xref: /freebsd/sys/kern/imgact_elf.c (revision 81ea85a8845662ca329a954eeeb3e6d4124282a2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/pioctl.h>
54 #include <sys/proc.h>
55 #include <sys/procfs.h>
56 #include <sys/ptrace.h>
57 #include <sys/racct.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int interp_name_len, int32_t *osrel);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry, size_t pagesize);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
96     size_t pagesize);
97 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
98 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
99     int32_t *osrel);
100 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
101 static boolean_t __elfN(check_note)(struct image_params *imgp,
102     Elf_Brandnote *checknote, int32_t *osrel);
103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
105 
106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
107     "");
108 
109 #define	CORE_BUF_SIZE	(16 * 1024)
110 
111 int __elfN(fallback_brand) = -1;
112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
113     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
114     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
115 
116 static int elf_legacy_coredump = 0;
117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
118     &elf_legacy_coredump, 0,
119     "include all and only RW pages in core dumps");
120 
121 int __elfN(nxstack) =
122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
123     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
131 
132 #if __ELF_WORD_SIZE == 32
133 #if defined(__amd64__)
134 int i386_read_exec = 0;
135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
136     "enable execution from readable segments");
137 #endif
138 #endif
139 
140 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
141 
142 #define	trunc_page_ps(va, ps)	rounddown2(va, ps)
143 #define	round_page_ps(va, ps)	roundup2(va, ps)
144 #define	aligned(a, t)	(trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a))
145 
146 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
147 
148 Elf_Brandnote __elfN(freebsd_brandnote) = {
149 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
150 	.hdr.n_descsz	= sizeof(int32_t),
151 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
152 	.vendor		= FREEBSD_ABI_VENDOR,
153 	.flags		= BN_TRANSLATE_OSREL,
154 	.trans_osrel	= __elfN(freebsd_trans_osrel)
155 };
156 
157 static bool
158 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
159 {
160 	uintptr_t p;
161 
162 	p = (uintptr_t)(note + 1);
163 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
164 	*osrel = *(const int32_t *)(p);
165 
166 	return (true);
167 }
168 
169 static const char GNU_ABI_VENDOR[] = "GNU";
170 static int GNU_KFREEBSD_ABI_DESC = 3;
171 
172 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
173 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
174 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
175 	.hdr.n_type	= 1,
176 	.vendor		= GNU_ABI_VENDOR,
177 	.flags		= BN_TRANSLATE_OSREL,
178 	.trans_osrel	= kfreebsd_trans_osrel
179 };
180 
181 static bool
182 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
183 {
184 	const Elf32_Word *desc;
185 	uintptr_t p;
186 
187 	p = (uintptr_t)(note + 1);
188 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
189 
190 	desc = (const Elf32_Word *)p;
191 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
192 		return (false);
193 
194 	/*
195 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
196 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
197 	 */
198 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
199 
200 	return (true);
201 }
202 
203 int
204 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
205 {
206 	int i;
207 
208 	for (i = 0; i < MAX_BRANDS; i++) {
209 		if (elf_brand_list[i] == NULL) {
210 			elf_brand_list[i] = entry;
211 			break;
212 		}
213 	}
214 	if (i == MAX_BRANDS) {
215 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
216 			__func__, entry);
217 		return (-1);
218 	}
219 	return (0);
220 }
221 
222 int
223 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
224 {
225 	int i;
226 
227 	for (i = 0; i < MAX_BRANDS; i++) {
228 		if (elf_brand_list[i] == entry) {
229 			elf_brand_list[i] = NULL;
230 			break;
231 		}
232 	}
233 	if (i == MAX_BRANDS)
234 		return (-1);
235 	return (0);
236 }
237 
238 int
239 __elfN(brand_inuse)(Elf_Brandinfo *entry)
240 {
241 	struct proc *p;
242 	int rval = FALSE;
243 
244 	sx_slock(&allproc_lock);
245 	FOREACH_PROC_IN_SYSTEM(p) {
246 		if (p->p_sysent == entry->sysvec) {
247 			rval = TRUE;
248 			break;
249 		}
250 	}
251 	sx_sunlock(&allproc_lock);
252 
253 	return (rval);
254 }
255 
256 static Elf_Brandinfo *
257 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
258     int interp_name_len, int32_t *osrel)
259 {
260 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
261 	Elf_Brandinfo *bi, *bi_m;
262 	boolean_t ret;
263 	int i;
264 
265 	/*
266 	 * We support four types of branding -- (1) the ELF EI_OSABI field
267 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
268 	 * branding w/in the ELF header, (3) path of the `interp_path'
269 	 * field, and (4) the ".note.ABI-tag" ELF section.
270 	 */
271 
272 	/* Look for an ".note.ABI-tag" ELF section */
273 	bi_m = NULL;
274 	for (i = 0; i < MAX_BRANDS; i++) {
275 		bi = elf_brand_list[i];
276 		if (bi == NULL)
277 			continue;
278 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
279 			continue;
280 		if (hdr->e_machine == bi->machine && (bi->flags &
281 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
282 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
283 			/* Give brand a chance to veto check_note's guess */
284 			if (ret && bi->header_supported)
285 				ret = bi->header_supported(imgp);
286 			/*
287 			 * If note checker claimed the binary, but the
288 			 * interpreter path in the image does not
289 			 * match default one for the brand, try to
290 			 * search for other brands with the same
291 			 * interpreter.  Either there is better brand
292 			 * with the right interpreter, or, failing
293 			 * this, we return first brand which accepted
294 			 * our note and, optionally, header.
295 			 */
296 			if (ret && bi_m == NULL && interp != NULL &&
297 			    (bi->interp_path == NULL ||
298 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
299 			    strncmp(interp, bi->interp_path, interp_name_len)
300 			    != 0))) {
301 				bi_m = bi;
302 				ret = 0;
303 			}
304 			if (ret)
305 				return (bi);
306 		}
307 	}
308 	if (bi_m != NULL)
309 		return (bi_m);
310 
311 	/* If the executable has a brand, search for it in the brand list. */
312 	for (i = 0; i < MAX_BRANDS; i++) {
313 		bi = elf_brand_list[i];
314 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
315 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
316 			continue;
317 		if (hdr->e_machine == bi->machine &&
318 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
319 		    (bi->compat_3_brand != NULL &&
320 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
321 		    bi->compat_3_brand) == 0))) {
322 			/* Looks good, but give brand a chance to veto */
323 			if (bi->header_supported == NULL ||
324 			    bi->header_supported(imgp)) {
325 				/*
326 				 * Again, prefer strictly matching
327 				 * interpreter path.
328 				 */
329 				if (interp_name_len == 0 &&
330 				    bi->interp_path == NULL)
331 					return (bi);
332 				if (bi->interp_path != NULL &&
333 				    strlen(bi->interp_path) + 1 ==
334 				    interp_name_len && strncmp(interp,
335 				    bi->interp_path, interp_name_len) == 0)
336 					return (bi);
337 				if (bi_m == NULL)
338 					bi_m = bi;
339 			}
340 		}
341 	}
342 	if (bi_m != NULL)
343 		return (bi_m);
344 
345 	/* No known brand, see if the header is recognized by any brand */
346 	for (i = 0; i < MAX_BRANDS; i++) {
347 		bi = elf_brand_list[i];
348 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
349 		    bi->header_supported == NULL)
350 			continue;
351 		if (hdr->e_machine == bi->machine) {
352 			ret = bi->header_supported(imgp);
353 			if (ret)
354 				return (bi);
355 		}
356 	}
357 
358 	/* Lacking a known brand, search for a recognized interpreter. */
359 	if (interp != NULL) {
360 		for (i = 0; i < MAX_BRANDS; i++) {
361 			bi = elf_brand_list[i];
362 			if (bi == NULL || (bi->flags &
363 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
364 			    != 0)
365 				continue;
366 			if (hdr->e_machine == bi->machine &&
367 			    bi->interp_path != NULL &&
368 			    /* ELF image p_filesz includes terminating zero */
369 			    strlen(bi->interp_path) + 1 == interp_name_len &&
370 			    strncmp(interp, bi->interp_path, interp_name_len)
371 			    == 0 && (bi->header_supported == NULL ||
372 			    bi->header_supported(imgp)))
373 				return (bi);
374 		}
375 	}
376 
377 	/* Lacking a recognized interpreter, try the default brand */
378 	for (i = 0; i < MAX_BRANDS; i++) {
379 		bi = elf_brand_list[i];
380 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
381 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
382 			continue;
383 		if (hdr->e_machine == bi->machine &&
384 		    __elfN(fallback_brand) == bi->brand &&
385 		    (bi->header_supported == NULL ||
386 		    bi->header_supported(imgp)))
387 			return (bi);
388 	}
389 	return (NULL);
390 }
391 
392 static int
393 __elfN(check_header)(const Elf_Ehdr *hdr)
394 {
395 	Elf_Brandinfo *bi;
396 	int i;
397 
398 	if (!IS_ELF(*hdr) ||
399 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
400 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
401 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
402 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
403 	    hdr->e_version != ELF_TARG_VER)
404 		return (ENOEXEC);
405 
406 	/*
407 	 * Make sure we have at least one brand for this machine.
