1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 106 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 107 ""); 108 109 #define CORE_BUF_SIZE (16 * 1024) 110 111 int __elfN(fallback_brand) = -1; 112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 113 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 114 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 115 116 static int elf_legacy_coredump = 0; 117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 118 &elf_legacy_coredump, 0, 119 "include all and only RW pages in core dumps"); 120 121 int __elfN(nxstack) = 122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 123 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 124 defined(__riscv) 125 1; 126 #else 127 0; 128 #endif 129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 132 133 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 134 int i386_read_exec = 0; 135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 136 "enable execution from readable segments"); 137 #endif 138 139 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 140 static int 141 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 142 { 143 u_long val; 144 int error; 145 146 val = __elfN(pie_base); 147 error = sysctl_handle_long(oidp, &val, 0, req); 148 if (error != 0 || req->newptr == NULL) 149 return (error); 150 if ((val & PAGE_MASK) != 0) 151 return (EINVAL); 152 __elfN(pie_base) = val; 153 return (0); 154 } 155 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 156 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 157 sysctl_pie_base, "LU", 158 "PIE load base without randomization"); 159 160 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 161 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 162 ""); 163 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 164 165 static int __elfN(aslr_enabled) = 0; 166 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 167 &__elfN(aslr_enabled), 0, 168 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 169 ": enable address map randomization"); 170 171 static int __elfN(pie_aslr_enabled) = 0; 172 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 173 &__elfN(pie_aslr_enabled), 0, 174 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 175 ": enable address map randomization for PIE binaries"); 176 177 static int __elfN(aslr_honor_sbrk) = 1; 178 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 179 &__elfN(aslr_honor_sbrk), 0, 180 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 181 182 static int __elfN(aslr_stack_gap) = 3; 183 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 184 &__elfN(aslr_stack_gap), 0, 185 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 186 ": maximum percentage of main stack to waste on a random gap"); 187 188 static int __elfN(sigfastblock) = 1; 189 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 190 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 191 "enable sigfastblock for new processes"); 192 193 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 194 195 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 196 197 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 198 199 Elf_Brandnote __elfN(freebsd_brandnote) = { 200 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 201 .hdr.n_descsz = sizeof(int32_t), 202 .hdr.n_type = NT_FREEBSD_ABI_TAG, 203 .vendor = FREEBSD_ABI_VENDOR, 204 .flags = BN_TRANSLATE_OSREL, 205 .trans_osrel = __elfN(freebsd_trans_osrel) 206 }; 207 208 static bool 209 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 210 { 211 uintptr_t p; 212 213 p = (uintptr_t)(note + 1); 214 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 215 *osrel = *(const int32_t *)(p); 216 217 return (true); 218 } 219 220 static const char GNU_ABI_VENDOR[] = "GNU"; 221 static int GNU_KFREEBSD_ABI_DESC = 3; 222 223 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 224 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 225 .hdr.n_descsz = 16, /* XXX at least 16 */ 226 .hdr.n_type = 1, 227 .vendor = GNU_ABI_VENDOR, 228 .flags = BN_TRANSLATE_OSREL, 229 .trans_osrel = kfreebsd_trans_osrel 230 }; 231 232 static bool 233 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 234 { 235 const Elf32_Word *desc; 236 uintptr_t p; 237 238 p = (uintptr_t)(note + 1); 239 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 240 241 desc = (const Elf32_Word *)p; 242 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 243 return (false); 244 245 /* 246 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 247 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 248 */ 249 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 250 251 return (true); 252 } 253 254 int 255 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 256 { 257 int i; 258 259 for (i = 0; i < MAX_BRANDS; i++) { 260 if (elf_brand_list[i] == NULL) { 261 elf_brand_list[i] = entry; 262 break; 263 } 264 } 265 if (i == MAX_BRANDS) { 266 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 267 __func__, entry); 268 return (-1); 269 } 270 return (0); 271 } 272 273 int 274 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 275 { 276 int i; 277 278 for (i = 0; i < MAX_BRANDS; i++) { 279 if (elf_brand_list[i] == entry) { 280 elf_brand_list[i] = NULL; 281 break; 282 } 283 } 284 if (i == MAX_BRANDS) 285 return (-1); 286 return (0); 287 } 288 289 int 290 __elfN(brand_inuse)(Elf_Brandinfo *entry) 291 { 292 struct proc *p; 293 int rval = FALSE; 294 295 sx_slock(&allproc_lock); 296 FOREACH_PROC_IN_SYSTEM(p) { 297 if (p->p_sysent == entry->sysvec) { 298 rval = TRUE; 299 break; 300 } 301 } 302 sx_sunlock(&allproc_lock); 303 304 return (rval); 305 } 306 307 static Elf_Brandinfo * 308 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 309 int32_t *osrel, uint32_t *fctl0) 310 { 311 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 312 Elf_Brandinfo *bi, *bi_m; 313 boolean_t ret; 314 int i, interp_name_len; 315 316 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 317 318 /* 319 * We support four types of branding -- (1) the ELF EI_OSABI field 320 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 321 * branding w/in the ELF header, (3) path of the `interp_path' 322 * field, and (4) the ".note.ABI-tag" ELF section. 323 */ 324 325 /* Look for an ".note.ABI-tag" ELF section */ 326 bi_m = NULL; 327 for (i = 0; i < MAX_BRANDS; i++) { 328 bi = elf_brand_list[i]; 329 if (bi == NULL) 330 continue; 331 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 332 continue; 333 if (hdr->e_machine == bi->machine && (bi->flags & 334 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 335 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 336 fctl0); 337 /* Give brand a chance to veto check_note's guess */ 338 if (ret && bi->header_supported) 339 ret = bi->header_supported(imgp); 340 /* 341 * If note checker claimed the binary, but the 342 * interpreter path in the image does not 343 * match default one for the brand, try to 344 * search for other brands with the same 345 * interpreter. Either there is better brand 346 * with the right interpreter, or, failing 347 * this, we return first brand which accepted 348 * our note and, optionally, header. 349 */ 350 if (ret && bi_m == NULL && interp != NULL && 351 (bi->interp_path == NULL || 352 (strlen(bi->interp_path) + 1 != interp_name_len || 353 strncmp(interp, bi->interp_path, interp_name_len) 354 != 0))) { 355 bi_m = bi; 356 ret = 0; 357 } 358 if (ret) 359 return (bi); 360 } 361 } 362 if (bi_m != NULL) 363 return (bi_m); 364 365 /* If the executable has a brand, search for it in the brand list. */ 366 for (i = 0; i < MAX_BRANDS; i++) { 367 bi = elf_brand_list[i]; 368 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 369 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 370 continue; 371 if (hdr->e_machine == bi->machine && 372 (hdr->e_ident[EI_OSABI] == bi->brand || 373 (bi->compat_3_brand != NULL && 374 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 375 bi->compat_3_brand) == 0))) { 376 /* Looks good, but give brand a chance to veto */ 377 if (bi->header_supported == NULL || 378 bi->header_supported(imgp)) { 379 /* 380 * Again, prefer strictly matching 381 * interpreter path. 382 */ 383 if (interp_name_len == 0 && 384 bi->interp_path == NULL) 385 return (bi); 386 if (bi->interp_path != NULL && 387 strlen(bi->interp_path) + 1 == 388 interp_name_len && strncmp(interp, 389 bi->interp_path, interp_name_len) == 0) 390 return (bi); 391 if (bi_m == NULL) 392 bi_m = bi; 393 } 394 } 395 } 396 if (bi_m != NULL) 397 return (bi_m); 398 399 /* No known brand, see if the header is recognized by any brand */ 400 for (i = 0; i < MAX_BRANDS; i++) { 401 bi = elf_brand_list[i]; 402 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 403 bi->header_supported == NULL) 404 continue; 405 if (hdr->e_machine == bi->machine) { 406 ret = bi->header_supported(imgp); 407 if (ret) 408 return (bi); 409 } 410 } 411 412 /* Lacking a known brand, search for a recognized interpreter. */ 413 if (interp != NULL) { 414 for (i = 0; i < MAX_BRANDS; i++) { 415 bi = elf_brand_list[i]; 416 if (bi == NULL || (bi->flags & 417 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 418 != 0) 419 continue; 420 if (hdr->e_machine == bi->machine && 421 bi->interp_path != NULL && 422 /* ELF image p_filesz includes terminating zero */ 423 strlen(bi->interp_path) + 1 == interp_name_len && 424 strncmp(interp, bi->interp_path, interp_name_len) 425 == 0 && (bi->header_supported == NULL || 426 bi->header_supported(imgp))) 427 return (bi); 428 } 429 } 430 431 /* Lacking a recognized interpreter, try the default brand */ 432 for (i = 0; i < MAX_BRANDS; i++) { 433 bi = elf_brand_list[i]; 434 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 435 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 436 continue; 437 if (hdr->e_machine == bi->machine && 438 __elfN(fallback_brand) == bi->brand && 439 (bi->header_supported == NULL || 440 bi->header_supported(imgp))) 441 return (bi); 442 } 443 return (NULL); 444 } 445 446 static int 447 __elfN(check_header)(const Elf_Ehdr *hdr) 448 { 449 Elf_Brandinfo *bi; 450 int i; 451 452 if (!IS_ELF(*hdr) || 453 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 454 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 455 hdr->e_ident[EI_VERSION] != EV_CURRENT || 456 hdr->e_phentsize != sizeof(Elf_Phdr) || 457 hdr->e_version != ELF_TARG_VER) 458 return (ENOEXEC); 459 460 /* 461 * Make sure we have at least one brand for this machine. 