1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_gzio.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/gzio.h> 43 #include <sys/imgact.h> 44 #include <sys/imgact_elf.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/mman.h> 51 #include <sys/namei.h> 52 #include <sys/pioctl.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/racct.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sf_buf.h> 60 #include <sys/smp.h> 61 #include <sys/systm.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/sx.h> 65 #include <sys/syscall.h> 66 #include <sys/sysctl.h> 67 #include <sys/sysent.h> 68 #include <sys/vnode.h> 69 #include <sys/syslog.h> 70 #include <sys/eventhandler.h> 71 #include <sys/user.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #define CORE_BUF_SIZE (16 * 1024) 108 109 int __elfN(fallback_brand) = -1; 110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 111 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 112 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 113 114 static int elf_legacy_coredump = 0; 115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 116 &elf_legacy_coredump, 0, ""); 117 118 int __elfN(nxstack) = 119 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ 120 1; 121 #else 122 0; 123 #endif 124 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 125 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 126 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 127 128 #if __ELF_WORD_SIZE == 32 129 #if defined(__amd64__) 130 int i386_read_exec = 0; 131 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 132 "enable execution from readable segments"); 133 #endif 134 #endif 135 136 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 137 138 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 139 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 140 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 141 142 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 143 144 Elf_Brandnote __elfN(freebsd_brandnote) = { 145 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 146 .hdr.n_descsz = sizeof(int32_t), 147 .hdr.n_type = 1, 148 .vendor = FREEBSD_ABI_VENDOR, 149 .flags = BN_TRANSLATE_OSREL, 150 .trans_osrel = __elfN(freebsd_trans_osrel) 151 }; 152 153 static boolean_t 154 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 155 { 156 uintptr_t p; 157 158 p = (uintptr_t)(note + 1); 159 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 160 *osrel = *(const int32_t *)(p); 161 162 return (TRUE); 163 } 164 165 static const char GNU_ABI_VENDOR[] = "GNU"; 166 static int GNU_KFREEBSD_ABI_DESC = 3; 167 168 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 169 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 170 .hdr.n_descsz = 16, /* XXX at least 16 */ 171 .hdr.n_type = 1, 172 .vendor = GNU_ABI_VENDOR, 173 .flags = BN_TRANSLATE_OSREL, 174 .trans_osrel = kfreebsd_trans_osrel 175 }; 176 177 static boolean_t 178 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 179 { 180 const Elf32_Word *desc; 181 uintptr_t p; 182 183 p = (uintptr_t)(note + 1); 184 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 185 186 desc = (const Elf32_Word *)p; 187 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 188 return (FALSE); 189 190 /* 191 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 192 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 193 */ 194 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 195 196 return (TRUE); 197 } 198 199 int 200 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 201 { 202 int i; 203 204 for (i = 0; i < MAX_BRANDS; i++) { 205 if (elf_brand_list[i] == NULL) { 206 elf_brand_list[i] = entry; 207 break; 208 } 209 } 210 if (i == MAX_BRANDS) { 211 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 212 __func__, entry); 213 return (-1); 214 } 215 return (0); 216 } 217 218 int 219 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 220 { 221 int i; 222 223 for (i = 0; i < MAX_BRANDS; i++) { 224 if (elf_brand_list[i] == entry) { 225 elf_brand_list[i] = NULL; 226 break; 227 } 228 } 229 if (i == MAX_BRANDS) 230 return (-1); 231 return (0); 232 } 233 234 int 235 __elfN(brand_inuse)(Elf_Brandinfo *entry) 236 { 237 struct proc *p; 238 int rval = FALSE; 239 240 sx_slock(&allproc_lock); 241 FOREACH_PROC_IN_SYSTEM(p) { 242 if (p->p_sysent == entry->sysvec) { 243 rval = TRUE; 244 break; 245 } 246 } 247 sx_sunlock(&allproc_lock); 248 249 return (rval); 250 } 251 252 static Elf_Brandinfo * 253 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 254 int interp_name_len, int32_t *osrel) 255 { 256 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 257 Elf_Brandinfo *bi; 258 boolean_t ret; 259 int i; 260 261 /* 262 * We support four types of branding -- (1) the ELF EI_OSABI field 263 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 264 * branding w/in the ELF header, (3) path of the `interp_path' 265 * field, and (4) the ".note.ABI-tag" ELF section. 266 */ 267 268 /* Look for an ".note.ABI-tag" ELF section */ 269 for (i = 0; i < MAX_BRANDS; i++) { 270 bi = elf_brand_list[i]; 271 if (bi == NULL) 272 continue; 273 if (hdr->e_machine == bi->machine && (bi->flags & 274 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 275 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 276 /* Give brand a chance to veto check_note's guess */ 277 if (ret && bi->header_supported) 278 ret = bi->header_supported(imgp); 279 if (ret) 280 return (bi); 281 } 282 } 283 284 /* If the executable has a brand, search for it in the brand list. */ 285 for (i = 0; i < MAX_BRANDS; i++) { 286 bi = elf_brand_list[i]; 287 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 288 continue; 289 if (hdr->e_machine == bi->machine && 290 (hdr->e_ident[EI_OSABI] == bi->brand || 291 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 292 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) { 293 /* Looks good, but give brand a chance to veto */ 294 if (!bi->header_supported || bi->header_supported(imgp)) 295 return (bi); 296 } 297 } 298 299 /* No known brand, see if the header is recognized by any brand */ 300 for (i = 0; i < MAX_BRANDS; i++) { 301 bi = elf_brand_list[i]; 302 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 303 bi->header_supported == NULL) 304 continue; 305 if (hdr->e_machine == bi->machine) { 306 ret = bi->header_supported(imgp); 307 if (ret) 308 return (bi); 309 } 310 } 311 312 /* Lacking a known brand, search for a recognized interpreter. */ 313 if (interp != NULL) { 314 for (i = 0; i < MAX_BRANDS; i++) { 315 bi = elf_brand_list[i]; 316 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 317 continue; 318 if (hdr->e_machine == bi->machine && 319 /* ELF image p_filesz includes terminating zero */ 320 strlen(bi->interp_path) + 1 == interp_name_len && 321 strncmp(interp, bi->interp_path, interp_name_len) 322 == 0) 323 return (bi); 324 } 325 } 326 327 /* Lacking a recognized interpreter, try the default brand */ 328 for (i = 0; i < MAX_BRANDS; i++) { 329 bi = elf_brand_list[i]; 330 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 331 continue; 332 if (hdr->e_machine == bi->machine && 333 __elfN(fallback_brand) == bi->brand) 334 return (bi); 335 } 336 return (NULL); 337 } 338 339 static int 340 __elfN(check_header)(const Elf_Ehdr *hdr) 341 { 342 Elf_Brandinfo *bi; 343 int i; 344 345 if (!IS_ELF(*hdr) || 346 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 347 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 348 hdr->e_ident[EI_VERSION] != EV_CURRENT || 349 hdr->e_phentsize != sizeof(Elf_Phdr) || 350 hdr->e_version != ELF_TARG_VER) 351 return (ENOEXEC); 352 353 /* 354 * Make sure we have at least one brand for this machine. 355 */ 356 357 for (i = 0; i < MAX_BRANDS; i++) { 358 bi = elf_brand_list[i]; 359 if (bi != NULL && bi->machine == hdr->e_machine) 360 break; 361 } 362 if (i == MAX_BRANDS) 363 return (ENOEXEC); 364 365 return (0); 366 } 367 368 static int 369 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 370 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 371 { 372 struct sf_buf *sf; 373 int error; 374 vm_offset_t off; 375 376 /* 377 * Create the page if it doesn't exist yet. Ignore errors. 