xref: /freebsd/sys/kern/imgact_elf.c (revision 8ddb146abcdf061be9f2c0db7e391697dafad85c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/ptrace.h>
56 #include <sys/racct.h>
57 #include <sys/reg.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static bool __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
102     uint32_t *fctl0);
103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
105 static size_t __elfN(prepare_register_notes)(struct thread *td,
106     struct note_info_list *list, struct thread *target_td);
107 
108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
109     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
110     "");
111 
112 int __elfN(fallback_brand) = -1;
113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
114     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
115     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
116 
117 static int elf_legacy_coredump = 0;
118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
119     &elf_legacy_coredump, 0,
120     "include all and only RW pages in core dumps");
121 
122 int __elfN(nxstack) =
123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
124     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
125     defined(__riscv)
126 	1;
127 #else
128 	0;
129 #endif
130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
131     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
132     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
133 
134 #if defined(__amd64__)
135 static int __elfN(vdso) = 1;
136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
137     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
138     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
139 #else
140 static int __elfN(vdso) = 0;
141 #endif
142 
143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
144 int i386_read_exec = 0;
145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
146     "enable execution from readable segments");
147 #endif
148 
149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
150 static int
151 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
152 {
153 	u_long val;
154 	int error;
155 
156 	val = __elfN(pie_base);
157 	error = sysctl_handle_long(oidp, &val, 0, req);
158 	if (error != 0 || req->newptr == NULL)
159 		return (error);
160 	if ((val & PAGE_MASK) != 0)
161 		return (EINVAL);
162 	__elfN(pie_base) = val;
163 	return (0);
164 }
165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
166     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
167     sysctl_pie_base, "LU",
168     "PIE load base without randomization");
169 
170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "");
173 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
174 
175 /*
176  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
177  * have limited address space (which can cause issues for applications with
178  * high memory use) so we leave it off there.
179  */
180 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
181 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
182     &__elfN(aslr_enabled), 0,
183     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
184     ": enable address map randomization");
185 
186 /*
187  * Enable ASLR by default for 64-bit PIE binaries.
188  */
189 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
190 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
191     &__elfN(pie_aslr_enabled), 0,
192     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
193     ": enable address map randomization for PIE binaries");
194 
195 /*
196  * Sbrk is deprecated and it can be assumed that in most cases it will not be
197  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
198  * to use the bss grow region.
199  */
200 static int __elfN(aslr_honor_sbrk) = 0;
201 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
202     &__elfN(aslr_honor_sbrk), 0,
203     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
204 
205 static int __elfN(aslr_stack) = 1;
206 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
207     &__elfN(aslr_stack), 0,
208     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
209     ": enable stack address randomization");
210 
211 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
212 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
213     &__elfN(aslr_shared_page), 0,
214     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
215     ": enable shared page address randomization");
216 
217 static int __elfN(sigfastblock) = 1;
218 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
219     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
220     "enable sigfastblock for new processes");
221 
222 static bool __elfN(allow_wx) = true;
223 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
224     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
225     "Allow pages to be mapped simultaneously writable and executable");
226 
227 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
228 
229 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
230 
231 Elf_Brandnote __elfN(freebsd_brandnote) = {
232 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
233 	.hdr.n_descsz	= sizeof(int32_t),
234 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
235 	.vendor		= FREEBSD_ABI_VENDOR,
236 	.flags		= BN_TRANSLATE_OSREL,
237 	.trans_osrel	= __elfN(freebsd_trans_osrel)
238 };
239 
240 static bool
241 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
242 {
243 	uintptr_t p;
244 
245 	p = (uintptr_t)(note + 1);
246 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
247 	*osrel = *(const int32_t *)(p);
248 
249 	return (true);
250 }
251 
252 static const char GNU_ABI_VENDOR[] = "GNU";
253 static int GNU_KFREEBSD_ABI_DESC = 3;
254 
255 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
256 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
257 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
258 	.hdr.n_type	= 1,
259 	.vendor		= GNU_ABI_VENDOR,
260 	.flags		= BN_TRANSLATE_OSREL,
261 	.trans_osrel	= kfreebsd_trans_osrel
262 };
263 
264 static bool
265 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
266 {
267 	const Elf32_Word *desc;
268 	uintptr_t p;
269 
270 	p = (uintptr_t)(note + 1);
271 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
272 
273 	desc = (const Elf32_Word *)p;
274 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
275 		return (false);
276 
277 	/*
278 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
279 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
280 	 */
281 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
282 
283 	return (true);
284 }
285 
286 int
287 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
288 {
289 	int i;
290 
291 	for (i = 0; i < MAX_BRANDS; i++) {
292 		if (elf_brand_list[i] == NULL) {
293 			elf_brand_list[i] = entry;
294 			break;
295 		}
296 	}
297 	if (i == MAX_BRANDS) {
298 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
299 			__func__, entry);
300 		return (-1);
301 	}
302 	return (0);
303 }
304 
305 int
306 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
307 {
308 	int i;
309 
310 	for (i = 0; i < MAX_BRANDS; i++) {
311 		if (elf_brand_list[i] == entry) {
312 			elf_brand_list[i] = NULL;
313 			break;
314 		}
315 	}
316 	if (i == MAX_BRANDS)
317 		return (-1);
318 	return (0);
319 }
320 
321 bool
322 __elfN(brand_inuse)(Elf_Brandinfo *entry)
323 {
324 	struct proc *p;
325 	bool rval = false;
326 
327 	sx_slock(&allproc_lock);
328 	FOREACH_PROC_IN_SYSTEM(p) {
329 		if (p->p_sysent == entry->sysvec) {
330 			rval = true;
331 			break;
332 		}
333 	}
334 	sx_sunlock(&allproc_lock);
335 
336 	return (rval);
337 }
338 
339 static Elf_Brandinfo *
340 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
341     int32_t *osrel, uint32_t *fctl0)
342 {
343 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
344 	Elf_Brandinfo *bi, *bi_m;
345 	bool ret, has_fctl0;
346 	int i, interp_name_len;
347 
348 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
349 
350 	/*
351 	 * We support four types of branding -- (1) the ELF EI_OSABI field
352 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
353 	 * branding w/in the ELF header, (3) path of the `interp_path'
354 	 * field, and (4) the ".note.ABI-tag" ELF section.
355 	 */
356 
357 	/* Look for an ".note.ABI-tag" ELF section */
358 	bi_m = NULL;
359 	for (i = 0; i < MAX_BRANDS; i++) {
360 		bi = elf_brand_list[i];
361 		if (bi == NULL)
362 			continue;
363 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
364 			continue;
365 		if (hdr->e_machine == bi->machine && (bi->flags &
366 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
367 			has_fctl0 = false;
368 			*fctl0 = 0;
369 			*osrel = 0;
370 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
371 			    &has_fctl0, fctl0);
372 			/* Give brand a chance to veto check_note's guess */
373 			if (ret && bi->header_supported) {
374 				ret = bi->header_supported(imgp, osrel,
375 				    has_fctl0 ? fctl0 : NULL);
376 			}
377 			/*
378 			 * If note checker claimed the binary, but the
379 			 * interpreter path in the image does not
380 			 * match default one for the brand, try to
381 			 * search for other brands with the same
382 			 * interpreter.  Either there is better brand
383 			 * with the right interpreter, or, failing
384 			 * this, we return first brand which accepted
385 			 * our note and, optionally, header.
386 			 */
387 			if (ret && bi_m == NULL && interp != NULL &&
388 			    (bi->interp_path == NULL ||
389 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
390 			    strncmp(interp, bi->interp_path, interp_name_len)
391 			    != 0))) {
392 				bi_m = bi;
393 				ret = 0;
394 			}
395 			if (ret)
396 				return (bi);
397 		}
398 	}
399 	if (bi_m != NULL)
400 		return (bi_m);
401 
402 	/* If the executable has a brand, search for it in the brand list. */
403 	for (i = 0; i < MAX_BRANDS; i++) {
404 		bi = elf_brand_list[i];
405 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
406 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
407 			continue;
408 		if (hdr->e_machine == bi->machine &&
409 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
410 		    (bi->compat_3_brand != NULL &&
411 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
412 		    bi->compat_3_brand) == 0))) {
413 			/* Looks good, but give brand a chance to veto */
414 			if (bi->header_supported == NULL ||
415 			    bi->header_supported(imgp, NULL, NULL)) {
416 				/*
417 				 * Again, prefer strictly matching
418 				 * interpreter path.
419 				 */
420 				if (interp_name_len == 0 &&
421 				    bi->interp_path == NULL)
422 					return (bi);
423 				if (bi->interp_path != NULL &&
424 				    strlen(bi->interp_path) + 1 ==
425 				    interp_name_len && strncmp(interp,
426 				    bi->interp_path, interp_name_len) == 0)
427 					return (bi);
428 				if (bi_m == NULL)
429 					bi_m = bi;
430 			}
431 		}
432 	}
433 	if (bi_m != NULL)
434 		return (bi_m);
435 
436 	/* No known brand, see if the header is recognized by any brand */
437 	for (i = 0; i < MAX_BRANDS; i++) {
438 		bi = elf_brand_list[i];
439 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
440 		    bi->header_supported == NULL)
441 			continue;
442 		if (hdr->e_machine == bi->machine) {
443 			ret = bi->header_supported(imgp, NULL, NULL);
444 			if (ret)
445 				return (bi);
446 		}
447 	}
448 
449 	/* Lacking a known brand, search for a recognized interpreter. */
450 	if (interp != NULL) {
451 		for (i = 0; i < MAX_BRANDS; i++) {
452 			bi = elf_brand_list[i];
453 			if (bi == NULL || (bi->flags &
454 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
455 			    != 0)
456 				continue;
457 			if (hdr->e_machine == bi->machine &&
458 			    bi->interp_path != NULL &&
459 			    /* ELF image p_filesz includes terminating zero */
460 			    strlen(bi->interp_path) + 1 == interp_name_len &&
461 			    strncmp(interp, bi->interp_path, interp_name_len)
462 			    == 0 && (bi->header_supported == NULL ||
463 			    bi->header_supported(imgp, NULL, NULL)))
464 				return (bi);
465 		}
466 	}
467 
468 	/* Lacking a recognized interpreter, try the default brand */
469 	for (i = 0; i < MAX_BRANDS; i++) {
470 		bi = elf_brand_list[i];
471 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
472 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
473 			continue;
474 		if (hdr->e_machine == bi->machine &&
475 		    __elfN(fallback_brand) == bi->brand &&
476 		    (bi->header_supported == NULL ||
477 		    bi->header_supported(imgp, NULL, NULL)))
478 			return (bi);
479 	}
480 	return (NULL);
481 }
482 
483 static bool
484 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
485 {
486 	return (hdr->e_phoff <= PAGE_SIZE &&
487 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
488 }
489 
490 static int
491 __elfN(check_header)(const Elf_Ehdr *hdr)
492 {
493 	Elf_Brandinfo *bi;
494 	int i;
495 
496 	if (!IS_ELF(*hdr) ||
497 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
498 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
499 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
500 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
501 	    hdr->e_version != ELF_TARG_VER)
502 		return (ENOEXEC);
503 
504 	/*
505 	 * Make sure we have at least one brand for this machine.