462 */ 463 464 for (i = 0; i < MAX_BRANDS; i++) { 465 bi = elf_brand_list[i]; 466 if (bi != NULL && bi->machine == hdr->e_machine) 467 break; 468 } 469 if (i == MAX_BRANDS) 470 return (ENOEXEC); 471 472 return (0); 473 } 474 475 static int 476 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 477 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 478 { 479 struct sf_buf *sf; 480 int error; 481 vm_offset_t off; 482 483 /* 484 * Create the page if it doesn't exist yet. Ignore errors. 485 */ 486 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 487 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 488 489 /* 490 * Find the page from the underlying object. 491 */ 492 if (object != NULL) { 493 sf = vm_imgact_map_page(object, offset); 494 if (sf == NULL) 495 return (KERN_FAILURE); 496 off = offset - trunc_page(offset); 497 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 498 end - start); 499 vm_imgact_unmap_page(sf); 500 if (error != 0) 501 return (KERN_FAILURE); 502 } 503 504 return (KERN_SUCCESS); 505 } 506 507 static int 508 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 509 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 510 int cow) 511 { 512 struct sf_buf *sf; 513 vm_offset_t off; 514 vm_size_t sz; 515 int error, locked, rv; 516 517 if (start != trunc_page(start)) { 518 rv = __elfN(map_partial)(map, object, offset, start, 519 round_page(start), prot); 520 if (rv != KERN_SUCCESS) 521 return (rv); 522 offset += round_page(start) - start; 523 start = round_page(start); 524 } 525 if (end != round_page(end)) { 526 rv = __elfN(map_partial)(map, object, offset + 527 trunc_page(end) - start, trunc_page(end), end, prot); 528 if (rv != KERN_SUCCESS) 529 return (rv); 530 end = trunc_page(end); 531 } 532 if (start >= end) 533 return (KERN_SUCCESS); 534 if ((offset & PAGE_MASK) != 0) { 535 /* 536 * The mapping is not page aligned. This means that we have 537 * to copy the data. 538 */ 539 rv = vm_map_fixed(map, NULL, 0, start, end - start, 540 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 541 if (rv != KERN_SUCCESS) 542 return (rv); 543 if (object == NULL) 544 return (KERN_SUCCESS); 545 for (; start < end; start += sz) { 546 sf = vm_imgact_map_page(object, offset); 547 if (sf == NULL) 548 return (KERN_FAILURE); 549 off = offset - trunc_page(offset); 550 sz = end - start; 551 if (sz > PAGE_SIZE - off) 552 sz = PAGE_SIZE - off; 553 error = copyout((caddr_t)sf_buf_kva(sf) + off, 554 (caddr_t)start, sz); 555 vm_imgact_unmap_page(sf); 556 if (error != 0) 557 return (KERN_FAILURE); 558 offset += sz; 559 } 560 } else { 561 vm_object_reference(object); 562 rv = vm_map_fixed(map, object, offset, start, end - start, 563 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 564 (object != NULL ? MAP_VN_EXEC : 0)); 565 if (rv != KERN_SUCCESS) { 566 locked = VOP_ISLOCKED(imgp->vp); 567 VOP_UNLOCK(imgp->vp); 568 vm_object_deallocate(object); 569 vn_lock(imgp->vp, locked | LK_RETRY); 570 return (rv); 571 } else if (object != NULL) { 572 MPASS(imgp->vp->v_object == object); 573 VOP_SET_TEXT_CHECKED(imgp->vp); 574 } 575 } 576 return (KERN_SUCCESS); 577 } 578 579 static int 580 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 581 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 582 { 583 struct sf_buf *sf; 584 size_t map_len; 585 vm_map_t map; 586 vm_object_t object; 587 vm_offset_t map_addr; 588 int error, rv, cow; 589 size_t copy_len; 590 vm_ooffset_t file_addr; 591 592 /* 593 * It's necessary to fail if the filsz + offset taken from the 594 * header is greater than the actual file pager object's size. 595 * If we were to allow this, then the vm_map_find() below would 596 * walk right off the end of the file object and into the ether. 597 * 598 * While I'm here, might as well check for something else that 599 * is invalid: filsz cannot be greater than memsz. 600 */ 601 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 602 filsz > memsz) { 603 uprintf("elf_load_section: truncated ELF file\n"); 604 return (ENOEXEC); 605 } 606 607 object = imgp->object; 608 map = &imgp->proc->p_vmspace->vm_map; 609 map_addr = trunc_page((vm_offset_t)vmaddr); 610 file_addr = trunc_page(offset); 611 612 /* 613 * We have two choices. We can either clear the data in the last page 614 * of an oversized mapping, or we can start the anon mapping a page 615 * early and copy the initialized data into that first page. We 616 * choose the second. 617 */ 618 if (filsz == 0) 619 map_len = 0; 620 else if (memsz > filsz) 621 map_len = trunc_page(offset + filsz) - file_addr; 622 else 623 map_len = round_page(offset + filsz) - file_addr; 624 625 if (map_len != 0) { 626 /* cow flags: don't dump readonly sections in core */ 627 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 628 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 629 630 rv = __elfN(map_insert)(imgp, map, object, file_addr, 631 map_addr, map_addr + map_len, prot, cow); 632 if (rv != KERN_SUCCESS) 633 return (EINVAL); 634 635 /* we can stop now if we've covered it all */ 636 if (memsz == filsz) 637 return (0); 638 } 639 640 /* 641 * We have to get the remaining bit of the file into the first part 642 * of the oversized map segment. This is normally because the .data 643 * segment in the file is extended to provide bss. It's a neat idea 644 * to try and save a page, but it's a pain in the behind to implement. 645 */ 646 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 647 filsz); 648 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 649 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 650 651 /* This had damn well better be true! */ 652 if (map_len != 0) { 653 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 654 map_addr + map_len, prot, 0); 655 if (rv != KERN_SUCCESS) 656 return (EINVAL); 657 } 658 659 if (copy_len != 0) { 660 sf = vm_imgact_map_page(object, offset + filsz); 661 if (sf == NULL) 662 return (EIO); 663 664 /* send the page fragment to user space */ 665 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 666 copy_len); 667 vm_imgact_unmap_page(sf); 668 if (error != 0) 669 return (error); 670 } 671 672 /* 673 * Remove write access to the page if it was only granted by map_insert 674 * to allow copyout. 675 */ 676 if ((prot & VM_PROT_WRITE) == 0) 677 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 678 map_len), prot, FALSE); 679 680 return (0); 681 } 682 683 static int 684 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 685 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 686 { 687 vm_prot_t prot; 688 u_long base_addr; 689 bool first; 690 int error, i; 691 692 ASSERT_VOP_LOCKED(imgp->vp, __func__); 693 694 base_addr = 0; 695 first = true; 696 697 for (i = 0; i < hdr->e_phnum; i++) { 698 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 699 continue; 700 701 /* Loadable segment */ 702 prot = __elfN(trans_prot)(phdr[i].p_flags); 703 error = __elfN(load_section)(imgp, phdr[i].p_offset, 704 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 705 phdr[i].p_memsz, phdr[i].p_filesz, prot); 706 if (error != 0) 707 return (error); 708 709 /* 710 * Establish the base address if this is the first segment. 711 */ 712 if (first) { 713 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 714 first = false; 715 } 716 } 717 718 if (base_addrp != NULL) 719 *base_addrp = base_addr; 720 721 return (0); 722 } 723 724 /* 725 * Load the file "file" into memory. It may be either a shared object 726 * or an executable. 727 * 728 * The "addr" reference parameter is in/out. On entry, it specifies 729 * the address where a shared object should be loaded. If the file is 730 * an executable, this value is ignored. On exit, "addr" specifies 731 * where the file was actually loaded. 732 * 733 * The "entry" reference parameter is out only. On exit, it specifies 734 * the entry point for the loaded file. 735 */ 736 static int 737 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 738 u_long *entry) 739 { 740 struct { 741 struct nameidata nd; 742 struct vattr attr; 743 struct image_params image_params; 744 } *tempdata; 745 const Elf_Ehdr *hdr = NULL; 746 const Elf_Phdr *phdr = NULL; 747 struct nameidata *nd; 748 struct vattr *attr; 749 struct image_params *imgp; 750 u_long rbase; 751 u_long base_addr = 0; 752 int error; 753 754 #ifdef CAPABILITY_MODE 755 /* 756 * XXXJA: This check can go away once we are sufficiently confident 757 * that the checks in namei() are correct. 