378 */ 379 vm_map_lock(map); 380 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 381 VM_PROT_ALL, VM_PROT_ALL, 0); 382 vm_map_unlock(map); 383 384 /* 385 * Find the page from the underlying object. 386 */ 387 if (object) { 388 sf = vm_imgact_map_page(object, offset); 389 if (sf == NULL) 390 return (KERN_FAILURE); 391 off = offset - trunc_page(offset); 392 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 393 end - start); 394 vm_imgact_unmap_page(sf); 395 if (error) { 396 return (KERN_FAILURE); 397 } 398 } 399 400 return (KERN_SUCCESS); 401 } 402 403 static int 404 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 405 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 406 { 407 struct sf_buf *sf; 408 vm_offset_t off; 409 vm_size_t sz; 410 int error, rv; 411 412 if (start != trunc_page(start)) { 413 rv = __elfN(map_partial)(map, object, offset, start, 414 round_page(start), prot); 415 if (rv) 416 return (rv); 417 offset += round_page(start) - start; 418 start = round_page(start); 419 } 420 if (end != round_page(end)) { 421 rv = __elfN(map_partial)(map, object, offset + 422 trunc_page(end) - start, trunc_page(end), end, prot); 423 if (rv) 424 return (rv); 425 end = trunc_page(end); 426 } 427 if (end > start) { 428 if (offset & PAGE_MASK) { 429 /* 430 * The mapping is not page aligned. This means we have 431 * to copy the data. Sigh. 432 */ 433 rv = vm_map_find(map, NULL, 0, &start, end - start, 0, 434 VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL, 435 0); 436 if (rv) 437 return (rv); 438 if (object == NULL) 439 return (KERN_SUCCESS); 440 for (; start < end; start += sz) { 441 sf = vm_imgact_map_page(object, offset); 442 if (sf == NULL) 443 return (KERN_FAILURE); 444 off = offset - trunc_page(offset); 445 sz = end - start; 446 if (sz > PAGE_SIZE - off) 447 sz = PAGE_SIZE - off; 448 error = copyout((caddr_t)sf_buf_kva(sf) + off, 449 (caddr_t)start, sz); 450 vm_imgact_unmap_page(sf); 451 if (error) { 452 return (KERN_FAILURE); 453 } 454 offset += sz; 455 } 456 rv = KERN_SUCCESS; 457 } else { 458 vm_object_reference(object); 459 vm_map_lock(map); 460 rv = vm_map_insert(map, object, offset, start, end, 461 prot, VM_PROT_ALL, cow); 462 vm_map_unlock(map); 463 if (rv != KERN_SUCCESS) 464 vm_object_deallocate(object); 465 } 466 return (rv); 467 } else { 468 return (KERN_SUCCESS); 469 } 470 } 471 472 static int 473 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 474 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 475 size_t pagesize) 476 { 477 struct sf_buf *sf; 478 size_t map_len; 479 vm_map_t map; 480 vm_object_t object; 481 vm_offset_t map_addr; 482 int error, rv, cow; 483 size_t copy_len; 484 vm_offset_t file_addr; 485 486 /* 487 * It's necessary to fail if the filsz + offset taken from the 488 * header is greater than the actual file pager object's size. 489 * If we were to allow this, then the vm_map_find() below would 490 * walk right off the end of the file object and into the ether. 491 * 492 * While I'm here, might as well check for something else that 493 * is invalid: filsz cannot be greater than memsz. 494 */ 495 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 496 uprintf("elf_load_section: truncated ELF file\n"); 497 return (ENOEXEC); 498 } 499 500 object = imgp->object; 501 map = &imgp->proc->p_vmspace->vm_map; 502 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 503 file_addr = trunc_page_ps(offset, pagesize); 504 505 /* 506 * We have two choices. We can either clear the data in the last page 507 * of an oversized mapping, or we can start the anon mapping a page 508 * early and copy the initialized data into that first page. We 509 * choose the second.. 510 */ 511 if (memsz > filsz) 512 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 513 else 514 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 515 516 if (map_len != 0) { 517 /* cow flags: don't dump readonly sections in core */ 518 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 519 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 520 521 rv = __elfN(map_insert)(map, 522 object, 523 file_addr, /* file offset */ 524 map_addr, /* virtual start */ 525 map_addr + map_len,/* virtual end */ 526 prot, 527 cow); 528 if (rv != KERN_SUCCESS) 529 return (EINVAL); 530 531 /* we can stop now if we've covered it all */ 532 if (memsz == filsz) { 533 return (0); 534 } 535 } 536 537 538 /* 539 * We have to get the remaining bit of the file into the first part 540 * of the oversized map segment. This is normally because the .data 541 * segment in the file is extended to provide bss. It's a neat idea 542 * to try and save a page, but it's a pain in the behind to implement. 543 */ 544 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 545 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 546 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 547 map_addr; 548 549 /* This had damn well better be true! */ 550 if (map_len != 0) { 551 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr + 552 map_len, VM_PROT_ALL, 0); 553 if (rv != KERN_SUCCESS) { 554 return (EINVAL); 555 } 556 } 557 558 if (copy_len != 0) { 559 vm_offset_t off; 560 561 sf = vm_imgact_map_page(object, offset + filsz); 562 if (sf == NULL) 563 return (EIO); 564 565 /* send the page fragment to user space */ 566 off = trunc_page_ps(offset + filsz, pagesize) - 567 trunc_page(offset + filsz); 568 error = copyout((caddr_t)sf_buf_kva(sf) + off, 569 (caddr_t)map_addr, copy_len); 570 vm_imgact_unmap_page(sf); 571 if (error) { 572 return (error); 573 } 574 } 575 576 /* 577 * set it to the specified protection. 578 * XXX had better undo the damage from pasting over the cracks here! 579 */ 580 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 581 map_len), prot, FALSE); 582 583 return (0); 584 } 585 586 /* 587 * Load the file "file" into memory. It may be either a shared object 588 * or an executable. 589 * 590 * The "addr" reference parameter is in/out. On entry, it specifies 591 * the address where a shared object should be loaded. If the file is 592 * an executable, this value is ignored. On exit, "addr" specifies 593 * where the file was actually loaded. 594 * 595 * The "entry" reference parameter is out only. On exit, it specifies 596 * the entry point for the loaded file. 597 */ 598 static int 599 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 600 u_long *entry, size_t pagesize) 601 { 602 struct { 603 struct nameidata nd; 604 struct vattr attr; 605 struct image_params image_params; 606 } *tempdata; 607 const Elf_Ehdr *hdr = NULL; 608 const Elf_Phdr *phdr = NULL; 609 struct nameidata *nd; 610 struct vattr *attr; 611 struct image_params *imgp; 612 vm_prot_t prot; 613 u_long rbase; 614 u_long base_addr = 0; 615 int error, i, numsegs; 616 617 #ifdef CAPABILITY_MODE 618 /* 619 * XXXJA: This check can go away once we are sufficiently confident 620 * that the checks in namei() are correct. 