506 	 */
507 
508 	for (i = 0; i < MAX_BRANDS; i++) {
509 		bi = elf_brand_list[i];
510 		if (bi != NULL && bi->machine == hdr->e_machine)
511 			break;
512 	}
513 	if (i == MAX_BRANDS)
514 		return (ENOEXEC);
515 
516 	return (0);
517 }
518 
519 static int
520 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
521     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
522 {
523 	struct sf_buf *sf;
524 	int error;
525 	vm_offset_t off;
526 
527 	/*
528 	 * Create the page if it doesn't exist yet. Ignore errors.
529 	 */
530 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
531 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
532 
533 	/*
534 	 * Find the page from the underlying object.
535 	 */
536 	if (object != NULL) {
537 		sf = vm_imgact_map_page(object, offset);
538 		if (sf == NULL)
539 			return (KERN_FAILURE);
540 		off = offset - trunc_page(offset);
541 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
542 		    end - start);
543 		vm_imgact_unmap_page(sf);
544 		if (error != 0)
545 			return (KERN_FAILURE);
546 	}
547 
548 	return (KERN_SUCCESS);
549 }
550 
551 static int
552 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
553     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
554     int cow)
555 {
556 	struct sf_buf *sf;
557 	vm_offset_t off;
558 	vm_size_t sz;
559 	int error, locked, rv;
560 
561 	if (start != trunc_page(start)) {
562 		rv = __elfN(map_partial)(map, object, offset, start,
563 		    round_page(start), prot);
564 		if (rv != KERN_SUCCESS)
565 			return (rv);
566 		offset += round_page(start) - start;
567 		start = round_page(start);
568 	}
569 	if (end != round_page(end)) {
570 		rv = __elfN(map_partial)(map, object, offset +
571 		    trunc_page(end) - start, trunc_page(end), end, prot);
572 		if (rv != KERN_SUCCESS)
573 			return (rv);
574 		end = trunc_page(end);
575 	}
576 	if (start >= end)
577 		return (KERN_SUCCESS);
578 	if ((offset & PAGE_MASK) != 0) {
579 		/*
580 		 * The mapping is not page aligned.  This means that we have
581 		 * to copy the data.
582 		 */
583 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
584 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
585 		if (rv != KERN_SUCCESS)
586 			return (rv);
587 		if (object == NULL)
588 			return (KERN_SUCCESS);
589 		for (; start < end; start += sz) {
590 			sf = vm_imgact_map_page(object, offset);
591 			if (sf == NULL)
592 				return (KERN_FAILURE);
593 			off = offset - trunc_page(offset);
594 			sz = end - start;
595 			if (sz > PAGE_SIZE - off)
596 				sz = PAGE_SIZE - off;
597 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
598 			    (caddr_t)start, sz);
599 			vm_imgact_unmap_page(sf);
600 			if (error != 0)
601 				return (KERN_FAILURE);
602 			offset += sz;
603 		}
604 	} else {
605 		vm_object_reference(object);
606 		rv = vm_map_fixed(map, object, offset, start, end - start,
607 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
608 		    (object != NULL ? MAP_VN_EXEC : 0));
609 		if (rv != KERN_SUCCESS) {
610 			locked = VOP_ISLOCKED(imgp->vp);
611 			VOP_UNLOCK(imgp->vp);
612 			vm_object_deallocate(object);
613 			vn_lock(imgp->vp, locked | LK_RETRY);
614 			return (rv);
615 		} else if (object != NULL) {
616 			MPASS(imgp->vp->v_object == object);
617 			VOP_SET_TEXT_CHECKED(imgp->vp);
618 		}
619 	}
620 	return (KERN_SUCCESS);
621 }
622 
623 static int
624 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
625     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
626 {
627 	struct sf_buf *sf;
628 	size_t map_len;
629 	vm_map_t map;
630 	vm_object_t object;
631 	vm_offset_t map_addr;
632 	int error, rv, cow;
633 	size_t copy_len;
634 	vm_ooffset_t file_addr;
635 
636 	/*
637 	 * It's necessary to fail if the filsz + offset taken from the
638 	 * header is greater than the actual file pager object's size.
639 	 * If we were to allow this, then the vm_map_find() below would
640 	 * walk right off the end of the file object and into the ether.
641 	 *
642 	 * While I'm here, might as well check for something else that
643 	 * is invalid: filsz cannot be greater than memsz.
644 	 */
645 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
646 	    filsz > memsz) {
647 		uprintf("elf_load_section: truncated ELF file\n");
648 		return (ENOEXEC);
649 	}
650 
651 	object = imgp->object;
652 	map = &imgp->proc->p_vmspace->vm_map;
653 	map_addr = trunc_page((vm_offset_t)vmaddr);
654 	file_addr = trunc_page(offset);
655 
656 	/*
657 	 * We have two choices.  We can either clear the data in the last page
658 	 * of an oversized mapping, or we can start the anon mapping a page
659 	 * early and copy the initialized data into that first page.  We
660 	 * choose the second.
661 	 */
662 	if (filsz == 0)
663 		map_len = 0;
664 	else if (memsz > filsz)
665 		map_len = trunc_page(offset + filsz) - file_addr;
666 	else
667 		map_len = round_page(offset + filsz) - file_addr;
668 
669 	if (map_len != 0) {
670 		/* cow flags: don't dump readonly sections in core */
671 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
672 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
673 
674 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
675 		    map_addr, map_addr + map_len, prot, cow);
676 		if (rv != KERN_SUCCESS)
677 			return (EINVAL);
678 
679 		/* we can stop now if we've covered it all */
680 		if (memsz == filsz)
681 			return (0);
682 	}
683 
684 	/*
685 	 * We have to get the remaining bit of the file into the first part
686 	 * of the oversized map segment.  This is normally because the .data
687 	 * segment in the file is extended to provide bss.  It's a neat idea
688 	 * to try and save a page, but it's a pain in the behind to implement.
689 	 */
690 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
691 	    filsz);
692 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
693 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
694 
695 	/* This had damn well better be true! */
696 	if (map_len != 0) {
697 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
698 		    map_addr + map_len, prot, 0);
699 		if (rv != KERN_SUCCESS)
700 			return (EINVAL);
701 	}
702 
703 	if (copy_len != 0) {
704 		sf = vm_imgact_map_page(object, offset + filsz);
705 		if (sf == NULL)
706 			return (EIO);
707 
708 		/* send the page fragment to user space */
709 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
710 		    copy_len);
711 		vm_imgact_unmap_page(sf);
712 		if (error != 0)
713 			return (error);
714 	}
715 
716 	/*
717 	 * Remove write access to the page if it was only granted by map_insert
718 	 * to allow copyout.
719 	 */
720 	if ((prot & VM_PROT_WRITE) == 0)
721 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
722 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
723 
724 	return (0);
725 }
726 
727 static int
728 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
729     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
730 {
731 	vm_prot_t prot;
732 	u_long base_addr;
733 	bool first;
734 	int error, i;
735 
736 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
737 
738 	base_addr = 0;
739 	first = true;
740 
741 	for (i = 0; i < hdr->e_phnum; i++) {
742 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
743 			continue;
744 
745 		/* Loadable segment */
746 		prot = __elfN(trans_prot)(phdr[i].p_flags);
747 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
748 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
749 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
750 		if (error != 0)
751 			return (error);
752 
753 		/*
754 		 * Establish the base address if this is the first segment.
755 		 */
756 		if (first) {
757   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
758 			first = false;
759 		}
760 	}
761 
762 	if (base_addrp != NULL)
763 		*base_addrp = base_addr;
764 
765 	return (0);
766 }
767 
768 /*
769  * Load the file "file" into memory.  It may be either a shared object
770  * or an executable.
771  *
772  * The "addr" reference parameter is in/out.  On entry, it specifies
773  * the address where a shared object should be loaded.  If the file is
774  * an executable, this value is ignored.  On exit, "addr" specifies
775  * where the file was actually loaded.
776  *
777  * The "entry" reference parameter is out only.  On exit, it specifies
778  * the entry point for the loaded file.
779  */
780 static int
781 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
782 	u_long *entry)
783 {
784 	struct {
785 		struct nameidata nd;
786 		struct vattr attr;
787 		struct image_params image_params;
788 	} *tempdata;
789 	const Elf_Ehdr *hdr = NULL;
790 	const Elf_Phdr *phdr = NULL;
791 	struct nameidata *nd;
792 	struct vattr *attr;
793 	struct image_params *imgp;
794 	u_long rbase;
795 	u_long base_addr = 0;
796 	int error;
797 
798 #ifdef CAPABILITY_MODE
799 	/*
800 	 * XXXJA: This check can go away once we are sufficiently confident
801 	 * that the checks in namei() are correct.
802 	 */
803 	if (IN_CAPABILITY_MODE(curthread))
804 		return (ECAPMODE);
805 #endif
806 
807 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
808 	nd = &tempdata->nd;
809 	attr = &tempdata->attr;
810 	imgp = &tempdata->image_params;
811 
812 	/*
813 	 * Initialize part of the common data
814 	 */
815 	imgp->proc = p;
816 	imgp->attr = attr;
817 
818 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
819 	    UIO_SYSSPACE, file);
820 	if ((error = namei(nd)) != 0) {
821 		nd->ni_vp = NULL;
822 		goto fail;
823 	}
824 	NDFREE_PNBUF(nd);
825 	imgp->vp = nd->ni_vp;
826 
827 	/*
828 	 * Check permissions, modes, uid, etc on the file, and "open" it.