758 */ 759 if (IN_CAPABILITY_MODE(curthread)) 760 return (ECAPMODE); 761 #endif 762 763 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 764 nd = &tempdata->nd; 765 attr = &tempdata->attr; 766 imgp = &tempdata->image_params; 767 768 /* 769 * Initialize part of the common data 770 */ 771 imgp->proc = p; 772 imgp->attr = attr; 773 774 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 775 UIO_SYSSPACE, file, curthread); 776 if ((error = namei(nd)) != 0) { 777 nd->ni_vp = NULL; 778 goto fail; 779 } 780 NDFREE(nd, NDF_ONLY_PNBUF); 781 imgp->vp = nd->ni_vp; 782 783 /* 784 * Check permissions, modes, uid, etc on the file, and "open" it. 785 */ 786 error = exec_check_permissions(imgp); 787 if (error) 788 goto fail; 789 790 error = exec_map_first_page(imgp); 791 if (error) 792 goto fail; 793 794 imgp->object = nd->ni_vp->v_object; 795 796 hdr = (const Elf_Ehdr *)imgp->image_header; 797 if ((error = __elfN(check_header)(hdr)) != 0) 798 goto fail; 799 if (hdr->e_type == ET_DYN) 800 rbase = *addr; 801 else if (hdr->e_type == ET_EXEC) 802 rbase = 0; 803 else { 804 error = ENOEXEC; 805 goto fail; 806 } 807 808 /* Only support headers that fit within first page for now */ 809 if ((hdr->e_phoff > PAGE_SIZE) || 810 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 811 error = ENOEXEC; 812 goto fail; 813 } 814 815 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 816 if (!aligned(phdr, Elf_Addr)) { 817 error = ENOEXEC; 818 goto fail; 819 } 820 821 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 822 if (error != 0) 823 goto fail; 824 825 *addr = base_addr; 826 *entry = (unsigned long)hdr->e_entry + rbase; 827 828 fail: 829 if (imgp->firstpage) 830 exec_unmap_first_page(imgp); 831 832 if (nd->ni_vp) { 833 if (imgp->textset) 834 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 835 vput(nd->ni_vp); 836 } 837 free(tempdata, M_TEMP); 838 839 return (error); 840 } 841 842 static u_long 843 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 844 u_int align) 845 { 846 u_long rbase, res; 847 848 MPASS(vm_map_min(map) <= minv); 849 MPASS(maxv <= vm_map_max(map)); 850 MPASS(minv < maxv); 851 MPASS(minv + align < maxv); 852 arc4rand(&rbase, sizeof(rbase), 0); 853 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 854 res &= ~((u_long)align - 1); 855 if (res >= maxv) 856 res -= align; 857 KASSERT(res >= minv, 858 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 859 res, minv, maxv, rbase)); 860 KASSERT(res < maxv, 861 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 862 res, maxv, minv, rbase)); 863 return (res); 864 } 865 866 static int 867 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 868 const Elf_Phdr *phdr, u_long et_dyn_addr) 869 { 870 struct vmspace *vmspace; 871 const char *err_str; 872 u_long text_size, data_size, total_size, text_addr, data_addr; 873 u_long seg_size, seg_addr; 874 int i; 875 876 err_str = NULL; 877 text_size = data_size = total_size = text_addr = data_addr = 0; 878 879 for (i = 0; i < hdr->e_phnum; i++) { 880 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 881 continue; 882 883 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 884 seg_size = round_page(phdr[i].p_memsz + 885 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 886 887 /* 888 * Make the largest executable segment the official 889 * text segment and all others data. 890 * 891 * Note that obreak() assumes that data_addr + data_size == end 892 * of data load area, and the ELF file format expects segments 893 * to be sorted by address. If multiple data segments exist, 894 * the last one will be used. 895 */ 896 897 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 898 text_size = seg_size; 899 text_addr = seg_addr; 900 } else { 901 data_size = seg_size; 902 data_addr = seg_addr; 903 } 904 total_size += seg_size; 905 } 906 907 if (data_addr == 0 && data_size == 0) { 908 data_addr = text_addr; 909 data_size = text_size; 910 } 911 912 /* 913 * Check limits. It should be safe to check the 914 * limits after loading the segments since we do 915 * not actually fault in all the segments pages. 916 */ 917 PROC_LOCK(imgp->proc); 918 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 919 err_str = "Data segment size exceeds process limit"; 920 else if (text_size > maxtsiz) 921 err_str = "Text segment size exceeds system limit"; 922 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 923 err_str = "Total segment size exceeds process limit"; 924 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 925 err_str = "Data segment size exceeds resource limit"; 926 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 927 err_str = "Total segment size exceeds resource limit"; 928 PROC_UNLOCK(imgp->proc); 929 if (err_str != NULL) { 930 uprintf("%s\n", err_str); 931 return (ENOMEM); 932 } 933 934 vmspace = imgp->proc->p_vmspace; 935 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 936 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 937 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 938 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 939 940 return (0); 941 } 942 943 static int 944 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 945 char **interpp, bool *free_interpp) 946 { 947 struct thread *td; 948 char *interp; 949 int error, interp_name_len; 950 951 KASSERT(phdr->p_type == PT_INTERP, 952 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 953 ASSERT_VOP_LOCKED(imgp->vp, __func__); 954 955 td = curthread; 956 957 /* Path to interpreter */ 958 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 959 uprintf("Invalid PT_INTERP\n"); 960 return (ENOEXEC); 961 } 962 963 interp_name_len = phdr->p_filesz; 964 if (phdr->p_offset > PAGE_SIZE || 965 interp_name_len > PAGE_SIZE - phdr->p_offset) { 966 /* 967 * The vnode lock might be needed by the pagedaemon to 968 * clean pages owned by the vnode. Do not allow sleep 969 * waiting for memory with the vnode locked, instead 970 * try non-sleepable allocation first, and if it 971 * fails, go to the slow path were we drop the lock 972 * and do M_WAITOK. A text reference prevents 973 * modifications to the vnode content. 974 */ 975 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 976 if (interp == NULL) { 977 VOP_UNLOCK(imgp->vp); 978 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 979 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 980 } 981 982 error = vn_rdwr(UIO_READ, imgp->vp, interp, 983 interp_name_len, phdr->p_offset, 984 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 985 NOCRED, NULL, td); 986 if (error != 0) { 987 free(interp, M_TEMP); 988 uprintf("i/o error PT_INTERP %d\n", error); 989 return (error); 990 } 991 interp[interp_name_len] = '\0'; 992 993 *interpp = interp; 994 *free_interpp = true; 995 return (0); 996 } 997 998 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 999 if (interp[interp_name_len - 1] != '\0') { 1000 uprintf("Invalid PT_INTERP\n"); 1001 return (ENOEXEC); 1002 } 1003 1004 *interpp = interp; 1005 *free_interpp = false; 1006 return (0); 1007 } 1008 1009 static int 1010 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1011 const char *interp, u_long *addr, u_long *entry) 1012 { 1013 char *path; 1014 int error; 1015 1016 if (brand_info->emul_path != NULL && 1017 brand_info->emul_path[0] != '\0') { 1018 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1019 snprintf(path, MAXPATHLEN, "%s%s", 1020 brand_info->emul_path, interp); 1021 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1022 free(path, M_TEMP); 1023 if (error == 0) 1024 return (0); 1025 } 1026 1027 if (brand_info->interp_newpath != NULL && 1028 (brand_info->interp_path == NULL || 1029 strcmp(interp, brand_info->interp_path) == 0)) { 1030 error = __elfN(load_file)(imgp->proc, 1031 brand_info->interp_newpath, addr, entry); 1032 if (error == 0) 1033 return (0); 1034 } 1035 1036 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1037 if (error == 0) 1038 return (0); 1039 1040 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1041 return (error); 1042 } 1043 1044 /* 1045 * Impossible et_dyn_addr initial value indicating that the real base 1046 * must be calculated later with some randomization applied. 1047 */ 1048 #define ET_DYN_ADDR_RAND 1 1049 1050 static int 1051 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1052 { 1053 struct thread *td; 1054 const Elf_Ehdr *hdr; 1055 const Elf_Phdr *phdr; 1056 Elf_Auxargs *elf_auxargs; 1057 struct vmspace *vmspace; 1058 vm_map_t map; 1059 char *interp; 1060 Elf_Brandinfo *brand_info; 1061 struct sysentvec *sv; 1062 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1063 u_long maxalign, mapsz, maxv, maxv1; 1064 uint32_t fctl0; 1065 int32_t osrel; 1066 bool free_interp; 1067 int error, i, n; 1068 1069 hdr = (const Elf_Ehdr *)imgp->image_header; 1070 1071 /* 1072 * Do we have a valid ELF header ? 1073 * 1074 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1075 * if particular brand doesn't support it. 1076 */ 1077 if (__elfN(check_header)(hdr) != 0 || 1078 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1079 return (-1); 1080 1081 /* 1082 * From here on down, we return an errno, not -1, as we've 1083 * detected an ELF file. 1084 */ 1085 1086 if ((hdr->e_phoff > PAGE_SIZE) || 1087 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 1088 /* Only support headers in first page for now */ 1089 uprintf("Program headers not in the first page\n"); 1090 return (ENOEXEC); 1091 } 1092 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1093 if (!aligned(phdr, Elf_Addr)) { 1094 uprintf("Unaligned program headers\n"); 1095 return (ENOEXEC); 1096 } 1097 1098 n = error = 0; 1099 baddr = 0; 1100 osrel = 0; 1101 fctl0 = 0; 1102 entry = proghdr = 0; 1103 interp = NULL; 1104 free_interp = false; 1105 td = curthread; 1106 maxalign = PAGE_SIZE; 1107 mapsz = 0; 1108 1109 for (i = 0; i < hdr->e_phnum; i++) { 1110 switch (phdr[i].p_type) { 1111 case PT_LOAD: 1112 if (n == 0) 1113 baddr = phdr[i].p_vaddr; 1114 if (phdr[i].p_align > maxalign) 1115 maxalign = phdr[i].p_align; 1116 mapsz += phdr[i].p_memsz; 1117 n++; 1118 1119 /* 1120 * If this segment contains the program headers, 1121 * remember their virtual address for the AT_PHDR 1122 * aux entry. Static binaries don't usually include 1123 * a PT_PHDR entry. 1124 */ 1125 if (phdr[i].p_offset == 0 && 1126 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1127 <= phdr[i].p_filesz) 1128 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1129 break; 1130 case PT_INTERP: 1131 /* Path to interpreter */ 1132 if (interp != NULL) { 1133 uprintf("Multiple PT_INTERP headers\n"); 1134 error = ENOEXEC; 1135 goto ret; 1136 } 1137 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1138 &free_interp); 1139 if (error != 0) 1140 goto ret; 1141 break; 1142 case PT_GNU_STACK: 1143 if (__elfN(nxstack)) 1144 imgp->stack_prot = 1145 __elfN(trans_prot)(phdr[i].p_flags); 1146 imgp->stack_sz = phdr[i].p_memsz; 1147 break; 1148 case PT_PHDR: /* Program header table info */ 1149 proghdr = phdr[i].p_vaddr; 1150 break; 1151 } 1152 } 1153 1154 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1155 if (brand_info == NULL) { 1156 uprintf("ELF binary type \"%u\" not known.