621 */ 622 if (IN_CAPABILITY_MODE(curthread)) 623 return (ECAPMODE); 624 #endif 625 626 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 627 nd = &tempdata->nd; 628 attr = &tempdata->attr; 629 imgp = &tempdata->image_params; 630 631 /* 632 * Initialize part of the common data 633 */ 634 imgp->proc = p; 635 imgp->attr = attr; 636 imgp->firstpage = NULL; 637 imgp->image_header = NULL; 638 imgp->object = NULL; 639 imgp->execlabel = NULL; 640 641 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 642 if ((error = namei(nd)) != 0) { 643 nd->ni_vp = NULL; 644 goto fail; 645 } 646 NDFREE(nd, NDF_ONLY_PNBUF); 647 imgp->vp = nd->ni_vp; 648 649 /* 650 * Check permissions, modes, uid, etc on the file, and "open" it. 651 */ 652 error = exec_check_permissions(imgp); 653 if (error) 654 goto fail; 655 656 error = exec_map_first_page(imgp); 657 if (error) 658 goto fail; 659 660 /* 661 * Also make certain that the interpreter stays the same, so set 662 * its VV_TEXT flag, too. 663 */ 664 VOP_SET_TEXT(nd->ni_vp); 665 666 imgp->object = nd->ni_vp->v_object; 667 668 hdr = (const Elf_Ehdr *)imgp->image_header; 669 if ((error = __elfN(check_header)(hdr)) != 0) 670 goto fail; 671 if (hdr->e_type == ET_DYN) 672 rbase = *addr; 673 else if (hdr->e_type == ET_EXEC) 674 rbase = 0; 675 else { 676 error = ENOEXEC; 677 goto fail; 678 } 679 680 /* Only support headers that fit within first page for now */ 681 if ((hdr->e_phoff > PAGE_SIZE) || 682 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 683 error = ENOEXEC; 684 goto fail; 685 } 686 687 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 688 if (!aligned(phdr, Elf_Addr)) { 689 error = ENOEXEC; 690 goto fail; 691 } 692 693 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 694 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 695 /* Loadable segment */ 696 prot = __elfN(trans_prot)(phdr[i].p_flags); 697 error = __elfN(load_section)(imgp, phdr[i].p_offset, 698 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 699 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 700 if (error != 0) 701 goto fail; 702 /* 703 * Establish the base address if this is the 704 * first segment. 705 */ 706 if (numsegs == 0) 707 base_addr = trunc_page(phdr[i].p_vaddr + 708 rbase); 709 numsegs++; 710 } 711 } 712 *addr = base_addr; 713 *entry = (unsigned long)hdr->e_entry + rbase; 714 715 fail: 716 if (imgp->firstpage) 717 exec_unmap_first_page(imgp); 718 719 if (nd->ni_vp) 720 vput(nd->ni_vp); 721 722 free(tempdata, M_TEMP); 723 724 return (error); 725 } 726 727 static int 728 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 729 { 730 struct thread *td; 731 const Elf_Ehdr *hdr; 732 const Elf_Phdr *phdr; 733 Elf_Auxargs *elf_auxargs; 734 struct vmspace *vmspace; 735 const char *err_str, *newinterp; 736 char *interp, *interp_buf, *path; 737 Elf_Brandinfo *brand_info; 738 struct sysentvec *sv; 739 vm_prot_t prot; 740 u_long text_size, data_size, total_size, text_addr, data_addr; 741 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 742 int32_t osrel; 743 int error, i, n, interp_name_len, have_interp; 744 745 hdr = (const Elf_Ehdr *)imgp->image_header; 746 747 /* 748 * Do we have a valid ELF header ? 749 * 750 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 751 * if particular brand doesn't support it. 752 */ 753 if (__elfN(check_header)(hdr) != 0 || 754 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 755 return (-1); 756 757 /* 758 * From here on down, we return an errno, not -1, as we've 759 * detected an ELF file. 760 */ 761 762 if ((hdr->e_phoff > PAGE_SIZE) || 763 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 764 /* Only support headers in first page for now */ 765 uprintf("Program headers not in the first page\n"); 766 return (ENOEXEC); 767 } 768 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 769 if (!aligned(phdr, Elf_Addr)) { 770 uprintf("Unaligned program headers\n"); 771 return (ENOEXEC); 772 } 773 774 n = error = 0; 775 baddr = 0; 776 osrel = 0; 777 text_size = data_size = total_size = text_addr = data_addr = 0; 778 entry = proghdr = 0; 779 interp_name_len = 0; 780 err_str = newinterp = NULL; 781 interp = interp_buf = NULL; 782 td = curthread; 783 784 for (i = 0; i < hdr->e_phnum; i++) { 785 switch (phdr[i].p_type) { 786 case PT_LOAD: 787 if (n == 0) 788 baddr = phdr[i].p_vaddr; 789 n++; 790 break; 791 case PT_INTERP: 792 /* Path to interpreter */ 793 if (phdr[i].p_filesz > MAXPATHLEN) { 794 uprintf("Invalid PT_INTERP\n"); 795 error = ENOEXEC; 796 goto ret; 797 } 798 interp_name_len = phdr[i].p_filesz; 799 if (phdr[i].p_offset > PAGE_SIZE || 800 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 801 VOP_UNLOCK(imgp->vp, 0); 802 interp_buf = malloc(interp_name_len + 1, M_TEMP, 803 M_WAITOK); 804 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 805 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 806 interp_name_len, phdr[i].p_offset, 807 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 808 NOCRED, NULL, td); 809 if (error != 0) { 810 uprintf("i/o error PT_INTERP\n"); 811 goto ret; 812 } 813 interp_buf[interp_name_len] = '\0'; 814 interp = interp_buf; 815 } else { 816 interp = __DECONST(char *, imgp->image_header) + 817 phdr[i].p_offset; 818 } 819 break; 820 case PT_GNU_STACK: 821 if (__elfN(nxstack)) 822 imgp->stack_prot = 823 __elfN(trans_prot)(phdr[i].p_flags); 824 imgp->stack_sz = phdr[i].p_memsz; 825 break; 826 } 827 } 828 829 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 830 &osrel); 831 if (brand_info == NULL) { 832 uprintf("ELF binary type \"%u\" not known.\n", 833 hdr->e_ident[EI_OSABI]); 834 error = ENOEXEC; 835 goto ret; 836 } 837 if (hdr->e_type == ET_DYN) { 838 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 839 uprintf("Cannot execute shared object\n"); 840 error = ENOEXEC; 841 goto ret; 842 } 843 /* 844 * Honour the base load address from the dso if it is 845 * non-zero for some reason. 846 */ 847 if (baddr == 0) 848 et_dyn_addr = ET_DYN_LOAD_ADDR; 849 else 850 et_dyn_addr = 0; 851 } else 852 et_dyn_addr = 0; 853 sv = brand_info->sysvec; 854 if (interp != NULL && brand_info->interp_newpath != NULL) 855 newinterp = brand_info->interp_newpath; 856 857 /* 858 * Avoid a possible deadlock if the current address space is destroyed 859 * and that address space maps the locked vnode. In the common case, 860 * the locked vnode's v_usecount is decremented but remains greater 861 * than zero. Consequently, the vnode lock is not needed by vrele(). 862 * However, in cases where the vnode lock is external, such as nullfs, 863 * v_usecount may become zero. 864 * 865 * The VV_TEXT flag prevents modifications to the executable while 866 * the vnode is unlocked. 867 */ 868 VOP_UNLOCK(imgp->vp, 0); 869 870 error = exec_new_vmspace(imgp, sv); 871 imgp->proc->p_sysent = sv; 872 873 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 874 if (error != 0) 875 goto ret; 876 877 for (i = 0; i < hdr->e_phnum; i++) { 878 switch (phdr[i].p_type) { 879 case PT_LOAD: /* Loadable segment */ 880 if (phdr[i].p_memsz == 0) 881 break; 882 prot = __elfN(trans_prot)(phdr[i].p_flags); 883 error = __elfN(load_section)(imgp, phdr[i].p_offset, 884 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 885 phdr[i].p_memsz, phdr[i].p_filesz, prot, 886 sv->sv_pagesize); 887 if (error != 0) 888 goto ret; 889 890 /* 891 * If this segment contains the program headers, 892 * remember their virtual address for the AT_PHDR 893 * aux entry. Static binaries don't usually include 894 * a PT_PHDR entry. 895 */ 896 if (phdr[i].p_offset == 0 && 897 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 898 <= phdr[i].p_filesz) 899 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 900 et_dyn_addr; 901 902 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 903 seg_size = round_page(phdr[i].p_memsz + 904 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 905 906 /* 907 * Make the largest executable segment the official 908 * text segment and all others data. 909 * 910 * Note that obreak() assumes that data_addr + 911 * data_size == end of data load area, and the ELF 912 * file format expects segments to be sorted by 913 * address. If multiple data segments exist, the 914 * last one will be used. 915 */ 916 917 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 918 text_size = seg_size; 919 text_addr = seg_addr; 920 } else { 921 data_size = seg_size; 922 data_addr = seg_addr; 923 } 924 total_size += seg_size; 925 break; 926 case PT_PHDR: /* Program header table info */ 927 proghdr = phdr[i].p_vaddr + et_dyn_addr; 928 break; 929 default: 930 break; 931 } 932 } 933 934 if (data_addr == 0 && data_size == 0) { 935 data_addr = text_addr; 936 data_size = text_size; 937 } 938 939 entry = (u_long)hdr->e_entry + et_dyn_addr; 940 941 /* 942 * Check limits. It should be safe to check the 943 * limits after loading the segments since we do 944 * not actually fault in all the segments pages. 