829 	 */
830 	error = exec_check_permissions(imgp);
831 	if (error)
832 		goto fail;
833 
834 	error = exec_map_first_page(imgp);
835 	if (error)
836 		goto fail;
837 
838 	imgp->object = nd->ni_vp->v_object;
839 
840 	hdr = (const Elf_Ehdr *)imgp->image_header;
841 	if ((error = __elfN(check_header)(hdr)) != 0)
842 		goto fail;
843 	if (hdr->e_type == ET_DYN)
844 		rbase = *addr;
845 	else if (hdr->e_type == ET_EXEC)
846 		rbase = 0;
847 	else {
848 		error = ENOEXEC;
849 		goto fail;
850 	}
851 
852 	/* Only support headers that fit within first page for now      */
853 	if (!__elfN(phdr_in_zero_page)(hdr)) {
854 		error = ENOEXEC;
855 		goto fail;
856 	}
857 
858 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
859 	if (!aligned(phdr, Elf_Addr)) {
860 		error = ENOEXEC;
861 		goto fail;
862 	}
863 
864 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
865 	if (error != 0)
866 		goto fail;
867 
868 	*addr = base_addr;
869 	*entry = (unsigned long)hdr->e_entry + rbase;
870 
871 fail:
872 	if (imgp->firstpage)
873 		exec_unmap_first_page(imgp);
874 
875 	if (nd->ni_vp) {
876 		if (imgp->textset)
877 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
878 		vput(nd->ni_vp);
879 	}
880 	free(tempdata, M_TEMP);
881 
882 	return (error);
883 }
884 
885 /*
886  * Select randomized valid address in the map map, between minv and
887  * maxv, with specified alignment.  The [minv, maxv) range must belong
888  * to the map.  Note that function only allocates the address, it is
889  * up to caller to clamp maxv in a way that the final allocation
890  * length fit into the map.
891  *
892  * Result is returned in *resp, error code indicates that arguments
893  * did not pass sanity checks for overflow and range correctness.
894  */
895 static int
896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
897     u_int align, u_long *resp)
898 {
899 	u_long rbase, res;
900 
901 	MPASS(vm_map_min(map) <= minv);
902 
903 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
904 		uprintf("Invalid ELF segments layout\n");
905 		return (ENOEXEC);
906 	}
907 
908 	arc4rand(&rbase, sizeof(rbase), 0);
909 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
910 	res &= ~((u_long)align - 1);
911 	if (res >= maxv)
912 		res -= align;
913 
914 	KASSERT(res >= minv,
915 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
916 	    res, minv, maxv, rbase));
917 	KASSERT(res < maxv,
918 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
919 	    res, maxv, minv, rbase));
920 
921 	*resp = res;
922 	return (0);
923 }
924 
925 static int
926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
927     const Elf_Phdr *phdr, u_long et_dyn_addr)
928 {
929 	struct vmspace *vmspace;
930 	const char *err_str;
931 	u_long text_size, data_size, total_size, text_addr, data_addr;
932 	u_long seg_size, seg_addr;
933 	int i;
934 
935 	err_str = NULL;
936 	text_size = data_size = total_size = text_addr = data_addr = 0;
937 
938 	for (i = 0; i < hdr->e_phnum; i++) {
939 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
940 			continue;
941 
942 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
943 		seg_size = round_page(phdr[i].p_memsz +
944 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
945 
946 		/*
947 		 * Make the largest executable segment the official
948 		 * text segment and all others data.
949 		 *
950 		 * Note that obreak() assumes that data_addr + data_size == end
951 		 * of data load area, and the ELF file format expects segments
952 		 * to be sorted by address.  If multiple data segments exist,
953 		 * the last one will be used.
954 		 */
955 
956 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
957 			text_size = seg_size;
958 			text_addr = seg_addr;
959 		} else {
960 			data_size = seg_size;
961 			data_addr = seg_addr;
962 		}
963 		total_size += seg_size;
964 	}
965 
966 	if (data_addr == 0 && data_size == 0) {
967 		data_addr = text_addr;
968 		data_size = text_size;
969 	}
970 
971 	/*
972 	 * Check limits.  It should be safe to check the
973 	 * limits after loading the segments since we do
974 	 * not actually fault in all the segments pages.
975 	 */
976 	PROC_LOCK(imgp->proc);
977 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
978 		err_str = "Data segment size exceeds process limit";
979 	else if (text_size > maxtsiz)
980 		err_str = "Text segment size exceeds system limit";
981 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
982 		err_str = "Total segment size exceeds process limit";
983 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
984 		err_str = "Data segment size exceeds resource limit";
985 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
986 		err_str = "Total segment size exceeds resource limit";
987 	PROC_UNLOCK(imgp->proc);
988 	if (err_str != NULL) {
989 		uprintf("%s\n", err_str);
990 		return (ENOMEM);
991 	}
992 
993 	vmspace = imgp->proc->p_vmspace;
994 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
995 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
996 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
997 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
998 
999 	return (0);
1000 }
1001 
1002 static int
1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1004     char **interpp, bool *free_interpp)
1005 {
1006 	struct thread *td;
1007 	char *interp;
1008 	int error, interp_name_len;
1009 
1010 	KASSERT(phdr->p_type == PT_INTERP,
1011 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1012 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1013 
1014 	td = curthread;
1015 
1016 	/* Path to interpreter */
1017 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1018 		uprintf("Invalid PT_INTERP\n");
1019 		return (ENOEXEC);
1020 	}
1021 
1022 	interp_name_len = phdr->p_filesz;
1023 	if (phdr->p_offset > PAGE_SIZE ||
1024 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1025 		/*
1026 		 * The vnode lock might be needed by the pagedaemon to
1027 		 * clean pages owned by the vnode.  Do not allow sleep
1028 		 * waiting for memory with the vnode locked, instead
1029 		 * try non-sleepable allocation first, and if it
1030 		 * fails, go to the slow path were we drop the lock
1031 		 * and do M_WAITOK.  A text reference prevents
1032 		 * modifications to the vnode content.
1033 		 */
1034 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1035 		if (interp == NULL) {
1036 			VOP_UNLOCK(imgp->vp);
1037 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1038 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1039 		}
1040 
1041 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1042 		    interp_name_len, phdr->p_offset,
1043 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1044 		    NOCRED, NULL, td);
1045 		if (error != 0) {
1046 			free(interp, M_TEMP);
1047 			uprintf("i/o error PT_INTERP %d\n", error);
1048 			return (error);
1049 		}
1050 		interp[interp_name_len] = '\0';
1051 
1052 		*interpp = interp;
1053 		*free_interpp = true;
1054 		return (0);
1055 	}
1056 
1057 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1058 	if (interp[interp_name_len - 1] != '\0') {
1059 		uprintf("Invalid PT_INTERP\n");
1060 		return (ENOEXEC);
1061 	}
1062 
1063 	*interpp = interp;
1064 	*free_interpp = false;
1065 	return (0);
1066 }
1067 
1068 static int
1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1070     const char *interp, u_long *addr, u_long *entry)
1071 {
1072 	char *path;
1073 	int error;
1074 
1075 	if (brand_info->emul_path != NULL &&
1076 	    brand_info->emul_path[0] != '\0') {
1077 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1078 		snprintf(path, MAXPATHLEN, "%s%s",
1079 		    brand_info->emul_path, interp);
1080 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1081 		free(path, M_TEMP);
1082 		if (error == 0)
1083 			return (0);
1084 	}
1085 
1086 	if (brand_info->interp_newpath != NULL &&
1087 	    (brand_info->interp_path == NULL ||
1088 	    strcmp(interp, brand_info->interp_path) == 0)) {
1089 		error = __elfN(load_file)(imgp->proc,
1090 		    brand_info->interp_newpath, addr, entry);
1091 		if (error == 0)
1092 			return (0);
1093 	}
1094 
1095 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1096 	if (error == 0)
1097 		return (0);
1098 
1099 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1100 	return (error);
1101 }
1102 
1103 /*
1104  * Impossible et_dyn_addr initial value indicating that the real base
1105  * must be calculated later with some randomization applied.
1106  */
1107 #define	ET_DYN_ADDR_RAND	1
1108 
1109 static int
1110 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1111 {
1112 	struct thread *td;
1113 	const Elf_Ehdr *hdr;
1114 	const Elf_Phdr *phdr;
1115 	Elf_Auxargs *elf_auxargs;
1116 	struct vmspace *vmspace;
1117 	vm_map_t map;
1118 	char *interp;
1119 	Elf_Brandinfo *brand_info;
1120 	struct sysentvec *sv;
1121 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1122 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1123 	uint32_t fctl0;
1124 	int32_t osrel;
1125 	bool free_interp;
1126 	int error, i, n;
1127 
1128 	hdr = (const Elf_Ehdr *)imgp->image_header;
1129 
1130 	/*
1131 	 * Do we have a valid ELF header ?
1132 	 *
1133 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1134 	 * if particular brand doesn't support it.
1135 	 */
1136 	if (__elfN(check_header)(hdr) != 0 ||
1137 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1138 		return (-1);
1139 
1140 	/*
1141 	 * From here on down, we return an errno, not -1, as we've
1142 	 * detected an ELF file.
1143 	 */
1144 
1145 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1146 		uprintf("Program headers not in the first page\n");
1147 		return (ENOEXEC);
1148 	}
1149 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1150 	if (!aligned(phdr, Elf_Addr)) {
1151 		uprintf("Unaligned program headers\n");
1152 		return (ENOEXEC);
1153 	}
1154 
1155 	n = error = 0;
1156 	baddr = 0;
1157 	osrel = 0;
1158 	fctl0 = 0;
1159 	entry = proghdr = 0;
1160 	interp = NULL;
1161 	free_interp = false;
1162 	td = curthread;
1163 
1164 	/*
1165 	 * Somewhat arbitrary, limit accepted max alignment for the
1166 	 * loadable segment to the max supported superpage size. Too
1167 	 * large alignment requests are not useful and are indicators
1168 	 * of corrupted or outright malicious binary.