408 	 */
409 
410 	for (i = 0; i < MAX_BRANDS; i++) {
411 		bi = elf_brand_list[i];
412 		if (bi != NULL && bi->machine == hdr->e_machine)
413 			break;
414 	}
415 	if (i == MAX_BRANDS)
416 		return (ENOEXEC);
417 
418 	return (0);
419 }
420 
421 static int
422 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
423     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
424 {
425 	struct sf_buf *sf;
426 	int error;
427 	vm_offset_t off;
428 
429 	/*
430 	 * Create the page if it doesn't exist yet. Ignore errors.
431 	 */
432 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
433 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
434 
435 	/*
436 	 * Find the page from the underlying object.
437 	 */
438 	if (object != NULL) {
439 		sf = vm_imgact_map_page(object, offset);
440 		if (sf == NULL)
441 			return (KERN_FAILURE);
442 		off = offset - trunc_page(offset);
443 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
444 		    end - start);
445 		vm_imgact_unmap_page(sf);
446 		if (error != 0)
447 			return (KERN_FAILURE);
448 	}
449 
450 	return (KERN_SUCCESS);
451 }
452 
453 static int
454 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
455     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
456     int cow)
457 {
458 	struct sf_buf *sf;
459 	vm_offset_t off;
460 	vm_size_t sz;
461 	int error, locked, rv;
462 
463 	if (start != trunc_page(start)) {
464 		rv = __elfN(map_partial)(map, object, offset, start,
465 		    round_page(start), prot);
466 		if (rv != KERN_SUCCESS)
467 			return (rv);
468 		offset += round_page(start) - start;
469 		start = round_page(start);
470 	}
471 	if (end != round_page(end)) {
472 		rv = __elfN(map_partial)(map, object, offset +
473 		    trunc_page(end) - start, trunc_page(end), end, prot);
474 		if (rv != KERN_SUCCESS)
475 			return (rv);
476 		end = trunc_page(end);
477 	}
478 	if (start >= end)
479 		return (KERN_SUCCESS);
480 	if ((offset & PAGE_MASK) != 0) {
481 		/*
482 		 * The mapping is not page aligned.  This means that we have
483 		 * to copy the data.
484 		 */
485 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
486 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
487 		if (rv != KERN_SUCCESS)
488 			return (rv);
489 		if (object == NULL)
490 			return (KERN_SUCCESS);
491 		for (; start < end; start += sz) {
492 			sf = vm_imgact_map_page(object, offset);
493 			if (sf == NULL)
494 				return (KERN_FAILURE);
495 			off = offset - trunc_page(offset);
496 			sz = end - start;
497 			if (sz > PAGE_SIZE - off)
498 				sz = PAGE_SIZE - off;
499 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
500 			    (caddr_t)start, sz);
501 			vm_imgact_unmap_page(sf);
502 			if (error != 0)
503 				return (KERN_FAILURE);
504 			offset += sz;
505 		}
506 	} else {
507 		vm_object_reference(object);
508 		rv = vm_map_fixed(map, object, offset, start, end - start,
509 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL);
510 		if (rv != KERN_SUCCESS) {
511 			locked = VOP_ISLOCKED(imgp->vp);
512 			VOP_UNLOCK(imgp->vp, 0);
513 			vm_object_deallocate(object);
514 			vn_lock(imgp->vp, locked | LK_RETRY);
515 			return (rv);
516 		}
517 	}
518 	return (KERN_SUCCESS);
519 }
520 
521 static int
522 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
523     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
524     size_t pagesize)
525 {
526 	struct sf_buf *sf;
527 	size_t map_len;
528 	vm_map_t map;
529 	vm_object_t object;
530 	vm_offset_t off, map_addr;
531 	int error, rv, cow;
532 	size_t copy_len;
533 	vm_ooffset_t file_addr;
534 
535 	/*
536 	 * It's necessary to fail if the filsz + offset taken from the
537 	 * header is greater than the actual file pager object's size.
538 	 * If we were to allow this, then the vm_map_find() below would
539 	 * walk right off the end of the file object and into the ether.
540 	 *
541 	 * While I'm here, might as well check for something else that
542 	 * is invalid: filsz cannot be greater than memsz.
543 	 */
544 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
545 	    filsz > memsz) {
546 		uprintf("elf_load_section: truncated ELF file\n");
547 		return (ENOEXEC);
548 	}
549 
550 	object = imgp->object;
551 	map = &imgp->proc->p_vmspace->vm_map;
552 	map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize);
553 	file_addr = trunc_page_ps(offset, pagesize);
554 
555 	/*
556 	 * We have two choices.  We can either clear the data in the last page
557 	 * of an oversized mapping, or we can start the anon mapping a page
558 	 * early and copy the initialized data into that first page.  We
559 	 * choose the second.
560 	 */
561 	if (filsz == 0)
562 		map_len = 0;
563 	else if (memsz > filsz)
564 		map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr;
565 	else
566 		map_len = round_page_ps(offset + filsz, pagesize) - file_addr;
567 
568 	if (map_len != 0) {
569 		/* cow flags: don't dump readonly sections in core */
570 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
571 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
572 
573 		rv = __elfN(map_insert)(imgp, map,
574 				      object,
575 				      file_addr,	/* file offset */
576 				      map_addr,		/* virtual start */
577 				      map_addr + map_len,/* virtual end */
578 				      prot,
579 				      cow);
580 		if (rv != KERN_SUCCESS)
581 			return (EINVAL);
582 
583 		/* we can stop now if we've covered it all */
584 		if (memsz == filsz)
585 			return (0);
586 	}
587 
588 
589 	/*
590 	 * We have to get the remaining bit of the file into the first part
591 	 * of the oversized map segment.  This is normally because the .data
592 	 * segment in the file is extended to provide bss.  It's a neat idea
593 	 * to try and save a page, but it's a pain in the behind to implement.
594 	 */
595 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset +
596 	    filsz, pagesize);
597 	map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize);
598 	map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) -
599 	    map_addr;
600 
601 	/* This had damn well better be true! */
602 	if (map_len != 0) {
603 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
604 		    map_addr + map_len, prot, 0);
605 		if (rv != KERN_SUCCESS)
606 			return (EINVAL);
607 	}
608 
609 	if (copy_len != 0) {
610 		sf = vm_imgact_map_page(object, offset + filsz);
611 		if (sf == NULL)
612 			return (EIO);
613 
614 		/* send the page fragment to user space */
615 		off = trunc_page_ps(offset + filsz, pagesize) -
616 		    trunc_page(offset + filsz);
617 		error = copyout((caddr_t)sf_buf_kva(sf) + off,
618 		    (caddr_t)map_addr, copy_len);
619 		vm_imgact_unmap_page(sf);
620 		if (error != 0)
621 			return (error);
622 	}
623 
624 	/*
625 	 * Remove write access to the page if it was only granted by map_insert
626 	 * to allow copyout.
627 	 */
628 	if ((prot & VM_PROT_WRITE) == 0)
629 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
630 		    map_len), prot, FALSE);
631 
632 	return (0);
633 }
634 
635 /*
636  * Load the file "file" into memory.  It may be either a shared object
637  * or an executable.
638  *
639  * The "addr" reference parameter is in/out.  On entry, it specifies
640  * the address where a shared object should be loaded.  If the file is
641  * an executable, this value is ignored.  On exit, "addr" specifies
642  * where the file was actually loaded.
643  *
644  * The "entry" reference parameter is out only.  On exit, it specifies
645  * the entry point for the loaded file.
646  */
647 static int
648 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
649 	u_long *entry, size_t pagesize)
650 {
651 	struct {
652 		struct nameidata nd;
653 		struct vattr attr;
654 		struct image_params image_params;
655 	} *tempdata;
656 	const Elf_Ehdr *hdr = NULL;
657 	const Elf_Phdr *phdr = NULL;
658 	struct nameidata *nd;
659 	struct vattr *attr;
660 	struct image_params *imgp;
661 	vm_prot_t prot;
662 	u_long rbase;
663 	u_long base_addr = 0;
664 	int error, i, numsegs;
665 
666 #ifdef CAPABILITY_MODE
667 	/*
668 	 * XXXJA: This check can go away once we are sufficiently confident
669 	 * that the checks in namei() are correct.
670 	 */
671 	if (IN_CAPABILITY_MODE(curthread))
672 		return (ECAPMODE);
673 #endif
674 
675 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
676 	nd = &tempdata->nd;
677 	attr = &tempdata->attr;
678 	imgp = &tempdata->image_params;
679 
680 	/*
681 	 * Initialize part of the common data
682 	 */
683 	imgp->proc = p;
684 	imgp->attr = attr;
685 	imgp->firstpage = NULL;
686 	imgp->image_header = NULL;
687 	imgp->object = NULL;
688 	imgp->execlabel = NULL;
689 
690 	NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread);
691 	if ((error = namei(nd)) != 0) {
692 		nd->ni_vp = NULL;
693 		goto fail;
694 	}
695 	NDFREE(nd, NDF_ONLY_PNBUF);
696 	imgp->vp = nd->ni_vp;
697 
698 	/*
699 	 * Check permissions, modes, uid, etc on the file, and "open" it.
700 	 */
701 	error = exec_check_permissions(imgp);
702 	if (error)
703 		goto fail;
704 
705 	error = exec_map_first_page(imgp);
706 	if (error)
707 		goto fail;
708 
709 	/*
710 	 * Also make certain that the interpreter stays the same, so set
711 	 * its VV_TEXT flag, too.