945 */ 946 PROC_LOCK(imgp->proc); 947 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 948 err_str = "Data segment size exceeds process limit"; 949 else if (text_size > maxtsiz) 950 err_str = "Text segment size exceeds system limit"; 951 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 952 err_str = "Total segment size exceeds process limit"; 953 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 954 err_str = "Data segment size exceeds resource limit"; 955 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 956 err_str = "Total segment size exceeds resource limit"; 957 if (err_str != NULL) { 958 PROC_UNLOCK(imgp->proc); 959 uprintf("%s\n", err_str); 960 error = ENOMEM; 961 goto ret; 962 } 963 964 vmspace = imgp->proc->p_vmspace; 965 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 966 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 967 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 968 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 969 970 /* 971 * We load the dynamic linker where a userland call 972 * to mmap(0, ...) would put it. The rationale behind this 973 * calculation is that it leaves room for the heap to grow to 974 * its maximum allowed size. 975 */ 976 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 977 RLIMIT_DATA)); 978 PROC_UNLOCK(imgp->proc); 979 980 imgp->entry_addr = entry; 981 982 if (interp != NULL) { 983 have_interp = FALSE; 984 VOP_UNLOCK(imgp->vp, 0); 985 if (brand_info->emul_path != NULL && 986 brand_info->emul_path[0] != '\0') { 987 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 988 snprintf(path, MAXPATHLEN, "%s%s", 989 brand_info->emul_path, interp); 990 error = __elfN(load_file)(imgp->proc, path, &addr, 991 &imgp->entry_addr, sv->sv_pagesize); 992 free(path, M_TEMP); 993 if (error == 0) 994 have_interp = TRUE; 995 } 996 if (!have_interp && newinterp != NULL) { 997 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 998 &imgp->entry_addr, sv->sv_pagesize); 999 if (error == 0) 1000 have_interp = TRUE; 1001 } 1002 if (!have_interp) { 1003 error = __elfN(load_file)(imgp->proc, interp, &addr, 1004 &imgp->entry_addr, sv->sv_pagesize); 1005 } 1006 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1007 if (error != 0) { 1008 uprintf("ELF interpreter %s not found\n", interp); 1009 goto ret; 1010 } 1011 } else 1012 addr = et_dyn_addr; 1013 1014 /* 1015 * Construct auxargs table (used by the fixup routine) 1016 */ 1017 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1018 elf_auxargs->execfd = -1; 1019 elf_auxargs->phdr = proghdr; 1020 elf_auxargs->phent = hdr->e_phentsize; 1021 elf_auxargs->phnum = hdr->e_phnum; 1022 elf_auxargs->pagesz = PAGE_SIZE; 1023 elf_auxargs->base = addr; 1024 elf_auxargs->flags = 0; 1025 elf_auxargs->entry = entry; 1026 elf_auxargs->hdr_eflags = hdr->e_flags; 1027 1028 imgp->auxargs = elf_auxargs; 1029 imgp->interpreted = 0; 1030 imgp->reloc_base = addr; 1031 imgp->proc->p_osrel = osrel; 1032 1033 ret: 1034 free(interp_buf, M_TEMP); 1035 return (error); 1036 } 1037 1038 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1039 1040 int 1041 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1042 { 1043 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1044 Elf_Addr *base; 1045 Elf_Addr *pos; 1046 1047 base = (Elf_Addr *)*stack_base; 1048 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1049 1050 if (args->execfd != -1) 1051 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1052 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1053 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1054 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1055 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1056 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1057 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1058 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1059 #ifdef AT_EHDRFLAGS 1060 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1061 #endif 1062 if (imgp->execpathp != 0) 1063 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1064 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1065 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1066 if (imgp->canary != 0) { 1067 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1068 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1069 } 1070 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1071 if (imgp->pagesizes != 0) { 1072 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1073 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1074 } 1075 if (imgp->sysent->sv_timekeep_base != 0) { 1076 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1077 imgp->sysent->sv_timekeep_base); 1078 } 1079 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1080 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1081 imgp->sysent->sv_stackprot); 1082 AUXARGS_ENTRY(pos, AT_NULL, 0); 1083 1084 free(imgp->auxargs, M_TEMP); 1085 imgp->auxargs = NULL; 1086 1087 base--; 1088 suword(base, (long)imgp->args->argc); 1089 *stack_base = (register_t *)base; 1090 return (0); 1091 } 1092 1093 /* 1094 * Code for generating ELF core dumps. 1095 */ 1096 1097 typedef void (*segment_callback)(vm_map_entry_t, void *); 1098 1099 /* Closure for cb_put_phdr(). */ 1100 struct phdr_closure { 1101 Elf_Phdr *phdr; /* Program header to fill in */ 1102 Elf_Off offset; /* Offset of segment in core file */ 1103 }; 1104 1105 /* Closure for cb_size_segment(). */ 1106 struct sseg_closure { 1107 int count; /* Count of writable segments. */ 1108 size_t size; /* Total size of all writable segments. */ 1109 }; 1110 1111 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1112 1113 struct note_info { 1114 int type; /* Note type. */ 1115 outfunc_t outfunc; /* Output function. */ 1116 void *outarg; /* Argument for the output function. */ 1117 size_t outsize; /* Output size. */ 1118 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1119 }; 1120 1121 TAILQ_HEAD(note_info_list, note_info); 1122 1123 /* Coredump output parameters. */ 1124 struct coredump_params { 1125 off_t offset; 1126 struct ucred *active_cred; 1127 struct ucred *file_cred; 1128 struct thread *td; 1129 struct vnode *vp; 1130 struct gzio_stream *gzs; 1131 }; 1132 1133 static void cb_put_phdr(vm_map_entry_t, void *); 1134 static void cb_size_segment(vm_map_entry_t, void *); 1135 static int core_write(struct coredump_params *, void *, size_t, off_t, 1136 enum uio_seg); 1137 static void each_writable_segment(struct thread *, segment_callback, void *); 1138 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1139 struct note_info_list *, size_t); 1140 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1141 size_t *); 1142 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1143 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1144 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1145 static int sbuf_drain_core_output(void *, const char *, int); 1146 static int sbuf_drain_count(void *arg, const char *data, int len); 1147 1148 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1149 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1150 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1151 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1152 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1153 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1154 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1155 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1156 static void note_procstat_files(void *, struct sbuf *, size_t *); 1157 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1158 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1159 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1160 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1161 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1162 1163 #ifdef GZIO 1164 extern int compress_user_cores_gzlevel; 1165 1166 /* 1167 * Write out a core segment to the compression stream. 