1169 	 */
1170 	maxalign = PAGE_SIZE;
1171 	maxsalign = PAGE_SIZE * 1024;
1172 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1173 		if (pagesizes[i] > maxsalign)
1174 			maxsalign = pagesizes[i];
1175 	}
1176 
1177 	mapsz = 0;
1178 
1179 	for (i = 0; i < hdr->e_phnum; i++) {
1180 		switch (phdr[i].p_type) {
1181 		case PT_LOAD:
1182 			if (n == 0)
1183 				baddr = phdr[i].p_vaddr;
1184 			if (!powerof2(phdr[i].p_align) ||
1185 			    phdr[i].p_align > maxsalign) {
1186 				uprintf("Invalid segment alignment\n");
1187 				error = ENOEXEC;
1188 				goto ret;
1189 			}
1190 			if (phdr[i].p_align > maxalign)
1191 				maxalign = phdr[i].p_align;
1192 			if (mapsz + phdr[i].p_memsz < mapsz) {
1193 				uprintf("Mapsize overflow\n");
1194 				error = ENOEXEC;
1195 				goto ret;
1196 			}
1197 			mapsz += phdr[i].p_memsz;
1198 			n++;
1199 
1200 			/*
1201 			 * If this segment contains the program headers,
1202 			 * remember their virtual address for the AT_PHDR
1203 			 * aux entry. Static binaries don't usually include
1204 			 * a PT_PHDR entry.
1205 			 */
1206 			if (phdr[i].p_offset == 0 &&
1207 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1208 			    phdr[i].p_filesz)
1209 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1210 			break;
1211 		case PT_INTERP:
1212 			/* Path to interpreter */
1213 			if (interp != NULL) {
1214 				uprintf("Multiple PT_INTERP headers\n");
1215 				error = ENOEXEC;
1216 				goto ret;
1217 			}
1218 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1219 			    &free_interp);
1220 			if (error != 0)
1221 				goto ret;
1222 			break;
1223 		case PT_GNU_STACK:
1224 			if (__elfN(nxstack))
1225 				imgp->stack_prot =
1226 				    __elfN(trans_prot)(phdr[i].p_flags);
1227 			imgp->stack_sz = phdr[i].p_memsz;
1228 			break;
1229 		case PT_PHDR: 	/* Program header table info */
1230 			proghdr = phdr[i].p_vaddr;
1231 			break;
1232 		}
1233 	}
1234 
1235 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1236 	if (brand_info == NULL) {
1237 		uprintf("ELF binary type \"%u\" not known.\n",
1238 		    hdr->e_ident[EI_OSABI]);
1239 		error = ENOEXEC;
1240 		goto ret;
1241 	}
1242 	sv = brand_info->sysvec;
1243 	et_dyn_addr = 0;
1244 	if (hdr->e_type == ET_DYN) {
1245 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1246 			uprintf("Cannot execute shared object\n");
1247 			error = ENOEXEC;
1248 			goto ret;
1249 		}
1250 		/*
1251 		 * Honour the base load address from the dso if it is
1252 		 * non-zero for some reason.
1253 		 */
1254 		if (baddr == 0) {
1255 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1256 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1257 				et_dyn_addr = __elfN(pie_base);
1258 			else if ((__elfN(pie_aslr_enabled) &&
1259 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1260 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1261 				et_dyn_addr = ET_DYN_ADDR_RAND;
1262 			else
1263 				et_dyn_addr = __elfN(pie_base);
1264 		}
1265 	}
1266 
1267 	/*
1268 	 * Avoid a possible deadlock if the current address space is destroyed
1269 	 * and that address space maps the locked vnode.  In the common case,
1270 	 * the locked vnode's v_usecount is decremented but remains greater
1271 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1272 	 * However, in cases where the vnode lock is external, such as nullfs,
1273 	 * v_usecount may become zero.
1274 	 *
1275 	 * The VV_TEXT flag prevents modifications to the executable while
1276 	 * the vnode is unlocked.
1277 	 */
1278 	VOP_UNLOCK(imgp->vp);
1279 
1280 	/*
1281 	 * Decide whether to enable randomization of user mappings.
1282 	 * First, reset user preferences for the setid binaries.
1283 	 * Then, account for the support of the randomization by the
1284 	 * ABI, by user preferences, and make special treatment for
1285 	 * PIE binaries.
1286 	 */
1287 	if (imgp->credential_setid) {
1288 		PROC_LOCK(imgp->proc);
1289 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1290 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1291 		PROC_UNLOCK(imgp->proc);
1292 	}
1293 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1294 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1295 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1296 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1297 		    ("et_dyn_addr == RAND and !ASLR"));
1298 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1299 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1300 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1301 		imgp->map_flags |= MAP_ASLR;
1302 		/*
1303 		 * If user does not care about sbrk, utilize the bss
1304 		 * grow region for mappings as well.  We can select
1305 		 * the base for the image anywere and still not suffer
1306 		 * from the fragmentation.
1307 		 */
1308 		if (!__elfN(aslr_honor_sbrk) ||
1309 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1310 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1311 		if (__elfN(aslr_stack))
1312 			imgp->map_flags |= MAP_ASLR_STACK;
1313 		if (__elfN(aslr_shared_page))
1314 			imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1315 	}
1316 
1317 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1318 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1319 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1320 		imgp->map_flags |= MAP_WXORX;
1321 
1322 	error = exec_new_vmspace(imgp, sv);
1323 
1324 	imgp->proc->p_sysent = sv;
1325 	imgp->proc->p_elf_brandinfo = brand_info;
1326 
1327 	vmspace = imgp->proc->p_vmspace;
1328 	map = &vmspace->vm_map;
1329 	maxv = sv->sv_usrstack;
1330 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1331 		maxv -= lim_max(td, RLIMIT_STACK);
1332 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1333 		uprintf("Excessive mapping size\n");
1334 		error = ENOEXEC;
1335 	}
1336 
1337 	if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) {
1338 		KASSERT((map->flags & MAP_ASLR) != 0,
1339 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1340 		error = __CONCAT(rnd_, __elfN(base))(map,
1341 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1342 		    /* reserve half of the address space to interpreter */
1343 		    maxv / 2, maxalign, &et_dyn_addr);
1344 	}
1345 
1346 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1347 	if (error != 0)
1348 		goto ret;
1349 
1350 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1351 	if (error != 0)
1352 		goto ret;
1353 
1354 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1355 	if (error != 0)
1356 		goto ret;
1357 
1358 	/*
1359 	 * We load the dynamic linker where a userland call
1360 	 * to mmap(0, ...) would put it.  The rationale behind this
1361 	 * calculation is that it leaves room for the heap to grow to
1362 	 * its maximum allowed size.
1363 	 */
1364 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1365 	    RLIMIT_DATA));
1366 	if ((map->flags & MAP_ASLR) != 0) {
1367 		maxv1 = maxv / 2 + addr / 2;
1368 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1369 		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1370 		    pagesizes[1] : pagesizes[0], &anon_loc);
1371 		if (error != 0)
1372 			goto ret;
1373 		map->anon_loc = anon_loc;
1374 	} else {
1375 		map->anon_loc = addr;
1376 	}
1377 
1378 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1379 	imgp->entry_addr = entry;
1380 
1381 	if (interp != NULL) {
1382 		VOP_UNLOCK(imgp->vp);
1383 		if ((map->flags & MAP_ASLR) != 0) {
1384 			/* Assume that interpreter fits into 1/4 of AS */
1385 			maxv1 = maxv / 2 + addr / 2;
1386 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1387 			    maxv1, PAGE_SIZE, &addr);
1388 		}
1389 		if (error == 0) {
1390 			error = __elfN(load_interp)(imgp, brand_info, interp,
1391 			    &addr, &imgp->entry_addr);
1392 		}
1393 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1394 		if (error != 0)
1395 			goto ret;
1396 	} else
1397 		addr = et_dyn_addr;
1398 
1399 	error = exec_map_stack(imgp);
1400 	if (error != 0)
1401 		goto ret;
1402 
1403 	/*
1404 	 * Construct auxargs table (used by the copyout_auxargs routine)
1405 	 */
1406 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1407 	if (elf_auxargs == NULL) {
1408 		VOP_UNLOCK(imgp->vp);
1409 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1410 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1411 	}
1412 	elf_auxargs->execfd = -1;
1413 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1414 	elf_auxargs->phent = hdr->e_phentsize;
1415 	elf_auxargs->phnum = hdr->e_phnum;
1416 	elf_auxargs->pagesz = PAGE_SIZE;
1417 	elf_auxargs->base = addr;
1418 	elf_auxargs->flags = 0;
1419 	elf_auxargs->entry = entry;
1420 	elf_auxargs->hdr_eflags = hdr->e_flags;
1421 
1422 	imgp->auxargs = elf_auxargs;
1423 	imgp->interpreted = 0;
1424 	imgp->reloc_base = addr;
1425 	imgp->proc->p_osrel = osrel;
1426 	imgp->proc->p_fctl0 = fctl0;
1427 	imgp->proc->p_elf_flags = hdr->e_flags;
1428 
1429 ret:
1430 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1431 	if (free_interp)
1432 		free(interp, M_TEMP);
1433 	return (error);
1434 }
1435 
1436 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1437 
1438 int
1439 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1440 {
1441 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1442 	Elf_Auxinfo *argarray, *pos;
1443 	struct vmspace *vmspace;
1444 	int error;
1445 
1446 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1447 	    M_WAITOK | M_ZERO);
1448 
1449 	vmspace = imgp->proc->p_vmspace;
1450 
1451 	if (args->execfd != -1)
1452 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1453 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1454 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1455 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1456 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1457 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1458 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1459 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1460 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1461 	if (imgp->execpathp != 0)
1462 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1463 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1464 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1465 	if (imgp->canary != 0) {
1466 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1467 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1468 	}
1469 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1470 	if (imgp->pagesizes != 0) {
1471 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1472 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1473 	}
1474 	if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1475 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1476 		    vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1477 	}
1478 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1479 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1480 	    imgp->sysent->sv_stackprot);
1481 	if (imgp->sysent->sv_hwcap != NULL)
1482 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1483 	if (imgp->sysent->sv_hwcap2 != NULL)
1484 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1485 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ?
1486 	    ELF_BSDF_SIGFASTBLK : 0);
1487 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1488 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1489 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1490 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1491 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1492 #ifdef RANDOM_FENESTRASX
1493 	if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1494 		AUXARGS_ENTRY(pos, AT_FXRNG,
1495 		    vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1496 	}
1497 #endif
1498 	if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1499 		AUXARGS_ENTRY(pos, AT_KPRELOAD,
1500 		    vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1501 	}
1502 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1503 
1504 	free(imgp->auxargs, M_TEMP);
1505 	imgp->auxargs = NULL;
1506 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1507 
1508 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1509 	free(argarray, M_TEMP);
1510 	return (error);
1511 }
1512 
1513 int
1514 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1515 {
1516 	Elf_Addr *base;
1517 
1518 	base = (Elf_Addr *)*stack_base;
1519 	base--;
1520 	if (elf_suword(base, imgp->args->argc) == -1)
1521 		return (EFAULT);
1522 	*stack_base = (uintptr_t)base;
1523 	return (0);
1524 }
1525 
1526 /*
1527  * Code for generating ELF core dumps.