712 	 */
713 	VOP_SET_TEXT(nd->ni_vp);
714 
715 	imgp->object = nd->ni_vp->v_object;
716 
717 	hdr = (const Elf_Ehdr *)imgp->image_header;
718 	if ((error = __elfN(check_header)(hdr)) != 0)
719 		goto fail;
720 	if (hdr->e_type == ET_DYN)
721 		rbase = *addr;
722 	else if (hdr->e_type == ET_EXEC)
723 		rbase = 0;
724 	else {
725 		error = ENOEXEC;
726 		goto fail;
727 	}
728 
729 	/* Only support headers that fit within first page for now      */
730 	if ((hdr->e_phoff > PAGE_SIZE) ||
731 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
732 		error = ENOEXEC;
733 		goto fail;
734 	}
735 
736 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
737 	if (!aligned(phdr, Elf_Addr)) {
738 		error = ENOEXEC;
739 		goto fail;
740 	}
741 
742 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
743 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
744 			/* Loadable segment */
745 			prot = __elfN(trans_prot)(phdr[i].p_flags);
746 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
747 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
748 			    phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize);
749 			if (error != 0)
750 				goto fail;
751 			/*
752 			 * Establish the base address if this is the
753 			 * first segment.
754 			 */
755 			if (numsegs == 0)
756   				base_addr = trunc_page(phdr[i].p_vaddr +
757 				    rbase);
758 			numsegs++;
759 		}
760 	}
761 	*addr = base_addr;
762 	*entry = (unsigned long)hdr->e_entry + rbase;
763 
764 fail:
765 	if (imgp->firstpage)
766 		exec_unmap_first_page(imgp);
767 
768 	if (nd->ni_vp)
769 		vput(nd->ni_vp);
770 
771 	free(tempdata, M_TEMP);
772 
773 	return (error);
774 }
775 
776 static int
777 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
778 {
779 	struct thread *td;
780 	const Elf_Ehdr *hdr;
781 	const Elf_Phdr *phdr;
782 	Elf_Auxargs *elf_auxargs;
783 	struct vmspace *vmspace;
784 	const char *err_str, *newinterp;
785 	char *interp, *interp_buf, *path;
786 	Elf_Brandinfo *brand_info;
787 	struct sysentvec *sv;
788 	vm_prot_t prot;
789 	u_long text_size, data_size, total_size, text_addr, data_addr;
790 	u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr;
791 	int32_t osrel;
792 	int error, i, n, interp_name_len, have_interp;
793 
794 	hdr = (const Elf_Ehdr *)imgp->image_header;
795 
796 	/*
797 	 * Do we have a valid ELF header ?
798 	 *
799 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
800 	 * if particular brand doesn't support it.
801 	 */
802 	if (__elfN(check_header)(hdr) != 0 ||
803 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
804 		return (-1);
805 
806 	/*
807 	 * From here on down, we return an errno, not -1, as we've
808 	 * detected an ELF file.
809 	 */
810 
811 	if ((hdr->e_phoff > PAGE_SIZE) ||
812 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
813 		/* Only support headers in first page for now */
814 		uprintf("Program headers not in the first page\n");
815 		return (ENOEXEC);
816 	}
817 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
818 	if (!aligned(phdr, Elf_Addr)) {
819 		uprintf("Unaligned program headers\n");
820 		return (ENOEXEC);
821 	}
822 
823 	n = error = 0;
824 	baddr = 0;
825 	osrel = 0;
826 	text_size = data_size = total_size = text_addr = data_addr = 0;
827 	entry = proghdr = 0;
828 	interp_name_len = 0;
829 	err_str = newinterp = NULL;
830 	interp = interp_buf = NULL;
831 	td = curthread;
832 
833 	for (i = 0; i < hdr->e_phnum; i++) {
834 		switch (phdr[i].p_type) {
835 		case PT_LOAD:
836 			if (n == 0)
837 				baddr = phdr[i].p_vaddr;
838 			n++;
839 			break;
840 		case PT_INTERP:
841 			/* Path to interpreter */
842 			if (phdr[i].p_filesz > MAXPATHLEN) {
843 				uprintf("Invalid PT_INTERP\n");
844 				error = ENOEXEC;
845 				goto ret;
846 			}
847 			if (interp != NULL) {
848 				uprintf("Multiple PT_INTERP headers\n");
849 				error = ENOEXEC;
850 				goto ret;
851 			}
852 			interp_name_len = phdr[i].p_filesz;
853 			if (phdr[i].p_offset > PAGE_SIZE ||
854 			    interp_name_len > PAGE_SIZE - phdr[i].p_offset) {
855 				VOP_UNLOCK(imgp->vp, 0);
856 				interp_buf = malloc(interp_name_len + 1, M_TEMP,
857 				    M_WAITOK);
858 				vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
859 				error = vn_rdwr(UIO_READ, imgp->vp, interp_buf,
860 				    interp_name_len, phdr[i].p_offset,
861 				    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
862 				    NOCRED, NULL, td);
863 				if (error != 0) {
864 					uprintf("i/o error PT_INTERP %d\n",
865 					    error);
866 					goto ret;
867 				}
868 				interp_buf[interp_name_len] = '\0';
869 				interp = interp_buf;
870 			} else {
871 				interp = __DECONST(char *, imgp->image_header) +
872 				    phdr[i].p_offset;
873 			}
874 			break;
875 		case PT_GNU_STACK:
876 			if (__elfN(nxstack))
877 				imgp->stack_prot =
878 				    __elfN(trans_prot)(phdr[i].p_flags);
879 			imgp->stack_sz = phdr[i].p_memsz;
880 			break;
881 		}
882 	}
883 
884 	brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len,
885 	    &osrel);
886 	if (brand_info == NULL) {
887 		uprintf("ELF binary type \"%u\" not known.\n",
888 		    hdr->e_ident[EI_OSABI]);
889 		error = ENOEXEC;
890 		goto ret;
891 	}
892 	et_dyn_addr = 0;
893 	if (hdr->e_type == ET_DYN) {
894 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
895 			uprintf("Cannot execute shared object\n");
896 			error = ENOEXEC;
897 			goto ret;
898 		}
899 		/*
900 		 * Honour the base load address from the dso if it is
901 		 * non-zero for some reason.
902 		 */
903 		if (baddr == 0)
904 			et_dyn_addr = ET_DYN_LOAD_ADDR;
905 	}
906 	sv = brand_info->sysvec;
907 	if (interp != NULL && brand_info->interp_newpath != NULL)
908 		newinterp = brand_info->interp_newpath;
909 
910 	/*
911 	 * Avoid a possible deadlock if the current address space is destroyed
912 	 * and that address space maps the locked vnode.  In the common case,
913 	 * the locked vnode's v_usecount is decremented but remains greater
914 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
915 	 * However, in cases where the vnode lock is external, such as nullfs,
916 	 * v_usecount may become zero.
917 	 *
918 	 * The VV_TEXT flag prevents modifications to the executable while
919 	 * the vnode is unlocked.
920 	 */
921 	VOP_UNLOCK(imgp->vp, 0);
922 
923 	error = exec_new_vmspace(imgp, sv);
924 	imgp->proc->p_sysent = sv;
925 
926 	vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
927 	if (error != 0)
928 		goto ret;
929 
930 	for (i = 0; i < hdr->e_phnum; i++) {
931 		switch (phdr[i].p_type) {
932 		case PT_LOAD:	/* Loadable segment */
933 			if (phdr[i].p_memsz == 0)
934 				break;
935 			prot = __elfN(trans_prot)(phdr[i].p_flags);
936 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
937 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr,
938 			    phdr[i].p_memsz, phdr[i].p_filesz, prot,
939 			    sv->sv_pagesize);
940 			if (error != 0)
941 				goto ret;
942 
943 			/*
944 			 * If this segment contains the program headers,
945 			 * remember their virtual address for the AT_PHDR
946 			 * aux entry. Static binaries don't usually include
947 			 * a PT_PHDR entry.
948 			 */
949 			if (phdr[i].p_offset == 0 &&
950 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
951 				<= phdr[i].p_filesz)
952 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
953 				    et_dyn_addr;
954 
955 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
956 			seg_size = round_page(phdr[i].p_memsz +
957 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
958 
959 			/*
960 			 * Make the largest executable segment the official
961 			 * text segment and all others data.
962 			 *
963 			 * Note that obreak() assumes that data_addr +
964 			 * data_size == end of data load area, and the ELF
965 			 * file format expects segments to be sorted by
966 			 * address.  If multiple data segments exist, the
967 			 * last one will be used.
968 			 */
969 
970 			if (phdr[i].p_flags & PF_X && text_size < seg_size) {
971 				text_size = seg_size;
972 				text_addr = seg_addr;
973 			} else {
974 				data_size = seg_size;
975 				data_addr = seg_addr;
976 			}
977 			total_size += seg_size;
978 			break;
979 		case PT_PHDR: 	/* Program header table info */
980 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
981 			break;
982 		default:
983 			break;
984 		}
985 	}
986 
987 	if (data_addr == 0 && data_size == 0) {
988 		data_addr = text_addr;
989 		data_size = text_size;
990 	}
991 
992 	entry = (u_long)hdr->e_entry + et_dyn_addr;
993 
994 	/*
995 	 * Check limits.  It should be safe to check the
996 	 * limits after loading the segments since we do
997 	 * not actually fault in all the segments pages.