1168 */ 1169 static int 1170 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1171 { 1172 u_int chunk_len; 1173 int error; 1174 1175 while (len > 0) { 1176 chunk_len = MIN(len, CORE_BUF_SIZE); 1177 copyin(base, buf, chunk_len); 1178 error = gzio_write(p->gzs, buf, chunk_len); 1179 if (error != 0) 1180 break; 1181 base += chunk_len; 1182 len -= chunk_len; 1183 } 1184 return (error); 1185 } 1186 1187 static int 1188 core_gz_write(void *base, size_t len, off_t offset, void *arg) 1189 { 1190 1191 return (core_write((struct coredump_params *)arg, base, len, offset, 1192 UIO_SYSSPACE)); 1193 } 1194 #endif /* GZIO */ 1195 1196 static int 1197 core_write(struct coredump_params *p, void *base, size_t len, off_t offset, 1198 enum uio_seg seg) 1199 { 1200 1201 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, base, len, offset, 1202 seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1203 p->active_cred, p->file_cred, NULL, p->td)); 1204 } 1205 1206 static int 1207 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1208 void *tmpbuf) 1209 { 1210 1211 #ifdef GZIO 1212 if (p->gzs != NULL) 1213 return (compress_chunk(p, base, tmpbuf, len)); 1214 #endif 1215 return (core_write(p, base, len, offset, UIO_USERSPACE)); 1216 } 1217 1218 /* 1219 * Drain into a core file. 1220 */ 1221 static int 1222 sbuf_drain_core_output(void *arg, const char *data, int len) 1223 { 1224 struct coredump_params *p; 1225 int error, locked; 1226 1227 p = (struct coredump_params *)arg; 1228 1229 /* 1230 * Some kern_proc out routines that print to this sbuf may 1231 * call us with the process lock held. Draining with the 1232 * non-sleepable lock held is unsafe. The lock is needed for 1233 * those routines when dumping a live process. In our case we 1234 * can safely release the lock before draining and acquire 1235 * again after. 1236 */ 1237 locked = PROC_LOCKED(p->td->td_proc); 1238 if (locked) 1239 PROC_UNLOCK(p->td->td_proc); 1240 #ifdef GZIO 1241 if (p->gzs != NULL) 1242 error = gzio_write(p->gzs, __DECONST(char *, data), len); 1243 else 1244 #endif 1245 error = core_write(p, __DECONST(void *, data), len, p->offset, 1246 UIO_SYSSPACE); 1247 if (locked) 1248 PROC_LOCK(p->td->td_proc); 1249 if (error != 0) 1250 return (-error); 1251 p->offset += len; 1252 return (len); 1253 } 1254 1255 /* 1256 * Drain into a counter. 1257 */ 1258 static int 1259 sbuf_drain_count(void *arg, const char *data __unused, int len) 1260 { 1261 size_t *sizep; 1262 1263 sizep = (size_t *)arg; 1264 *sizep += len; 1265 return (len); 1266 } 1267 1268 int 1269 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1270 { 1271 struct ucred *cred = td->td_ucred; 1272 int error = 0; 1273 struct sseg_closure seginfo; 1274 struct note_info_list notelst; 1275 struct coredump_params params; 1276 struct note_info *ninfo; 1277 void *hdr, *tmpbuf; 1278 size_t hdrsize, notesz, coresize; 1279 #ifdef GZIO 1280 boolean_t compress; 1281 1282 compress = (flags & IMGACT_CORE_COMPRESS) != 0; 1283 #endif 1284 hdr = NULL; 1285 tmpbuf = NULL; 1286 TAILQ_INIT(¬elst); 1287 1288 /* Size the program segments. */ 1289 seginfo.count = 0; 1290 seginfo.size = 0; 1291 each_writable_segment(td, cb_size_segment, &seginfo); 1292 1293 /* 1294 * Collect info about the core file header area. 1295 */ 1296 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1297 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1298 coresize = round_page(hdrsize + notesz) + seginfo.size; 1299 1300 /* Set up core dump parameters. */ 1301 params.offset = 0; 1302 params.active_cred = cred; 1303 params.file_cred = NOCRED; 1304 params.td = td; 1305 params.vp = vp; 1306 params.gzs = NULL; 1307 1308 #ifdef RACCT 1309 if (racct_enable) { 1310 PROC_LOCK(td->td_proc); 1311 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1312 PROC_UNLOCK(td->td_proc); 1313 if (error != 0) { 1314 error = EFAULT; 1315 goto done; 1316 } 1317 } 1318 #endif 1319 if (coresize >= limit) { 1320 error = EFAULT; 1321 goto done; 1322 } 1323 1324 #ifdef GZIO 1325 /* Create a compression stream if necessary. */ 1326 if (compress) { 1327 params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE, 1328 CORE_BUF_SIZE, compress_user_cores_gzlevel, ¶ms); 1329 if (params.gzs == NULL) { 1330 error = EFAULT; 1331 goto done; 1332 } 1333 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1334 } 1335 #endif 1336 1337 /* 1338 * Allocate memory for building the header, fill it up, 1339 * and write it out following the notes. 1340 */ 1341 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1342 if (hdr == NULL) { 1343 error = EINVAL; 1344 goto done; 1345 } 1346 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1347 notesz); 1348 1349 /* Write the contents of all of the writable segments. */ 1350 if (error == 0) { 1351 Elf_Phdr *php; 1352 off_t offset; 1353 int i; 1354 1355 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1356 offset = round_page(hdrsize + notesz); 1357 for (i = 0; i < seginfo.count; i++) { 1358 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1359 php->p_filesz, offset, ¶ms, tmpbuf); 1360 if (error != 0) 1361 break; 1362 offset += php->p_filesz; 1363 php++; 1364 } 1365 #ifdef GZIO 1366 if (error == 0 && compress) 1367 error = gzio_flush(params.gzs); 1368 #endif 1369 } 1370 if (error) { 1371 log(LOG_WARNING, 1372 "Failed to write core file for process %s (error %d)\n", 1373 curproc->p_comm, error); 1374 } 1375 1376 done: 1377 #ifdef GZIO 1378 if (compress) { 1379 free(tmpbuf, M_TEMP); 1380 if (params.gzs != NULL) 1381 gzio_fini(params.gzs); 1382 } 1383 #endif 1384 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1385 TAILQ_REMOVE(¬elst, ninfo, link); 1386 free(ninfo, M_TEMP); 1387 } 1388 if (hdr != NULL) 1389 free(hdr, M_TEMP); 1390 1391 return (error); 1392 } 1393 1394 /* 1395 * A callback for each_writable_segment() to write out the segment's 1396 * program header entry. 1397 */ 1398 static void 1399 cb_put_phdr(entry, closure) 1400 vm_map_entry_t entry; 1401 void *closure; 1402 { 1403 struct phdr_closure *phc = (struct phdr_closure *)closure; 1404 Elf_Phdr *phdr = phc->phdr; 1405 1406 phc->offset = round_page(phc->offset); 1407 1408 phdr->p_type = PT_LOAD; 1409 phdr->p_offset = phc->offset; 1410 phdr->p_vaddr = entry->start; 1411 phdr->p_paddr = 0; 1412 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1413 phdr->p_align = PAGE_SIZE; 1414 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1415 1416 phc->offset += phdr->p_filesz; 1417 phc->phdr++; 1418 } 1419 1420 /* 1421 * A callback for each_writable_segment() to gather information about 1422 * the number of segments and their total size. 1423 */ 1424 static void 1425 cb_size_segment(entry, closure) 1426 vm_map_entry_t entry; 1427 void *closure; 1428 { 1429 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1430 1431 ssc->count++; 1432 ssc->size += entry->end - entry->start; 1433 } 1434 1435 /* 1436 * For each writable segment in the process's memory map, call the given 1437 * function with a pointer to the map entry and some arbitrary 1438 * caller-supplied data. 1439 */ 1440 static void 1441 each_writable_segment(td, func, closure) 1442 struct thread *td; 1443 segment_callback func; 1444 void *closure; 1445 { 1446 struct proc *p = td->td_proc; 1447 vm_map_t map = &p->p_vmspace->vm_map; 1448 vm_map_entry_t entry; 1449 vm_object_t backing_object, object; 1450 boolean_t ignore_entry; 1451 1452 vm_map_lock_read(map); 1453 for (entry = map->header.next; entry != &map->header; 1454 entry = entry->next) { 1455 /* 1456 * Don't dump inaccessible mappings, deal with legacy 1457 * coredump mode. 1458 * 1459 * Note that read-only segments related to the elf binary 1460 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1461 * need to arbitrarily ignore such segments. 1462 */ 1463 if (elf_legacy_coredump) { 1464 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1465 continue; 1466 } else { 1467 if ((entry->protection & VM_PROT_ALL) == 0) 1468 continue; 1469 } 1470 1471 /* 1472 * Dont include memory segment in the coredump if 1473 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1474 * madvise(2). Do not dump submaps (i.e. parts of the 1475 * kernel map). 