1528  */
1529 
1530 typedef void (*segment_callback)(vm_map_entry_t, void *);
1531 
1532 /* Closure for cb_put_phdr(). */
1533 struct phdr_closure {
1534 	Elf_Phdr *phdr;		/* Program header to fill in */
1535 	Elf_Off offset;		/* Offset of segment in core file */
1536 };
1537 
1538 struct note_info {
1539 	int		type;		/* Note type. */
1540 	struct regset	*regset;	/* Register set. */
1541 	outfunc_t 	outfunc; 	/* Output function. */
1542 	void		*outarg;	/* Argument for the output function. */
1543 	size_t		outsize;	/* Output size. */
1544 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1545 };
1546 
1547 TAILQ_HEAD(note_info_list, note_info);
1548 
1549 extern int compress_user_cores;
1550 extern int compress_user_cores_level;
1551 
1552 static void cb_put_phdr(vm_map_entry_t, void *);
1553 static void cb_size_segment(vm_map_entry_t, void *);
1554 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1555     int);
1556 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1557     struct note_info_list *, size_t, int);
1558 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1559 
1560 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1561 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1562 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1563 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1564 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1565 static void note_procstat_files(void *, struct sbuf *, size_t *);
1566 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1567 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1568 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1569 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1570 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1571 
1572 static int
1573 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1574 {
1575 
1576 	return (core_write((struct coredump_params *)arg, base, len, offset,
1577 	    UIO_SYSSPACE, NULL));
1578 }
1579 
1580 int
1581 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1582 {
1583 	struct ucred *cred = td->td_ucred;
1584 	int compm, error = 0;
1585 	struct sseg_closure seginfo;
1586 	struct note_info_list notelst;
1587 	struct coredump_params params;
1588 	struct note_info *ninfo;
1589 	void *hdr, *tmpbuf;
1590 	size_t hdrsize, notesz, coresize;
1591 
1592 	hdr = NULL;
1593 	tmpbuf = NULL;
1594 	TAILQ_INIT(&notelst);
1595 
1596 	/* Size the program segments. */
1597 	__elfN(size_segments)(td, &seginfo, flags);
1598 
1599 	/*
1600 	 * Collect info about the core file header area.
1601 	 */
1602 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1603 	if (seginfo.count + 1 >= PN_XNUM)
1604 		hdrsize += sizeof(Elf_Shdr);
1605 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1606 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1607 
1608 	/* Set up core dump parameters. */
1609 	params.offset = 0;
1610 	params.active_cred = cred;
1611 	params.file_cred = NOCRED;
1612 	params.td = td;
1613 	params.vp = vp;
1614 	params.comp = NULL;
1615 
1616 #ifdef RACCT
1617 	if (racct_enable) {
1618 		PROC_LOCK(td->td_proc);
1619 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1620 		PROC_UNLOCK(td->td_proc);
1621 		if (error != 0) {
1622 			error = EFAULT;
1623 			goto done;
1624 		}
1625 	}
1626 #endif
1627 	if (coresize >= limit) {
1628 		error = EFAULT;
1629 		goto done;
1630 	}
1631 
1632 	/* Create a compression stream if necessary. */
1633 	compm = compress_user_cores;
1634 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1635 	    compm == 0)
1636 		compm = COMPRESS_GZIP;
1637 	if (compm != 0) {
1638 		params.comp = compressor_init(core_compressed_write,
1639 		    compm, CORE_BUF_SIZE,
1640 		    compress_user_cores_level, &params);
1641 		if (params.comp == NULL) {
1642 			error = EFAULT;
1643 			goto done;
1644 		}
1645 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1646         }
1647 
1648 	/*
1649 	 * Allocate memory for building the header, fill it up,
1650 	 * and write it out following the notes.
1651 	 */
1652 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1653 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1654 	    notesz, flags);
1655 
1656 	/* Write the contents of all of the writable segments. */
1657 	if (error == 0) {
1658 		Elf_Phdr *php;
1659 		off_t offset;
1660 		int i;
1661 
1662 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1663 		offset = round_page(hdrsize + notesz);
1664 		for (i = 0; i < seginfo.count; i++) {
1665 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1666 			    php->p_filesz, offset, &params, tmpbuf);
1667 			if (error != 0)
1668 				break;
1669 			offset += php->p_filesz;
1670 			php++;
1671 		}
1672 		if (error == 0 && params.comp != NULL)
1673 			error = compressor_flush(params.comp);
1674 	}
1675 	if (error) {
1676 		log(LOG_WARNING,
1677 		    "Failed to write core file for process %s (error %d)\n",
1678 		    curproc->p_comm, error);
1679 	}
1680 
1681 done:
1682 	free(tmpbuf, M_TEMP);
1683 	if (params.comp != NULL)
1684 		compressor_fini(params.comp);
1685 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1686 		TAILQ_REMOVE(&notelst, ninfo, link);
1687 		free(ninfo, M_TEMP);
1688 	}
1689 	if (hdr != NULL)
1690 		free(hdr, M_TEMP);
1691 
1692 	return (error);
1693 }
1694 
1695 /*
1696  * A callback for each_dumpable_segment() to write out the segment's
1697  * program header entry.
1698  */
1699 static void
1700 cb_put_phdr(vm_map_entry_t entry, void *closure)
1701 {
1702 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1703 	Elf_Phdr *phdr = phc->phdr;
1704 
1705 	phc->offset = round_page(phc->offset);
1706 
1707 	phdr->p_type = PT_LOAD;
1708 	phdr->p_offset = phc->offset;
1709 	phdr->p_vaddr = entry->start;
1710 	phdr->p_paddr = 0;
1711 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1712 	phdr->p_align = PAGE_SIZE;
1713 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1714 
1715 	phc->offset += phdr->p_filesz;
1716 	phc->phdr++;
1717 }
1718 
1719 /*
1720  * A callback for each_dumpable_segment() to gather information about
1721  * the number of segments and their total size.
1722  */
1723 static void
1724 cb_size_segment(vm_map_entry_t entry, void *closure)
1725 {
1726 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1727 
1728 	ssc->count++;
1729 	ssc->size += entry->end - entry->start;
1730 }
1731 
1732 void
1733 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1734     int flags)
1735 {
1736 	seginfo->count = 0;
1737 	seginfo->size = 0;
1738 
1739 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1740 }
1741 
1742 /*
1743  * For each writable segment in the process's memory map, call the given
1744  * function with a pointer to the map entry and some arbitrary
1745  * caller-supplied data.
1746  */
1747 static void
1748 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1749     int flags)
1750 {
1751 	struct proc *p = td->td_proc;
1752 	vm_map_t map = &p->p_vmspace->vm_map;
1753 	vm_map_entry_t entry;
1754 	vm_object_t backing_object, object;
1755 	bool ignore_entry;
1756 
1757 	vm_map_lock_read(map);
1758 	VM_MAP_ENTRY_FOREACH(entry, map) {
1759 		/*
1760 		 * Don't dump inaccessible mappings, deal with legacy
1761 		 * coredump mode.
1762 		 *
1763 		 * Note that read-only segments related to the elf binary
1764 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1765 		 * need to arbitrarily ignore such segments.
1766 		 */
1767 		if ((flags & SVC_ALL) == 0) {
1768 			if (elf_legacy_coredump) {
1769 				if ((entry->protection & VM_PROT_RW) !=
1770 				    VM_PROT_RW)
1771 					continue;
1772 			} else {
1773 				if ((entry->protection & VM_PROT_ALL) == 0)
1774 					continue;
1775 			}
1776 		}
1777 
1778 		/*
1779 		 * Dont include memory segment in the coredump if
1780 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1781 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1782 		 * kernel map).
1783 		 */
1784 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1785 			continue;
1786 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1787 		    (flags & SVC_ALL) == 0)
1788 			continue;
1789 		if ((object = entry->object.vm_object) == NULL)
1790 			continue;
1791 
1792 		/* Ignore memory-mapped devices and such things. */
1793 		VM_OBJECT_RLOCK(object);
1794 		while ((backing_object = object->backing_object) != NULL) {
1795 			VM_OBJECT_RLOCK(backing_object);
1796 			VM_OBJECT_RUNLOCK(object);
1797 			object = backing_object;
1798 		}
1799 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1800 		VM_OBJECT_RUNLOCK(object);
1801 		if (ignore_entry)
1802 			continue;
1803 
1804 		(*func)(entry, closure);
1805 	}
1806 	vm_map_unlock_read(map);
1807 }
1808 
1809 /*
1810  * Write the core file header to the file, including padding up to
1811  * the page boundary.
1812  */
1813 static int
1814 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1815     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1816     int flags)
1817 {
1818 	struct note_info *ninfo;
1819 	struct sbuf *sb;
1820 	int error;
1821 
1822 	/* Fill in the header. */
1823 	bzero(hdr, hdrsize);
1824 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1825 
1826 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1827 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1828 	sbuf_start_section(sb, NULL);
1829 	sbuf_bcat(sb, hdr, hdrsize);
1830 	TAILQ_FOREACH(ninfo, notelst, link)
1831 	    __elfN(putnote)(p->td, ninfo, sb);
1832 	/* Align up to a page boundary for the program segments. */
1833 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1834 	error = sbuf_finish(sb);
1835 	sbuf_delete(sb);
1836 
1837 	return (error);
1838 }
1839 
1840 void
1841 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1842     size_t *sizep)
1843 {
1844 	struct proc *p;
1845 	struct thread *thr;
1846 	size_t size;
1847 
1848 	p = td->td_proc;
1849 	size = 0;
1850 
1851 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1852 	    __elfN(note_prpsinfo), p);
1853 
1854 	/*
1855 	 * To have the debugger select the right thread (LWP) as the initial
1856 	 * thread, we dump the state of the thread passed to us in td first.
1857 	 * This is the thread that causes the core dump and thus likely to
1858 	 * be the right thread one wants to have selected in the debugger.