\n", 1157 hdr->e_ident[EI_OSABI]); 1158 error = ENOEXEC; 1159 goto ret; 1160 } 1161 sv = brand_info->sysvec; 1162 et_dyn_addr = 0; 1163 if (hdr->e_type == ET_DYN) { 1164 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1165 uprintf("Cannot execute shared object\n"); 1166 error = ENOEXEC; 1167 goto ret; 1168 } 1169 /* 1170 * Honour the base load address from the dso if it is 1171 * non-zero for some reason. 1172 */ 1173 if (baddr == 0) { 1174 if ((sv->sv_flags & SV_ASLR) == 0 || 1175 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1176 et_dyn_addr = __elfN(pie_base); 1177 else if ((__elfN(pie_aslr_enabled) && 1178 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1179 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1180 et_dyn_addr = ET_DYN_ADDR_RAND; 1181 else 1182 et_dyn_addr = __elfN(pie_base); 1183 } 1184 } 1185 1186 /* 1187 * Avoid a possible deadlock if the current address space is destroyed 1188 * and that address space maps the locked vnode. In the common case, 1189 * the locked vnode's v_usecount is decremented but remains greater 1190 * than zero. Consequently, the vnode lock is not needed by vrele(). 1191 * However, in cases where the vnode lock is external, such as nullfs, 1192 * v_usecount may become zero. 1193 * 1194 * The VV_TEXT flag prevents modifications to the executable while 1195 * the vnode is unlocked. 1196 */ 1197 VOP_UNLOCK(imgp->vp); 1198 1199 /* 1200 * Decide whether to enable randomization of user mappings. 1201 * First, reset user preferences for the setid binaries. 1202 * Then, account for the support of the randomization by the 1203 * ABI, by user preferences, and make special treatment for 1204 * PIE binaries. 1205 */ 1206 if (imgp->credential_setid) { 1207 PROC_LOCK(imgp->proc); 1208 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1209 PROC_UNLOCK(imgp->proc); 1210 } 1211 if ((sv->sv_flags & SV_ASLR) == 0 || 1212 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1213 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1214 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1215 ("et_dyn_addr == RAND and !ASLR")); 1216 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1217 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1218 et_dyn_addr == ET_DYN_ADDR_RAND) { 1219 imgp->map_flags |= MAP_ASLR; 1220 /* 1221 * If user does not care about sbrk, utilize the bss 1222 * grow region for mappings as well. We can select 1223 * the base for the image anywere and still not suffer 1224 * from the fragmentation. 1225 */ 1226 if (!__elfN(aslr_honor_sbrk) || 1227 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1228 imgp->map_flags |= MAP_ASLR_IGNSTART; 1229 } 1230 1231 error = exec_new_vmspace(imgp, sv); 1232 vmspace = imgp->proc->p_vmspace; 1233 map = &vmspace->vm_map; 1234 1235 imgp->proc->p_sysent = sv; 1236 1237 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1238 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1239 KASSERT((map->flags & MAP_ASLR) != 0, 1240 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1241 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1242 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1243 /* reserve half of the address space to interpreter */ 1244 maxv / 2, 1UL << flsl(maxalign)); 1245 } 1246 1247 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1248 if (error != 0) 1249 goto ret; 1250 1251 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1252 if (error != 0) 1253 goto ret; 1254 1255 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1256 if (error != 0) 1257 goto ret; 1258 1259 entry = (u_long)hdr->e_entry + et_dyn_addr; 1260 1261 /* 1262 * We load the dynamic linker where a userland call 1263 * to mmap(0, ...) would put it. The rationale behind this 1264 * calculation is that it leaves room for the heap to grow to 1265 * its maximum allowed size. 1266 */ 1267 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1268 RLIMIT_DATA)); 1269 if ((map->flags & MAP_ASLR) != 0) { 1270 maxv1 = maxv / 2 + addr / 2; 1271 MPASS(maxv1 >= addr); /* No overflow */ 1272 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1273 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1274 } else { 1275 map->anon_loc = addr; 1276 } 1277 1278 imgp->entry_addr = entry; 1279 1280 if (interp != NULL) { 1281 VOP_UNLOCK(imgp->vp); 1282 if ((map->flags & MAP_ASLR) != 0) { 1283 /* Assume that interpeter fits into 1/4 of AS */ 1284 maxv1 = maxv / 2 + addr / 2; 1285 MPASS(maxv1 >= addr); /* No overflow */ 1286 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1287 maxv1, PAGE_SIZE); 1288 } 1289 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1290 &imgp->entry_addr); 1291 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1292 if (error != 0) 1293 goto ret; 1294 } else 1295 addr = et_dyn_addr; 1296 1297 /* 1298 * Construct auxargs table (used by the copyout_auxargs routine) 1299 */ 1300 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1301 if (elf_auxargs == NULL) { 1302 VOP_UNLOCK(imgp->vp); 1303 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1304 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1305 } 1306 elf_auxargs->execfd = -1; 1307 elf_auxargs->phdr = proghdr + et_dyn_addr; 1308 elf_auxargs->phent = hdr->e_phentsize; 1309 elf_auxargs->phnum = hdr->e_phnum; 1310 elf_auxargs->pagesz = PAGE_SIZE; 1311 elf_auxargs->base = addr; 1312 elf_auxargs->flags = 0; 1313 elf_auxargs->entry = entry; 1314 elf_auxargs->hdr_eflags = hdr->e_flags; 1315 1316 imgp->auxargs = elf_auxargs; 1317 imgp->interpreted = 0; 1318 imgp->reloc_base = addr; 1319 imgp->proc->p_osrel = osrel; 1320 imgp->proc->p_fctl0 = fctl0; 1321 imgp->proc->p_elf_machine = hdr->e_machine; 1322 imgp->proc->p_elf_flags = hdr->e_flags; 1323 1324 ret: 1325 if (free_interp) 1326 free(interp, M_TEMP); 1327 return (error); 1328 } 1329 1330 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1331 1332 int 1333 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1334 { 1335 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1336 Elf_Auxinfo *argarray, *pos; 1337 int error; 1338 1339 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1340 M_WAITOK | M_ZERO); 1341 1342 if (args->execfd != -1) 1343 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1344 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1345 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1346 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1347 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1348 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1349 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1350 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1351 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1352 if (imgp->execpathp != 0) 1353 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1354 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1355 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1356 if (imgp->canary != 0) { 1357 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1358 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1359 } 1360 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1361 if (imgp->pagesizes != 0) { 1362 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1363 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1364 } 1365 if (imgp->sysent->sv_timekeep_base != 0) { 1366 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1367 imgp->sysent->sv_timekeep_base); 1368 } 1369 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1370 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1371 imgp->sysent->sv_stackprot); 1372 if (imgp->sysent->sv_hwcap != NULL) 1373 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1374 if (imgp->sysent->sv_hwcap2 != NULL) 1375 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1376 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1377 ELF_BSDF_SIGFASTBLK : 0); 1378 AUXARGS_ENTRY(pos, AT_NULL, 0); 1379 1380 free(imgp->auxargs, M_TEMP); 1381 imgp->auxargs = NULL; 1382 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1383 1384 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1385 free(argarray, M_TEMP); 1386 return (error); 1387 } 1388 1389 int 1390 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1391 { 1392 Elf_Addr *base; 1393 1394 base = (Elf_Addr *)*stack_base; 1395 base--; 1396 if (suword(base, imgp->args->argc) == -1) 1397 return (EFAULT); 1398 *stack_base = (uintptr_t)base; 1399 return (0); 1400 } 1401 1402 /* 1403 * Code for generating ELF core dumps. 