1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include "opt_capsicum.h" 35 36 #include <sys/param.h> 37 #include <sys/capsicum.h> 38 #include <sys/compressor.h> 39 #include <sys/exec.h> 40 #include <sys/fcntl.h> 41 #include <sys/imgact.h> 42 #include <sys/imgact_elf.h> 43 #include <sys/jail.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mman.h> 49 #include <sys/namei.h> 50 #include <sys/proc.h> 51 #include <sys/procfs.h> 52 #include <sys/ptrace.h> 53 #include <sys/racct.h> 54 #include <sys/reg.h> 55 #include <sys/resourcevar.h> 56 #include <sys/rwlock.h> 57 #include <sys/sbuf.h> 58 #include <sys/sf_buf.h> 59 #include <sys/smp.h> 60 #include <sys/systm.h> 61 #include <sys/signalvar.h> 62 #include <sys/stat.h> 63 #include <sys/sx.h> 64 #include <sys/syscall.h> 65 #include <sys/sysctl.h> 66 #include <sys/sysent.h> 67 #include <sys/vnode.h> 68 #include <sys/syslog.h> 69 #include <sys/eventhandler.h> 70 #include <sys/user.h> 71 72 #include <vm/vm.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_param.h> 75 #include <vm/pmap.h> 76 #include <vm/vm_map.h> 77 #include <vm/vm_object.h> 78 #include <vm/vm_extern.h> 79 80 #include <machine/elf.h> 81 #include <machine/md_var.h> 82 83 #define ELF_NOTE_ROUNDSIZE 4 84 #define OLD_EI_BRAND 8 85 86 static int __elfN(check_header)(const Elf_Ehdr *hdr); 87 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 88 const char *interp, int32_t *osrel, uint32_t *fctl0); 89 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 90 u_long *entry); 91 static int __elfN(load_section)(const struct image_params *imgp, 92 vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, 93 vm_prot_t prot); 94 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 95 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 96 int32_t *osrel); 97 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 98 static bool __elfN(check_note)(struct image_params *imgp, 99 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 100 uint32_t *fctl0); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 static size_t __elfN(prepare_register_notes)(struct thread *td, 104 struct note_info_list *list, struct thread *target_td); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 107 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 ""); 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 defined(__arm__) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if defined(__amd64__) 133 static int __elfN(vdso) = 1; 134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 135 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0, 136 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading"); 137 #else 138 static int __elfN(vdso) = 0; 139 #endif 140 141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 142 int i386_read_exec = 0; 143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 144 "enable execution from readable segments"); 145 #endif 146 147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 148 static int 149 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 150 { 151 u_long val; 152 int error; 153 154 val = __elfN(pie_base); 155 error = sysctl_handle_long(oidp, &val, 0, req); 156 if (error != 0 || req->newptr == NULL) 157 return (error); 158 if ((val & PAGE_MASK) != 0) 159 return (EINVAL); 160 __elfN(pie_base) = val; 161 return (0); 162 } 163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 164 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 165 sysctl_pie_base, "LU", 166 "PIE load base without randomization"); 167 168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 170 ""); 171 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 172 173 /* 174 * Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures 175 * have limited address space (which can cause issues for applications with 176 * high memory use) so we leave it off there. 177 */ 178 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 179 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 180 &__elfN(aslr_enabled), 0, 181 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 182 ": enable address map randomization"); 183 184 /* 185 * Enable ASLR by default for 64-bit PIE binaries. 186 */ 187 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 188 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 189 &__elfN(pie_aslr_enabled), 0, 190 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 191 ": enable address map randomization for PIE binaries"); 192 193 /* 194 * Sbrk is deprecated and it can be assumed that in most cases it will not be 195 * used anyway. This setting is valid only with ASLR enabled, and allows ASLR 196 * to use the bss grow region. 197 */ 198 static int __elfN(aslr_honor_sbrk) = 0; 199 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 200 &__elfN(aslr_honor_sbrk), 0, 201 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 202 203 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64; 204 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN, 205 &__elfN(aslr_stack), 0, 206 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 207 ": enable stack address randomization"); 208 209 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64; 210 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN, 211 &__elfN(aslr_shared_page), 0, 212 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 213 ": enable shared page address randomization"); 214 215 static int __elfN(sigfastblock) = 1; 216 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 217 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 218 "enable sigfastblock for new processes"); 219 220 static bool __elfN(allow_wx) = true; 221 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 222 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 223 "Allow pages to be mapped simultaneously writable and executable"); 224 225 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 226 227 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 228 229 Elf_Brandnote __elfN(freebsd_brandnote) = { 230 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 231 .hdr.n_descsz = sizeof(int32_t), 232 .hdr.n_type = NT_FREEBSD_ABI_TAG, 233 .vendor = FREEBSD_ABI_VENDOR, 234 .flags = BN_TRANSLATE_OSREL, 235 .trans_osrel = __elfN(freebsd_trans_osrel) 236 }; 237 238 static bool 239 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 240 { 241 uintptr_t p; 242 243 p = (uintptr_t)(note + 1); 244 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 245 *osrel = *(const int32_t *)(p); 246 247 return (true); 248 } 249 250 static int GNU_KFREEBSD_ABI_DESC = 3; 251 252 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 253 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 254 .hdr.n_descsz = 16, /* XXX at least 16 */ 255 .hdr.n_type = 1, 256 .vendor = GNU_ABI_VENDOR, 257 .flags = BN_TRANSLATE_OSREL, 258 .trans_osrel = kfreebsd_trans_osrel 259 }; 260 261 static bool 262 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 263 { 264 const Elf32_Word *desc; 265 uintptr_t p; 266 267 p = (uintptr_t)(note + 1); 268 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 269 270 desc = (const Elf32_Word *)p; 271 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 272 return (false); 273 274 /* 275 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 276 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 277 */ 278 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 279 280 return (true); 281 } 282 283 int 284 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 285 { 286 int i; 287 288 for (i = 0; i < MAX_BRANDS; i++) { 289 if (elf_brand_list[i] == NULL) { 290 elf_brand_list[i] = entry; 291 break; 292 } 293 } 294 if (i == MAX_BRANDS) { 295 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 296 __func__, entry); 297 return (-1); 298 } 299 return (0); 300 } 301 302 int 303 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 304 { 305 int i; 306 307 for (i = 0; i < MAX_BRANDS; i++) { 308 if (elf_brand_list[i] == entry) { 309 elf_brand_list[i] = NULL; 310 break; 311 } 312 } 313 if (i == MAX_BRANDS) 314 return (-1); 315 return (0); 316 } 317 318 bool 319 __elfN(brand_inuse)(Elf_Brandinfo *entry) 320 { 321 struct proc *p; 322 bool rval = false; 323 324 sx_slock(&allproc_lock); 325 FOREACH_PROC_IN_SYSTEM(p) { 326 if (p->p_sysent == entry->sysvec) { 327 rval = true; 328 break; 329 } 330 } 331 sx_sunlock(&allproc_lock); 332 333 return (rval); 334 } 335 336 static Elf_Brandinfo * 337 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 338 int32_t *osrel, uint32_t *fctl0) 339 { 340 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 341 Elf_Brandinfo *bi, *bi_m; 342 bool ret, has_fctl0; 343 int i, interp_name_len; 344 345 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 346 347 /* 348 * We support four types of branding -- (1) the ELF EI_OSABI field 349 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 350 * branding w/in the ELF header, (3) path of the `interp_path' 351 * field, and (4) the ".note.ABI-tag" ELF section. 352 */ 353 354 /* Look for an ".note.ABI-tag" ELF section */ 355 bi_m = NULL; 356 for (i = 0; i < MAX_BRANDS; i++) { 357 bi = elf_brand_list[i]; 358 if (bi == NULL) 359 continue; 360 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 361 continue; 362 if (hdr->e_machine == bi->machine && (bi->flags & 363 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 364 has_fctl0 = false; 365 *fctl0 = 0; 366 *osrel = 0; 367 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 368 &has_fctl0, fctl0); 369 /* Give brand a chance to veto check_note's guess */ 370 if (ret && bi->header_supported) { 371 ret = bi->header_supported(imgp, osrel, 372 has_fctl0 ? fctl0 : NULL); 373 } 374 /* 375 * If note checker claimed the binary, but the 376 * interpreter path in the image does not 377 * match default one for the brand, try to 378 * search for other brands with the same 379 * interpreter. Either there is better brand 380 * with the right interpreter, or, failing 381 * this, we return first brand which accepted 382 * our note and, optionally, header. 