998 	 */
999 	PROC_LOCK(imgp->proc);
1000 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
1001 		err_str = "Data segment size exceeds process limit";
1002 	else if (text_size > maxtsiz)
1003 		err_str = "Text segment size exceeds system limit";
1004 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
1005 		err_str = "Total segment size exceeds process limit";
1006 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
1007 		err_str = "Data segment size exceeds resource limit";
1008 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
1009 		err_str = "Total segment size exceeds resource limit";
1010 	if (err_str != NULL) {
1011 		PROC_UNLOCK(imgp->proc);
1012 		uprintf("%s\n", err_str);
1013 		error = ENOMEM;
1014 		goto ret;
1015 	}
1016 
1017 	vmspace = imgp->proc->p_vmspace;
1018 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
1019 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
1020 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
1021 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
1022 
1023 	/*
1024 	 * We load the dynamic linker where a userland call
1025 	 * to mmap(0, ...) would put it.  The rationale behind this
1026 	 * calculation is that it leaves room for the heap to grow to
1027 	 * its maximum allowed size.
1028 	 */
1029 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1030 	    RLIMIT_DATA));
1031 	PROC_UNLOCK(imgp->proc);
1032 
1033 	imgp->entry_addr = entry;
1034 
1035 	if (interp != NULL) {
1036 		have_interp = FALSE;
1037 		VOP_UNLOCK(imgp->vp, 0);
1038 		if (brand_info->emul_path != NULL &&
1039 		    brand_info->emul_path[0] != '\0') {
1040 			path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1041 			snprintf(path, MAXPATHLEN, "%s%s",
1042 			    brand_info->emul_path, interp);
1043 			error = __elfN(load_file)(imgp->proc, path, &addr,
1044 			    &imgp->entry_addr, sv->sv_pagesize);
1045 			free(path, M_TEMP);
1046 			if (error == 0)
1047 				have_interp = TRUE;
1048 		}
1049 		if (!have_interp && newinterp != NULL &&
1050 		    (brand_info->interp_path == NULL ||
1051 		    strcmp(interp, brand_info->interp_path) == 0)) {
1052 			error = __elfN(load_file)(imgp->proc, newinterp, &addr,
1053 			    &imgp->entry_addr, sv->sv_pagesize);
1054 			if (error == 0)
1055 				have_interp = TRUE;
1056 		}
1057 		if (!have_interp) {
1058 			error = __elfN(load_file)(imgp->proc, interp, &addr,
1059 			    &imgp->entry_addr, sv->sv_pagesize);
1060 		}
1061 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
1062 		if (error != 0) {
1063 			uprintf("ELF interpreter %s not found, error %d\n",
1064 			    interp, error);
1065 			goto ret;
1066 		}
1067 	} else
1068 		addr = et_dyn_addr;
1069 
1070 	/*
1071 	 * Construct auxargs table (used by the fixup routine)
1072 	 */
1073 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1074 	elf_auxargs->execfd = -1;
1075 	elf_auxargs->phdr = proghdr;
1076 	elf_auxargs->phent = hdr->e_phentsize;
1077 	elf_auxargs->phnum = hdr->e_phnum;
1078 	elf_auxargs->pagesz = PAGE_SIZE;
1079 	elf_auxargs->base = addr;
1080 	elf_auxargs->flags = 0;
1081 	elf_auxargs->entry = entry;
1082 	elf_auxargs->hdr_eflags = hdr->e_flags;
1083 
1084 	imgp->auxargs = elf_auxargs;
1085 	imgp->interpreted = 0;
1086 	imgp->reloc_base = addr;
1087 	imgp->proc->p_osrel = osrel;
1088 	imgp->proc->p_elf_machine = hdr->e_machine;
1089 	imgp->proc->p_elf_flags = hdr->e_flags;
1090 
1091 ret:
1092 	free(interp_buf, M_TEMP);
1093 	return (error);
1094 }
1095 
1096 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1097 
1098 int
1099 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
1100 {
1101 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1102 	Elf_Auxinfo *argarray, *pos;
1103 	Elf_Addr *base, *auxbase;
1104 	int error;
1105 
1106 	base = (Elf_Addr *)*stack_base;
1107 	auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1;
1108 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1109 	    M_WAITOK | M_ZERO);
1110 
1111 	if (args->execfd != -1)
1112 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1113 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1114 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1115 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1116 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1117 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1118 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1119 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1120 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1121 	if (imgp->execpathp != 0)
1122 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1123 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1124 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1125 	if (imgp->canary != 0) {
1126 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1127 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1128 	}
1129 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1130 	if (imgp->pagesizes != 0) {
1131 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1132 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1133 	}
1134 	if (imgp->sysent->sv_timekeep_base != 0) {
1135 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1136 		    imgp->sysent->sv_timekeep_base);
1137 	}
1138 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1139 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1140 	    imgp->sysent->sv_stackprot);
1141 	if (imgp->sysent->sv_hwcap != NULL)
1142 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1143 	if (imgp->sysent->sv_hwcap2 != NULL)
1144 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1145 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1146 
1147 	free(imgp->auxargs, M_TEMP);
1148 	imgp->auxargs = NULL;
1149 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1150 
1151 	error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT);
1152 	free(argarray, M_TEMP);
1153 	if (error != 0)
1154 		return (error);
1155 
1156 	base--;
1157 	if (suword(base, imgp->args->argc) == -1)
1158 		return (EFAULT);
1159 	*stack_base = (register_t *)base;
1160 	return (0);
1161 }
1162 
1163 /*
1164  * Code for generating ELF core dumps.
1165  */
1166 
1167 typedef void (*segment_callback)(vm_map_entry_t, void *);
1168 
1169 /* Closure for cb_put_phdr(). */
1170 struct phdr_closure {
1171 	Elf_Phdr *phdr;		/* Program header to fill in */
1172 	Elf_Off offset;		/* Offset of segment in core file */
1173 };
1174 
1175 /* Closure for cb_size_segment(). */
1176 struct sseg_closure {
1177 	int count;		/* Count of writable segments. */
1178 	size_t size;		/* Total size of all writable segments. */
1179 };
1180 
1181 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1182 
1183 struct note_info {
1184 	int		type;		/* Note type. */
1185 	outfunc_t 	outfunc; 	/* Output function. */
1186 	void		*outarg;	/* Argument for the output function. */
1187 	size_t		outsize;	/* Output size. */
1188 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1189 };
1190 
1191 TAILQ_HEAD(note_info_list, note_info);
1192 
1193 /* Coredump output parameters. */
1194 struct coredump_params {
1195 	off_t		offset;
1196 	struct ucred	*active_cred;
1197 	struct ucred	*file_cred;
1198 	struct thread	*td;
1199 	struct vnode	*vp;
1200 	struct compressor *comp;
1201 };
1202 
1203 extern int compress_user_cores;
1204 extern int compress_user_cores_level;
1205 
1206 static void cb_put_phdr(vm_map_entry_t, void *);
1207 static void cb_size_segment(vm_map_entry_t, void *);
1208 static int core_write(struct coredump_params *, const void *, size_t, off_t,
1209     enum uio_seg);
1210 static void each_dumpable_segment(struct thread *, segment_callback, void *);
1211 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1212     struct note_info_list *, size_t);
1213 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1214     size_t *);
1215 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1216 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1217 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1218 static int sbuf_drain_core_output(void *, const char *, int);
1219 static int sbuf_drain_count(void *arg, const char *data, int len);
1220 
1221 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1222 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1223 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1224 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1225 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1226 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
1227 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1228 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1229 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1230 static void note_procstat_files(void *, struct sbuf *, size_t *);
1231 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1232 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1233 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1234 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1235 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1236 
1237 /*
1238  * Write out a core segment to the compression stream.
1239  */
1240 static int
1241 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1242 {
1243 	u_int chunk_len;
1244 	int error;
1245 
1246 	while (len > 0) {
1247 		chunk_len = MIN(len, CORE_BUF_SIZE);
1248 
1249 		/*
1250 		 * We can get EFAULT error here.
1251 		 * In that case zero out the current chunk of the segment.
1252 		 */
1253 		error = copyin(base, buf, chunk_len);
1254 		if (error != 0)
1255 			bzero(buf, chunk_len);
1256 		error = compressor_write(p->comp, buf, chunk_len);
1257 		if (error != 0)
1258 			break;
1259 		base += chunk_len;
1260 		len -= chunk_len;
1261 	}
1262 	return (error);
1263 }
1264 
1265 static int
1266 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1267 {
1268 
1269 	return (core_write((struct coredump_params *)arg, base, len, offset,
1270 	    UIO_SYSSPACE));
1271 }
1272 
1273 static int
1274 core_write(struct coredump_params *p, const void *base, size_t len,
1275     off_t offset, enum uio_seg seg)
1276 {
1277 
1278 	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1279 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1280 	    p->active_cred, p->file_cred, NULL, p->td));
1281 }
1282 
1283 static int
1284 core_output(void *base, size_t len, off_t offset, struct coredump_params *p,
1285     void *tmpbuf)
1286 {
1287 	int error;
1288 
1289 	if (p->comp != NULL)
1290 		return (compress_chunk(p, base, tmpbuf, len));
1291 
1292 	/*
1293 	 * EFAULT is a non-fatal error that we can get, for example,
1294 	 * if the segment is backed by a file but extends beyond its
1295 	 * end.