1404 */ 1405 1406 typedef void (*segment_callback)(vm_map_entry_t, void *); 1407 1408 /* Closure for cb_put_phdr(). */ 1409 struct phdr_closure { 1410 Elf_Phdr *phdr; /* Program header to fill in */ 1411 Elf_Off offset; /* Offset of segment in core file */ 1412 }; 1413 1414 /* Closure for cb_size_segment(). */ 1415 struct sseg_closure { 1416 int count; /* Count of writable segments. */ 1417 size_t size; /* Total size of all writable segments. */ 1418 }; 1419 1420 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1421 1422 struct note_info { 1423 int type; /* Note type. */ 1424 outfunc_t outfunc; /* Output function. */ 1425 void *outarg; /* Argument for the output function. */ 1426 size_t outsize; /* Output size. */ 1427 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1428 }; 1429 1430 TAILQ_HEAD(note_info_list, note_info); 1431 1432 /* Coredump output parameters. */ 1433 struct coredump_params { 1434 off_t offset; 1435 struct ucred *active_cred; 1436 struct ucred *file_cred; 1437 struct thread *td; 1438 struct vnode *vp; 1439 struct compressor *comp; 1440 }; 1441 1442 extern int compress_user_cores; 1443 extern int compress_user_cores_level; 1444 1445 static void cb_put_phdr(vm_map_entry_t, void *); 1446 static void cb_size_segment(vm_map_entry_t, void *); 1447 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1448 enum uio_seg); 1449 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1450 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1451 struct note_info_list *, size_t); 1452 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1453 size_t *); 1454 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1455 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1456 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1457 static int sbuf_drain_core_output(void *, const char *, int); 1458 1459 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1460 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1461 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1462 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1463 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1464 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1465 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1466 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1467 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1468 static void note_procstat_files(void *, struct sbuf *, size_t *); 1469 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1470 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1471 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1472 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1473 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1474 1475 /* 1476 * Write out a core segment to the compression stream. 1477 */ 1478 static int 1479 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1480 { 1481 u_int chunk_len; 1482 int error; 1483 1484 while (len > 0) { 1485 chunk_len = MIN(len, CORE_BUF_SIZE); 1486 1487 /* 1488 * We can get EFAULT error here. 1489 * In that case zero out the current chunk of the segment. 1490 */ 1491 error = copyin(base, buf, chunk_len); 1492 if (error != 0) 1493 bzero(buf, chunk_len); 1494 error = compressor_write(p->comp, buf, chunk_len); 1495 if (error != 0) 1496 break; 1497 base += chunk_len; 1498 len -= chunk_len; 1499 } 1500 return (error); 1501 } 1502 1503 static int 1504 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1505 { 1506 1507 return (core_write((struct coredump_params *)arg, base, len, offset, 1508 UIO_SYSSPACE)); 1509 } 1510 1511 static int 1512 core_write(struct coredump_params *p, const void *base, size_t len, 1513 off_t offset, enum uio_seg seg) 1514 { 1515 1516 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1517 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1518 p->active_cred, p->file_cred, NULL, p->td)); 1519 } 1520 1521 static int 1522 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1523 void *tmpbuf) 1524 { 1525 int error; 1526 1527 if (p->comp != NULL) 1528 return (compress_chunk(p, base, tmpbuf, len)); 1529 1530 /* 1531 * EFAULT is a non-fatal error that we can get, for example, 1532 * if the segment is backed by a file but extends beyond its 1533 * end. 1534 */ 1535 error = core_write(p, base, len, offset, UIO_USERSPACE); 1536 if (error == EFAULT) { 1537 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1538 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1539 "for process %s\n", base, len, offset, curproc->p_comm); 1540 1541 /* 1542 * Write a "real" zero byte at the end of the target region 1543 * in the case this is the last segment. 1544 * The intermediate space will be implicitly zero-filled. 1545 */ 1546 error = core_write(p, zero_region, 1, offset + len - 1, 1547 UIO_SYSSPACE); 1548 } 1549 return (error); 1550 } 1551 1552 /* 1553 * Drain into a core file. 1554 */ 1555 static int 1556 sbuf_drain_core_output(void *arg, const char *data, int len) 1557 { 1558 struct coredump_params *p; 1559 int error, locked; 1560 1561 p = (struct coredump_params *)arg; 1562 1563 /* 1564 * Some kern_proc out routines that print to this sbuf may 1565 * call us with the process lock held. Draining with the 1566 * non-sleepable lock held is unsafe. The lock is needed for 1567 * those routines when dumping a live process. In our case we 1568 * can safely release the lock before draining and acquire 1569 * again after. 1570 */ 1571 locked = PROC_LOCKED(p->td->td_proc); 1572 if (locked) 1573 PROC_UNLOCK(p->td->td_proc); 1574 if (p->comp != NULL) 1575 error = compressor_write(p->comp, __DECONST(char *, data), len); 1576 else 1577 error = core_write(p, __DECONST(void *, data), len, p->offset, 1578 UIO_SYSSPACE); 1579 if (locked) 1580 PROC_LOCK(p->td->td_proc); 1581 if (error != 0) 1582 return (-error); 1583 p->offset += len; 1584 return (len); 1585 } 1586 1587 int 1588 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1589 { 1590 struct ucred *cred = td->td_ucred; 1591 int error = 0; 1592 struct sseg_closure seginfo; 1593 struct note_info_list notelst; 1594 struct coredump_params params; 1595 struct note_info *ninfo; 1596 void *hdr, *tmpbuf; 1597 size_t hdrsize, notesz, coresize; 1598 1599 hdr = NULL; 1600 tmpbuf = NULL; 1601 TAILQ_INIT(¬elst); 1602 1603 /* Size the program segments. */ 1604 seginfo.count = 0; 1605 seginfo.size = 0; 1606 each_dumpable_segment(td, cb_size_segment, &seginfo); 1607 1608 /* 1609 * Collect info about the core file header area. 1610 */ 1611 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1612 if (seginfo.count + 1 >= PN_XNUM) 1613 hdrsize += sizeof(Elf_Shdr); 1614 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1615 coresize = round_page(hdrsize + notesz) + seginfo.size; 1616 1617 /* Set up core dump parameters. */ 1618 params.offset = 0; 1619 params.active_cred = cred; 1620 params.file_cred = NOCRED; 1621 params.td = td; 1622 params.vp = vp; 1623 params.comp = NULL; 1624 1625 #ifdef RACCT 1626 if (racct_enable) { 1627 PROC_LOCK(td->td_proc); 1628 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1629 PROC_UNLOCK(td->td_proc); 1630 if (error != 0) { 1631 error = EFAULT; 1632 goto done; 1633 } 1634 } 1635 #endif 1636 if (coresize >= limit) { 1637 error = EFAULT; 1638 goto done; 1639 } 1640 1641 /* Create a compression stream if necessary. */ 1642 if (compress_user_cores != 0) { 1643 params.comp = compressor_init(core_compressed_write, 1644 compress_user_cores, CORE_BUF_SIZE, 1645 compress_user_cores_level, ¶ms); 1646 if (params.comp == NULL) { 1647 error = EFAULT; 1648 goto done; 1649 } 1650 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1651 } 1652 1653 /* 1654 * Allocate memory for building the header, fill it up, 1655 * and write it out following the notes. 1656 */ 1657 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1658 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1659 notesz); 1660 1661 /* Write the contents of all of the writable segments. */ 1662 if (error == 0) { 1663 Elf_Phdr *php; 1664 off_t offset; 1665 int i; 1666 1667 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1668 offset = round_page(hdrsize + notesz); 1669 for (i = 0; i < seginfo.count; i++) { 1670 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1671 php->p_filesz, offset, ¶ms, tmpbuf); 1672 if (error != 0) 1673 break; 1674 offset += php->p_filesz; 1675 php++; 1676 } 1677 if (error == 0 && params.comp != NULL) 1678 error = compressor_flush(params.comp); 1679 } 1680 if (error) { 1681 log(LOG_WARNING, 1682 "Failed to write core file for process %s (error %d)\n", 1683 curproc->p_comm, error); 1684 } 1685 1686 done: 1687 free(tmpbuf, M_TEMP); 1688 if (params.comp != NULL) 1689 compressor_fini(params.comp); 1690 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1691 TAILQ_REMOVE(¬elst, ninfo, link); 1692 free(ninfo, M_TEMP); 1693 } 1694 if (hdr != NULL) 1695 free(hdr, M_TEMP); 1696 1697 return (error); 1698 } 1699 1700 /* 1701 * A callback for each_dumpable_segment() to write out the segment's 1702 * program header entry. 1703 */ 1704 static void 1705 cb_put_phdr(vm_map_entry_t entry, void *closure) 1706 { 1707 struct phdr_closure *phc = (struct phdr_closure *)closure; 1708 Elf_Phdr *phdr = phc->phdr; 1709 1710 phc->offset = round_page(phc->offset); 1711 1712 phdr->p_type = PT_LOAD; 1713 phdr->p_offset = phc->offset; 1714 phdr->p_vaddr = entry->start; 1715 phdr->p_paddr = 0; 1716 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1717 phdr->p_align = PAGE_SIZE; 1718 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1719 1720 phc->offset += phdr->p_filesz; 1721 phc->phdr++; 1722 } 1723 1724 /* 1725 * A callback for each_dumpable_segment() to gather information about 1726 * the number of segments and their total size. 1727 */ 1728 static void 1729 cb_size_segment(vm_map_entry_t entry, void *closure) 1730 { 1731 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1732 1733 ssc->count++; 1734 ssc->size += entry->end - entry->start; 1735 } 1736 1737 /* 1738 * For each writable segment in the process's memory map, call the given 1739 * function with a pointer to the map entry and some arbitrary 1740 * caller-supplied data. 1741 */ 1742 static void 1743 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1744 { 1745 struct proc *p = td->td_proc; 1746 vm_map_t map = &p->p_vmspace->vm_map; 1747 vm_map_entry_t entry; 1748 vm_object_t backing_object, object; 1749 boolean_t ignore_entry; 1750 1751 vm_map_lock_read(map); 1752 VM_MAP_ENTRY_FOREACH(entry, map) { 1753 /* 1754 * Don't dump inaccessible mappings, deal with legacy 1755 * coredump mode. 1756 * 1757 * Note that read-only segments related to the elf binary 1758 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1759 * need to arbitrarily ignore such segments. 