1859 	 */
1860 	thr = td;
1861 	while (thr != NULL) {
1862 		size += __elfN(prepare_register_notes)(td, list, thr);
1863 		size += __elfN(register_note)(td, list, -1,
1864 		    __elfN(note_threadmd), thr);
1865 
1866 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1867 		    TAILQ_NEXT(thr, td_plist);
1868 		if (thr == td)
1869 			thr = TAILQ_NEXT(thr, td_plist);
1870 	}
1871 
1872 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1873 	    __elfN(note_procstat_proc), p);
1874 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1875 	    note_procstat_files, p);
1876 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1877 	    note_procstat_vmmap, p);
1878 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1879 	    note_procstat_groups, p);
1880 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1881 	    note_procstat_umask, p);
1882 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1883 	    note_procstat_rlimit, p);
1884 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1885 	    note_procstat_osrel, p);
1886 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1887 	    __elfN(note_procstat_psstrings), p);
1888 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1889 	    __elfN(note_procstat_auxv), p);
1890 
1891 	*sizep = size;
1892 }
1893 
1894 void
1895 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1896     size_t notesz, int flags)
1897 {
1898 	Elf_Ehdr *ehdr;
1899 	Elf_Phdr *phdr;
1900 	Elf_Shdr *shdr;
1901 	struct phdr_closure phc;
1902 	Elf_Brandinfo *bi;
1903 
1904 	ehdr = (Elf_Ehdr *)hdr;
1905 	bi = td->td_proc->p_elf_brandinfo;
1906 
1907 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1908 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1909 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1910 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1911 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1912 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1913 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1914 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1915 	ehdr->e_ident[EI_ABIVERSION] = 0;
1916 	ehdr->e_ident[EI_PAD] = 0;
1917 	ehdr->e_type = ET_CORE;
1918 	ehdr->e_machine = bi->machine;
1919 	ehdr->e_version = EV_CURRENT;
1920 	ehdr->e_entry = 0;
1921 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1922 	ehdr->e_flags = td->td_proc->p_elf_flags;
1923 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1924 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1925 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1926 	ehdr->e_shstrndx = SHN_UNDEF;
1927 	if (numsegs + 1 < PN_XNUM) {
1928 		ehdr->e_phnum = numsegs + 1;
1929 		ehdr->e_shnum = 0;
1930 	} else {
1931 		ehdr->e_phnum = PN_XNUM;
1932 		ehdr->e_shnum = 1;
1933 
1934 		ehdr->e_shoff = ehdr->e_phoff +
1935 		    (numsegs + 1) * ehdr->e_phentsize;
1936 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1937 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1938 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1939 
1940 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1941 		memset(shdr, 0, sizeof(*shdr));
1942 		/*
1943 		 * A special first section is used to hold large segment and
1944 		 * section counts.  This was proposed by Sun Microsystems in
1945 		 * Solaris and has been adopted by Linux; the standard ELF
1946 		 * tools are already familiar with the technique.
1947 		 *
1948 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1949 		 * (or 12-7 depending on the version of the document) for more
1950 		 * details.
1951 		 */
1952 		shdr->sh_type = SHT_NULL;
1953 		shdr->sh_size = ehdr->e_shnum;
1954 		shdr->sh_link = ehdr->e_shstrndx;
1955 		shdr->sh_info = numsegs + 1;
1956 	}
1957 
1958 	/*
1959 	 * Fill in the program header entries.
1960 	 */
1961 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1962 
1963 	/* The note segement. */
1964 	phdr->p_type = PT_NOTE;
1965 	phdr->p_offset = hdrsize;
1966 	phdr->p_vaddr = 0;
1967 	phdr->p_paddr = 0;
1968 	phdr->p_filesz = notesz;
1969 	phdr->p_memsz = 0;
1970 	phdr->p_flags = PF_R;
1971 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1972 	phdr++;
1973 
1974 	/* All the writable segments from the program. */
1975 	phc.phdr = phdr;
1976 	phc.offset = round_page(hdrsize + notesz);
1977 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1978 }
1979 
1980 static size_t
1981 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
1982     struct regset *regset, struct thread *target_td)
1983 {
1984 	const struct sysentvec *sv;
1985 	struct note_info *ninfo;
1986 	size_t size, notesize;
1987 
1988 	size = 0;
1989 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
1990 		return (0);
1991 
1992 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1993 	ninfo->type = regset->note;
1994 	ninfo->regset = regset;
1995 	ninfo->outarg = target_td;
1996 	ninfo->outsize = size;
1997 	TAILQ_INSERT_TAIL(list, ninfo, link);
1998 
1999 	sv = td->td_proc->p_sysent;
2000 	notesize = sizeof(Elf_Note) +		/* note header */
2001 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2002 						/* note name */
2003 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2004 
2005 	return (notesize);
2006 }
2007 
2008 size_t
2009 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2010     int type, outfunc_t out, void *arg)
2011 {
2012 	const struct sysentvec *sv;
2013 	struct note_info *ninfo;
2014 	size_t size, notesize;
2015 
2016 	sv = td->td_proc->p_sysent;
2017 	size = 0;
2018 	out(arg, NULL, &size);
2019 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2020 	ninfo->type = type;
2021 	ninfo->outfunc = out;
2022 	ninfo->outarg = arg;
2023 	ninfo->outsize = size;
2024 	TAILQ_INSERT_TAIL(list, ninfo, link);
2025 
2026 	if (type == -1)
2027 		return (size);
2028 
2029 	notesize = sizeof(Elf_Note) +		/* note header */
2030 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2031 						/* note name */
2032 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2033 
2034 	return (notesize);
2035 }
2036 
2037 static size_t
2038 append_note_data(const void *src, void *dst, size_t len)
2039 {
2040 	size_t padded_len;
2041 
2042 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2043 	if (dst != NULL) {
2044 		bcopy(src, dst, len);
2045 		bzero((char *)dst + len, padded_len - len);
2046 	}
2047 	return (padded_len);
2048 }
2049 
2050 size_t
2051 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2052 {
2053 	Elf_Note *note;
2054 	char *buf;
2055 	size_t notesize;
2056 
2057 	buf = dst;
2058 	if (buf != NULL) {
2059 		note = (Elf_Note *)buf;
2060 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2061 		note->n_descsz = size;
2062 		note->n_type = type;
2063 		buf += sizeof(*note);
2064 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2065 		    sizeof(FREEBSD_ABI_VENDOR));
2066 		append_note_data(src, buf, size);
2067 		if (descp != NULL)
2068 			*descp = buf;
2069 	}
2070 
2071 	notesize = sizeof(Elf_Note) +		/* note header */
2072 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2073 						/* note name */
2074 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2075 
2076 	return (notesize);
2077 }
2078 
2079 static void
2080 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2081 {
2082 	Elf_Note note;
2083 	const struct sysentvec *sv;
2084 	ssize_t old_len, sect_len;
2085 	size_t new_len, descsz, i;
2086 
2087 	if (ninfo->type == -1) {
2088 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2089 		return;
2090 	}
2091 
2092 	sv = td->td_proc->p_sysent;
2093 
2094 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2095 	note.n_descsz = ninfo->outsize;
2096 	note.n_type = ninfo->type;
2097 
2098 	sbuf_bcat(sb, &note, sizeof(note));
2099 	sbuf_start_section(sb, &old_len);
2100 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2101 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2102 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2103 	if (note.n_descsz == 0)
2104 		return;
2105 	sbuf_start_section(sb, &old_len);
2106 	if (ninfo->regset != NULL) {
2107 		struct regset *regset = ninfo->regset;
2108 		void *buf;
2109 
2110 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2111 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2112 		sbuf_bcat(sb, buf, ninfo->outsize);
2113 		free(buf, M_TEMP);
2114 	} else
2115 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2116 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2117 	if (sect_len < 0)
2118 		return;
2119 
2120 	new_len = (size_t)sect_len;
2121 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2122 	if (new_len < descsz) {
2123 		/*
2124 		 * It is expected that individual note emitters will correctly
2125 		 * predict their expected output size and fill up to that size
2126 		 * themselves, padding in a format-specific way if needed.
2127 		 * However, in case they don't, just do it here with zeros.
2128 		 */
2129 		for (i = 0; i < descsz - new_len; i++)
2130 			sbuf_putc(sb, 0);
2131 	} else if (new_len > descsz) {
2132 		/*
2133 		 * We can't always truncate sb -- we may have drained some
2134 		 * of it already.
2135 		 */
2136 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2137 		    "read it (%zu > %zu).  Since it is longer than "
2138 		    "expected, this coredump's notes are corrupt.  THIS "
2139 		    "IS A BUG in the note_procstat routine for type %u.\n",
2140 		    __func__, (unsigned)note.n_type, new_len, descsz,
2141 		    (unsigned)note.n_type));
2142 	}
2143 }
2144 
2145 /*
2146  * Miscellaneous note out functions.