1296 	 */
1297 	error = core_write(p, base, len, offset, UIO_USERSPACE);
1298 	if (error == EFAULT) {
1299 		log(LOG_WARNING, "Failed to fully fault in a core file segment "
1300 		    "at VA %p with size 0x%zx to be written at offset 0x%jx "
1301 		    "for process %s\n", base, len, offset, curproc->p_comm);
1302 
1303 		/*
1304 		 * Write a "real" zero byte at the end of the target region
1305 		 * in the case this is the last segment.
1306 		 * The intermediate space will be implicitly zero-filled.
1307 		 */
1308 		error = core_write(p, zero_region, 1, offset + len - 1,
1309 		    UIO_SYSSPACE);
1310 	}
1311 	return (error);
1312 }
1313 
1314 /*
1315  * Drain into a core file.
1316  */
1317 static int
1318 sbuf_drain_core_output(void *arg, const char *data, int len)
1319 {
1320 	struct coredump_params *p;
1321 	int error, locked;
1322 
1323 	p = (struct coredump_params *)arg;
1324 
1325 	/*
1326 	 * Some kern_proc out routines that print to this sbuf may
1327 	 * call us with the process lock held. Draining with the
1328 	 * non-sleepable lock held is unsafe. The lock is needed for
1329 	 * those routines when dumping a live process. In our case we
1330 	 * can safely release the lock before draining and acquire
1331 	 * again after.
1332 	 */
1333 	locked = PROC_LOCKED(p->td->td_proc);
1334 	if (locked)
1335 		PROC_UNLOCK(p->td->td_proc);
1336 	if (p->comp != NULL)
1337 		error = compressor_write(p->comp, __DECONST(char *, data), len);
1338 	else
1339 		error = core_write(p, __DECONST(void *, data), len, p->offset,
1340 		    UIO_SYSSPACE);
1341 	if (locked)
1342 		PROC_LOCK(p->td->td_proc);
1343 	if (error != 0)
1344 		return (-error);
1345 	p->offset += len;
1346 	return (len);
1347 }
1348 
1349 /*
1350  * Drain into a counter.
1351  */
1352 static int
1353 sbuf_drain_count(void *arg, const char *data __unused, int len)
1354 {
1355 	size_t *sizep;
1356 
1357 	sizep = (size_t *)arg;
1358 	*sizep += len;
1359 	return (len);
1360 }
1361 
1362 int
1363 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1364 {
1365 	struct ucred *cred = td->td_ucred;
1366 	int error = 0;
1367 	struct sseg_closure seginfo;
1368 	struct note_info_list notelst;
1369 	struct coredump_params params;
1370 	struct note_info *ninfo;
1371 	void *hdr, *tmpbuf;
1372 	size_t hdrsize, notesz, coresize;
1373 
1374 	hdr = NULL;
1375 	tmpbuf = NULL;
1376 	TAILQ_INIT(&notelst);
1377 
1378 	/* Size the program segments. */
1379 	seginfo.count = 0;
1380 	seginfo.size = 0;
1381 	each_dumpable_segment(td, cb_size_segment, &seginfo);
1382 
1383 	/*
1384 	 * Collect info about the core file header area.
1385 	 */
1386 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1387 	if (seginfo.count + 1 >= PN_XNUM)
1388 		hdrsize += sizeof(Elf_Shdr);
1389 	__elfN(prepare_notes)(td, &notelst, &notesz);
1390 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1391 
1392 	/* Set up core dump parameters. */
1393 	params.offset = 0;
1394 	params.active_cred = cred;
1395 	params.file_cred = NOCRED;
1396 	params.td = td;
1397 	params.vp = vp;
1398 	params.comp = NULL;
1399 
1400 #ifdef RACCT
1401 	if (racct_enable) {
1402 		PROC_LOCK(td->td_proc);
1403 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1404 		PROC_UNLOCK(td->td_proc);
1405 		if (error != 0) {
1406 			error = EFAULT;
1407 			goto done;
1408 		}
1409 	}
1410 #endif
1411 	if (coresize >= limit) {
1412 		error = EFAULT;
1413 		goto done;
1414 	}
1415 
1416 	/* Create a compression stream if necessary. */
1417 	if (compress_user_cores != 0) {
1418 		params.comp = compressor_init(core_compressed_write,
1419 		    compress_user_cores, CORE_BUF_SIZE,
1420 		    compress_user_cores_level, &params);
1421 		if (params.comp == NULL) {
1422 			error = EFAULT;
1423 			goto done;
1424 		}
1425 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1426         }
1427 
1428 	/*
1429 	 * Allocate memory for building the header, fill it up,
1430 	 * and write it out following the notes.
1431 	 */
1432 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1433 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1434 	    notesz);
1435 
1436 	/* Write the contents of all of the writable segments. */
1437 	if (error == 0) {
1438 		Elf_Phdr *php;
1439 		off_t offset;
1440 		int i;
1441 
1442 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1443 		offset = round_page(hdrsize + notesz);
1444 		for (i = 0; i < seginfo.count; i++) {
1445 			error = core_output((caddr_t)(uintptr_t)php->p_vaddr,
1446 			    php->p_filesz, offset, &params, tmpbuf);
1447 			if (error != 0)
1448 				break;
1449 			offset += php->p_filesz;
1450 			php++;
1451 		}
1452 		if (error == 0 && params.comp != NULL)
1453 			error = compressor_flush(params.comp);
1454 	}
1455 	if (error) {
1456 		log(LOG_WARNING,
1457 		    "Failed to write core file for process %s (error %d)\n",
1458 		    curproc->p_comm, error);
1459 	}
1460 
1461 done:
1462 	free(tmpbuf, M_TEMP);
1463 	if (params.comp != NULL)
1464 		compressor_fini(params.comp);
1465 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1466 		TAILQ_REMOVE(&notelst, ninfo, link);
1467 		free(ninfo, M_TEMP);
1468 	}
1469 	if (hdr != NULL)
1470 		free(hdr, M_TEMP);
1471 
1472 	return (error);
1473 }
1474 
1475 /*
1476  * A callback for each_dumpable_segment() to write out the segment's
1477  * program header entry.
1478  */
1479 static void
1480 cb_put_phdr(vm_map_entry_t entry, void *closure)
1481 {
1482 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1483 	Elf_Phdr *phdr = phc->phdr;
1484 
1485 	phc->offset = round_page(phc->offset);
1486 
1487 	phdr->p_type = PT_LOAD;
1488 	phdr->p_offset = phc->offset;
1489 	phdr->p_vaddr = entry->start;
1490 	phdr->p_paddr = 0;
1491 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1492 	phdr->p_align = PAGE_SIZE;
1493 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1494 
1495 	phc->offset += phdr->p_filesz;
1496 	phc->phdr++;
1497 }
1498 
1499 /*
1500  * A callback for each_dumpable_segment() to gather information about
1501  * the number of segments and their total size.
1502  */
1503 static void
1504 cb_size_segment(vm_map_entry_t entry, void *closure)
1505 {
1506 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1507 
1508 	ssc->count++;
1509 	ssc->size += entry->end - entry->start;
1510 }
1511 
1512 /*
1513  * For each writable segment in the process's memory map, call the given
1514  * function with a pointer to the map entry and some arbitrary
1515  * caller-supplied data.
1516  */
1517 static void
1518 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
1519 {
1520 	struct proc *p = td->td_proc;
1521 	vm_map_t map = &p->p_vmspace->vm_map;
1522 	vm_map_entry_t entry;
1523 	vm_object_t backing_object, object;
1524 	boolean_t ignore_entry;
1525 
1526 	vm_map_lock_read(map);
1527 	for (entry = map->header.next; entry != &map->header;
1528 	    entry = entry->next) {
1529 		/*
1530 		 * Don't dump inaccessible mappings, deal with legacy
1531 		 * coredump mode.
1532 		 *
1533 		 * Note that read-only segments related to the elf binary
1534 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1535 		 * need to arbitrarily ignore such segments.
1536 		 */
1537 		if (elf_legacy_coredump) {
1538 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1539 				continue;
1540 		} else {
1541 			if ((entry->protection & VM_PROT_ALL) == 0)
1542 				continue;
1543 		}
1544 
1545 		/*
1546 		 * Dont include memory segment in the coredump if
1547 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1548 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1549 		 * kernel map).
1550 		 */
1551 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1552 			continue;
1553 
1554 		if ((object = entry->object.vm_object) == NULL)
1555 			continue;
1556 
1557 		/* Ignore memory-mapped devices and such things. */
1558 		VM_OBJECT_RLOCK(object);
1559 		while ((backing_object = object->backing_object) != NULL) {
1560 			VM_OBJECT_RLOCK(backing_object);
1561 			VM_OBJECT_RUNLOCK(object);
1562 			object = backing_object;
1563 		}
1564 		ignore_entry = object->type != OBJT_DEFAULT &&
1565 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1566 		    object->type != OBJT_PHYS;
1567 		VM_OBJECT_RUNLOCK(object);
1568 		if (ignore_entry)
1569 			continue;
1570 
1571 		(*func)(entry, closure);
1572 	}
1573 	vm_map_unlock_read(map);
1574 }
1575 
1576 /*
1577  * Write the core file header to the file, including padding up to
1578  * the page boundary.