383 */ 384 if (ret && bi_m == NULL && interp != NULL && 385 (bi->interp_path == NULL || 386 (strlen(bi->interp_path) + 1 != interp_name_len || 387 strncmp(interp, bi->interp_path, interp_name_len) 388 != 0))) { 389 bi_m = bi; 390 ret = 0; 391 } 392 if (ret) 393 return (bi); 394 } 395 } 396 if (bi_m != NULL) 397 return (bi_m); 398 399 /* If the executable has a brand, search for it in the brand list. */ 400 for (i = 0; i < MAX_BRANDS; i++) { 401 bi = elf_brand_list[i]; 402 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 403 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 404 continue; 405 if (hdr->e_machine == bi->machine && 406 (hdr->e_ident[EI_OSABI] == bi->brand || 407 (bi->compat_3_brand != NULL && 408 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 409 bi->compat_3_brand) == 0))) { 410 /* Looks good, but give brand a chance to veto */ 411 if (bi->header_supported == NULL || 412 bi->header_supported(imgp, NULL, NULL)) { 413 /* 414 * Again, prefer strictly matching 415 * interpreter path. 416 */ 417 if (interp_name_len == 0 && 418 bi->interp_path == NULL) 419 return (bi); 420 if (bi->interp_path != NULL && 421 strlen(bi->interp_path) + 1 == 422 interp_name_len && strncmp(interp, 423 bi->interp_path, interp_name_len) == 0) 424 return (bi); 425 if (bi_m == NULL) 426 bi_m = bi; 427 } 428 } 429 } 430 if (bi_m != NULL) 431 return (bi_m); 432 433 /* No known brand, see if the header is recognized by any brand */ 434 for (i = 0; i < MAX_BRANDS; i++) { 435 bi = elf_brand_list[i]; 436 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 437 bi->header_supported == NULL) 438 continue; 439 if (hdr->e_machine == bi->machine) { 440 ret = bi->header_supported(imgp, NULL, NULL); 441 if (ret) 442 return (bi); 443 } 444 } 445 446 /* Lacking a known brand, search for a recognized interpreter. */ 447 if (interp != NULL) { 448 for (i = 0; i < MAX_BRANDS; i++) { 449 bi = elf_brand_list[i]; 450 if (bi == NULL || (bi->flags & 451 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 452 != 0) 453 continue; 454 if (hdr->e_machine == bi->machine && 455 bi->interp_path != NULL && 456 /* ELF image p_filesz includes terminating zero */ 457 strlen(bi->interp_path) + 1 == interp_name_len && 458 strncmp(interp, bi->interp_path, interp_name_len) 459 == 0 && (bi->header_supported == NULL || 460 bi->header_supported(imgp, NULL, NULL))) 461 return (bi); 462 } 463 } 464 465 /* Lacking a recognized interpreter, try the default brand */ 466 for (i = 0; i < MAX_BRANDS; i++) { 467 bi = elf_brand_list[i]; 468 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 469 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 470 continue; 471 if (hdr->e_machine == bi->machine && 472 __elfN(fallback_brand) == bi->brand && 473 (bi->header_supported == NULL || 474 bi->header_supported(imgp, NULL, NULL))) 475 return (bi); 476 } 477 return (NULL); 478 } 479 480 static bool 481 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 482 { 483 return (hdr->e_phoff <= PAGE_SIZE && 484 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 485 } 486 487 static int 488 __elfN(check_header)(const Elf_Ehdr *hdr) 489 { 490 Elf_Brandinfo *bi; 491 int i; 492 493 if (!IS_ELF(*hdr) || 494 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 495 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 496 hdr->e_ident[EI_VERSION] != EV_CURRENT || 497 hdr->e_phentsize != sizeof(Elf_Phdr) || 498 hdr->e_version != ELF_TARG_VER) 499 return (ENOEXEC); 500 501 /* 502 * Make sure we have at least one brand for this machine. 503 */ 504 505 for (i = 0; i < MAX_BRANDS; i++) { 506 bi = elf_brand_list[i]; 507 if (bi != NULL && bi->machine == hdr->e_machine) 508 break; 509 } 510 if (i == MAX_BRANDS) 511 return (ENOEXEC); 512 513 return (0); 514 } 515 516 static int 517 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 518 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 519 { 520 struct sf_buf *sf; 521 int error; 522 vm_offset_t off; 523 524 /* 525 * Create the page if it doesn't exist yet. Ignore errors. 526 */ 527 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 528 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 529 530 /* 531 * Find the page from the underlying object. 532 */ 533 if (object != NULL) { 534 sf = vm_imgact_map_page(object, offset); 535 if (sf == NULL) 536 return (KERN_FAILURE); 537 off = offset - trunc_page(offset); 538 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 539 end - start); 540 vm_imgact_unmap_page(sf); 541 if (error != 0) 542 return (KERN_FAILURE); 543 } 544 545 return (KERN_SUCCESS); 546 } 547 548 static int 549 __elfN(map_insert)(const struct image_params *imgp, vm_map_t map, 550 vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, 551 vm_prot_t prot, int cow) 552 { 553 struct sf_buf *sf; 554 vm_offset_t off; 555 vm_size_t sz; 556 int error, locked, rv; 557 558 if (start != trunc_page(start)) { 559 rv = __elfN(map_partial)(map, object, offset, start, 560 round_page(start), prot); 561 if (rv != KERN_SUCCESS) 562 return (rv); 563 offset += round_page(start) - start; 564 start = round_page(start); 565 } 566 if (end != round_page(end)) { 567 rv = __elfN(map_partial)(map, object, offset + 568 trunc_page(end) - start, trunc_page(end), end, prot); 569 if (rv != KERN_SUCCESS) 570 return (rv); 571 end = trunc_page(end); 572 } 573 if (start >= end) 574 return (KERN_SUCCESS); 575 if ((offset & PAGE_MASK) != 0) { 576 /* 577 * The mapping is not page aligned. This means that we have 578 * to copy the data. 579 */ 580 rv = vm_map_fixed(map, NULL, 0, start, end - start, 581 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 582 if (rv != KERN_SUCCESS) 583 return (rv); 584 if (object == NULL) 585 return (KERN_SUCCESS); 586 for (; start < end; start += sz) { 587 sf = vm_imgact_map_page(object, offset); 588 if (sf == NULL) 589 return (KERN_FAILURE); 590 off = offset - trunc_page(offset); 591 sz = end - start; 592 if (sz > PAGE_SIZE - off) 593 sz = PAGE_SIZE - off; 594 error = copyout((caddr_t)sf_buf_kva(sf) + off, 595 (caddr_t)start, sz); 596 vm_imgact_unmap_page(sf); 597 if (error != 0) 598 return (KERN_FAILURE); 599 offset += sz; 600 } 601 } else { 602 vm_object_reference(object); 603 rv = vm_map_fixed(map, object, offset, start, end - start, 604 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 605 (object != NULL ? MAP_VN_EXEC : 0)); 606 if (rv != KERN_SUCCESS) { 607 locked = VOP_ISLOCKED(imgp->vp); 608 VOP_UNLOCK(imgp->vp); 609 vm_object_deallocate(object); 610 vn_lock(imgp->vp, locked | LK_RETRY); 611 return (rv); 612 } else if (object != NULL) { 613 MPASS(imgp->vp->v_object == object); 614 VOP_SET_TEXT_CHECKED(imgp->vp); 615 } 616 } 617 return (KERN_SUCCESS); 618 } 619 620 static int 621 __elfN(load_section)(const struct image_params *imgp, vm_ooffset_t offset, 622 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 623 { 624 struct sf_buf *sf; 625 size_t map_len; 626 vm_map_t map; 627 vm_object_t object; 628 vm_offset_t map_addr; 629 int error, rv, cow; 630 size_t copy_len; 631 vm_ooffset_t file_addr; 632 633 /* 634 * It's necessary to fail if the filsz + offset taken from the 635 * header is greater than the actual file pager object's size. 636 * If we were to allow this, then the vm_map_find() below would 637 * walk right off the end of the file object and into the ether. 638 * 639 * While I'm here, might as well check for something else that 640 * is invalid: filsz cannot be greater than memsz. 641 */ 642 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 643 filsz > memsz) { 644 uprintf("elf_load_section: truncated ELF file\n"); 645 return (ENOEXEC); 646 } 647 648 object = imgp->object; 649 map = &imgp->proc->p_vmspace->vm_map; 650 map_addr = trunc_page((vm_offset_t)vmaddr); 651 file_addr = trunc_page(offset); 652 653 /* 654 * We have two choices. We can either clear the data in the last page 655 * of an oversized mapping, or we can start the anon mapping a page 656 * early and copy the initialized data into that first page. We 657 * choose the second. 658 */ 659 if (filsz == 0) 660 map_len = 0; 661 else if (memsz > filsz) 662 map_len = trunc_page(offset + filsz) - file_addr; 663 else 664 map_len = round_page(offset + filsz) - file_addr; 665 666 if (map_len != 0) { 667 /* cow flags: don't dump readonly sections in core */ 668 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 669 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 670 671 rv = __elfN(map_insert)(imgp, map, object, file_addr, 672 map_addr, map_addr + map_len, prot, cow); 673 if (rv != KERN_SUCCESS) 674 return (EINVAL); 675 676 /* we can stop now if we've covered it all */ 677 if (memsz == filsz) 678 return (0); 679 } 680 681 /* 682 * We have to get the remaining bit of the file into the first part 683 * of the oversized map segment. This is normally because the .data 684 * segment in the file is extended to provide bss. It's a neat idea 685 * to try and save a page, but it's a pain in the behind to implement. 686 */ 687 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 688 filsz); 689 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 690 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 691 692 /* This had damn well better be true! */ 693 if (map_len != 0) { 694 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 695 map_addr + map_len, prot, 0); 696 if (rv != KERN_SUCCESS) 697 return (EINVAL); 698 } 699 700 if (copy_len != 0) { 701 sf = vm_imgact_map_page(object, offset + filsz); 702 if (sf == NULL) 703 return (EIO); 704 705 /* send the page fragment to user space */ 706 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 707 copy_len); 708 vm_imgact_unmap_page(sf); 709 if (error != 0) 710 return (error); 711 } 712 713 /* 714 * Remove write access to the page if it was only granted by map_insert 715 * to allow copyout. 716 */ 717 if ((prot & VM_PROT_WRITE) == 0) 718 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 719 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 720 721 return (0); 722 } 723 724 static int 725 __elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr, 726 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 727 { 728 vm_prot_t prot; 729 u_long base_addr; 730 bool first; 731 int error, i; 732 733 ASSERT_VOP_LOCKED(imgp->vp, __func__); 734 735 base_addr = 0; 736 first = true; 737 738 for (i = 0; i < hdr->e_phnum; i++) { 739 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 740 continue; 741 742 /* Loadable segment */ 743 prot = __elfN(trans_prot)(phdr[i].p_flags); 744 error = __elfN(load_section)(imgp, phdr[i].p_offset, 745 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 746 phdr[i].p_memsz, phdr[i].p_filesz, prot); 747 if (error != 0) 748 return (error); 749 750 /* 751 * Establish the base address if this is the first segment. 