1760 */ 1761 if (elf_legacy_coredump) { 1762 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1763 continue; 1764 } else { 1765 if ((entry->protection & VM_PROT_ALL) == 0) 1766 continue; 1767 } 1768 1769 /* 1770 * Dont include memory segment in the coredump if 1771 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1772 * madvise(2). Do not dump submaps (i.e. parts of the 1773 * kernel map). 1774 */ 1775 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1776 continue; 1777 1778 if ((object = entry->object.vm_object) == NULL) 1779 continue; 1780 1781 /* Ignore memory-mapped devices and such things. */ 1782 VM_OBJECT_RLOCK(object); 1783 while ((backing_object = object->backing_object) != NULL) { 1784 VM_OBJECT_RLOCK(backing_object); 1785 VM_OBJECT_RUNLOCK(object); 1786 object = backing_object; 1787 } 1788 ignore_entry = object->type != OBJT_DEFAULT && 1789 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1790 object->type != OBJT_PHYS; 1791 VM_OBJECT_RUNLOCK(object); 1792 if (ignore_entry) 1793 continue; 1794 1795 (*func)(entry, closure); 1796 } 1797 vm_map_unlock_read(map); 1798 } 1799 1800 /* 1801 * Write the core file header to the file, including padding up to 1802 * the page boundary. 1803 */ 1804 static int 1805 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1806 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1807 { 1808 struct note_info *ninfo; 1809 struct sbuf *sb; 1810 int error; 1811 1812 /* Fill in the header. */ 1813 bzero(hdr, hdrsize); 1814 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1815 1816 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1817 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1818 sbuf_start_section(sb, NULL); 1819 sbuf_bcat(sb, hdr, hdrsize); 1820 TAILQ_FOREACH(ninfo, notelst, link) 1821 __elfN(putnote)(ninfo, sb); 1822 /* Align up to a page boundary for the program segments. */ 1823 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1824 error = sbuf_finish(sb); 1825 sbuf_delete(sb); 1826 1827 return (error); 1828 } 1829 1830 static void 1831 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1832 size_t *sizep) 1833 { 1834 struct proc *p; 1835 struct thread *thr; 1836 size_t size; 1837 1838 p = td->td_proc; 1839 size = 0; 1840 1841 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1842 1843 /* 1844 * To have the debugger select the right thread (LWP) as the initial 1845 * thread, we dump the state of the thread passed to us in td first. 1846 * This is the thread that causes the core dump and thus likely to 1847 * be the right thread one wants to have selected in the debugger. 1848 */ 1849 thr = td; 1850 while (thr != NULL) { 1851 size += register_note(list, NT_PRSTATUS, 1852 __elfN(note_prstatus), thr); 1853 size += register_note(list, NT_FPREGSET, 1854 __elfN(note_fpregset), thr); 1855 size += register_note(list, NT_THRMISC, 1856 __elfN(note_thrmisc), thr); 1857 size += register_note(list, NT_PTLWPINFO, 1858 __elfN(note_ptlwpinfo), thr); 1859 size += register_note(list, -1, 1860 __elfN(note_threadmd), thr); 1861 1862 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1863 TAILQ_NEXT(thr, td_plist); 1864 if (thr == td) 1865 thr = TAILQ_NEXT(thr, td_plist); 1866 } 1867 1868 size += register_note(list, NT_PROCSTAT_PROC, 1869 __elfN(note_procstat_proc), p); 1870 size += register_note(list, NT_PROCSTAT_FILES, 1871 note_procstat_files, p); 1872 size += register_note(list, NT_PROCSTAT_VMMAP, 1873 note_procstat_vmmap, p); 1874 size += register_note(list, NT_PROCSTAT_GROUPS, 1875 note_procstat_groups, p); 1876 size += register_note(list, NT_PROCSTAT_UMASK, 1877 note_procstat_umask, p); 1878 size += register_note(list, NT_PROCSTAT_RLIMIT, 1879 note_procstat_rlimit, p); 1880 size += register_note(list, NT_PROCSTAT_OSREL, 1881 note_procstat_osrel, p); 1882 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1883 __elfN(note_procstat_psstrings), p); 1884 size += register_note(list, NT_PROCSTAT_AUXV, 1885 __elfN(note_procstat_auxv), p); 1886 1887 *sizep = size; 1888 } 1889 1890 static void 1891 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1892 size_t notesz) 1893 { 1894 Elf_Ehdr *ehdr; 1895 Elf_Phdr *phdr; 1896 Elf_Shdr *shdr; 1897 struct phdr_closure phc; 1898 1899 ehdr = (Elf_Ehdr *)hdr; 1900 1901 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1902 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1903 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1904 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1905 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1906 ehdr->e_ident[EI_DATA] = ELF_DATA; 1907 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1908 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1909 ehdr->e_ident[EI_ABIVERSION] = 0; 1910 ehdr->e_ident[EI_PAD] = 0; 1911 ehdr->e_type = ET_CORE; 1912 ehdr->e_machine = td->td_proc->p_elf_machine; 1913 ehdr->e_version = EV_CURRENT; 1914 ehdr->e_entry = 0; 1915 ehdr->e_phoff = sizeof(Elf_Ehdr); 1916 ehdr->e_flags = td->td_proc->p_elf_flags; 1917 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1918 ehdr->e_phentsize = sizeof(Elf_Phdr); 1919 ehdr->e_shentsize = sizeof(Elf_Shdr); 1920 ehdr->e_shstrndx = SHN_UNDEF; 1921 if (numsegs + 1 < PN_XNUM) { 1922 ehdr->e_phnum = numsegs + 1; 1923 ehdr->e_shnum = 0; 1924 } else { 1925 ehdr->e_phnum = PN_XNUM; 1926 ehdr->e_shnum = 1; 1927 1928 ehdr->e_shoff = ehdr->e_phoff + 1929 (numsegs + 1) * ehdr->e_phentsize; 1930 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1931 ("e_shoff: %zu, hdrsize - shdr: %zu", 1932 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1933 1934 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1935 memset(shdr, 0, sizeof(*shdr)); 1936 /* 1937 * A special first section is used to hold large segment and 1938 * section counts. This was proposed by Sun Microsystems in 1939 * Solaris and has been adopted by Linux; the standard ELF 1940 * tools are already familiar with the technique. 1941 * 1942 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1943 * (or 12-7 depending on the version of the document) for more 1944 * details. 1945 */ 1946 shdr->sh_type = SHT_NULL; 1947 shdr->sh_size = ehdr->e_shnum; 1948 shdr->sh_link = ehdr->e_shstrndx; 1949 shdr->sh_info = numsegs + 1; 1950 } 1951 1952 /* 1953 * Fill in the program header entries. 1954 */ 1955 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1956 1957 /* The note segement. */ 1958 phdr->p_type = PT_NOTE; 1959 phdr->p_offset = hdrsize; 1960 phdr->p_vaddr = 0; 1961 phdr->p_paddr = 0; 1962 phdr->p_filesz = notesz; 1963 phdr->p_memsz = 0; 1964 phdr->p_flags = PF_R; 1965 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1966 phdr++; 1967 1968 /* All the writable segments from the program. */ 1969 phc.phdr = phdr; 1970 phc.offset = round_page(hdrsize + notesz); 1971 each_dumpable_segment(td, cb_put_phdr, &phc); 1972 } 1973 1974 static size_t 1975 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1976 { 1977 struct note_info *ninfo; 1978 size_t size, notesize; 1979 1980 size = 0; 1981 out(arg, NULL, &size); 1982 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1983 ninfo->type = type; 1984 ninfo->outfunc = out; 1985 ninfo->outarg = arg; 1986 ninfo->outsize = size; 1987 TAILQ_INSERT_TAIL(list, ninfo, link); 1988 1989 if (type == -1) 1990 return (size); 1991 1992 notesize = sizeof(Elf_Note) + /* note header */ 1993 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1994 /* note name */ 1995 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1996 1997 return (notesize); 1998 } 1999 2000 static size_t 2001 append_note_data(const void *src, void *dst, size_t len) 2002 { 2003 size_t padded_len; 2004 2005 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2006 if (dst != NULL) { 2007 bcopy(src, dst, len); 2008 bzero((char *)dst + len, padded_len - len); 2009 } 2010 return (padded_len); 2011 } 2012 2013 size_t 2014 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2015 { 2016 Elf_Note *note; 2017 char *buf; 2018 size_t notesize; 2019 2020 buf = dst; 2021 if (buf != NULL) { 2022 note = (Elf_Note *)buf; 2023 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2024 note->n_descsz = size; 2025 note->n_type = type; 2026 buf += sizeof(*note); 2027 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2028 sizeof(FREEBSD_ABI_VENDOR)); 2029 append_note_data(src, buf, size); 2030 if (descp != NULL) 2031 *descp = buf; 2032 } 2033 2034 notesize = sizeof(Elf_Note) + /* note header */ 2035 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2036 /* note name */ 2037 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2038 2039 return (notesize); 2040 } 2041 2042 static void 2043 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2044 { 2045 Elf_Note note; 2046 ssize_t old_len, sect_len; 2047 size_t new_len, descsz, i; 2048 2049 if (ninfo->type == -1) { 2050 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2051 return; 2052 } 2053 2054 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2055 note.n_descsz = ninfo->outsize; 2056 note.n_type = ninfo->type; 2057 2058 sbuf_bcat(sb, ¬e, sizeof(note)); 2059 sbuf_start_section(sb, &old_len); 2060 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2061 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2062 if (note.n_descsz == 0) 2063 return; 2064 sbuf_start_section(sb, &old_len); 2065 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2066 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2067 if (sect_len < 0) 2068 return; 2069 2070 new_len = (size_t)sect_len; 2071 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2072 if (new_len < descsz) { 2073 /* 2074 * It is expected that individual note emitters will correctly 2075 * predict their expected output size and fill up to that size 2076 * themselves, padding in a format-specific way if needed. 2077 * However, in case they don't, just do it here with zeros. 2078 */ 2079 for (i = 0; i < descsz - new_len; i++) 2080 sbuf_putc(sb, 0); 2081 } else if (new_len > descsz) { 2082 /* 2083 * We can't always truncate sb -- we may have drained some 2084 * of it already. 