1579  */
1580 static int
1581 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1582     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
1583 {
1584 	struct note_info *ninfo;
1585 	struct sbuf *sb;
1586 	int error;
1587 
1588 	/* Fill in the header. */
1589 	bzero(hdr, hdrsize);
1590 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
1591 
1592 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1593 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1594 	sbuf_start_section(sb, NULL);
1595 	sbuf_bcat(sb, hdr, hdrsize);
1596 	TAILQ_FOREACH(ninfo, notelst, link)
1597 	    __elfN(putnote)(ninfo, sb);
1598 	/* Align up to a page boundary for the program segments. */
1599 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1600 	error = sbuf_finish(sb);
1601 	sbuf_delete(sb);
1602 
1603 	return (error);
1604 }
1605 
1606 static void
1607 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1608     size_t *sizep)
1609 {
1610 	struct proc *p;
1611 	struct thread *thr;
1612 	size_t size;
1613 
1614 	p = td->td_proc;
1615 	size = 0;
1616 
1617 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1618 
1619 	/*
1620 	 * To have the debugger select the right thread (LWP) as the initial
1621 	 * thread, we dump the state of the thread passed to us in td first.
1622 	 * This is the thread that causes the core dump and thus likely to
1623 	 * be the right thread one wants to have selected in the debugger.
1624 	 */
1625 	thr = td;
1626 	while (thr != NULL) {
1627 		size += register_note(list, NT_PRSTATUS,
1628 		    __elfN(note_prstatus), thr);
1629 		size += register_note(list, NT_FPREGSET,
1630 		    __elfN(note_fpregset), thr);
1631 		size += register_note(list, NT_THRMISC,
1632 		    __elfN(note_thrmisc), thr);
1633 		size += register_note(list, NT_PTLWPINFO,
1634 		    __elfN(note_ptlwpinfo), thr);
1635 		size += register_note(list, -1,
1636 		    __elfN(note_threadmd), thr);
1637 
1638 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1639 		    TAILQ_NEXT(thr, td_plist);
1640 		if (thr == td)
1641 			thr = TAILQ_NEXT(thr, td_plist);
1642 	}
1643 
1644 	size += register_note(list, NT_PROCSTAT_PROC,
1645 	    __elfN(note_procstat_proc), p);
1646 	size += register_note(list, NT_PROCSTAT_FILES,
1647 	    note_procstat_files, p);
1648 	size += register_note(list, NT_PROCSTAT_VMMAP,
1649 	    note_procstat_vmmap, p);
1650 	size += register_note(list, NT_PROCSTAT_GROUPS,
1651 	    note_procstat_groups, p);
1652 	size += register_note(list, NT_PROCSTAT_UMASK,
1653 	    note_procstat_umask, p);
1654 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1655 	    note_procstat_rlimit, p);
1656 	size += register_note(list, NT_PROCSTAT_OSREL,
1657 	    note_procstat_osrel, p);
1658 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1659 	    __elfN(note_procstat_psstrings), p);
1660 	size += register_note(list, NT_PROCSTAT_AUXV,
1661 	    __elfN(note_procstat_auxv), p);
1662 
1663 	*sizep = size;
1664 }
1665 
1666 static void
1667 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1668     size_t notesz)
1669 {
1670 	Elf_Ehdr *ehdr;
1671 	Elf_Phdr *phdr;
1672 	Elf_Shdr *shdr;
1673 	struct phdr_closure phc;
1674 
1675 	ehdr = (Elf_Ehdr *)hdr;
1676 
1677 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1678 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1679 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1680 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1681 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1682 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1683 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1684 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1685 	ehdr->e_ident[EI_ABIVERSION] = 0;
1686 	ehdr->e_ident[EI_PAD] = 0;
1687 	ehdr->e_type = ET_CORE;
1688 	ehdr->e_machine = td->td_proc->p_elf_machine;
1689 	ehdr->e_version = EV_CURRENT;
1690 	ehdr->e_entry = 0;
1691 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1692 	ehdr->e_flags = td->td_proc->p_elf_flags;
1693 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1694 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1695 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1696 	ehdr->e_shstrndx = SHN_UNDEF;
1697 	if (numsegs + 1 < PN_XNUM) {
1698 		ehdr->e_phnum = numsegs + 1;
1699 		ehdr->e_shnum = 0;
1700 	} else {
1701 		ehdr->e_phnum = PN_XNUM;
1702 		ehdr->e_shnum = 1;
1703 
1704 		ehdr->e_shoff = ehdr->e_phoff +
1705 		    (numsegs + 1) * ehdr->e_phentsize;
1706 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1707 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1708 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1709 
1710 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1711 		memset(shdr, 0, sizeof(*shdr));
1712 		/*
1713 		 * A special first section is used to hold large segment and
1714 		 * section counts.  This was proposed by Sun Microsystems in
1715 		 * Solaris and has been adopted by Linux; the standard ELF
1716 		 * tools are already familiar with the technique.
1717 		 *
1718 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1719 		 * (or 12-7 depending on the version of the document) for more
1720 		 * details.
1721 		 */
1722 		shdr->sh_type = SHT_NULL;
1723 		shdr->sh_size = ehdr->e_shnum;
1724 		shdr->sh_link = ehdr->e_shstrndx;
1725 		shdr->sh_info = numsegs + 1;
1726 	}
1727 
1728 	/*
1729 	 * Fill in the program header entries.
1730 	 */
1731 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1732 
1733 	/* The note segement. */
1734 	phdr->p_type = PT_NOTE;
1735 	phdr->p_offset = hdrsize;
1736 	phdr->p_vaddr = 0;
1737 	phdr->p_paddr = 0;
1738 	phdr->p_filesz = notesz;
1739 	phdr->p_memsz = 0;
1740 	phdr->p_flags = PF_R;
1741 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1742 	phdr++;
1743 
1744 	/* All the writable segments from the program. */
1745 	phc.phdr = phdr;
1746 	phc.offset = round_page(hdrsize + notesz);
1747 	each_dumpable_segment(td, cb_put_phdr, &phc);
1748 }
1749 
1750 static size_t
1751 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1752 {
1753 	struct note_info *ninfo;
1754 	size_t size, notesize;
1755 
1756 	size = 0;
1757 	out(arg, NULL, &size);
1758 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1759 	ninfo->type = type;
1760 	ninfo->outfunc = out;
1761 	ninfo->outarg = arg;
1762 	ninfo->outsize = size;
1763 	TAILQ_INSERT_TAIL(list, ninfo, link);
1764 
1765 	if (type == -1)
1766 		return (size);
1767 
1768 	notesize = sizeof(Elf_Note) +		/* note header */
1769 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1770 						/* note name */
1771 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1772 
1773 	return (notesize);
1774 }
1775 
1776 static size_t
1777 append_note_data(const void *src, void *dst, size_t len)
1778 {
1779 	size_t padded_len;
1780 
1781 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1782 	if (dst != NULL) {
1783 		bcopy(src, dst, len);
1784 		bzero((char *)dst + len, padded_len - len);
1785 	}
1786 	return (padded_len);
1787 }
1788 
1789 size_t
1790 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
1791 {
1792 	Elf_Note *note;
1793 	char *buf;
1794 	size_t notesize;
1795 
1796 	buf = dst;
1797 	if (buf != NULL) {
1798 		note = (Elf_Note *)buf;
1799 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1800 		note->n_descsz = size;
1801 		note->n_type = type;
1802 		buf += sizeof(*note);
1803 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
1804 		    sizeof(FREEBSD_ABI_VENDOR));
1805 		append_note_data(src, buf, size);
1806 		if (descp != NULL)
1807 			*descp = buf;
1808 	}
1809 
1810 	notesize = sizeof(Elf_Note) +		/* note header */
1811 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1812 						/* note name */
1813 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1814 
1815 	return (notesize);
1816 }
1817 
1818 static void
1819 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
1820 {
1821 	Elf_Note note;
1822 	ssize_t old_len, sect_len;
1823 	size_t new_len, descsz, i;
1824 
1825 	if (ninfo->type == -1) {
1826 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1827 		return;
1828 	}
1829 
1830 	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1831 	note.n_descsz = ninfo->outsize;
1832 	note.n_type = ninfo->type;
1833 
1834 	sbuf_bcat(sb, &note, sizeof(note));
1835 	sbuf_start_section(sb, &old_len);
1836 	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
1837 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1838 	if (note.n_descsz == 0)
1839 		return;
1840 	sbuf_start_section(sb, &old_len);
1841 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1842 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1843 	if (sect_len < 0)
1844 		return;
1845 
1846 	new_len = (size_t)sect_len;
1847 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
1848 	if (new_len < descsz) {
1849 		/*
1850 		 * It is expected that individual note emitters will correctly
1851 		 * predict their expected output size and fill up to that size
1852 		 * themselves, padding in a format-specific way if needed.
1853 		 * However, in case they don't, just do it here with zeros.
1854 		 */
1855 		for (i = 0; i < descsz - new_len; i++)
1856 			sbuf_putc(sb, 0);
1857 	} else if (new_len > descsz) {
1858 		/*
1859 		 * We can't always truncate sb -- we may have drained some
1860 		 * of it already.
1861 		 */
1862 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
1863 		    "read it (%zu > %zu).  Since it is longer than "
1864 		    "expected, this coredump's notes are corrupt.  THIS "
1865 		    "IS A BUG in the note_procstat routine for type %u.\n",
1866 		    __func__, (unsigned)note.n_type, new_len, descsz,
1867 		    (unsigned)note.n_type));
1868 	}
1869 }
1870 
1871 /*
1872  * Miscellaneous note out functions.