1476 */ 1477 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1478 continue; 1479 1480 if ((object = entry->object.vm_object) == NULL) 1481 continue; 1482 1483 /* Ignore memory-mapped devices and such things. */ 1484 VM_OBJECT_RLOCK(object); 1485 while ((backing_object = object->backing_object) != NULL) { 1486 VM_OBJECT_RLOCK(backing_object); 1487 VM_OBJECT_RUNLOCK(object); 1488 object = backing_object; 1489 } 1490 ignore_entry = object->type != OBJT_DEFAULT && 1491 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1492 object->type != OBJT_PHYS; 1493 VM_OBJECT_RUNLOCK(object); 1494 if (ignore_entry) 1495 continue; 1496 1497 (*func)(entry, closure); 1498 } 1499 vm_map_unlock_read(map); 1500 } 1501 1502 /* 1503 * Write the core file header to the file, including padding up to 1504 * the page boundary. 1505 */ 1506 static int 1507 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1508 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1509 { 1510 struct note_info *ninfo; 1511 struct sbuf *sb; 1512 int error; 1513 1514 /* Fill in the header. */ 1515 bzero(hdr, hdrsize); 1516 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1517 1518 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1519 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1520 sbuf_start_section(sb, NULL); 1521 sbuf_bcat(sb, hdr, hdrsize); 1522 TAILQ_FOREACH(ninfo, notelst, link) 1523 __elfN(putnote)(ninfo, sb); 1524 /* Align up to a page boundary for the program segments. */ 1525 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1526 error = sbuf_finish(sb); 1527 sbuf_delete(sb); 1528 1529 return (error); 1530 } 1531 1532 static void 1533 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1534 size_t *sizep) 1535 { 1536 struct proc *p; 1537 struct thread *thr; 1538 size_t size; 1539 1540 p = td->td_proc; 1541 size = 0; 1542 1543 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1544 1545 /* 1546 * To have the debugger select the right thread (LWP) as the initial 1547 * thread, we dump the state of the thread passed to us in td first. 1548 * This is the thread that causes the core dump and thus likely to 1549 * be the right thread one wants to have selected in the debugger. 1550 */ 1551 thr = td; 1552 while (thr != NULL) { 1553 size += register_note(list, NT_PRSTATUS, 1554 __elfN(note_prstatus), thr); 1555 size += register_note(list, NT_FPREGSET, 1556 __elfN(note_fpregset), thr); 1557 size += register_note(list, NT_THRMISC, 1558 __elfN(note_thrmisc), thr); 1559 size += register_note(list, -1, 1560 __elfN(note_threadmd), thr); 1561 1562 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1563 TAILQ_NEXT(thr, td_plist); 1564 if (thr == td) 1565 thr = TAILQ_NEXT(thr, td_plist); 1566 } 1567 1568 size += register_note(list, NT_PROCSTAT_PROC, 1569 __elfN(note_procstat_proc), p); 1570 size += register_note(list, NT_PROCSTAT_FILES, 1571 note_procstat_files, p); 1572 size += register_note(list, NT_PROCSTAT_VMMAP, 1573 note_procstat_vmmap, p); 1574 size += register_note(list, NT_PROCSTAT_GROUPS, 1575 note_procstat_groups, p); 1576 size += register_note(list, NT_PROCSTAT_UMASK, 1577 note_procstat_umask, p); 1578 size += register_note(list, NT_PROCSTAT_RLIMIT, 1579 note_procstat_rlimit, p); 1580 size += register_note(list, NT_PROCSTAT_OSREL, 1581 note_procstat_osrel, p); 1582 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1583 __elfN(note_procstat_psstrings), p); 1584 size += register_note(list, NT_PROCSTAT_AUXV, 1585 __elfN(note_procstat_auxv), p); 1586 1587 *sizep = size; 1588 } 1589 1590 static void 1591 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1592 size_t notesz) 1593 { 1594 Elf_Ehdr *ehdr; 1595 Elf_Phdr *phdr; 1596 struct phdr_closure phc; 1597 1598 ehdr = (Elf_Ehdr *)hdr; 1599 phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)); 1600 1601 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1602 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1603 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1604 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1605 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1606 ehdr->e_ident[EI_DATA] = ELF_DATA; 1607 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1608 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1609 ehdr->e_ident[EI_ABIVERSION] = 0; 1610 ehdr->e_ident[EI_PAD] = 0; 1611 ehdr->e_type = ET_CORE; 1612 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1613 ehdr->e_machine = ELF_ARCH32; 1614 #else 1615 ehdr->e_machine = ELF_ARCH; 1616 #endif 1617 ehdr->e_version = EV_CURRENT; 1618 ehdr->e_entry = 0; 1619 ehdr->e_phoff = sizeof(Elf_Ehdr); 1620 ehdr->e_flags = 0; 1621 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1622 ehdr->e_phentsize = sizeof(Elf_Phdr); 1623 ehdr->e_phnum = numsegs + 1; 1624 ehdr->e_shentsize = sizeof(Elf_Shdr); 1625 ehdr->e_shnum = 0; 1626 ehdr->e_shstrndx = SHN_UNDEF; 1627 1628 /* 1629 * Fill in the program header entries. 1630 */ 1631 1632 /* The note segement. */ 1633 phdr->p_type = PT_NOTE; 1634 phdr->p_offset = hdrsize; 1635 phdr->p_vaddr = 0; 1636 phdr->p_paddr = 0; 1637 phdr->p_filesz = notesz; 1638 phdr->p_memsz = 0; 1639 phdr->p_flags = PF_R; 1640 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1641 phdr++; 1642 1643 /* All the writable segments from the program. */ 1644 phc.phdr = phdr; 1645 phc.offset = round_page(hdrsize + notesz); 1646 each_writable_segment(td, cb_put_phdr, &phc); 1647 } 1648 1649 static size_t 1650 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1651 { 1652 struct note_info *ninfo; 1653 size_t size, notesize; 1654 1655 size = 0; 1656 out(arg, NULL, &size); 1657 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1658 ninfo->type = type; 1659 ninfo->outfunc = out; 1660 ninfo->outarg = arg; 1661 ninfo->outsize = size; 1662 TAILQ_INSERT_TAIL(list, ninfo, link); 1663 1664 if (type == -1) 1665 return (size); 1666 1667 notesize = sizeof(Elf_Note) + /* note header */ 1668 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1669 /* note name */ 1670 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1671 1672 return (notesize); 1673 } 1674 1675 static size_t 1676 append_note_data(const void *src, void *dst, size_t len) 1677 { 1678 size_t padded_len; 1679 1680 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1681 if (dst != NULL) { 1682 bcopy(src, dst, len); 1683 bzero((char *)dst + len, padded_len - len); 1684 } 1685 return (padded_len); 1686 } 1687 1688 size_t 1689 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1690 { 1691 Elf_Note *note; 1692 char *buf; 1693 size_t notesize; 1694 1695 buf = dst; 1696 if (buf != NULL) { 1697 note = (Elf_Note *)buf; 1698 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1699 note->n_descsz = size; 1700 note->n_type = type; 1701 buf += sizeof(*note); 1702 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1703 sizeof(FREEBSD_ABI_VENDOR)); 1704 append_note_data(src, buf, size); 1705 if (descp != NULL) 1706 *descp = buf; 1707 } 1708 1709 notesize = sizeof(Elf_Note) + /* note header */ 1710 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1711 /* note name */ 1712 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1713 1714 return (notesize); 1715 } 1716 1717 static void 1718 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1719 { 1720 Elf_Note note; 1721 ssize_t old_len, sect_len; 1722 size_t new_len, descsz, i; 1723 1724 if (ninfo->type == -1) { 1725 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1726 return; 1727 } 1728 1729 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1730 note.n_descsz = ninfo->outsize; 1731 note.n_type = ninfo->type; 1732 1733 sbuf_bcat(sb, ¬e, sizeof(note)); 1734 sbuf_start_section(sb, &old_len); 1735 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1736 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1737 if (note.n_descsz == 0) 1738 return; 1739 sbuf_start_section(sb, &old_len); 1740 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1741 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1742 if (sect_len < 0) 1743 return; 1744 1745 new_len = (size_t)sect_len; 1746 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1747 if (new_len < descsz) { 1748 /* 1749 * It is expected that individual note emitters will correctly 1750 * predict their expected output size and fill up to that size 1751 * themselves, padding in a format-specific way if needed. 