROC_LOCK(p); 2574 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2575 vmmap_flags); 2576 } 2577 } 2578 2579 static void 2580 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2581 { 2582 struct proc *p; 2583 size_t size; 2584 int structsize; 2585 2586 p = arg; 2587 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2588 if (sb != NULL) { 2589 KASSERT(*sizep == size, ("invalid size")); 2590 structsize = sizeof(gid_t); 2591 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2592 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2593 sizeof(gid_t)); 2594 } 2595 *sizep = size; 2596 } 2597 2598 static void 2599 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2600 { 2601 struct proc *p; 2602 size_t size; 2603 int structsize; 2604 2605 p = arg; 2606 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2607 if (sb != NULL) { 2608 KASSERT(*sizep == size, ("invalid size")); 2609 structsize = sizeof(p->p_pd->pd_cmask); 2610 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2611 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2612 } 2613 *sizep = size; 2614 } 2615 2616 static void 2617 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2618 { 2619 struct proc *p; 2620 struct rlimit rlim[RLIM_NLIMITS]; 2621 size_t size; 2622 int structsize, i; 2623 2624 p = arg; 2625 size = sizeof(structsize) + sizeof(rlim); 2626 if (sb != NULL) { 2627 KASSERT(*sizep == size, ("invalid size")); 2628 structsize = sizeof(rlim); 2629 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2630 PROC_LOCK(p); 2631 for (i = 0; i < RLIM_NLIMITS; i++) 2632 lim_rlimit_proc(p, i, &rlim[i]); 2633 PROC_UNLOCK(p); 2634 sbuf_bcat(sb, rlim, sizeof(rlim)); 2635 } 2636 *sizep = size; 2637 } 2638 2639 static void 2640 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2641 { 2642 struct proc *p; 2643 size_t size; 2644 int structsize; 2645 2646 p = arg; 2647 size = sizeof(structsize) + sizeof(p->p_osrel); 2648 if (sb != NULL) { 2649 KASSERT(*sizep == size, ("invalid size")); 2650 structsize = sizeof(p->p_osrel); 2651 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2652 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2653 } 2654 *sizep = size; 2655 } 2656 2657 static void 2658 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2659 { 2660 struct proc *p; 2661 elf_ps_strings_t ps_strings; 2662 size_t size; 2663 int structsize; 2664 2665 p = arg; 2666 size = sizeof(structsize) + sizeof(ps_strings); 2667 if (sb != NULL) { 2668 KASSERT(*sizep == size, ("invalid size")); 2669 structsize = sizeof(ps_strings); 2670 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2671 ps_strings = PTROUT(PROC_PS_STRINGS(p)); 2672 #else 2673 ps_strings = PROC_PS_STRINGS(p); 2674 #endif 2675 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2676 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2677 } 2678 *sizep = size; 2679 } 2680 2681 static void 2682 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2683 { 2684 struct proc *p; 2685 size_t size; 2686 int structsize; 2687 2688 p = arg; 2689 if (sb == NULL) { 2690 size = 0; 2691 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2692 SBUF_FIXEDLEN); 2693 sbuf_set_drain(sb, sbuf_count_drain, &size); 2694 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2695 PHOLD(p); 2696 proc_getauxv(curthread, p, sb); 2697 PRELE(p); 2698 sbuf_finish(sb); 2699 sbuf_delete(sb); 2700 *sizep = size; 2701 } else { 2702 structsize = sizeof(Elf_Auxinfo); 2703 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2704 PHOLD(p); 2705 proc_getauxv(curthread, p, sb); 2706 PRELE(p); 2707 } 2708 } 2709 2710 static bool 2711 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2712 const char *note_vendor, const Elf_Phdr *pnote, 2713 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2714 { 2715 const Elf_Note *note, *note0, *note_end; 2716 const char *note_name; 2717 char *buf; 2718 int i, error; 2719 bool res; 2720 2721 /* We need some limit, might as well use PAGE_SIZE. */ 2722 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2723 return (false); 2724 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2725 if (pnote->p_offset > PAGE_SIZE || 2726 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2727 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2728 if (buf == NULL) { 2729 VOP_UNLOCK(imgp->vp); 2730 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2731 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2732 } 2733 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2734 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2735 curthread->td_ucred, NOCRED, NULL, curthread); 2736 if (error != 0) { 2737 uprintf("i/o error PT_NOTE\n"); 2738 goto retf; 2739 } 2740 note = note0 = (const Elf_Note *)buf; 2741 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2742 } else { 2743 note = note0 = (const Elf_Note *)(imgp->image_header + 2744 pnote->p_offset); 2745 note_end = (const Elf_Note *)(imgp->image_header + 2746 pnote->p_offset + pnote->p_filesz); 2747 buf = NULL; 2748 } 2749 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2750 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2751 (const char *)note < sizeof(Elf_Note)) { 2752 goto retf; 2753 } 2754 if (note->n_namesz != checknote->n_namesz || 2755 note->n_descsz != checknote->n_descsz || 2756 note->n_type != checknote->n_type) 2757 goto nextnote; 2758 note_name = (const char *)(note + 1); 2759 if (note_name + checknote->n_namesz >= 2760 (const char *)note_end || strncmp(note_vendor, 2761 note_name, checknote->n_namesz) != 0) 2762 goto nextnote; 2763 2764 if (cb(note, cb_arg, &res)) 2765 goto ret; 2766 nextnote: 2767 note = (const Elf_Note *)((const char *)(note + 1) + 2768 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2769 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2770 } 2771 retf: 2772 res = false; 2773 ret: 2774 free(buf, M_TEMP); 2775 return (res); 2776 } 2777 2778 struct brandnote_cb_arg { 2779 Elf_Brandnote *brandnote; 2780 int32_t *osrel; 2781 }; 2782 2783 static bool 2784 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2785 { 2786 struct brandnote_cb_arg *arg; 2787 2788 arg = arg0; 2789 2790 /* 2791 * Fetch the osreldate for binary from the ELF OSABI-note if 2792 * necessary. 2793 */ 2794 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2795 arg->brandnote->trans_osrel != NULL ? 2796 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2797 2798 return (true); 2799 } 2800 2801 static Elf_Note fctl_note = { 2802 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2803 .n_descsz = sizeof(uint32_t), 2804 .n_type = NT_FREEBSD_FEATURE_CTL, 2805 }; 2806 2807 struct fctl_cb_arg { 2808 bool *has_fctl0; 2809 uint32_t *fctl0; 2810 }; 2811 2812 static bool 2813 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2814 { 2815 struct fctl_cb_arg *arg; 2816 const Elf32_Word *desc; 2817 uintptr_t p; 2818 2819 arg = arg0; 2820 p = (uintptr_t)(note + 1); 2821 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2822 desc = (const Elf32_Word *)p; 2823 *arg->has_fctl0 = true; 2824 *arg->fctl0 = desc[0]; 2825 *res = true; 2826 return (true); 2827 } 2828 2829 /* 2830 * Try to find the appropriate ABI-note section for checknote, fetch 2831 * the osreldate and feature control flags for binary from the ELF 2832 * OSABI-note. Only the first page of the image is searched, the same 2833 * as for headers. 2834 */ 2835 static bool 2836 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2837 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2838 { 2839 const Elf_Phdr *phdr; 2840 const Elf_Ehdr *hdr; 2841 struct brandnote_cb_arg b_arg; 2842 struct fctl_cb_arg f_arg; 2843 int i, j; 2844 2845 hdr = (const Elf_Ehdr *)imgp->image_header; 2846 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2847 b_arg.brandnote = brandnote; 2848 b_arg.osrel = osrel; 2849 f_arg.has_fctl0 = has_fctl0; 2850 f_arg.fctl0 = fctl0; 2851 2852 for (i = 0; i < hdr->e_phnum; i++) { 2853 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2854 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2855 &b_arg)) { 2856 for (j = 0; j < hdr->e_phnum; j++) { 2857 if (phdr[j].p_type == PT_NOTE && 2858 __elfN(parse_notes)(imgp, &fctl_note, 2859 FREEBSD_ABI_VENDOR, &phdr[j], 2860 note_fctl_cb, &f_arg)) 2861 break; 2862 } 2863 return (true); 2864 } 2865 } 2866 return (false); 2867 2868 } 2869 2870 /* 2871 * Tell kern_execve.c about it, with a little help from the linker. 2872 */ 2873 static struct execsw __elfN(execsw) = { 2874 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2875 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2876 }; 2877 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2878 2879 static vm_prot_t 2880 __elfN(trans_prot)(Elf_Word flags) 2881 { 2882 vm_prot_t prot; 2883 2884 prot = 0; 2885 if (flags & PF_X) 2886 prot |= VM_PROT_EXECUTE; 2887 if (flags & PF_W) 2888 prot |= VM_PROT_WRITE; 2889 if (flags & PF_R) 2890 prot |= VM_PROT_READ; 2891 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2892 if (i386_read_exec && (flags & PF_R)) 2893 prot |= VM_PROT_EXECUTE; 2894 #endif 2895 return (prot); 2896 } 2897 2898 static Elf_Word 2899 __elfN(untrans_prot)(vm_prot_t prot) 2900 { 2901 Elf_Word flags; 2902 2903 flags = 0; 2904 if (prot & VM_PROT_EXECUTE) 2905 flags |= PF_X; 2906 if (prot & VM_PROT_READ) 2907 flags |= PF_R; 2908 if (prot & VM_PROT_WRITE) 2909 flags |= PF_W; 2910 return (flags); 2911 } 2912