2147  */
2148 
2149 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2150 #include <compat/freebsd32/freebsd32.h>
2151 #include <compat/freebsd32/freebsd32_signal.h>
2152 
2153 typedef struct prstatus32 elf_prstatus_t;
2154 typedef struct prpsinfo32 elf_prpsinfo_t;
2155 typedef struct fpreg32 elf_prfpregset_t;
2156 typedef struct fpreg32 elf_fpregset_t;
2157 typedef struct reg32 elf_gregset_t;
2158 typedef struct thrmisc32 elf_thrmisc_t;
2159 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2160 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2161 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2162 typedef uint32_t elf_ps_strings_t;
2163 #else
2164 typedef prstatus_t elf_prstatus_t;
2165 typedef prpsinfo_t elf_prpsinfo_t;
2166 typedef prfpregset_t elf_prfpregset_t;
2167 typedef prfpregset_t elf_fpregset_t;
2168 typedef gregset_t elf_gregset_t;
2169 typedef thrmisc_t elf_thrmisc_t;
2170 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2171 #define ELF_KERN_PROC_MASK	0
2172 typedef struct kinfo_proc elf_kinfo_proc_t;
2173 typedef vm_offset_t elf_ps_strings_t;
2174 #endif
2175 
2176 static void
2177 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2178 {
2179 	struct sbuf sbarg;
2180 	size_t len;
2181 	char *cp, *end;
2182 	struct proc *p;
2183 	elf_prpsinfo_t *psinfo;
2184 	int error;
2185 
2186 	p = arg;
2187 	if (sb != NULL) {
2188 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2189 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2190 		psinfo->pr_version = PRPSINFO_VERSION;
2191 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2192 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2193 		PROC_LOCK(p);
2194 		if (p->p_args != NULL) {
2195 			len = sizeof(psinfo->pr_psargs) - 1;
2196 			if (len > p->p_args->ar_length)
2197 				len = p->p_args->ar_length;
2198 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2199 			PROC_UNLOCK(p);
2200 			error = 0;
2201 		} else {
2202 			_PHOLD(p);
2203 			PROC_UNLOCK(p);
2204 			sbuf_new(&sbarg, psinfo->pr_psargs,
2205 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2206 			error = proc_getargv(curthread, p, &sbarg);
2207 			PRELE(p);
2208 			if (sbuf_finish(&sbarg) == 0) {
2209 				len = sbuf_len(&sbarg);
2210 				if (len > 0)
2211 					len--;
2212 			} else {
2213 				len = sizeof(psinfo->pr_psargs) - 1;
2214 			}
2215 			sbuf_delete(&sbarg);
2216 		}
2217 		if (error != 0 || len == 0 || (ssize_t)len == -1)
2218 			strlcpy(psinfo->pr_psargs, p->p_comm,
2219 			    sizeof(psinfo->pr_psargs));
2220 		else {
2221 			KASSERT(len < sizeof(psinfo->pr_psargs),
2222 			    ("len is too long: %zu vs %zu", len,
2223 			    sizeof(psinfo->pr_psargs)));
2224 			cp = psinfo->pr_psargs;
2225 			end = cp + len - 1;
2226 			for (;;) {
2227 				cp = memchr(cp, '\0', end - cp);
2228 				if (cp == NULL)
2229 					break;
2230 				*cp = ' ';
2231 			}
2232 		}
2233 		psinfo->pr_pid = p->p_pid;
2234 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2235 		free(psinfo, M_TEMP);
2236 	}
2237 	*sizep = sizeof(*psinfo);
2238 }
2239 
2240 static bool
2241 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2242     size_t *sizep)
2243 {
2244 	elf_prstatus_t *status;
2245 
2246 	if (buf != NULL) {
2247 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2248 		    __func__));
2249 		status = buf;
2250 		memset(status, 0, *sizep);
2251 		status->pr_version = PRSTATUS_VERSION;
2252 		status->pr_statussz = sizeof(elf_prstatus_t);
2253 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2254 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2255 		status->pr_osreldate = osreldate;
2256 		status->pr_cursig = td->td_proc->p_sig;
2257 		status->pr_pid = td->td_tid;
2258 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2259 		fill_regs32(td, &status->pr_reg);
2260 #else
2261 		fill_regs(td, &status->pr_reg);
2262 #endif
2263 	}
2264 	*sizep = sizeof(*status);
2265 	return (true);
2266 }
2267 
2268 static bool
2269 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2270     size_t size)
2271 {
2272 	elf_prstatus_t *status;
2273 
2274 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2275 	status = buf;
2276 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2277 	set_regs32(td, &status->pr_reg);
2278 #else
2279 	set_regs(td, &status->pr_reg);
2280 #endif
2281 	return (true);
2282 }
2283 
2284 static struct regset __elfN(regset_prstatus) = {
2285 	.note = NT_PRSTATUS,
2286 	.size = sizeof(elf_prstatus_t),
2287 	.get = __elfN(get_prstatus),
2288 	.set = __elfN(set_prstatus),
2289 };
2290 ELF_REGSET(__elfN(regset_prstatus));
2291 
2292 static bool
2293 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2294     size_t *sizep)
2295 {
2296 	elf_prfpregset_t *fpregset;
2297 
2298 	if (buf != NULL) {
2299 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2300 		    __func__));
2301 		fpregset = buf;
2302 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2303 		fill_fpregs32(td, fpregset);
2304 #else
2305 		fill_fpregs(td, fpregset);
2306 #endif
2307 	}
2308 	*sizep = sizeof(*fpregset);
2309 	return (true);
2310 }
2311 
2312 static bool
2313 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2314     size_t size)
2315 {
2316 	elf_prfpregset_t *fpregset;
2317 
2318 	fpregset = buf;
2319 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2320 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2321 	set_fpregs32(td, fpregset);
2322 #else
2323 	set_fpregs(td, fpregset);
2324 #endif
2325 	return (true);
2326 }
2327 
2328 static struct regset __elfN(regset_fpregset) = {
2329 	.note = NT_FPREGSET,
2330 	.size = sizeof(elf_prfpregset_t),
2331 	.get = __elfN(get_fpregset),
2332 	.set = __elfN(set_fpregset),
2333 };
2334 ELF_REGSET(__elfN(regset_fpregset));
2335 
2336 static bool
2337 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2338     size_t *sizep)
2339 {
2340 	elf_thrmisc_t *thrmisc;
2341 
2342 	if (buf != NULL) {
2343 		KASSERT(*sizep == sizeof(*thrmisc),
2344 		    ("%s: invalid size", __func__));
2345 		thrmisc = buf;
2346 		bzero(thrmisc, sizeof(*thrmisc));
2347 		strcpy(thrmisc->pr_tname, td->td_name);
2348 	}
2349 	*sizep = sizeof(*thrmisc);
2350 	return (true);
2351 }
2352 
2353 static struct regset __elfN(regset_thrmisc) = {
2354 	.note = NT_THRMISC,
2355 	.size = sizeof(elf_thrmisc_t),
2356 	.get = __elfN(get_thrmisc),
2357 };
2358 ELF_REGSET(__elfN(regset_thrmisc));
2359 
2360 static bool
2361 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2362     size_t *sizep)
2363 {
2364 	elf_lwpinfo_t pl;
2365 	size_t size;
2366 	int structsize;
2367 
2368 	size = sizeof(structsize) + sizeof(pl);
2369 	if (buf != NULL) {
2370 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2371 		structsize = sizeof(pl);
2372 		memcpy(buf, &structsize, sizeof(structsize));
2373 		bzero(&pl, sizeof(pl));
2374 		pl.pl_lwpid = td->td_tid;
2375 		pl.pl_event = PL_EVENT_NONE;
2376 		pl.pl_sigmask = td->td_sigmask;
2377 		pl.pl_siglist = td->td_siglist;
2378 		if (td->td_si.si_signo != 0) {
2379 			pl.pl_event = PL_EVENT_SIGNAL;
2380 			pl.pl_flags |= PL_FLAG_SI;
2381 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2382 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2383 #else
2384 			pl.pl_siginfo = td->td_si;
2385 #endif
2386 		}
2387 		strcpy(pl.pl_tdname, td->td_name);
2388 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2389 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2390 	}
2391 	*sizep = size;
2392 	return (true);
2393 }
2394 
2395 static struct regset __elfN(regset_lwpinfo) = {
2396 	.note = NT_PTLWPINFO,
2397 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2398 	.get = __elfN(get_lwpinfo),
2399 };
2400 ELF_REGSET(__elfN(regset_lwpinfo));
2401 
2402 static size_t
2403 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2404     struct thread *target_td)
2405 {
2406 	struct sysentvec *sv = td->td_proc->p_sysent;
2407 	struct regset **regsetp, **regset_end, *regset;
2408 	size_t size;
2409 
2410 	size = 0;
2411 
2412 	/* NT_PRSTATUS must be the first register set note. */
2413 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2414 	    target_td);
2415 
2416 	regsetp = sv->sv_regset_begin;
2417 	if (regsetp == NULL) {
2418 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2419 		size += __elfN(register_regset_note)(td, list,
2420 		    &__elfN(regset_fpregset), target_td);
2421 		return (size);
2422 	}
2423 	regset_end = sv->sv_regset_end;
2424 	MPASS(regset_end != NULL);
2425 	for (; regsetp < regset_end; regsetp++) {
2426 		regset = *regsetp;
2427 		if (regset->note == NT_PRSTATUS)
2428 			continue;
2429 		size += __elfN(register_regset_note)(td, list, regset,
2430 		    target_td);
2431 	}
2432 	return (size);
2433 }
2434 
2435 /*
2436  * Allow for MD specific notes, as well as any MD
2437  * specific preparations for writing MI notes.