2085 */ 2086 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2087 "read it (%zu > %zu). Since it is longer than " 2088 "expected, this coredump's notes are corrupt. THIS " 2089 "IS A BUG in the note_procstat routine for type %u.\n", 2090 __func__, (unsigned)note.n_type, new_len, descsz, 2091 (unsigned)note.n_type)); 2092 } 2093 } 2094 2095 /* 2096 * Miscellaneous note out functions. 2097 */ 2098 2099 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2100 #include <compat/freebsd32/freebsd32.h> 2101 #include <compat/freebsd32/freebsd32_signal.h> 2102 2103 typedef struct prstatus32 elf_prstatus_t; 2104 typedef struct prpsinfo32 elf_prpsinfo_t; 2105 typedef struct fpreg32 elf_prfpregset_t; 2106 typedef struct fpreg32 elf_fpregset_t; 2107 typedef struct reg32 elf_gregset_t; 2108 typedef struct thrmisc32 elf_thrmisc_t; 2109 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2110 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2111 typedef uint32_t elf_ps_strings_t; 2112 #else 2113 typedef prstatus_t elf_prstatus_t; 2114 typedef prpsinfo_t elf_prpsinfo_t; 2115 typedef prfpregset_t elf_prfpregset_t; 2116 typedef prfpregset_t elf_fpregset_t; 2117 typedef gregset_t elf_gregset_t; 2118 typedef thrmisc_t elf_thrmisc_t; 2119 #define ELF_KERN_PROC_MASK 0 2120 typedef struct kinfo_proc elf_kinfo_proc_t; 2121 typedef vm_offset_t elf_ps_strings_t; 2122 #endif 2123 2124 static void 2125 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2126 { 2127 struct sbuf sbarg; 2128 size_t len; 2129 char *cp, *end; 2130 struct proc *p; 2131 elf_prpsinfo_t *psinfo; 2132 int error; 2133 2134 p = (struct proc *)arg; 2135 if (sb != NULL) { 2136 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2137 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2138 psinfo->pr_version = PRPSINFO_VERSION; 2139 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2140 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2141 PROC_LOCK(p); 2142 if (p->p_args != NULL) { 2143 len = sizeof(psinfo->pr_psargs) - 1; 2144 if (len > p->p_args->ar_length) 2145 len = p->p_args->ar_length; 2146 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2147 PROC_UNLOCK(p); 2148 error = 0; 2149 } else { 2150 _PHOLD(p); 2151 PROC_UNLOCK(p); 2152 sbuf_new(&sbarg, psinfo->pr_psargs, 2153 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2154 error = proc_getargv(curthread, p, &sbarg); 2155 PRELE(p); 2156 if (sbuf_finish(&sbarg) == 0) 2157 len = sbuf_len(&sbarg) - 1; 2158 else 2159 len = sizeof(psinfo->pr_psargs) - 1; 2160 sbuf_delete(&sbarg); 2161 } 2162 if (error || len == 0) 2163 strlcpy(psinfo->pr_psargs, p->p_comm, 2164 sizeof(psinfo->pr_psargs)); 2165 else { 2166 KASSERT(len < sizeof(psinfo->pr_psargs), 2167 ("len is too long: %zu vs %zu", len, 2168 sizeof(psinfo->pr_psargs))); 2169 cp = psinfo->pr_psargs; 2170 end = cp + len - 1; 2171 for (;;) { 2172 cp = memchr(cp, '\0', end - cp); 2173 if (cp == NULL) 2174 break; 2175 *cp = ' '; 2176 } 2177 } 2178 psinfo->pr_pid = p->p_pid; 2179 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2180 free(psinfo, M_TEMP); 2181 } 2182 *sizep = sizeof(*psinfo); 2183 } 2184 2185 static void 2186 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2187 { 2188 struct thread *td; 2189 elf_prstatus_t *status; 2190 2191 td = (struct thread *)arg; 2192 if (sb != NULL) { 2193 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2194 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2195 status->pr_version = PRSTATUS_VERSION; 2196 status->pr_statussz = sizeof(elf_prstatus_t); 2197 status->pr_gregsetsz = sizeof(elf_gregset_t); 2198 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2199 status->pr_osreldate = osreldate; 2200 status->pr_cursig = td->td_proc->p_sig; 2201 status->pr_pid = td->td_tid; 2202 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2203 fill_regs32(td, &status->pr_reg); 2204 #else 2205 fill_regs(td, &status->pr_reg); 2206 #endif 2207 sbuf_bcat(sb, status, sizeof(*status)); 2208 free(status, M_TEMP); 2209 } 2210 *sizep = sizeof(*status); 2211 } 2212 2213 static void 2214 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2215 { 2216 struct thread *td; 2217 elf_prfpregset_t *fpregset; 2218 2219 td = (struct thread *)arg; 2220 if (sb != NULL) { 2221 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2222 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2223 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2224 fill_fpregs32(td, fpregset); 2225 #else 2226 fill_fpregs(td, fpregset); 2227 #endif 2228 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2229 free(fpregset, M_TEMP); 2230 } 2231 *sizep = sizeof(*fpregset); 2232 } 2233 2234 static void 2235 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2236 { 2237 struct thread *td; 2238 elf_thrmisc_t thrmisc; 2239 2240 td = (struct thread *)arg; 2241 if (sb != NULL) { 2242 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2243 bzero(&thrmisc, sizeof(thrmisc)); 2244 strcpy(thrmisc.pr_tname, td->td_name); 2245 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2246 } 2247 *sizep = sizeof(thrmisc); 2248 } 2249 2250 static void 2251 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2252 { 2253 struct thread *td; 2254 size_t size; 2255 int structsize; 2256 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2257 struct ptrace_lwpinfo32 pl; 2258 #else 2259 struct ptrace_lwpinfo pl; 2260 #endif 2261 2262 td = (struct thread *)arg; 2263 size = sizeof(structsize) + sizeof(pl); 2264 if (sb != NULL) { 2265 KASSERT(*sizep == size, ("invalid size")); 2266 structsize = sizeof(pl); 2267 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2268 bzero(&pl, sizeof(pl)); 2269 pl.pl_lwpid = td->td_tid; 2270 pl.pl_event = PL_EVENT_NONE; 2271 pl.pl_sigmask = td->td_sigmask; 2272 pl.pl_siglist = td->td_siglist; 2273 if (td->td_si.si_signo != 0) { 2274 pl.pl_event = PL_EVENT_SIGNAL; 2275 pl.pl_flags |= PL_FLAG_SI; 2276 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2277 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2278 #else 2279 pl.pl_siginfo = td->td_si; 2280 #endif 2281 } 2282 strcpy(pl.pl_tdname, td->td_name); 2283 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2284 sbuf_bcat(sb, &pl, sizeof(pl)); 2285 } 2286 *sizep = size; 2287 } 2288 2289 /* 2290 * Allow for MD specific notes, as well as any MD 2291 * specific preparations for writing MI notes. 2292 */ 2293 static void 2294 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2295 { 2296 struct thread *td; 2297 void *buf; 2298 size_t size; 2299 2300 td = (struct thread *)arg; 2301 size = *sizep; 2302 if (size != 0 && sb != NULL) 2303 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2304 else 2305 buf = NULL; 2306 size = 0; 2307 __elfN(dump_thread)(td, buf, &size); 2308 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2309 if (size != 0 && sb != NULL) 2310 sbuf_bcat(sb, buf, size); 2311 free(buf, M_TEMP); 2312 *sizep = size; 2313 } 2314 2315 #ifdef KINFO_PROC_SIZE 2316 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2317 #endif 2318 2319 static void 2320 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2321 { 2322 struct proc *p; 2323 size_t size; 2324 int structsize; 2325 2326 p = (struct proc *)arg; 2327 size = sizeof(structsize) + p->p_numthreads * 2328 sizeof(elf_kinfo_proc_t); 2329 2330 if (sb != NULL) { 2331 KASSERT(*sizep == size, ("invalid size")); 2332 structsize = sizeof(elf_kinfo_proc_t); 2333 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2334 PROC_LOCK(p); 2335 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2336 } 2337 *sizep = size; 2338 } 2339 2340 #ifdef KINFO_FILE_SIZE 2341 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2342 #endif 2343 2344 static void 2345 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2346 { 2347 struct proc *p; 2348 size_t size, sect_sz, i; 2349 ssize_t start_len, sect_len; 2350 int structsize, filedesc_flags; 2351 2352 if (coredump_pack_fileinfo) 2353 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2354 else 2355 filedesc_flags = 0; 2356 2357 p = (struct proc *)arg; 2358 structsize = sizeof(struct kinfo_file); 2359 if (sb == NULL) { 2360 size = 0; 2361 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2362 sbuf_set_drain(sb, sbuf_count_drain, &size); 2363 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2364 PROC_LOCK(p); 2365 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2366 sbuf_finish(sb); 2367 sbuf_delete(sb); 2368 *sizep = size; 2369 } else { 2370 sbuf_start_section(sb, &start_len); 2371 2372 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2373 PROC_LOCK(p); 2374 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2375 filedesc_flags); 2376 2377 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2378 if (sect_len < 0) 2379 return; 2380 sect_sz = sect_len; 2381 2382 KASSERT(sect_sz <= *sizep, 2383 ("kern_proc_filedesc_out did not respect maxlen; " 2384 "requested %zu, got %zu", *sizep - sizeof(structsize), 2385 sect_sz - sizeof(structsize))); 2386 2387 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2388 sbuf_putc(sb, 0); 2389 } 2390 } 2391 2392 #ifdef KINFO_VMENTRY_SIZE 2393 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2394 #endif 2395 2396 static void 2397 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2398 { 2399 struct proc *p; 2400 size_t size; 2401 int structsize, vmmap_flags; 2402 2403 if (coredump_pack_vmmapinfo) 2404 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2405 else 2406 vmmap_flags = 0; 2407 2408 p = (struct proc *)arg; 2409 structsize = sizeof(struct kinfo_vmentry); 2410 if (sb == NULL) { 2411 size = 0; 2412 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2413 sbuf_set_drain(sb, sbuf_count_drain, &size); 2414 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2415 PROC_LOCK(p); 2416 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2417 sbuf_finish(sb); 2418 sbuf_delete(sb); 2419 *sizep = size; 2420 } else { 2421 