1873  */
1874 
1875 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1876 #include <compat/freebsd32/freebsd32.h>
1877 #include <compat/freebsd32/freebsd32_signal.h>
1878 
1879 typedef struct prstatus32 elf_prstatus_t;
1880 typedef struct prpsinfo32 elf_prpsinfo_t;
1881 typedef struct fpreg32 elf_prfpregset_t;
1882 typedef struct fpreg32 elf_fpregset_t;
1883 typedef struct reg32 elf_gregset_t;
1884 typedef struct thrmisc32 elf_thrmisc_t;
1885 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
1886 typedef struct kinfo_proc32 elf_kinfo_proc_t;
1887 typedef uint32_t elf_ps_strings_t;
1888 #else
1889 typedef prstatus_t elf_prstatus_t;
1890 typedef prpsinfo_t elf_prpsinfo_t;
1891 typedef prfpregset_t elf_prfpregset_t;
1892 typedef prfpregset_t elf_fpregset_t;
1893 typedef gregset_t elf_gregset_t;
1894 typedef thrmisc_t elf_thrmisc_t;
1895 #define ELF_KERN_PROC_MASK	0
1896 typedef struct kinfo_proc elf_kinfo_proc_t;
1897 typedef vm_offset_t elf_ps_strings_t;
1898 #endif
1899 
1900 static void
1901 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
1902 {
1903 	struct sbuf sbarg;
1904 	size_t len;
1905 	char *cp, *end;
1906 	struct proc *p;
1907 	elf_prpsinfo_t *psinfo;
1908 	int error;
1909 
1910 	p = (struct proc *)arg;
1911 	if (sb != NULL) {
1912 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
1913 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
1914 		psinfo->pr_version = PRPSINFO_VERSION;
1915 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
1916 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
1917 		PROC_LOCK(p);
1918 		if (p->p_args != NULL) {
1919 			len = sizeof(psinfo->pr_psargs) - 1;
1920 			if (len > p->p_args->ar_length)
1921 				len = p->p_args->ar_length;
1922 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
1923 			PROC_UNLOCK(p);
1924 			error = 0;
1925 		} else {
1926 			_PHOLD(p);
1927 			PROC_UNLOCK(p);
1928 			sbuf_new(&sbarg, psinfo->pr_psargs,
1929 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
1930 			error = proc_getargv(curthread, p, &sbarg);
1931 			PRELE(p);
1932 			if (sbuf_finish(&sbarg) == 0)
1933 				len = sbuf_len(&sbarg) - 1;
1934 			else
1935 				len = sizeof(psinfo->pr_psargs) - 1;
1936 			sbuf_delete(&sbarg);
1937 		}
1938 		if (error || len == 0)
1939 			strlcpy(psinfo->pr_psargs, p->p_comm,
1940 			    sizeof(psinfo->pr_psargs));
1941 		else {
1942 			KASSERT(len < sizeof(psinfo->pr_psargs),
1943 			    ("len is too long: %zu vs %zu", len,
1944 			    sizeof(psinfo->pr_psargs)));
1945 			cp = psinfo->pr_psargs;
1946 			end = cp + len - 1;
1947 			for (;;) {
1948 				cp = memchr(cp, '\0', end - cp);
1949 				if (cp == NULL)
1950 					break;
1951 				*cp = ' ';
1952 			}
1953 		}
1954 		psinfo->pr_pid = p->p_pid;
1955 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
1956 		free(psinfo, M_TEMP);
1957 	}
1958 	*sizep = sizeof(*psinfo);
1959 }
1960 
1961 static void
1962 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
1963 {
1964 	struct thread *td;
1965 	elf_prstatus_t *status;
1966 
1967 	td = (struct thread *)arg;
1968 	if (sb != NULL) {
1969 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
1970 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
1971 		status->pr_version = PRSTATUS_VERSION;
1972 		status->pr_statussz = sizeof(elf_prstatus_t);
1973 		status->pr_gregsetsz = sizeof(elf_gregset_t);
1974 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
1975 		status->pr_osreldate = osreldate;
1976 		status->pr_cursig = td->td_proc->p_sig;
1977 		status->pr_pid = td->td_tid;
1978 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1979 		fill_regs32(td, &status->pr_reg);
1980 #else
1981 		fill_regs(td, &status->pr_reg);
1982 #endif
1983 		sbuf_bcat(sb, status, sizeof(*status));
1984 		free(status, M_TEMP);
1985 	}
1986 	*sizep = sizeof(*status);
1987 }
1988 
1989 static void
1990 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
1991 {
1992 	struct thread *td;
1993 	elf_prfpregset_t *fpregset;
1994 
1995 	td = (struct thread *)arg;
1996 	if (sb != NULL) {
1997 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
1998 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
1999 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2000 		fill_fpregs32(td, fpregset);
2001 #else
2002 		fill_fpregs(td, fpregset);
2003 #endif
2004 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
2005 		free(fpregset, M_TEMP);
2006 	}
2007 	*sizep = sizeof(*fpregset);
2008 }
2009 
2010 static void
2011 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2012 {
2013 	struct thread *td;
2014 	elf_thrmisc_t thrmisc;
2015 
2016 	td = (struct thread *)arg;
2017 	if (sb != NULL) {
2018 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2019 		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
2020 		strcpy(thrmisc.pr_tname, td->td_name);
2021 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2022 	}
2023 	*sizep = sizeof(thrmisc);
2024 }
2025 
2026 static void
2027 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2028 {
2029 	struct thread *td;
2030 	size_t size;
2031 	int structsize;
2032 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2033 	struct ptrace_lwpinfo32 pl;
2034 #else
2035 	struct ptrace_lwpinfo pl;
2036 #endif
2037 
2038 	td = (struct thread *)arg;
2039 	size = sizeof(structsize) + sizeof(pl);
2040 	if (sb != NULL) {
2041 		KASSERT(*sizep == size, ("invalid size"));
2042 		structsize = sizeof(pl);
2043 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2044 		bzero(&pl, sizeof(pl));
2045 		pl.pl_lwpid = td->td_tid;
2046 		pl.pl_event = PL_EVENT_NONE;
2047 		pl.pl_sigmask = td->td_sigmask;
2048 		pl.pl_siglist = td->td_siglist;
2049 		if (td->td_si.si_signo != 0) {
2050 			pl.pl_event = PL_EVENT_SIGNAL;
2051 			pl.pl_flags |= PL_FLAG_SI;
2052 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2053 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2054 #else
2055 			pl.pl_siginfo = td->td_si;
2056 #endif
2057 		}
2058 		strcpy(pl.pl_tdname, td->td_name);
2059 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2060 		sbuf_bcat(sb, &pl, sizeof(pl));
2061 	}
2062 	*sizep = size;
2063 }
2064 
2065 /*
2066  * Allow for MD specific notes, as well as any MD
2067  * specific preparations for writing MI notes.