2438  */
2439 static void
2440 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2441 {
2442 	struct thread *td;
2443 	void *buf;
2444 	size_t size;
2445 
2446 	td = (struct thread *)arg;
2447 	size = *sizep;
2448 	if (size != 0 && sb != NULL)
2449 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2450 	else
2451 		buf = NULL;
2452 	size = 0;
2453 	__elfN(dump_thread)(td, buf, &size);
2454 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2455 	if (size != 0 && sb != NULL)
2456 		sbuf_bcat(sb, buf, size);
2457 	free(buf, M_TEMP);
2458 	*sizep = size;
2459 }
2460 
2461 #ifdef KINFO_PROC_SIZE
2462 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2463 #endif
2464 
2465 static void
2466 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2467 {
2468 	struct proc *p;
2469 	size_t size;
2470 	int structsize;
2471 
2472 	p = arg;
2473 	size = sizeof(structsize) + p->p_numthreads *
2474 	    sizeof(elf_kinfo_proc_t);
2475 
2476 	if (sb != NULL) {
2477 		KASSERT(*sizep == size, ("invalid size"));
2478 		structsize = sizeof(elf_kinfo_proc_t);
2479 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2480 		sx_slock(&proctree_lock);
2481 		PROC_LOCK(p);
2482 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2483 		sx_sunlock(&proctree_lock);
2484 	}
2485 	*sizep = size;
2486 }
2487 
2488 #ifdef KINFO_FILE_SIZE
2489 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2490 #endif
2491 
2492 static void
2493 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2494 {
2495 	struct proc *p;
2496 	size_t size, sect_sz, i;
2497 	ssize_t start_len, sect_len;
2498 	int structsize, filedesc_flags;
2499 
2500 	if (coredump_pack_fileinfo)
2501 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2502 	else
2503 		filedesc_flags = 0;
2504 
2505 	p = arg;
2506 	structsize = sizeof(struct kinfo_file);
2507 	if (sb == NULL) {
2508 		size = 0;
2509 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2510 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2511 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2512 		PROC_LOCK(p);
2513 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2514 		sbuf_finish(sb);
2515 		sbuf_delete(sb);
2516 		*sizep = size;
2517 	} else {
2518 		sbuf_start_section(sb, &start_len);
2519 
2520 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2521 		PROC_LOCK(p);
2522 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2523 		    filedesc_flags);
2524 
2525 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2526 		if (sect_len < 0)
2527 			return;
2528 		sect_sz = sect_len;
2529 
2530 		KASSERT(sect_sz <= *sizep,
2531 		    ("kern_proc_filedesc_out did not respect maxlen; "
2532 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2533 		     sect_sz - sizeof(structsize)));
2534 
2535 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2536 			sbuf_putc(sb, 0);
2537 	}
2538 }
2539 
2540 #ifdef KINFO_VMENTRY_SIZE
2541 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2542 #endif
2543 
2544 static void
2545 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2546 {
2547 	struct proc *p;
2548 	size_t size;
2549 	int structsize, vmmap_flags;
2550 
2551 	if (coredump_pack_vmmapinfo)
2552 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2553 	else
2554 		vmmap_flags = 0;
2555 
2556 	p = arg;
2557 	structsize = sizeof(struct kinfo_vmentry);
2558 	if (sb == NULL) {
2559 		size = 0;
2560 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2561 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2562 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2563 		PROC_LOCK(p);
2564 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2565 		sbuf_finish(sb);
2566 		sbuf_delete(sb);
2567 		*sizep = size;
2568 	} else {
2569 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2570 		PROC_LOCK(p);
2571 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2572 		    vmmap_flags);
2573 	}
2574 }
2575 
2576 static void
2577 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2578 {
2579 	struct proc *p;
2580 	size_t size;
2581 	int structsize;
2582 
2583 	p = arg;
2584 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2585 	if (sb != NULL) {
2586 		KASSERT(*sizep == size, ("invalid size"));
2587 		structsize = sizeof(gid_t);
2588 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2589 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2590 		    sizeof(gid_t));
2591 	}
2592 	*sizep = size;
2593 }
2594 
2595 static void
2596 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2597 {
2598 	struct proc *p;
2599 	size_t size;
2600 	int structsize;
2601 
2602 	p = arg;
2603 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2604 	if (sb != NULL) {
2605 		KASSERT(*sizep == size, ("invalid size"));
2606 		structsize = sizeof(p->p_pd->pd_cmask);
2607 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2608 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2609 	}
2610 	*sizep = size;
2611 }
2612 
2613 static void
2614 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2615 {
2616 	struct proc *p;
2617 	struct rlimit rlim[RLIM_NLIMITS];
2618 	size_t size;
2619 	int structsize, i;
2620 
2621 	p = arg;
2622 	size = sizeof(structsize) + sizeof(rlim);
2623 	if (sb != NULL) {
2624 		KASSERT(*sizep == size, ("invalid size"));
2625 		structsize = sizeof(rlim);
2626 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2627 		PROC_LOCK(p);
2628 		for (i = 0; i < RLIM_NLIMITS; i++)
2629 			lim_rlimit_proc(p, i, &rlim[i]);
2630 		PROC_UNLOCK(p);
2631 		sbuf_bcat(sb, rlim, sizeof(rlim));
2632 	}
2633 	*sizep = size;
2634 }
2635 
2636 static void
2637 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2638 {
2639 	struct proc *p;
2640 	size_t size;
2641 	int structsize;
2642 
2643 	p = arg;
2644 	size = sizeof(structsize) + sizeof(p->p_osrel);
2645 	if (sb != NULL) {
2646 		KASSERT(*sizep == size, ("invalid size"));
2647 		structsize = sizeof(p->p_osrel);
2648 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2649 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2650 	}
2651 	*sizep = size;
2652 }
2653 
2654 static void
2655 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2656 {
2657 	struct proc *p;
2658 	elf_ps_strings_t ps_strings;
2659 	size_t size;
2660 	int structsize;
2661 
2662 	p = arg;
2663 	size = sizeof(structsize) + sizeof(ps_strings);
2664 	if (sb != NULL) {
2665 		KASSERT(*sizep == size, ("invalid size"));
2666 		structsize = sizeof(ps_strings);
2667 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2668 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2669 #else
2670 		ps_strings = PROC_PS_STRINGS(p);
2671 #endif
2672 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2673 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2674 	}
2675 	*sizep = size;
2676 }
2677 
2678 static void
2679 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2680 {
2681 	struct proc *p;
2682 	size_t size;
2683 	int structsize;
2684 
2685 	p = arg;
2686 	if (sb == NULL) {
2687 		size = 0;
2688 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2689 		    SBUF_FIXEDLEN);
2690 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2691 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2692 		PHOLD(p);
2693 		proc_getauxv(curthread, p, sb);
2694 		PRELE(p);
2695 		sbuf_finish(sb);
2696 		sbuf_delete(sb);
2697 		*sizep = size;
2698 	} else {
2699 		structsize = sizeof(Elf_Auxinfo);
2700 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2701 		PHOLD(p);
2702 		proc_getauxv(curthread, p, sb);
2703 		PRELE(p);
2704 	}
2705 }
2706 
2707 static bool
2708 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2709     const char *note_vendor, const Elf_Phdr *pnote,
2710     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2711 {
2712 	const Elf_Note *note, *note0, *note_end;
2713 	const char *note_name;
2714 	char *buf;
2715 	int i, error;
2716 	bool res;
2717 
2718 	/* We need some limit, might as well use PAGE_SIZE. */
2719 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2720 		return (false);
2721 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2722 	if (pnote->p_offset > PAGE_SIZE ||
2723 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2724 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2725 		if (buf == NULL) {
2726 			VOP_UNLOCK(imgp->vp);
2727 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2728 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2729 		}
2730 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2731 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2732 		    curthread->td_ucred, NOCRED, NULL, curthread);
2733 		if (error != 0) {
2734 			uprintf("i/o error PT_NOTE\n");
2735 			goto retf;
2736 		}
2737 		note = note0 = (const Elf_Note *)buf;
2738 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2739 	} else {
2740 		note = note0 = (const Elf_Note *)(imgp->image_header +
2741 		    pnote->p_offset);
2742 		note_end = (const Elf_Note *)(imgp->image_header +
2743 		    pnote->p_offset + pnote->p_filesz);
2744 		buf = NULL;
2745 	}
2746 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2747 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2748 		    (const char *)note < sizeof(Elf_Note)) {
2749 			goto retf;
2750 		}
2751 		if (note->n_namesz != checknote->n_namesz ||
2752 		    note->n_descsz != checknote->n_descsz ||
2753 		    note->n_type != checknote->n_type)
2754 			goto nextnote;
2755 		note_name = (const char *)(note + 1);
2756 		if (note_name + checknote->n_namesz >=
2757 		    (const char *)note_end || strncmp(note_vendor,
2758 		    note_name, checknote->n_namesz) != 0)
2759 			goto nextnote;
2760 
2761 		if (cb(note, cb_arg, &res))
2762 			goto ret;
2763 nextnote:
2764 		note = (const Elf_Note *)((const char *)(note + 1) +
2765 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2766 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2767 	}
2768 retf:
2769 	res = false;
2770 ret:
2771 	free(buf, M_TEMP);
2772 	return (res);
2773 }
2774 
2775 struct brandnote_cb_arg {
2776 	Elf_Brandnote *brandnote;
2777 	int32_t *osrel;
2778 };
2779 
2780 static bool
2781 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2782 {
2783 	struct brandnote_cb_arg *arg;
2784 
2785 	arg = arg0;
2786 
2787 	/*
2788 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2789 	 * necessary.
2790 	 */
2791 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2792 	    arg->brandnote->trans_osrel != NULL ?
2793 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2794 
2795 	return (true);
2796 }
2797 
2798 static Elf_Note fctl_note = {
2799 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2800 	.n_descsz = sizeof(uint32_t),
2801 	.n_type = NT_FREEBSD_FEATURE_CTL,
2802 };
2803 
2804 struct fctl_cb_arg {
2805 	bool *has_fctl0;
2806 	uint32_t *fctl0;
2807 };
2808 
2809 static bool
2810 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2811 {
2812 	struct fctl_cb_arg *arg;
2813 	const Elf32_Word *desc;
2814 	uintptr_t p;
2815 
2816 	arg = arg0;
2817 	p = (uintptr_t)(note + 1);
2818 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2819 	desc = (const Elf32_Word *)p;
2820 	*arg->has_fctl0 = true;
2821 	*arg->fctl0 = desc[0];
2822 	*res = true;
2823 	return (true);
2824 }
2825 
2826 /*
2827  * Try to find the appropriate ABI-note section for checknote, fetch
2828  * the osreldate and feature control flags for binary from the ELF
2829  * OSABI-note.  Only the first page of the image is searched, the same
2830  * as for headers.
2831  */
2832 static bool
2833 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2834     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2835 {
2836 	const Elf_Phdr *phdr;
2837 	const Elf_Ehdr *hdr;
2838 	struct brandnote_cb_arg b_arg;
2839 	struct fctl_cb_arg f_arg;
2840 	int i, j;
2841 
2842 	hdr = (const Elf_Ehdr *)imgp->image_header;
2843 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2844 	b_arg.brandnote = brandnote;
2845 	b_arg.osrel = osrel;
2846 	f_arg.has_fctl0 = has_fctl0;
2847 	f_arg.fctl0 = fctl0;
2848 
2849 	for (i = 0; i < hdr->e_phnum; i++) {
2850 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2851 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2852 		    &b_arg)) {
2853 			for (j = 0; j < hdr->e_phnum; j++) {
2854 				if (phdr[j].p_type == PT_NOTE &&
2855 				    __elfN(parse_notes)(imgp, &fctl_note,
2856 				    FREEBSD_ABI_VENDOR, &phdr[j],
2857 				    note_fctl_cb, &f_arg))
2858 					break;
2859 			}
2860 			return (true);
2861 		}
2862 	}
2863 	return (false);
2864 
2865 }
2866 
2867 /*
2868  * Tell kern_execve.c about it, with a little help from the linker.
2869  */
2870 static struct execsw __elfN(execsw) = {
2871 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2872 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2873 };
2874 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2875 
2876 static vm_prot_t
2877 __elfN(trans_prot)(Elf_Word flags)
2878 {
2879 	vm_prot_t prot;
2880 
2881 	prot = 0;
2882 	if (flags & PF_X)
2883 		prot |= VM_PROT_EXECUTE;
2884 	if (flags & PF_W)
2885 		prot |= VM_PROT_WRITE;
2886 	if (flags & PF_R)
2887 		prot |= VM_PROT_READ;
2888 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2889 	if (i386_read_exec && (flags & PF_R))
2890 		prot |= VM_PROT_EXECUTE;
2891 #endif
2892 	return (prot);
2893 }
2894 
2895 static Elf_Word
2896 __elfN(untrans_prot)(vm_prot_t prot)
2897 {
2898 	Elf_Word flags;
2899 
2900 	flags = 0;
2901 	if (prot & VM_PROT_EXECUTE)
2902 		flags |= PF_X;
2903 	if (prot & VM_PROT_READ)
2904 		flags |= PF_R;
2905 	if (prot & VM_PROT_WRITE)
2906 		flags |= PF_W;
2907 	return (flags);
2908 }
2909