752 */ 753 if (first) { 754 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 755 first = false; 756 } 757 } 758 759 if (base_addrp != NULL) 760 *base_addrp = base_addr; 761 762 return (0); 763 } 764 765 /* 766 * Load the file "file" into memory. It may be either a shared object 767 * or an executable. 768 * 769 * The "addr" reference parameter is in/out. On entry, it specifies 770 * the address where a shared object should be loaded. If the file is 771 * an executable, this value is ignored. On exit, "addr" specifies 772 * where the file was actually loaded. 773 * 774 * The "entry" reference parameter is out only. On exit, it specifies 775 * the entry point for the loaded file. 776 */ 777 static int 778 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 779 u_long *entry) 780 { 781 struct { 782 struct nameidata nd; 783 struct vattr attr; 784 struct image_params image_params; 785 } *tempdata; 786 const Elf_Ehdr *hdr = NULL; 787 const Elf_Phdr *phdr = NULL; 788 struct nameidata *nd; 789 struct vattr *attr; 790 struct image_params *imgp; 791 u_long rbase; 792 u_long base_addr = 0; 793 int error; 794 795 #ifdef CAPABILITY_MODE 796 /* 797 * XXXJA: This check can go away once we are sufficiently confident 798 * that the checks in namei() are correct. 799 */ 800 if (IN_CAPABILITY_MODE(curthread)) 801 return (ECAPMODE); 802 #endif 803 804 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 805 nd = &tempdata->nd; 806 attr = &tempdata->attr; 807 imgp = &tempdata->image_params; 808 809 /* 810 * Initialize part of the common data 811 */ 812 imgp->proc = p; 813 imgp->attr = attr; 814 815 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 816 UIO_SYSSPACE, file); 817 if ((error = namei(nd)) != 0) { 818 nd->ni_vp = NULL; 819 goto fail; 820 } 821 NDFREE_PNBUF(nd); 822 imgp->vp = nd->ni_vp; 823 824 /* 825 * Check permissions, modes, uid, etc on the file, and "open" it. 826 */ 827 error = exec_check_permissions(imgp); 828 if (error) 829 goto fail; 830 831 error = exec_map_first_page(imgp); 832 if (error) 833 goto fail; 834 835 imgp->object = nd->ni_vp->v_object; 836 837 hdr = (const Elf_Ehdr *)imgp->image_header; 838 if ((error = __elfN(check_header)(hdr)) != 0) 839 goto fail; 840 if (hdr->e_type == ET_DYN) 841 rbase = *addr; 842 else if (hdr->e_type == ET_EXEC) 843 rbase = 0; 844 else { 845 error = ENOEXEC; 846 goto fail; 847 } 848 849 /* Only support headers that fit within first page for now */ 850 if (!__elfN(phdr_in_zero_page)(hdr)) { 851 error = ENOEXEC; 852 goto fail; 853 } 854 855 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 856 if (!aligned(phdr, Elf_Addr)) { 857 error = ENOEXEC; 858 goto fail; 859 } 860 861 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 862 if (error != 0) 863 goto fail; 864 865 if (p->p_sysent->sv_protect != NULL) 866 p->p_sysent->sv_protect(imgp, SVP_INTERP); 867 868 *addr = base_addr; 869 *entry = (unsigned long)hdr->e_entry + rbase; 870 871 fail: 872 if (imgp->firstpage) 873 exec_unmap_first_page(imgp); 874 875 if (nd->ni_vp) { 876 if (imgp->textset) 877 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 878 vput(nd->ni_vp); 879 } 880 free(tempdata, M_TEMP); 881 882 return (error); 883 } 884 885 /* 886 * Select randomized valid address in the map map, between minv and 887 * maxv, with specified alignment. The [minv, maxv) range must belong 888 * to the map. Note that function only allocates the address, it is 889 * up to caller to clamp maxv in a way that the final allocation 890 * length fit into the map. 891 * 892 * Result is returned in *resp, error code indicates that arguments 893 * did not pass sanity checks for overflow and range correctness. 894 */ 895 static int 896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv, 897 u_int align, u_long *resp) 898 { 899 u_long rbase, res; 900 901 MPASS(vm_map_min(map) <= minv); 902 903 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) { 904 uprintf("Invalid ELF segments layout\n"); 905 return (ENOEXEC); 906 } 907 908 arc4rand(&rbase, sizeof(rbase), 0); 909 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 910 res &= ~((u_long)align - 1); 911 if (res >= maxv) 912 res -= align; 913 914 KASSERT(res >= minv, 915 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 916 res, minv, maxv, rbase)); 917 KASSERT(res < maxv, 918 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 919 res, maxv, minv, rbase)); 920 921 *resp = res; 922 return (0); 923 } 924 925 static int 926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 927 const Elf_Phdr *phdr) 928 { 929 struct vmspace *vmspace; 930 const char *err_str; 931 u_long text_size, data_size, total_size, text_addr, data_addr; 932 u_long seg_size, seg_addr; 933 int i; 934 935 err_str = NULL; 936 text_size = data_size = total_size = text_addr = data_addr = 0; 937 938 for (i = 0; i < hdr->e_phnum; i++) { 939 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 940 continue; 941 942 seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr); 943 seg_size = round_page(phdr[i].p_memsz + 944 phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr); 945 946 /* 947 * Make the largest executable segment the official 948 * text segment and all others data. 949 * 950 * Note that obreak() assumes that data_addr + data_size == end 951 * of data load area, and the ELF file format expects segments 952 * to be sorted by address. If multiple data segments exist, 953 * the last one will be used. 954 */ 955 956 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 957 text_size = seg_size; 958 text_addr = seg_addr; 959 } else { 960 data_size = seg_size; 961 data_addr = seg_addr; 962 } 963 total_size += seg_size; 964 } 965 966 if (data_addr == 0 && data_size == 0) { 967 data_addr = text_addr; 968 data_size = text_size; 969 } 970 971 /* 972 * Check limits. It should be safe to check the 973 * limits after loading the segments since we do 974 * not actually fault in all the segments pages. 975 */ 976 PROC_LOCK(imgp->proc); 977 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 978 err_str = "Data segment size exceeds process limit"; 979 else if (text_size > maxtsiz) 980 err_str = "Text segment size exceeds system limit"; 981 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 982 err_str = "Total segment size exceeds process limit"; 983 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 984 err_str = "Data segment size exceeds resource limit"; 985 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 986 err_str = "Total segment size exceeds resource limit"; 987 PROC_UNLOCK(imgp->proc); 988 if (err_str != NULL) { 989 uprintf("%s\n", err_str); 990 return (ENOMEM); 991 } 992 993 vmspace = imgp->proc->p_vmspace; 994 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 995 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 996 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 997 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 998 999 return (0); 1000 } 1001 1002 static int 1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 1004 char **interpp, bool *free_interpp) 1005 { 1006 struct thread *td; 1007 char *interp; 1008 int error, interp_name_len; 1009 1010 KASSERT(phdr->p_type == PT_INTERP, 1011 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 1012 ASSERT_VOP_LOCKED(imgp->vp, __func__); 1013 1014 td = curthread; 1015 1016 /* Path to interpreter */ 1017 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 1018 uprintf("Invalid PT_INTERP\n"); 1019 return (ENOEXEC); 1020 } 1021 1022 interp_name_len = phdr->p_filesz; 1023 if (phdr->p_offset > PAGE_SIZE || 1024 interp_name_len > PAGE_SIZE - phdr->p_offset) { 1025 /* 1026 * The vnode lock might be needed by the pagedaemon to 1027 * clean pages owned by the vnode. Do not allow sleep 1028 * waiting for memory with the vnode locked, instead 1029 * try non-sleepable allocation first, and if it 1030 * fails, go to the slow path were we drop the lock 1031 * and do M_WAITOK. A text reference prevents 1032 * modifications to the vnode content. 1033 */ 1034 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1035 if (interp == NULL) { 1036 VOP_UNLOCK(imgp->vp); 1037 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1038 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1039 } 1040 1041 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1042 interp_name_len, phdr->p_offset, 1043 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1044 NOCRED, NULL, td); 1045 if (error != 0) { 1046 free(interp, M_TEMP); 1047 uprintf("i/o error PT_INTERP %d\n", error); 1048 return (error); 1049 } 1050 interp[interp_name_len] = '\0'; 1051 1052 *interpp = interp; 1053 *free_interpp = true; 1054 return (0); 1055 } 1056 1057 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1058 if (interp[interp_name_len - 1] != '\0') { 1059 uprintf("Invalid PT_INTERP\n"); 1060 return (ENOEXEC); 1061 } 1062 1063 *interpp = interp; 1064 *free_interpp = false; 1065 return (0); 1066 } 1067 1068 static int 1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1070 const char *interp, u_long *addr, u_long *entry) 1071 { 1072 int error; 1073 1074 if (brand_info->interp_newpath != NULL && 1075 (brand_info->interp_path == NULL || 1076 strcmp(interp, brand_info->interp_path) == 0)) { 1077 error = __elfN(load_file)(imgp->proc, 1078 brand_info->interp_newpath, addr, entry); 1079 if (error == 0) 1080 return (0); 1081 } 1082 1083 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1084 if (error == 0) 1085 return (0); 1086 1087 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1088 return (error); 1089 } 1090 1091 /* 1092 * Impossible et_dyn_addr initial value indicating that the real base 1093 * must be calculated later with some randomization applied. 