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2422 PROC_LOCK(p); 2423 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2424 vmmap_flags); 2425 } 2426 } 2427 2428 static void 2429 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2430 { 2431 struct proc *p; 2432 size_t size; 2433 int structsize; 2434 2435 p = (struct proc *)arg; 2436 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2437 if (sb != NULL) { 2438 KASSERT(*sizep == size, ("invalid size")); 2439 structsize = sizeof(gid_t); 2440 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2441 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2442 sizeof(gid_t)); 2443 } 2444 *sizep = size; 2445 } 2446 2447 static void 2448 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2449 { 2450 struct proc *p; 2451 size_t size; 2452 int structsize; 2453 2454 p = (struct proc *)arg; 2455 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2456 if (sb != NULL) { 2457 KASSERT(*sizep == size, ("invalid size")); 2458 structsize = sizeof(p->p_fd->fd_cmask); 2459 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2460 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2461 } 2462 *sizep = size; 2463 } 2464 2465 static void 2466 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2467 { 2468 struct proc *p; 2469 struct rlimit rlim[RLIM_NLIMITS]; 2470 size_t size; 2471 int structsize, i; 2472 2473 p = (struct proc *)arg; 2474 size = sizeof(structsize) + sizeof(rlim); 2475 if (sb != NULL) { 2476 KASSERT(*sizep == size, ("invalid size")); 2477 structsize = sizeof(rlim); 2478 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2479 PROC_LOCK(p); 2480 for (i = 0; i < RLIM_NLIMITS; i++) 2481 lim_rlimit_proc(p, i, &rlim[i]); 2482 PROC_UNLOCK(p); 2483 sbuf_bcat(sb, rlim, sizeof(rlim)); 2484 } 2485 *sizep = size; 2486 } 2487 2488 static void 2489 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2490 { 2491 struct proc *p; 2492 size_t size; 2493 int structsize; 2494 2495 p = (struct proc *)arg; 2496 size = sizeof(structsize) + sizeof(p->p_osrel); 2497 if (sb != NULL) { 2498 KASSERT(*sizep == size, ("invalid size")); 2499 structsize = sizeof(p->p_osrel); 2500 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2501 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2502 } 2503 *sizep = size; 2504 } 2505 2506 static void 2507 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2508 { 2509 struct proc *p; 2510 elf_ps_strings_t ps_strings; 2511 size_t size; 2512 int structsize; 2513 2514 p = (struct proc *)arg; 2515 size = sizeof(structsize) + sizeof(ps_strings); 2516 if (sb != NULL) { 2517 KASSERT(*sizep == size, ("invalid size")); 2518 structsize = sizeof(ps_strings); 2519 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2520 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2521 #else 2522 ps_strings = p->p_sysent->sv_psstrings; 2523 #endif 2524 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2525 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2526 } 2527 *sizep = size; 2528 } 2529 2530 static void 2531 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2532 { 2533 struct proc *p; 2534 size_t size; 2535 int structsize; 2536 2537 p = (struct proc *)arg; 2538 if (sb == NULL) { 2539 size = 0; 2540 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2541 sbuf_set_drain(sb, sbuf_count_drain, &size); 2542 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2543 PHOLD(p); 2544 proc_getauxv(curthread, p, sb); 2545 PRELE(p); 2546 sbuf_finish(sb); 2547 sbuf_delete(sb); 2548 *sizep = size; 2549 } else { 2550 structsize = sizeof(Elf_Auxinfo); 2551 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2552 PHOLD(p); 2553 proc_getauxv(curthread, p, sb); 2554 PRELE(p); 2555 } 2556 } 2557 2558 static boolean_t 2559 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2560 const char *note_vendor, const Elf_Phdr *pnote, 2561 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2562 { 2563 const Elf_Note *note, *note0, *note_end; 2564 const char *note_name; 2565 char *buf; 2566 int i, error; 2567 boolean_t res; 2568 2569 /* We need some limit, might as well use PAGE_SIZE. */ 2570 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2571 return (FALSE); 2572 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2573 if (pnote->p_offset > PAGE_SIZE || 2574 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2575 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2576 if (buf == NULL) { 2577 VOP_UNLOCK(imgp->vp); 2578 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2579 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2580 } 2581 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2582 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2583 curthread->td_ucred, NOCRED, NULL, curthread); 2584 if (error != 0) { 2585 uprintf("i/o error PT_NOTE\n"); 2586 goto retf; 2587 } 2588 note = note0 = (const Elf_Note *)buf; 2589 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2590 } else { 2591 note = note0 = (const Elf_Note *)(imgp->image_header + 2592 pnote->p_offset); 2593 note_end = (const Elf_Note *)(imgp->image_header + 2594 pnote->p_offset + pnote->p_filesz); 2595 buf = NULL; 2596 } 2597 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2598 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2599 (const char *)note < sizeof(Elf_Note)) { 2600 goto retf; 2601 } 2602 if (note->n_namesz != checknote->n_namesz || 2603 note->n_descsz != checknote->n_descsz || 2604 note->n_type != checknote->n_type) 2605 goto nextnote; 2606 note_name = (const char *)(note + 1); 2607 if (note_name + checknote->n_namesz >= 2608 (const char *)note_end || strncmp(note_vendor, 2609 note_name, checknote->n_namesz) != 0) 2610 goto nextnote; 2611 2612 if (cb(note, cb_arg, &res)) 2613 goto ret; 2614 nextnote: 2615 note = (const Elf_Note *)((const char *)(note + 1) + 2616 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2617 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2618 } 2619 retf: 2620 res = FALSE; 2621 ret: 2622 free(buf, M_TEMP); 2623 return (res); 2624 } 2625 2626 struct brandnote_cb_arg { 2627 Elf_Brandnote *brandnote; 2628 int32_t *osrel; 2629 }; 2630 2631 static boolean_t 2632 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2633 { 2634 struct brandnote_cb_arg *arg; 2635 2636 arg = arg0; 2637 2638 /* 2639 * Fetch the osreldate for binary from the ELF OSABI-note if 2640 * necessary. 2641 */ 2642 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2643 arg->brandnote->trans_osrel != NULL ? 2644 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2645 2646 return (TRUE); 2647 } 2648 2649 static Elf_Note fctl_note = { 2650 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2651 .n_descsz = sizeof(uint32_t), 2652 .n_type = NT_FREEBSD_FEATURE_CTL, 2653 }; 2654 2655 struct fctl_cb_arg { 2656 uint32_t *fctl0; 2657 }; 2658 2659 static boolean_t 2660 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2661 { 2662 struct fctl_cb_arg *arg; 2663 const Elf32_Word *desc; 2664 uintptr_t p; 2665 2666 arg = arg0; 2667 p = (uintptr_t)(note + 1); 2668 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2669 desc = (const Elf32_Word *)p; 2670 *arg->fctl0 = desc[0]; 2671 return (TRUE); 2672 } 2673 2674 /* 2675 * Try to find the appropriate ABI-note section for checknote, fetch 2676 * the osreldate and feature control flags for binary from the ELF 2677 * OSABI-note. Only the first page of the image is searched, the same 2678 * as for headers. 2679 */ 2680 static boolean_t 2681 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2682 int32_t *osrel, uint32_t *fctl0) 2683 { 2684 const Elf_Phdr *phdr; 2685 const Elf_Ehdr *hdr; 2686 struct brandnote_cb_arg b_arg; 2687 struct fctl_cb_arg f_arg; 2688 int i, j; 2689 2690 hdr = (const Elf_Ehdr *)imgp->image_header; 2691 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2692 b_arg.brandnote = brandnote; 2693 b_arg.osrel = osrel; 2694 f_arg.fctl0 = fctl0; 2695 2696 for (i = 0; i < hdr->e_phnum; i++) { 2697 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2698 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2699 &b_arg)) { 2700 for (j = 0; j < hdr->e_phnum; j++) { 2701 if (phdr[j].p_type == PT_NOTE && 2702 __elfN(parse_notes)(imgp, &fctl_note, 2703 FREEBSD_ABI_VENDOR, &phdr[j], 2704 note_fctl_cb, &f_arg)) 2705 break; 2706 } 2707 return (TRUE); 2708 } 2709 } 2710 return (FALSE); 2711 2712 } 2713 2714 /* 2715 * Tell kern_execve.c about it, with a little help from the linker. 2716 */ 2717 static struct execsw __elfN(execsw) = { 2718 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2719 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2720 }; 2721 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2722 2723 static vm_prot_t 2724 __elfN(trans_prot)(Elf_Word flags) 2725 { 2726 vm_prot_t prot; 2727 2728 prot = 0; 2729 if (flags & PF_X) 2730 prot |= VM_PROT_EXECUTE; 2731 if (flags & PF_W) 2732 prot |= VM_PROT_WRITE; 2733 if (flags & PF_R) 2734 prot |= VM_PROT_READ; 2735 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2736 if (i386_read_exec && (flags & PF_R)) 2737 prot |= VM_PROT_EXECUTE; 2738 #endif 2739 return (prot); 2740 } 2741 2742 static Elf_Word 2743 __elfN(untrans_prot)(vm_prot_t prot) 2744 { 2745 Elf_Word flags; 2746 2747 flags = 0; 2748 if (prot & VM_PROT_EXECUTE) 2749 flags |= PF_X; 2750 if (prot & VM_PROT_READ) 2751 flags |= PF_R; 2752 if (prot & VM_PROT_WRITE) 2753 flags |= PF_W; 2754 return (flags); 2755 } 2756 2757 void 2758 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) 2759 { 2760 uintptr_t range, rbase, gap; 2761 int pct; 2762 2763 if ((imgp->map_flags & MAP_ASLR) == 0) 2764 return; 2765 pct = __elfN(aslr_stack_gap); 2766 if (pct == 0) 2767 return; 2768 if (pct > 50) 2769 pct = 50; 2770 range = imgp->eff_stack_sz * pct / 100; 2771 arc4rand(&rbase, sizeof(rbase), 0); 2772 gap = rbase % range; 2773 gap &= ~(sizeof(u_long) - 1); 2774 *stack_base -= gap; 2775 } 2776