1752 * However, in case they don't, just do it here with zeros. 1753 */ 1754 for (i = 0; i < descsz - new_len; i++) 1755 sbuf_putc(sb, 0); 1756 } else if (new_len > descsz) { 1757 /* 1758 * We can't always truncate sb -- we may have drained some 1759 * of it already. 1760 */ 1761 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1762 "read it (%zu > %zu). Since it is longer than " 1763 "expected, this coredump's notes are corrupt. THIS " 1764 "IS A BUG in the note_procstat routine for type %u.\n", 1765 __func__, (unsigned)note.n_type, new_len, descsz, 1766 (unsigned)note.n_type)); 1767 } 1768 } 1769 1770 /* 1771 * Miscellaneous note out functions. 1772 */ 1773 1774 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1775 #include <compat/freebsd32/freebsd32.h> 1776 1777 typedef struct prstatus32 elf_prstatus_t; 1778 typedef struct prpsinfo32 elf_prpsinfo_t; 1779 typedef struct fpreg32 elf_prfpregset_t; 1780 typedef struct fpreg32 elf_fpregset_t; 1781 typedef struct reg32 elf_gregset_t; 1782 typedef struct thrmisc32 elf_thrmisc_t; 1783 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1784 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1785 typedef uint32_t elf_ps_strings_t; 1786 #else 1787 typedef prstatus_t elf_prstatus_t; 1788 typedef prpsinfo_t elf_prpsinfo_t; 1789 typedef prfpregset_t elf_prfpregset_t; 1790 typedef prfpregset_t elf_fpregset_t; 1791 typedef gregset_t elf_gregset_t; 1792 typedef thrmisc_t elf_thrmisc_t; 1793 #define ELF_KERN_PROC_MASK 0 1794 typedef struct kinfo_proc elf_kinfo_proc_t; 1795 typedef vm_offset_t elf_ps_strings_t; 1796 #endif 1797 1798 static void 1799 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1800 { 1801 struct proc *p; 1802 elf_prpsinfo_t *psinfo; 1803 1804 p = (struct proc *)arg; 1805 if (sb != NULL) { 1806 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1807 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1808 psinfo->pr_version = PRPSINFO_VERSION; 1809 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1810 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1811 /* 1812 * XXX - We don't fill in the command line arguments properly 1813 * yet. 1814 */ 1815 strlcpy(psinfo->pr_psargs, p->p_comm, 1816 sizeof(psinfo->pr_psargs)); 1817 1818 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1819 free(psinfo, M_TEMP); 1820 } 1821 *sizep = sizeof(*psinfo); 1822 } 1823 1824 static void 1825 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1826 { 1827 struct thread *td; 1828 elf_prstatus_t *status; 1829 1830 td = (struct thread *)arg; 1831 if (sb != NULL) { 1832 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1833 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1834 status->pr_version = PRSTATUS_VERSION; 1835 status->pr_statussz = sizeof(elf_prstatus_t); 1836 status->pr_gregsetsz = sizeof(elf_gregset_t); 1837 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1838 status->pr_osreldate = osreldate; 1839 status->pr_cursig = td->td_proc->p_sig; 1840 status->pr_pid = td->td_tid; 1841 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1842 fill_regs32(td, &status->pr_reg); 1843 #else 1844 fill_regs(td, &status->pr_reg); 1845 #endif 1846 sbuf_bcat(sb, status, sizeof(*status)); 1847 free(status, M_TEMP); 1848 } 1849 *sizep = sizeof(*status); 1850 } 1851 1852 static void 1853 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1854 { 1855 struct thread *td; 1856 elf_prfpregset_t *fpregset; 1857 1858 td = (struct thread *)arg; 1859 if (sb != NULL) { 1860 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1861 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1862 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1863 fill_fpregs32(td, fpregset); 1864 #else 1865 fill_fpregs(td, fpregset); 1866 #endif 1867 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1868 free(fpregset, M_TEMP); 1869 } 1870 *sizep = sizeof(*fpregset); 1871 } 1872 1873 static void 1874 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1875 { 1876 struct thread *td; 1877 elf_thrmisc_t thrmisc; 1878 1879 td = (struct thread *)arg; 1880 if (sb != NULL) { 1881 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1882 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1883 strcpy(thrmisc.pr_tname, td->td_name); 1884 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1885 } 1886 *sizep = sizeof(thrmisc); 1887 } 1888 1889 /* 1890 * Allow for MD specific notes, as well as any MD 1891 * specific preparations for writing MI notes. 1892 */ 1893 static void 1894 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 1895 { 1896 struct thread *td; 1897 void *buf; 1898 size_t size; 1899 1900 td = (struct thread *)arg; 1901 size = *sizep; 1902 if (size != 0 && sb != NULL) 1903 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 1904 else 1905 buf = NULL; 1906 size = 0; 1907 __elfN(dump_thread)(td, buf, &size); 1908 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 1909 if (size != 0 && sb != NULL) 1910 sbuf_bcat(sb, buf, size); 1911 free(buf, M_TEMP); 1912 *sizep = size; 1913 } 1914 1915 #ifdef KINFO_PROC_SIZE 1916 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 1917 #endif 1918 1919 static void 1920 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 1921 { 1922 struct proc *p; 1923 size_t size; 1924 int structsize; 1925 1926 p = (struct proc *)arg; 1927 size = sizeof(structsize) + p->p_numthreads * 1928 sizeof(elf_kinfo_proc_t); 1929 1930 if (sb != NULL) { 1931 KASSERT(*sizep == size, ("invalid size")); 1932 structsize = sizeof(elf_kinfo_proc_t); 1933 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1934 sx_slock(&proctree_lock); 1935 PROC_LOCK(p); 1936 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 1937 sx_sunlock(&proctree_lock); 1938 } 1939 *sizep = size; 1940 } 1941 1942 #ifdef KINFO_FILE_SIZE 1943 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 1944 #endif 1945 1946 static void 1947 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 1948 { 1949 struct proc *p; 1950 size_t size, sect_sz, i; 1951 ssize_t start_len, sect_len; 1952 int structsize, filedesc_flags; 1953 1954 if (coredump_pack_fileinfo) 1955 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 1956 else 1957 filedesc_flags = 0; 1958 1959 p = (struct proc *)arg; 1960 structsize = sizeof(struct kinfo_file); 1961 if (sb == NULL) { 1962 size = 0; 1963 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1964 sbuf_set_drain(sb, sbuf_drain_count, &size); 1965 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1966 PROC_LOCK(p); 1967 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 1968 sbuf_finish(sb); 1969 sbuf_delete(sb); 1970 *sizep = size; 1971 } else { 1972 sbuf_start_section(sb, &start_len); 1973 1974 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1975 PROC_LOCK(p); 1976 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 1977 filedesc_flags); 1978 1979 sect_len = sbuf_end_section(sb, start_len, 0, 0); 1980 if (sect_len < 0) 1981 return; 1982 sect_sz = sect_len; 1983 1984 KASSERT(sect_sz <= *sizep, 1985 ("kern_proc_filedesc_out did not respect maxlen; " 1986 "requested %zu, got %zu", *sizep - sizeof(structsize), 1987 sect_sz - sizeof(structsize))); 1988 1989 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 1990 sbuf_putc(sb, 0); 1991 } 1992 } 1993 1994 #ifdef KINFO_VMENTRY_SIZE 1995 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1996 #endif 1997 1998 static void 1999 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2000 { 2001 struct proc *p; 2002 size_t size; 2003 int structsize, vmmap_flags; 2004 2005 if (coredump_pack_vmmapinfo) 2006 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2007 else 2008 vmmap_flags = 0; 2009 2010 p = (struct proc *)arg; 2011 structsize = sizeof(struct kinfo_vmentry); 2012 if (sb == NULL) { 2013 size = 0; 2014 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2015 sbuf_set_drain(sb, sbuf_drain_count, &size); 2016 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2017 PROC_LOCK(p); 2018 