1094 */ 1095 #define ET_DYN_ADDR_RAND 1 1096 1097 static int 1098 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1099 { 1100 struct thread *td; 1101 const Elf_Ehdr *hdr; 1102 const Elf_Phdr *phdr; 1103 Elf_Auxargs *elf_auxargs; 1104 struct vmspace *vmspace; 1105 vm_map_t map; 1106 char *interp; 1107 Elf_Brandinfo *brand_info; 1108 struct sysentvec *sv; 1109 u_long addr, baddr, entry, proghdr; 1110 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc; 1111 uint32_t fctl0; 1112 int32_t osrel; 1113 bool free_interp; 1114 int error, i, n; 1115 1116 hdr = (const Elf_Ehdr *)imgp->image_header; 1117 1118 /* 1119 * Do we have a valid ELF header ? 1120 * 1121 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1122 * if particular brand doesn't support it. 1123 */ 1124 if (__elfN(check_header)(hdr) != 0 || 1125 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1126 return (-1); 1127 1128 /* 1129 * From here on down, we return an errno, not -1, as we've 1130 * detected an ELF file. 1131 */ 1132 1133 if (!__elfN(phdr_in_zero_page)(hdr)) { 1134 uprintf("Program headers not in the first page\n"); 1135 return (ENOEXEC); 1136 } 1137 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1138 if (!aligned(phdr, Elf_Addr)) { 1139 uprintf("Unaligned program headers\n"); 1140 return (ENOEXEC); 1141 } 1142 1143 n = error = 0; 1144 baddr = 0; 1145 osrel = 0; 1146 fctl0 = 0; 1147 entry = proghdr = 0; 1148 interp = NULL; 1149 free_interp = false; 1150 td = curthread; 1151 1152 /* 1153 * Somewhat arbitrary, limit accepted max alignment for the 1154 * loadable segment to the max supported superpage size. Too 1155 * large alignment requests are not useful and are indicators 1156 * of corrupted or outright malicious binary. 1157 */ 1158 maxalign = PAGE_SIZE; 1159 maxsalign = PAGE_SIZE * 1024; 1160 for (i = MAXPAGESIZES - 1; i > 0; i--) { 1161 if (pagesizes[i] > maxsalign) { 1162 maxsalign = pagesizes[i]; 1163 break; 1164 } 1165 } 1166 1167 mapsz = 0; 1168 1169 for (i = 0; i < hdr->e_phnum; i++) { 1170 switch (phdr[i].p_type) { 1171 case PT_LOAD: 1172 if (n == 0) 1173 baddr = phdr[i].p_vaddr; 1174 if (!powerof2(phdr[i].p_align) || 1175 phdr[i].p_align > maxsalign) { 1176 uprintf("Invalid segment alignment\n"); 1177 error = ENOEXEC; 1178 goto ret; 1179 } 1180 if (phdr[i].p_align > maxalign) 1181 maxalign = phdr[i].p_align; 1182 if (mapsz + phdr[i].p_memsz < mapsz) { 1183 uprintf("Mapsize overflow\n"); 1184 error = ENOEXEC; 1185 goto ret; 1186 } 1187 mapsz += phdr[i].p_memsz; 1188 n++; 1189 1190 /* 1191 * If this segment contains the program headers, 1192 * remember their virtual address for the AT_PHDR 1193 * aux entry. Static binaries don't usually include 1194 * a PT_PHDR entry. 1195 */ 1196 if (phdr[i].p_offset == 0 && 1197 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= 1198 phdr[i].p_filesz) 1199 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1200 break; 1201 case PT_INTERP: 1202 /* Path to interpreter */ 1203 if (interp != NULL) { 1204 uprintf("Multiple PT_INTERP headers\n"); 1205 error = ENOEXEC; 1206 goto ret; 1207 } 1208 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1209 &free_interp); 1210 if (error != 0) 1211 goto ret; 1212 break; 1213 case PT_GNU_STACK: 1214 if (__elfN(nxstack)) { 1215 imgp->stack_prot = 1216 __elfN(trans_prot)(phdr[i].p_flags); 1217 if ((imgp->stack_prot & VM_PROT_RW) != 1218 VM_PROT_RW) { 1219 uprintf("Invalid PT_GNU_STACK\n"); 1220 error = ENOEXEC; 1221 goto ret; 1222 } 1223 } 1224 imgp->stack_sz = phdr[i].p_memsz; 1225 break; 1226 case PT_PHDR: /* Program header table info */ 1227 proghdr = phdr[i].p_vaddr; 1228 break; 1229 } 1230 } 1231 1232 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1233 if (brand_info == NULL) { 1234 uprintf("ELF binary type \"%u\" not known.\n", 1235 hdr->e_ident[EI_OSABI]); 1236 error = ENOEXEC; 1237 goto ret; 1238 } 1239 sv = brand_info->sysvec; 1240 if (hdr->e_type == ET_DYN) { 1241 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1242 uprintf("Cannot execute shared object\n"); 1243 error = ENOEXEC; 1244 goto ret; 1245 } 1246 /* 1247 * Honour the base load address from the dso if it is 1248 * non-zero for some reason. 1249 */ 1250 if (baddr == 0) { 1251 if ((sv->sv_flags & SV_ASLR) == 0 || 1252 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1253 imgp->et_dyn_addr = __elfN(pie_base); 1254 else if ((__elfN(pie_aslr_enabled) && 1255 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1256 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1257 imgp->et_dyn_addr = ET_DYN_ADDR_RAND; 1258 else 1259 imgp->et_dyn_addr = __elfN(pie_base); 1260 } 1261 } 1262 1263 /* 1264 * Avoid a possible deadlock if the current address space is destroyed 1265 * and that address space maps the locked vnode. In the common case, 1266 * the locked vnode's v_usecount is decremented but remains greater 1267 * than zero. Consequently, the vnode lock is not needed by vrele(). 1268 * However, in cases where the vnode lock is external, such as nullfs, 1269 * v_usecount may become zero. 1270 * 1271 * The VV_TEXT flag prevents modifications to the executable while 1272 * the vnode is unlocked. 1273 */ 1274 VOP_UNLOCK(imgp->vp); 1275 1276 /* 1277 * Decide whether to enable randomization of user mappings. 1278 * First, reset user preferences for the setid binaries. 1279 * Then, account for the support of the randomization by the 1280 * ABI, by user preferences, and make special treatment for 1281 * PIE binaries. 1282 */ 1283 if (imgp->credential_setid) { 1284 PROC_LOCK(imgp->proc); 1285 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1286 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1287 PROC_UNLOCK(imgp->proc); 1288 } 1289 if ((sv->sv_flags & SV_ASLR) == 0 || 1290 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1291 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1292 KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND, 1293 ("imgp->et_dyn_addr == RAND and !ASLR")); 1294 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1295 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1296 imgp->et_dyn_addr == ET_DYN_ADDR_RAND) { 1297 imgp->map_flags |= MAP_ASLR; 1298 /* 1299 * If user does not care about sbrk, utilize the bss 1300 * grow region for mappings as well. We can select 1301 * the base for the image anywere and still not suffer 1302 * from the fragmentation. 1303 */ 1304 if (!__elfN(aslr_honor_sbrk) || 1305 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1306 imgp->map_flags |= MAP_ASLR_IGNSTART; 1307 if (__elfN(aslr_stack)) 1308 imgp->map_flags |= MAP_ASLR_STACK; 1309 if (__elfN(aslr_shared_page)) 1310 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE; 1311 } 1312 1313 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1314 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1315 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1316 imgp->map_flags |= MAP_WXORX; 1317 1318 error = exec_new_vmspace(imgp, sv); 1319 1320 imgp->proc->p_sysent = sv; 1321 imgp->proc->p_elf_brandinfo = brand_info; 1322 1323 vmspace = imgp->proc->p_vmspace; 1324 map = &vmspace->vm_map; 1325 maxv = sv->sv_usrstack; 1326 if ((imgp->map_flags & MAP_ASLR_STACK) == 0) 1327 maxv -= lim_max(td, RLIMIT_STACK); 1328 if (error == 0 && mapsz >= maxv - vm_map_min(map)) { 1329 uprintf("Excessive mapping size\n"); 1330 error = ENOEXEC; 1331 } 1332 1333 if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) { 1334 KASSERT((map->flags & MAP_ASLR) != 0, 1335 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1336 error = __CONCAT(rnd_, __elfN(base))(map, 1337 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1338 /* reserve half of the address space to interpreter */ 1339 maxv / 2, maxalign, &imgp->et_dyn_addr); 1340 } 1341 1342 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1343 if (error != 0) 1344 goto ret; 1345 1346 error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL); 1347 if (error != 0) 1348 goto ret; 1349 1350 error = __elfN(enforce_limits)(imgp, hdr, phdr); 1351 if (error != 0) 1352 goto ret; 1353 1354 /* 1355 * We load the dynamic linker where a userland call 1356 * to mmap(0, ...) would put it. The rationale behind this 1357 * calculation is that it leaves room for the heap to grow to 1358 * its maximum allowed size. 1359 */ 1360 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1361 RLIMIT_DATA)); 1362 if ((map->flags & MAP_ASLR) != 0) { 1363 maxv1 = maxv / 2 + addr / 2; 1364 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1365 #if VM_NRESERVLEVEL > 0 1366 pagesizes[VM_NRESERVLEVEL] != 0 ? 1367 /* Align anon_loc to the largest superpage size. */ 1368 pagesizes[VM_NRESERVLEVEL] : 1369 #endif 1370 pagesizes[0], &anon_loc); 1371 if (error != 0) 1372 goto ret; 1373 map->anon_loc = anon_loc; 1374 } else { 1375 map->anon_loc = addr; 1376 } 1377 1378 entry = (u_long)hdr->e_entry + imgp->et_dyn_addr; 1379 imgp->entry_addr = entry; 1380 1381 if (sv->sv_protect != NULL) 1382 sv->sv_protect(imgp, SVP_IMAGE); 1383 1384 if (interp != NULL) { 1385 VOP_UNLOCK(imgp->vp); 1386 if ((map->flags & MAP_ASLR) != 0) { 1387 /* Assume that interpreter fits into 1/4 of AS */ 1388 maxv1 = maxv / 2 + addr / 2; 1389 error = __CONCAT(rnd_, __elfN(base))(map, addr, 1390 maxv1, PAGE_SIZE, &addr); 1391 } 1392 if (error == 0) { 1393 error = __elfN(load_interp)(imgp, brand_info, interp, 1394 &addr, &imgp->entry_addr); 1395 } 1396 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1397 if (error != 0) 1398 goto ret; 1399 } else 1400 addr = imgp->et_dyn_addr; 1401 1402 error = exec_map_stack(imgp); 1403 if (error != 0) 1404 goto ret; 1405 1406 /* 1407 * Construct auxargs table (used by the copyout_auxargs routine) 1408 */ 1409 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1410 if (elf_auxargs == NULL) { 1411 VOP_UNLOCK(imgp->vp); 1412 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1413 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1414 } 1415 elf_auxargs->execfd = -1; 1416 elf_auxargs->phdr = proghdr + imgp->et_dyn_addr; 1417 elf_auxargs->phent = hdr->e_phentsize; 1418 elf_auxargs->phnum = hdr->e_phnum; 1419 elf_auxargs->pagesz = PAGE_SIZE; 1420 elf_auxargs->base = addr; 1421 elf_auxargs->flags = 0; 1422 elf_auxargs->entry = entry; 1423 elf_auxargs->hdr_eflags = hdr->e_flags; 1424 1425 imgp->auxargs = elf_auxargs; 1426 imgp->interpreted = 0; 1427 imgp->reloc_base = addr; 1428 imgp->proc->p_osrel = osrel; 1429 imgp->proc->p_fctl0 = fctl0; 1430 imgp->proc->p_elf_flags = hdr->e_flags; 1431 1432 ret: 1433 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock"); 1434 if (free_interp) 1435 free(interp, M_TEMP); 1436 return (error); 1437 } 1438 1439 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1440 1441 int 1442 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1443 { 1444 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1445 Elf_Auxinfo *argarray, *pos; 1446 struct vmspace *vmspace; 1447 rlim_t stacksz; 1448 int error, oc; 1449 uint32_t bsdflags; 1450 1451 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1452 M_WAITOK | M_ZERO); 1453 1454 vmspace = imgp->proc->p_vmspace; 1455 1456 if (args->execfd != -1) 1457 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1458 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1459 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1460 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1461 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1462 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1463 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1464 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1465 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1466 if (imgp->execpathp != 0) 1467 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1468 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1469 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1470 if (imgp->canary != 0) { 1471 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1472 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1473 } 1474 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1475 if (imgp->pagesizes != 0) { 1476 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1477 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1478 } 1479 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) { 1480 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1481 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset); 1482 } 1483 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1484 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1485 imgp->sysent->sv_stackprot); 1486 if (imgp->sysent->sv_hwcap != NULL) 1487 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1488 if (imgp->sysent->sv_hwcap2 != NULL) 1489 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1490 bsdflags = 0; 1491 bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0; 1492 oc = atomic_load_int(&vm_overcommit); 1493 bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) != 1494 0 ? ELF_BSDF_VMNOOVERCOMMIT : 0; 1495 AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags); 1496 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1497 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1498 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1499 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1500 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1501 #ifdef RANDOM_FENESTRASX 1502 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) { 1503 AUXARGS_ENTRY(pos, AT_FXRNG, 1504 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset); 1505 } 1506 #endif 1507 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) { 1508 AUXARGS_ENTRY(pos, AT_KPRELOAD, 1509 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset); 1510 } 1511 AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop)); 1512 stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 1513 AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz); 1514 AUXARGS_ENTRY(pos, AT_NULL, 0); 1515 1516 free(imgp->auxargs, M_TEMP); 1517 imgp->auxargs = NULL; 1518 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1519 1520 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1521 free(argarray, M_TEMP); 1522 return (error); 1523 } 1524 1525 int 1526 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1527 { 1528 Elf_Addr *base; 1529 1530 base = (Elf_Addr *)*stack_base; 1531 base--; 1532 if (elf_suword(base, imgp->args->argc) == -1) 1533 return (EFAULT); 1534 *stack_base = (uintptr_t)base; 1535 return (0); 1536 } 1537 1538 /* 1539 * Code for generating ELF core dumps. 1540 */ 1541 1542 typedef void (*segment_callback)(vm_map_entry_t, void *); 1543 1544 /* Closure for cb_put_phdr(). */ 1545 struct phdr_closure { 1546 Elf_Phdr *phdr; /* Program header to fill in */ 1547 Elf_Off offset; /* Offset of segment in core file */ 1548 }; 1549 1550 struct note_info { 1551 int type; /* Note type. */ 1552 struct regset *regset; /* Register set. */ 1553 outfunc_t outfunc; /* Output function. */ 1554 void *outarg; /* Argument for the output function. */ 1555 size_t outsize; /* Output size. */ 1556 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1557 }; 1558 1559 TAILQ_HEAD(note_info_list, note_info); 1560 1561 extern int compress_user_cores; 1562 extern int compress_user_cores_level; 1563 1564 static void cb_put_phdr(vm_map_entry_t, void *); 1565 static void cb_size_segment(vm_map_entry_t, void *); 1566 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1567 int); 1568 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1569 struct note_info_list *, size_t, int); 1570 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1571 1572 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1573 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1574 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1575 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1576 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1577 static void note_procstat_files(void *, struct sbuf *, size_t *); 1578 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1579 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1580 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1581 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1582 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1583 1584 static int 1585 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1586 { 1587 1588 return (core_write((struct coredump_params *)arg, base, len, offset, 1589 UIO_SYSSPACE, NULL)); 1590 } 1591 1592 int 1593 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1594 { 1595 struct ucred *cred = td->td_ucred; 1596 int compm, error = 0; 1597 struct sseg_closure seginfo; 1598 struct note_info_list notelst; 1599 struct coredump_params params; 1600 struct note_info *ninfo; 1601 void *hdr, *tmpbuf; 1602 size_t hdrsize, notesz, coresize; 1603 1604 hdr = NULL; 1605 tmpbuf = NULL; 1606 TAILQ_INIT(¬elst); 1607 1608 /* Size the program segments. */ 1609 __elfN(size_segments)(td, &seginfo, flags); 1610 1611 /* 1612 * Collect info about the core file header area. 1613 */ 1614 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1615 if (seginfo.count + 1 >= PN_XNUM) 1616 hdrsize += sizeof(Elf_Shdr); 1617 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1618 coresize = round_page(hdrsize + notesz) + seginfo.size; 1619 1620 /* Set up core dump parameters. */ 1621 params.offset = 0; 1622 params.active_cred = cred; 1623 params.file_cred = NOCRED; 1624 params.td = td; 1625 params.vp = vp; 1626 params.comp = NULL; 1627 1628 #ifdef RACCT 1629 if (racct_enable) { 1630 PROC_LOCK(td->td_proc); 1631 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1632 PROC_UNLOCK(td->td_proc); 1633 if (error != 0) { 1634 error = EFAULT; 1635 goto done; 1636 } 1637 } 1638 #endif 1639 if (coresize >= limit) { 1640 error = EFAULT; 1641 goto done; 1642 } 1643 1644 /* Create a compression stream if necessary. */ 1645 compm = compress_user_cores; 1646 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1647 compm == 0) 1648 compm = COMPRESS_GZIP; 1649 if (compm != 0) { 1650 params.comp = compressor_init(core_compressed_write, 1651 compm, CORE_BUF_SIZE, 1652 compress_user_cores_level, ¶ms); 1653 if (params.comp == NULL) { 1654 error = EFAULT; 1655 goto done; 1656 } 1657 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1658 } 1659 1660 /* 1661 * Allocate memory for building the header, fill it up, 1662 * and write it out following the notes. 1663 */ 1664 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1665 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1666 notesz, flags); 1667 1668 /* Write the contents of all of the writable segments. */ 1669 if (error == 0) { 1670 Elf_Phdr *php; 1671 off_t offset; 1672 int i; 1673 1674 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1675 offset = round_page(hdrsize + notesz); 1676 for (i = 0; i < seginfo.count; i++) { 1677 error = core_output((char *)(uintptr_t)php->p_vaddr, 1678 php->p_filesz, offset, ¶ms, tmpbuf); 1679 if (error != 0) 1680 break; 1681 offset += php->p_filesz; 1682 php++; 1683 } 1684 if (error == 0 && params.comp != NULL) 1685 error = compressor_flush(params.comp); 1686 } 1687 if (error) { 1688 log(LOG_WARNING, 1689 "Failed to write core file for process %s (error %d)\n", 1690 curproc->p_comm, error); 1691 } 1692 1693 done: 1694 free(tmpbuf, M_TEMP); 1695 if (params.comp != NULL) 1696 compressor_fini(params.comp); 1697 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1698 TAILQ_REMOVE(¬elst, ninfo, link); 1699 free(ninfo, M_TEMP); 1700 } 1701 if (hdr != NULL) 1702 free(hdr, M_TEMP); 1703 1704 return (error); 1705 } 1706 1707 /* 1708 * A callback for each_dumpable_segment() to write out the segment's 1709 * program header entry. 