2068  */
2069 static void
2070 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2071 {
2072 	struct thread *td;
2073 	void *buf;
2074 	size_t size;
2075 
2076 	td = (struct thread *)arg;
2077 	size = *sizep;
2078 	if (size != 0 && sb != NULL)
2079 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2080 	else
2081 		buf = NULL;
2082 	size = 0;
2083 	__elfN(dump_thread)(td, buf, &size);
2084 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2085 	if (size != 0 && sb != NULL)
2086 		sbuf_bcat(sb, buf, size);
2087 	free(buf, M_TEMP);
2088 	*sizep = size;
2089 }
2090 
2091 #ifdef KINFO_PROC_SIZE
2092 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2093 #endif
2094 
2095 static void
2096 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2097 {
2098 	struct proc *p;
2099 	size_t size;
2100 	int structsize;
2101 
2102 	p = (struct proc *)arg;
2103 	size = sizeof(structsize) + p->p_numthreads *
2104 	    sizeof(elf_kinfo_proc_t);
2105 
2106 	if (sb != NULL) {
2107 		KASSERT(*sizep == size, ("invalid size"));
2108 		structsize = sizeof(elf_kinfo_proc_t);
2109 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2110 		sx_slock(&proctree_lock);
2111 		PROC_LOCK(p);
2112 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2113 		sx_sunlock(&proctree_lock);
2114 	}
2115 	*sizep = size;
2116 }
2117 
2118 #ifdef KINFO_FILE_SIZE
2119 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2120 #endif
2121 
2122 static void
2123 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2124 {
2125 	struct proc *p;
2126 	size_t size, sect_sz, i;
2127 	ssize_t start_len, sect_len;
2128 	int structsize, filedesc_flags;
2129 
2130 	if (coredump_pack_fileinfo)
2131 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2132 	else
2133 		filedesc_flags = 0;
2134 
2135 	p = (struct proc *)arg;
2136 	structsize = sizeof(struct kinfo_file);
2137 	if (sb == NULL) {
2138 		size = 0;
2139 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2140 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2141 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2142 		PROC_LOCK(p);
2143 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2144 		sbuf_finish(sb);
2145 		sbuf_delete(sb);
2146 		*sizep = size;
2147 	} else {
2148 		sbuf_start_section(sb, &start_len);
2149 
2150 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2151 		PROC_LOCK(p);
2152 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2153 		    filedesc_flags);
2154 
2155 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2156 		if (sect_len < 0)
2157 			return;
2158 		sect_sz = sect_len;
2159 
2160 		KASSERT(sect_sz <= *sizep,
2161 		    ("kern_proc_filedesc_out did not respect maxlen; "
2162 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2163 		     sect_sz - sizeof(structsize)));
2164 
2165 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2166 			sbuf_putc(sb, 0);
2167 	}
2168 }
2169 
2170 #ifdef KINFO_VMENTRY_SIZE
2171 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2172 #endif
2173 
2174 static void
2175 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2176 {
2177 	struct proc *p;
2178 	size_t size;
2179 	int structsize, vmmap_flags;
2180 
2181 	if (coredump_pack_vmmapinfo)
2182 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2183 	else
2184 		vmmap_flags = 0;
2185 
2186 	p = (struct proc *)arg;
2187 	structsize = sizeof(struct kinfo_vmentry);
2188 	if (sb == NULL) {
2189 		size = 0;
2190 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2191 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2192 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2193 		PROC_LOCK(p);
2194 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2195 		sbuf_finish(sb);
2196 		sbuf_delete(sb);
2197 		*sizep = size;
2198 	} else {
2199 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2200 		PROC_LOCK(p);
2201 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2202 		    vmmap_flags);
2203 	}
2204 }
2205 
2206 static void
2207 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2208 {
2209 	struct proc *p;
2210 	size_t size;
2211 	int structsize;
2212 
2213 	p = (struct proc *)arg;
2214 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2215 	if (sb != NULL) {
2216 		KASSERT(*sizep == size, ("invalid size"));
2217 		structsize = sizeof(gid_t);
2218 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2219 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2220 		    sizeof(gid_t));
2221 	}
2222 	*sizep = size;
2223 }
2224 
2225 static void
2226 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2227 {
2228 	struct proc *p;
2229 	size_t size;
2230 	int structsize;
2231 
2232 	p = (struct proc *)arg;
2233 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2234 	if (sb != NULL) {
2235 		KASSERT(*sizep == size, ("invalid size"));
2236 		structsize = sizeof(p->p_fd->fd_cmask);
2237 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2238 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2239 	}
2240 	*sizep = size;
2241 }
2242 
2243 static void
2244 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2245 {
2246 	struct proc *p;
2247 	struct rlimit rlim[RLIM_NLIMITS];
2248 	size_t size;
2249 	int structsize, i;
2250 
2251 	p = (struct proc *)arg;
2252 	size = sizeof(structsize) + sizeof(rlim);
2253 	if (sb != NULL) {
2254 		KASSERT(*sizep == size, ("invalid size"));
2255 		structsize = sizeof(rlim);
2256 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2257 		PROC_LOCK(p);
2258 		for (i = 0; i < RLIM_NLIMITS; i++)
2259 			lim_rlimit_proc(p, i, &rlim[i]);
2260 		PROC_UNLOCK(p);
2261 		sbuf_bcat(sb, rlim, sizeof(rlim));
2262 	}
2263 	*sizep = size;
2264 }
2265 
2266 static void
2267 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2268 {
2269 	struct proc *p;
2270 	size_t size;
2271 	int structsize;
2272 
2273 	p = (struct proc *)arg;
2274 	size = sizeof(structsize) + sizeof(p->p_osrel);
2275 	if (sb != NULL) {
2276 		KASSERT(*sizep == size, ("invalid size"));
2277 		structsize = sizeof(p->p_osrel);
2278 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2279 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2280 	}
2281 	*sizep = size;
2282 }
2283 
2284 static void
2285 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2286 {
2287 	struct proc *p;
2288 	elf_ps_strings_t ps_strings;
2289 	size_t size;
2290 	int structsize;
2291 
2292 	p = (struct proc *)arg;
2293 	size = sizeof(structsize) + sizeof(ps_strings);
2294 	if (sb != NULL) {
2295 		KASSERT(*sizep == size, ("invalid size"));
2296 		structsize = sizeof(ps_strings);
2297 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2298 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2299 #else
2300 		ps_strings = p->p_sysent->sv_psstrings;
2301 #endif
2302 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2303 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2304 	}
2305 	*sizep = size;
2306 }
2307 
2308 static void
2309 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2310 {
2311 	struct proc *p;
2312 	size_t size;
2313 	int structsize;
2314 
2315 	p = (struct proc *)arg;
2316 	if (sb == NULL) {
2317 		size = 0;
2318 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2319 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2320 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2321 		PHOLD(p);
2322 		proc_getauxv(curthread, p, sb);
2323 		PRELE(p);
2324 		sbuf_finish(sb);
2325 		sbuf_delete(sb);
2326 		*sizep = size;
2327 	} else {
2328 		structsize = sizeof(Elf_Auxinfo);
2329 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2330 		PHOLD(p);
2331 		proc_getauxv(curthread, p, sb);
2332 		PRELE(p);
2333 	}
2334 }
2335 
2336 static boolean_t
2337 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote,
2338     int32_t *osrel, const Elf_Phdr *pnote)
2339 {
2340 	const Elf_Note *note, *note0, *note_end;
2341 	const char *note_name;
2342 	char *buf;
2343 	int i, error;
2344 	boolean_t res;
2345 
2346 	/* We need some limit, might as well use PAGE_SIZE. */
2347 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2348 		return (FALSE);
2349 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2350 	if (pnote->p_offset > PAGE_SIZE ||
2351 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2352 		VOP_UNLOCK(imgp->vp, 0);
2353 		buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2354 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
2355 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2356 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2357 		    curthread->td_ucred, NOCRED, NULL, curthread);
2358 		if (error != 0) {
2359 			uprintf("i/o error PT_NOTE\n");
2360 			res = FALSE;
2361 			goto ret;
2362 		}
2363 		note = note0 = (const Elf_Note *)buf;
2364 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2365 	} else {
2366 		note = note0 = (const Elf_Note *)(imgp->image_header +
2367 		    pnote->p_offset);
2368 		note_end = (const Elf_Note *)(imgp->image_header +
2369 		    pnote->p_offset + pnote->p_filesz);
2370 		buf = NULL;
2371 	}
2372 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2373 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2374 		    (const char *)note < sizeof(Elf_Note)) {
2375 			res = FALSE;
2376 			goto ret;
2377 		}
2378 		if (note->n_namesz != checknote->hdr.n_namesz ||
2379 		    note->n_descsz != checknote->hdr.n_descsz ||
2380 		    note->n_type != checknote->hdr.n_type)
2381 			goto nextnote;
2382 		note_name = (const char *)(note + 1);
2383 		if (note_name + checknote->hdr.n_namesz >=
2384 		    (const char *)note_end || strncmp(checknote->vendor,
2385 		    note_name, checknote->hdr.n_namesz) != 0)
2386 			goto nextnote;
2387 
2388 		/*
2389 		 * Fetch the osreldate for binary
2390 		 * from the ELF OSABI-note if necessary.
2391 		 */
2392 		if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
2393 		    checknote->trans_osrel != NULL) {
2394 			res = checknote->trans_osrel(note, osrel);
2395 			goto ret;
2396 		}
2397 		res = TRUE;
2398 		goto ret;
2399 nextnote:
2400 		note = (const Elf_Note *)((const char *)(note + 1) +
2401 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2402 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2403 	}
2404 	res = FALSE;
2405 ret:
2406 	free(buf, M_TEMP);
2407 	return (res);
2408 }
2409 
2410 /*
2411  * Try to find the appropriate ABI-note section for checknote,
2412  * fetch the osreldate for binary from the ELF OSABI-note. Only the
2413  * first page of the image is searched, the same as for headers.
2414  */
2415 static boolean_t
2416 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
2417     int32_t *osrel)
2418 {
2419 	const Elf_Phdr *phdr;
2420 	const Elf_Ehdr *hdr;
2421 	int i;
2422 
2423 	hdr = (const Elf_Ehdr *)imgp->image_header;
2424 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2425 
2426 	for (i = 0; i < hdr->e_phnum; i++) {
2427 		if (phdr[i].p_type == PT_NOTE &&
2428 		    __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i]))
2429 			return (TRUE);
2430 	}
2431 	return (FALSE);
2432 
2433 }
2434 
2435 /*
2436  * Tell kern_execve.c about it, with a little help from the linker.
2437  */
2438 static struct execsw __elfN(execsw) = {
2439 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2440 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2441 };
2442 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2443 
2444 static vm_prot_t
2445 __elfN(trans_prot)(Elf_Word flags)
2446 {
2447 	vm_prot_t prot;
2448 
2449 	prot = 0;
2450 	if (flags & PF_X)
2451 		prot |= VM_PROT_EXECUTE;
2452 	if (flags & PF_W)
2453 		prot |= VM_PROT_WRITE;
2454 	if (flags & PF_R)
2455 		prot |= VM_PROT_READ;
2456 #if __ELF_WORD_SIZE == 32
2457 #if defined(__amd64__)
2458 	if (i386_read_exec && (flags & PF_R))
2459 		prot |= VM_PROT_EXECUTE;
2460 #endif
2461 #endif
2462 	return (prot);
2463 }
2464 
2465 static Elf_Word
2466 __elfN(untrans_prot)(vm_prot_t prot)
2467 {
2468 	Elf_Word flags;
2469 
2470 	flags = 0;
2471 	if (prot & VM_PROT_EXECUTE)
2472 		flags |= PF_X;
2473 	if (prot & VM_PROT_READ)
2474 		flags |= PF_R;
2475 	if (prot & VM_PROT_WRITE)
2476 		flags |= PF_W;
2477 	return (flags);
2478 }
2479