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2019 sbuf_finish(sb); 2020 sbuf_delete(sb); 2021 *sizep = size; 2022 } else { 2023 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2024 PROC_LOCK(p); 2025 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2026 vmmap_flags); 2027 } 2028 } 2029 2030 static void 2031 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2032 { 2033 struct proc *p; 2034 size_t size; 2035 int structsize; 2036 2037 p = (struct proc *)arg; 2038 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2039 if (sb != NULL) { 2040 KASSERT(*sizep == size, ("invalid size")); 2041 structsize = sizeof(gid_t); 2042 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2043 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2044 sizeof(gid_t)); 2045 } 2046 *sizep = size; 2047 } 2048 2049 static void 2050 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2051 { 2052 struct proc *p; 2053 size_t size; 2054 int structsize; 2055 2056 p = (struct proc *)arg; 2057 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2058 if (sb != NULL) { 2059 KASSERT(*sizep == size, ("invalid size")); 2060 structsize = sizeof(p->p_fd->fd_cmask); 2061 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2062 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2063 } 2064 *sizep = size; 2065 } 2066 2067 static void 2068 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2069 { 2070 struct proc *p; 2071 struct rlimit rlim[RLIM_NLIMITS]; 2072 size_t size; 2073 int structsize, i; 2074 2075 p = (struct proc *)arg; 2076 size = sizeof(structsize) + sizeof(rlim); 2077 if (sb != NULL) { 2078 KASSERT(*sizep == size, ("invalid size")); 2079 structsize = sizeof(rlim); 2080 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2081 PROC_LOCK(p); 2082 for (i = 0; i < RLIM_NLIMITS; i++) 2083 lim_rlimit_proc(p, i, &rlim[i]); 2084 PROC_UNLOCK(p); 2085 sbuf_bcat(sb, rlim, sizeof(rlim)); 2086 } 2087 *sizep = size; 2088 } 2089 2090 static void 2091 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2092 { 2093 struct proc *p; 2094 size_t size; 2095 int structsize; 2096 2097 p = (struct proc *)arg; 2098 size = sizeof(structsize) + sizeof(p->p_osrel); 2099 if (sb != NULL) { 2100 KASSERT(*sizep == size, ("invalid size")); 2101 structsize = sizeof(p->p_osrel); 2102 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2103 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2104 } 2105 *sizep = size; 2106 } 2107 2108 static void 2109 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2110 { 2111 struct proc *p; 2112 elf_ps_strings_t ps_strings; 2113 size_t size; 2114 int structsize; 2115 2116 p = (struct proc *)arg; 2117 size = sizeof(structsize) + sizeof(ps_strings); 2118 if (sb != NULL) { 2119 KASSERT(*sizep == size, ("invalid size")); 2120 structsize = sizeof(ps_strings); 2121 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2122 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2123 #else 2124 ps_strings = p->p_sysent->sv_psstrings; 2125 #endif 2126 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2127 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2128 } 2129 *sizep = size; 2130 } 2131 2132 static void 2133 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2134 { 2135 struct proc *p; 2136 size_t size; 2137 int structsize; 2138 2139 p = (struct proc *)arg; 2140 if (sb == NULL) { 2141 size = 0; 2142 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2143 sbuf_set_drain(sb, sbuf_drain_count, &size); 2144 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2145 PHOLD(p); 2146 proc_getauxv(curthread, p, sb); 2147 PRELE(p); 2148 sbuf_finish(sb); 2149 sbuf_delete(sb); 2150 *sizep = size; 2151 } else { 2152 structsize = sizeof(Elf_Auxinfo); 2153 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2154 PHOLD(p); 2155 proc_getauxv(curthread, p, sb); 2156 PRELE(p); 2157 } 2158 } 2159 2160 static boolean_t 2161 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2162 int32_t *osrel, const Elf_Phdr *pnote) 2163 { 2164 const Elf_Note *note, *note0, *note_end; 2165 const char *note_name; 2166 char *buf; 2167 int i, error; 2168 boolean_t res; 2169 2170 /* We need some limit, might as well use PAGE_SIZE. */ 2171 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2172 return (FALSE); 2173 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2174 if (pnote->p_offset > PAGE_SIZE || 2175 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2176 VOP_UNLOCK(imgp->vp, 0); 2177 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2178 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2179 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2180 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2181 curthread->td_ucred, NOCRED, NULL, curthread); 2182 if (error != 0) { 2183 uprintf("i/o error PT_NOTE\n"); 2184 res = FALSE; 2185 goto ret; 2186 } 2187 note = note0 = (const Elf_Note *)buf; 2188 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2189 } else { 2190 note = note0 = (const Elf_Note *)(imgp->image_header + 2191 pnote->p_offset); 2192 note_end = (const Elf_Note *)(imgp->image_header + 2193 pnote->p_offset + pnote->p_filesz); 2194 buf = NULL; 2195 } 2196 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2197 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2198 (const char *)note < sizeof(Elf_Note)) { 2199 res = FALSE; 2200 goto ret; 2201 } 2202 if (note->n_namesz != checknote->hdr.n_namesz || 2203 note->n_descsz != checknote->hdr.n_descsz || 2204 note->n_type != checknote->hdr.n_type) 2205 goto nextnote; 2206 note_name = (const char *)(note + 1); 2207 if (note_name + checknote->hdr.n_namesz >= 2208 (const char *)note_end || strncmp(checknote->vendor, 2209 note_name, checknote->hdr.n_namesz) != 0) 2210 goto nextnote; 2211 2212 /* 2213 * Fetch the osreldate for binary 2214 * from the ELF OSABI-note if necessary. 2215 */ 2216 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2217 checknote->trans_osrel != NULL) { 2218 res = checknote->trans_osrel(note, osrel); 2219 goto ret; 2220 } 2221 res = TRUE; 2222 goto ret; 2223 nextnote: 2224 note = (const Elf_Note *)((const char *)(note + 1) + 2225 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2226 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2227 } 2228 res = FALSE; 2229 ret: 2230 free(buf, M_TEMP); 2231 return (res); 2232 } 2233 2234 /* 2235 * Try to find the appropriate ABI-note section for checknote, 2236 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2237 * first page of the image is searched, the same as for headers. 2238 */ 2239 static boolean_t 2240 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2241 int32_t *osrel) 2242 { 2243 const Elf_Phdr *phdr; 2244 const Elf_Ehdr *hdr; 2245 int i; 2246 2247 hdr = (const Elf_Ehdr *)imgp->image_header; 2248 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2249 2250 for (i = 0; i < hdr->e_phnum; i++) { 2251 if (phdr[i].p_type == PT_NOTE && 2252 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2253 return (TRUE); 2254 } 2255 return (FALSE); 2256 2257 } 2258 2259 /* 2260 * Tell kern_execve.c about it, with a little help from the linker. 2261 */ 2262 static struct execsw __elfN(execsw) = { 2263 __CONCAT(exec_, __elfN(imgact)), 2264 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2265 }; 2266 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2267 2268 static vm_prot_t 2269 __elfN(trans_prot)(Elf_Word flags) 2270 { 2271 vm_prot_t prot; 2272 2273 prot = 0; 2274 if (flags & PF_X) 2275 prot |= VM_PROT_EXECUTE; 2276 if (flags & PF_W) 2277 prot |= VM_PROT_WRITE; 2278 if (flags & PF_R) 2279 prot |= VM_PROT_READ; 2280 #if __ELF_WORD_SIZE == 32 2281 #if defined(__amd64__) 2282 if (i386_read_exec && (flags & PF_R)) 2283 prot |= VM_PROT_EXECUTE; 2284 #endif 2285 #endif 2286 return (prot); 2287 } 2288 2289 static Elf_Word 2290 __elfN(untrans_prot)(vm_prot_t prot) 2291 { 2292 Elf_Word flags; 2293 2294 flags = 0; 2295 if (prot & VM_PROT_EXECUTE) 2296 flags |= PF_X; 2297 if (prot & VM_PROT_READ) 2298 flags |= PF_R; 2299 if (prot & VM_PROT_WRITE) 2300 flags |= PF_W; 2301 return (flags); 2302 } 2303