1710 */ 1711 static void 1712 cb_put_phdr(vm_map_entry_t entry, void *closure) 1713 { 1714 struct phdr_closure *phc = (struct phdr_closure *)closure; 1715 Elf_Phdr *phdr = phc->phdr; 1716 1717 phc->offset = round_page(phc->offset); 1718 1719 phdr->p_type = PT_LOAD; 1720 phdr->p_offset = phc->offset; 1721 phdr->p_vaddr = entry->start; 1722 phdr->p_paddr = 0; 1723 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1724 phdr->p_align = PAGE_SIZE; 1725 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1726 1727 phc->offset += phdr->p_filesz; 1728 phc->phdr++; 1729 } 1730 1731 /* 1732 * A callback for each_dumpable_segment() to gather information about 1733 * the number of segments and their total size. 1734 */ 1735 static void 1736 cb_size_segment(vm_map_entry_t entry, void *closure) 1737 { 1738 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1739 1740 ssc->count++; 1741 ssc->size += entry->end - entry->start; 1742 } 1743 1744 void 1745 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1746 int flags) 1747 { 1748 seginfo->count = 0; 1749 seginfo->size = 0; 1750 1751 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1752 } 1753 1754 /* 1755 * For each writable segment in the process's memory map, call the given 1756 * function with a pointer to the map entry and some arbitrary 1757 * caller-supplied data. 1758 */ 1759 static void 1760 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1761 int flags) 1762 { 1763 struct proc *p = td->td_proc; 1764 vm_map_t map = &p->p_vmspace->vm_map; 1765 vm_map_entry_t entry; 1766 vm_object_t backing_object, object; 1767 bool ignore_entry; 1768 1769 vm_map_lock_read(map); 1770 VM_MAP_ENTRY_FOREACH(entry, map) { 1771 /* 1772 * Don't dump inaccessible mappings, deal with legacy 1773 * coredump mode. 1774 * 1775 * Note that read-only segments related to the elf binary 1776 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1777 * need to arbitrarily ignore such segments. 1778 */ 1779 if ((flags & SVC_ALL) == 0) { 1780 if (elf_legacy_coredump) { 1781 if ((entry->protection & VM_PROT_RW) != 1782 VM_PROT_RW) 1783 continue; 1784 } else { 1785 if ((entry->protection & VM_PROT_ALL) == 0) 1786 continue; 1787 } 1788 } 1789 1790 /* 1791 * Dont include memory segment in the coredump if 1792 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1793 * madvise(2). Do not dump submaps (i.e. parts of the 1794 * kernel map). 1795 */ 1796 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1797 continue; 1798 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1799 (flags & SVC_ALL) == 0) 1800 continue; 1801 if ((object = entry->object.vm_object) == NULL) 1802 continue; 1803 1804 /* Ignore memory-mapped devices and such things. */ 1805 VM_OBJECT_RLOCK(object); 1806 while ((backing_object = object->backing_object) != NULL) { 1807 VM_OBJECT_RLOCK(backing_object); 1808 VM_OBJECT_RUNLOCK(object); 1809 object = backing_object; 1810 } 1811 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1812 VM_OBJECT_RUNLOCK(object); 1813 if (ignore_entry) 1814 continue; 1815 1816 (*func)(entry, closure); 1817 } 1818 vm_map_unlock_read(map); 1819 } 1820 1821 /* 1822 * Write the core file header to the file, including padding up to 1823 * the page boundary. 1824 */ 1825 static int 1826 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1827 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1828 int flags) 1829 { 1830 struct note_info *ninfo; 1831 struct sbuf *sb; 1832 int error; 1833 1834 /* Fill in the header. */ 1835 bzero(hdr, hdrsize); 1836 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1837 1838 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1839 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1840 sbuf_start_section(sb, NULL); 1841 sbuf_bcat(sb, hdr, hdrsize); 1842 TAILQ_FOREACH(ninfo, notelst, link) 1843 __elfN(putnote)(p->td, ninfo, sb); 1844 /* Align up to a page boundary for the program segments. */ 1845 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1846 error = sbuf_finish(sb); 1847 sbuf_delete(sb); 1848 1849 return (error); 1850 } 1851 1852 void 1853 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1854 size_t *sizep) 1855 { 1856 struct proc *p; 1857 struct thread *thr; 1858 size_t size; 1859 1860 p = td->td_proc; 1861 size = 0; 1862 1863 size += __elfN(register_note)(td, list, NT_PRPSINFO, 1864 __elfN(note_prpsinfo), p); 1865 1866 /* 1867 * To have the debugger select the right thread (LWP) as the initial 1868 * thread, we dump the state of the thread passed to us in td first. 1869 * This is the thread that causes the core dump and thus likely to 1870 * be the right thread one wants to have selected in the debugger. 1871 */ 1872 thr = td; 1873 while (thr != NULL) { 1874 size += __elfN(prepare_register_notes)(td, list, thr); 1875 size += __elfN(register_note)(td, list, -1, 1876 __elfN(note_threadmd), thr); 1877 1878 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1879 TAILQ_NEXT(thr, td_plist); 1880 if (thr == td) 1881 thr = TAILQ_NEXT(thr, td_plist); 1882 } 1883 1884 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1885 __elfN(note_procstat_proc), p); 1886 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1887 note_procstat_files, p); 1888 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1889 note_procstat_vmmap, p); 1890 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1891 note_procstat_groups, p); 1892 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1893 note_procstat_umask, p); 1894 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1895 note_procstat_rlimit, p); 1896 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1897 note_procstat_osrel, p); 1898 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1899 __elfN(note_procstat_psstrings), p); 1900 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1901 __elfN(note_procstat_auxv), p); 1902 1903 *sizep = size; 1904 } 1905 1906 void 1907 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1908 size_t notesz, int flags) 1909 { 1910 Elf_Ehdr *ehdr; 1911 Elf_Phdr *phdr; 1912 Elf_Shdr *shdr; 1913 struct phdr_closure phc; 1914 Elf_Brandinfo *bi; 1915 1916 ehdr = (Elf_Ehdr *)hdr; 1917 bi = td->td_proc->p_elf_brandinfo; 1918 1919 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1920 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1921 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1922 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1923 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1924 ehdr->e_ident[EI_DATA] = ELF_DATA; 1925 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1926 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1927 ehdr->e_ident[EI_ABIVERSION] = 0; 1928 ehdr->e_ident[EI_PAD] = 0; 1929 ehdr->e_type = ET_CORE; 1930 ehdr->e_machine = bi->machine; 1931 ehdr->e_version = EV_CURRENT; 1932 ehdr->e_entry = 0; 1933 ehdr->e_phoff = sizeof(Elf_Ehdr); 1934 ehdr->e_flags = td->td_proc->p_elf_flags; 1935 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1936 ehdr->e_phentsize = sizeof(Elf_Phdr); 1937 ehdr->e_shentsize = sizeof(Elf_Shdr); 1938 ehdr->e_shstrndx = SHN_UNDEF; 1939 if (numsegs + 1 < PN_XNUM) { 1940 ehdr->e_phnum = numsegs + 1; 1941 ehdr->e_shnum = 0; 1942 } else { 1943 ehdr->e_phnum = PN_XNUM; 1944 ehdr->e_shnum = 1; 1945 1946 ehdr->e_shoff = ehdr->e_phoff + 1947 (numsegs + 1) * ehdr->e_phentsize; 1948 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1949 ("e_shoff: %zu, hdrsize - shdr: %zu", 1950 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1951 1952 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1953 memset(shdr, 0, sizeof(*shdr)); 1954 /* 1955 * A special first section is used to hold large segment and 1956 * section counts. This was proposed by Sun Microsystems in 1957 * Solaris and has been adopted by Linux; the standard ELF 1958 * tools are already familiar with the technique. 1959 * 1960 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1961 * (or 12-7 depending on the version of the document) for more 1962 * details. 1963 */ 1964 shdr->sh_type = SHT_NULL; 1965 shdr->sh_size = ehdr->e_shnum; 1966 shdr->sh_link = ehdr->e_shstrndx; 1967 shdr->sh_info = numsegs + 1; 1968 } 1969 1970 /* 1971 * Fill in the program header entries. 1972 */ 1973 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1974 1975 /* The note segement. */ 1976 phdr->p_type = PT_NOTE; 1977 phdr->p_offset = hdrsize; 1978 phdr->p_vaddr = 0; 1979 phdr->p_paddr = 0; 1980 phdr->p_filesz = notesz; 1981 phdr->p_memsz = 0; 1982 phdr->p_flags = PF_R; 1983 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1984 phdr++; 1985 1986 /* All the writable segments from the program. */ 1987 phc.phdr = phdr; 1988 phc.offset = round_page(hdrsize + notesz); 1989 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1990 } 1991 1992 static size_t 1993 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list, 1994 struct regset *regset, struct thread *target_td) 1995 { 1996 const struct sysentvec *sv; 1997 struct note_info *ninfo; 1998 size_t size, notesize; 1999 2000 size = 0; 2001 if (!regset->get(regset, target_td, NULL, &size) || size == 0) 2002 return (0); 2003 2004 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2005 ninfo->type = regset->note; 2006 ninfo->regset = regset; 2007 ninfo->outarg = target_td; 2008 ninfo->outsize = size; 2009 TAILQ_INSERT_TAIL(list, ninfo, link); 2010 2011 sv = td->td_proc->p_sysent; 2012 notesize = sizeof(Elf_Note) + /* note header */ 2013 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2014 /* note name */ 2015 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2016 2017 return (notesize); 2018 } 2019 2020 size_t 2021 __elfN(register_note)(struct thread *td, struct note_info_list *list, 2022 int type, outfunc_t out, void *arg) 2023 { 2024 const struct sysentvec *sv; 2025 struct note_info *ninfo; 2026 size_t size, notesize; 2027 2028 sv = td->td_proc->p_sysent; 2029 size = 0; 2030 out(arg, NULL, &size); 2031 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2032 ninfo->type = type; 2033 ninfo->outfunc = out; 2034 ninfo->outarg = arg; 2035 ninfo->outsize = size; 2036 TAILQ_INSERT_TAIL(list, ninfo, link); 2037 2038 if (type == -1) 2039 return (size); 2040 2041 notesize = sizeof(Elf_Note) + /* note header */ 2042 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2043 /* note name */ 2044 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2045 2046 return (notesize); 2047 } 2048 2049 static size_t 2050 append_note_data(const void *src, void *dst, size_t len) 2051 { 2052 size_t padded_len; 2053 2054 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2055 if (dst != NULL) { 2056 bcopy(src, dst, len); 2057 bzero((char *)dst + len, padded_len - len); 2058 } 2059 return (padded_len); 2060 } 2061 2062 size_t 2063 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2064 { 2065 Elf_Note *note; 2066 char *buf; 2067 size_t notesize; 2068 2069 buf = dst; 2070 if (buf != NULL) { 2071 note = (Elf_Note *)buf; 2072 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2073 note->n_descsz = size; 2074 note->n_type = type; 2075 buf += sizeof(*note); 2076 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2077 sizeof(FREEBSD_ABI_VENDOR)); 2078 append_note_data(src, buf, size); 2079 if (descp != NULL) 2080 *descp = buf; 2081 } 2082 2083 notesize = sizeof(Elf_Note) + /* note header */ 2084 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2085 /* note name */ 2086 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2087 2088 return (notesize); 2089 } 2090 2091 static void 2092 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 2093 { 2094 Elf_Note note; 2095 const struct sysentvec *sv; 2096 ssize_t old_len, sect_len; 2097 size_t new_len, descsz, i; 2098 2099 if (ninfo->type == -1) { 2100 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2101 return; 2102 } 2103 2104 sv = td->td_proc->p_sysent; 2105 2106 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 2107 note.n_descsz = ninfo->outsize; 2108 note.n_type = ninfo->type; 2109 2110 sbuf_bcat(sb, ¬e, sizeof(note)); 2111 sbuf_start_section(sb, &old_len); 2112 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 2113 strlen(sv->sv_elf_core_abi_vendor) + 1); 2114 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2115 if (note.n_descsz == 0) 2116 return; 2117 sbuf_start_section(sb, &old_len); 2118 if (ninfo->regset != NULL) { 2119 struct regset *regset = ninfo->regset; 2120 void *buf; 2121 2122 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK); 2123 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize); 2124 sbuf_bcat(sb, buf, ninfo->outsize); 2125 free(buf, M_TEMP); 2126 } else 2127 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2128 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2129 if (sect_len < 0) 2130 return; 2131 2132 new_len = (size_t)sect_len; 2133 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2134 if (new_len < descsz) { 2135 /* 2136 * It is expected that individual note emitters will correctly 2137 * predict their expected output size and fill up to that size 2138 * themselves, padding in a format-specific way if needed. 2139 * However, in case they don't, just do it here with zeros. 2140 */ 2141 for (i = 0; i < descsz - new_len; i++) 2142 sbuf_putc(sb, 0); 2143 } else if (new_len > descsz) { 2144 /* 2145 * We can't always truncate sb -- we may have drained some 2146 * of it already. 2147 */ 2148 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2149 "read it (%zu > %zu). Since it is longer than " 2150 "expected, this coredump's notes are corrupt. THIS " 2151 "IS A BUG in the note_procstat routine for type %u.\n", 2152 __func__, (unsigned)note.n_type, new_len, descsz, 2153 (unsigned)note.n_type)); 2154 } 2155 } 2156 2157 /* 2158 * Miscellaneous note out functions. 2159 */ 2160 2161 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2162 #include <compat/freebsd32/freebsd32.h> 2163 #include <compat/freebsd32/freebsd32_signal.h> 2164 2165 typedef struct prstatus32 elf_prstatus_t; 2166 typedef struct prpsinfo32 elf_prpsinfo_t; 2167 typedef struct fpreg32 elf_prfpregset_t; 2168 typedef struct fpreg32 elf_fpregset_t; 2169 typedef struct reg32 elf_gregset_t; 2170 typedef struct thrmisc32 elf_thrmisc_t; 2171 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t; 2172 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2173 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2174 typedef uint32_t elf_ps_strings_t; 2175 #else 2176 typedef prstatus_t elf_prstatus_t; 2177 typedef prpsinfo_t elf_prpsinfo_t; 2178 typedef prfpregset_t elf_prfpregset_t; 2179 typedef prfpregset_t elf_fpregset_t; 2180 typedef gregset_t elf_gregset_t; 2181 typedef thrmisc_t elf_thrmisc_t; 2182 typedef struct ptrace_lwpinfo elf_lwpinfo_t; 2183 #define ELF_KERN_PROC_MASK 0 2184 typedef struct kinfo_proc elf_kinfo_proc_t; 2185 typedef vm_offset_t elf_ps_strings_t; 2186 #endif 2187 2188 static void 2189 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2190 { 2191 struct sbuf sbarg; 2192 size_t len; 2193 char *cp, *end; 2194 struct proc *p; 2195 elf_prpsinfo_t *psinfo; 2196 int error; 2197 2198 p = arg; 2199 if (sb != NULL) { 2200 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2201 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2202 psinfo->pr_version = PRPSINFO_VERSION; 2203 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2204 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2205 PROC_LOCK(p); 2206 if (p->p_args != NULL) { 2207 len = sizeof(psinfo->pr_psargs) - 1; 2208 if (len > p->p_args->ar_length) 2209 len = p->p_args->ar_length; 2210 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2211 PROC_UNLOCK(p); 2212 error = 0; 2213 } else { 2214 _PHOLD(p); 2215 PROC_UNLOCK(p); 2216 sbuf_new(&sbarg, psinfo->pr_psargs, 2217 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2218 error = proc_getargv(curthread, p, &sbarg); 2219 PRELE(p); 2220 if (sbuf_finish(&sbarg) == 0) { 2221 len = sbuf_len(&sbarg); 2222 if (len > 0) 2223 len--; 2224 } else { 2225 len = sizeof(psinfo->pr_psargs) - 1; 2226 } 2227 sbuf_delete(&sbarg); 2228 } 2229 if (error != 0 || len == 0 || (ssize_t)len == -1) 2230 strlcpy(psinfo->pr_psargs, p->p_comm, 2231 sizeof(psinfo->pr_psargs)); 2232 else { 2233 KASSERT(len < sizeof(psinfo->pr_psargs), 2234 ("len is too long: %zu vs %zu", len, 2235 sizeof(psinfo->pr_psargs))); 2236 cp = psinfo->pr_psargs; 2237 end = cp + len - 1; 2238 for (;;) { 2239 cp = memchr(cp, '\0', end - cp); 2240 if (cp == NULL) 2241 break; 2242 *cp = ' '; 2243 } 2244 } 2245 psinfo->pr_pid = p->p_pid; 2246 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2247 free(psinfo, M_TEMP); 2248 } 2249 *sizep = sizeof(*psinfo); 2250 } 2251 2252 static bool 2253 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf, 2254 size_t *sizep) 2255 { 2256 elf_prstatus_t *status; 2257 2258 if (buf != NULL) { 2259 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2260 __func__)); 2261 status = buf; 2262 memset(status, 0, *sizep); 2263 status->pr_version = PRSTATUS_VERSION; 2264 status->pr_statussz = sizeof(elf_prstatus_t); 2265 status->pr_gregsetsz = sizeof(elf_gregset_t); 2266 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2267 status->pr_osreldate = osreldate; 2268 status->pr_cursig = td->td_proc->p_sig; 2269 status->pr_pid = td->td_tid; 2270 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2271 fill_regs32(td, &status->pr_reg); 2272 #else 2273 fill_regs(td, &status->pr_reg); 2274 #endif 2275 } 2276 *sizep = sizeof(*status); 2277 return (true); 2278 } 2279 2280 static bool 2281 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf, 2282 size_t size) 2283 { 2284 elf_prstatus_t *status; 2285 2286 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__)); 2287 status = buf; 2288 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2289 set_regs32(td, &status->pr_reg); 2290 #else 2291 set_regs(td, &status->pr_reg); 2292 #endif 2293 return (true); 2294 } 2295 2296 static struct regset __elfN(regset_prstatus) = { 2297 .note = NT_PRSTATUS, 2298 .size = sizeof(elf_prstatus_t), 2299 .get = __elfN(get_prstatus), 2300 .set = __elfN(set_prstatus), 2301 }; 2302 ELF_REGSET(__elfN(regset_prstatus)); 2303 2304 static bool 2305 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf, 2306 size_t *sizep) 2307 { 2308 elf_prfpregset_t *fpregset; 2309 2310 if (buf != NULL) { 2311 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size", 2312 __func__)); 2313 fpregset = buf; 2314 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2315 fill_fpregs32(td, fpregset); 2316 #else 2317 fill_fpregs(td, fpregset); 2318 #endif 2319 } 2320 *sizep = sizeof(*fpregset); 2321 return (true); 2322 } 2323 2324 static bool 2325 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf, 2326 size_t size) 2327 { 2328 elf_prfpregset_t *fpregset; 2329 2330 fpregset = buf; 2331 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__)); 2332 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2333 set_fpregs32(td, fpregset); 2334 #else 2335 set_fpregs(td, fpregset); 2336 #endif 2337 return (true); 2338 } 2339 2340 static struct regset __elfN(regset_fpregset) = { 2341 .note = NT_FPREGSET, 2342 .size = sizeof(elf_prfpregset_t), 2343 .get = __elfN(get_fpregset), 2344 .set = __elfN(set_fpregset), 2345 }; 2346 ELF_REGSET(__elfN(regset_fpregset)); 2347 2348 static bool 2349 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf, 2350 size_t *sizep) 2351 { 2352 elf_thrmisc_t *thrmisc; 2353 2354 if (buf != NULL) { 2355 KASSERT(*sizep == sizeof(*thrmisc), 2356 ("%s: invalid size", __func__)); 2357 thrmisc = buf; 2358 bzero(thrmisc, sizeof(*thrmisc)); 2359 strcpy(thrmisc->pr_tname, td->td_name); 2360 } 2361 *sizep = sizeof(*thrmisc); 2362 return (true); 2363 } 2364 2365 static struct regset __elfN(regset_thrmisc) = { 2366 .note = NT_THRMISC, 2367 .size = sizeof(elf_thrmisc_t), 2368 .get = __elfN(get_thrmisc), 2369 }; 2370 ELF_REGSET(__elfN(regset_thrmisc)); 2371 2372 static bool 2373 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf, 2374 size_t *sizep) 2375 { 2376 elf_lwpinfo_t pl; 2377 size_t size; 2378 int structsize; 2379 2380 size = sizeof(structsize) + sizeof(pl); 2381 if (buf != NULL) { 2382 KASSERT(*sizep == size, ("%s: invalid size", __func__)); 2383 structsize = sizeof(pl); 2384 memcpy(buf, &structsize, sizeof(structsize)); 2385 bzero(&pl, sizeof(pl)); 2386 pl.pl_lwpid = td->td_tid; 2387 pl.pl_event = PL_EVENT_NONE; 2388 pl.pl_sigmask = td->td_sigmask; 2389 pl.pl_siglist = td->td_siglist; 2390 if (td->td_si.si_signo != 0) { 2391 pl.pl_event = PL_EVENT_SIGNAL; 2392 pl.pl_flags |= PL_FLAG_SI; 2393 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2394 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2395 #else 2396 pl.pl_siginfo = td->td_si; 2397 #endif 2398 } 2399 strcpy(pl.pl_tdname, td->td_name); 2400 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2401 memcpy((int *)buf + 1, &pl, sizeof(pl)); 2402 } 2403 *sizep = size; 2404 return (true); 2405 } 2406 2407 static struct regset __elfN(regset_lwpinfo) = { 2408 .note = NT_PTLWPINFO, 2409 .size = sizeof(int) + sizeof(elf_lwpinfo_t), 2410 .get = __elfN(get_lwpinfo), 2411 }; 2412 ELF_REGSET(__elfN(regset_lwpinfo)); 2413 2414 static size_t 2415 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list, 2416 struct thread *target_td) 2417 { 2418 struct sysentvec *sv = td->td_proc->p_sysent; 2419 struct regset **regsetp, **regset_end, *regset; 2420 size_t size; 2421 2422 size = 0; 2423 2424 /* NT_PRSTATUS must be the first register set note. */ 2425 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus), 2426 target_td); 2427 2428 regsetp = sv->sv_regset_begin; 2429 if (regsetp == NULL) { 2430 /* XXX: This shouldn't be true for any FreeBSD ABIs. */ 2431 size += __elfN(register_regset_note)(td, list, 2432 &__elfN(regset_fpregset), target_td); 2433 return (size); 2434 } 2435 regset_end = sv->sv_regset_end; 2436 MPASS(regset_end != NULL); 2437 for (; regsetp < regset_end; regsetp++) { 2438 regset = *regsetp; 2439 if (regset->note == NT_PRSTATUS) 2440 continue; 2441 size += __elfN(register_regset_note)(td, list, regset, 2442 target_td); 2443 } 2444 return (size); 2445 } 2446 2447 /* 2448 * Allow for MD specific notes, as well as any MD 2449 * specific preparations for writing MI notes. 2450 */ 2451 static void 2452 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2453 { 2454 struct thread *td; 2455 void *buf; 2456 size_t size; 2457 2458 td = (struct thread *)arg; 2459 size = *sizep; 2460 if (size != 0 && sb != NULL) 2461 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2462 else 2463 buf = NULL; 2464 size = 0; 2465 __elfN(dump_thread)(td, buf, &size); 2466 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2467 if (size != 0 && sb != NULL) 2468 sbuf_bcat(sb, buf, size); 2469 free(buf, M_TEMP); 2470 *sizep = size; 2471 } 2472 2473 #ifdef KINFO_PROC_SIZE 2474 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2475 #endif 2476 2477 static void 2478 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2479 { 2480 struct proc *p; 2481 size_t size; 2482 int structsize; 2483 2484 p = arg; 2485 size = sizeof(structsize) + p->p_numthreads * 2486 sizeof(elf_kinfo_proc_t); 2487 2488 if (sb != NULL) { 2489 KASSERT(*sizep == size, ("invalid size")); 2490 structsize = sizeof(elf_kinfo_proc_t); 2491 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2492 sx_slock(&proctree_lock); 2493 PROC_LOCK(p); 2494 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2495 sx_sunlock(&proctree_lock); 2496 } 2497 *sizep = size; 2498 } 2499 2500 #ifdef KINFO_FILE_SIZE 2501 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2502 #endif 2503 2504 static void 2505 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2506 { 2507 struct proc *p; 2508 size_t size, sect_sz, i; 2509 ssize_t start_len, sect_len; 2510 int structsize, filedesc_flags; 2511 2512 if (coredump_pack_fileinfo) 2513 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2514 else 2515 filedesc_flags = 0; 2516 2517 p = arg; 2518 structsize = sizeof(struct kinfo_file); 2519 if (sb == NULL) { 2520 size = 0; 2521 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2522 sbuf_set_drain(sb, sbuf_count_drain, &size); 2523 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2524 PROC_LOCK(p); 2525 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2526 sbuf_finish(sb); 2527 sbuf_delete(sb); 2528 *sizep = size; 2529 } else { 2530 sbuf_start_section(sb, &start_len); 2531 2532 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2533 PROC_LOCK(p); 2534 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2535 filedesc_flags); 2536 2537 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2538 if (sect_len < 0) 2539 return; 2540 sect_sz = sect_len; 2541 2542 KASSERT(sect_sz <= *sizep, 2543 ("kern_proc_filedesc_out did not respect maxlen; " 2544 "requested %zu, got %zu", *sizep - sizeof(structsize), 2545 sect_sz - sizeof(structsize))); 2546 2547 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2548 sbuf_putc(sb, 0); 2549 } 2550 } 2551 2552 #ifdef KINFO_VMENTRY_SIZE 2553 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2554 #endif 2555 2556 static void 2557 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2558 { 2559 struct proc *p; 2560 size_t size; 2561 int structsize, vmmap_flags; 2562 2563 if (coredump_pack_vmmapinfo) 2564 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2565 else 2566 vmmap_flags = 0; 2567 2568 p = arg; 2569 structsize = sizeof(struct kinfo_vmentry); 2570 if (sb == NULL) { 2571 size = 0; 2572 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2573 sbuf_set_drain(sb, sbuf_count_drain, &size); 2574 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2575 PROC_LOCK(p); 2576 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2577 sbuf_finish(sb); 2578 sbuf_delete(sb); 2579 *sizep = size; 2580 } else { 2581 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2582 PROC_LOCK(p); 2583 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2584 vmmap_flags); 2585 } 2586 } 2587 2588 static void 2589 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2590 { 2591 struct proc *p; 2592 size_t size; 2593 int structsize; 2594 2595 p = arg; 2596 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2597 if (sb != NULL) { 2598 KASSERT(*sizep == size, ("invalid size")); 2599 structsize = sizeof(gid_t); 2600 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2601 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2602 sizeof(gid_t)); 2603 } 2604 *sizep = size; 2605 } 2606 2607 static void 2608 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2609 { 2610 struct proc *p; 2611 size_t size; 2612 int structsize; 2613 2614 p = arg; 2615 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2616 if (sb != NULL) { 2617 KASSERT(*sizep == size, ("invalid size")); 2618 structsize = sizeof(p->p_pd->pd_cmask); 2619 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2620 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2621 } 2622 *sizep = size; 2623 } 2624 2625 static void 2626 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2627 { 2628 struct proc *p; 2629 struct rlimit rlim[RLIM_NLIMITS]; 2630 size_t size; 2631 int structsize, i; 2632 2633 p = arg; 2634 size = sizeof(structsize) + sizeof(rlim); 2635 if (sb != NULL) { 2636 KASSERT(*sizep == size, ("invalid size")); 2637 structsize = sizeof(rlim); 2638 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2639 PROC_LOCK(p); 2640 for (i = 0; i < RLIM_NLIMITS; i++) 2641 lim_rlimit_proc(p, i, &rlim[i]); 2642 PROC_UNLOCK(p); 2643 sbuf_bcat(sb, rlim, sizeof(rlim)); 2644 } 2645 *sizep = size; 2646 } 2647 2648 static void 2649 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2650 { 2651 struct proc *p; 2652 size_t size; 2653 int structsize; 2654 2655 p = arg; 2656 size = sizeof(structsize) + sizeof(p->p_osrel); 2657 if (sb != NULL) { 2658 KASSERT(*sizep == size, ("invalid size")); 2659 structsize = sizeof(p->p_osrel); 2660 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2661 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2662 } 2663 *sizep = size; 2664 } 2665 2666 static void 2667 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2668 { 2669 struct proc *p; 2670 elf_ps_strings_t ps_strings; 2671 size_t size; 2672 int structsize; 2673 2674 p = arg; 2675 size = sizeof(structsize) + sizeof(ps_strings); 2676 if (sb != NULL) { 2677 KASSERT(*sizep == size, ("invalid size")); 2678 structsize = sizeof(ps_strings); 2679 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2680 ps_strings = PTROUT(PROC_PS_STRINGS(p)); 2681 #else 2682 ps_strings = PROC_PS_STRINGS(p); 2683 #endif 2684 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2685 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2686 } 2687 *sizep = size; 2688 } 2689 2690 static void 2691 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2692 { 2693 struct proc *p; 2694 size_t size; 2695 int structsize; 2696 2697 p = arg; 2698 if (sb == NULL) { 2699 size = 0; 2700 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2701 SBUF_FIXEDLEN); 2702 sbuf_set_drain(sb, sbuf_count_drain, &size); 2703 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2704 PHOLD(p); 2705 proc_getauxv(curthread, p, sb); 2706 PRELE(p); 2707 sbuf_finish(sb); 2708 sbuf_delete(sb); 2709 *sizep = size; 2710 } else { 2711 structsize = sizeof(Elf_Auxinfo); 2712 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2713 PHOLD(p); 2714 proc_getauxv(curthread, p, sb); 2715 PRELE(p); 2716 } 2717 } 2718 2719 #define MAX_NOTES_LOOP 4096 2720 bool 2721 __elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote, 2722 const char *note_vendor, const Elf_Phdr *pnote, 2723 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2724 { 2725 const Elf_Note *note, *note0, *note_end; 2726 const char *note_name; 2727 char *buf; 2728 int i, error; 2729 bool res; 2730 2731 /* We need some limit, might as well use PAGE_SIZE. */ 2732 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2733 return (false); 2734 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2735 if (pnote->p_offset > PAGE_SIZE || 2736 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2737 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2738 if (buf == NULL) { 2739 VOP_UNLOCK(imgp->vp); 2740 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2741 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2742 } 2743 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2744 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2745 curthread->td_ucred, NOCRED, NULL, curthread); 2746 if (error != 0) { 2747 uprintf("i/o error PT_NOTE\n"); 2748 goto retf; 2749 } 2750 note = note0 = (const Elf_Note *)buf; 2751 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2752 } else { 2753 note = note0 = (const Elf_Note *)(imgp->image_header + 2754 pnote->p_offset); 2755 note_end = (const Elf_Note *)(imgp->image_header + 2756 pnote->p_offset + pnote->p_filesz); 2757 buf = NULL; 2758 } 2759 for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end; 2760 i++) { 2761 if (!aligned(note, Elf32_Addr)) { 2762 uprintf("Unaligned ELF note\n"); 2763 goto retf; 2764 } 2765 if ((const char *)note_end - (const char *)note < 2766 sizeof(Elf_Note)) { 2767 uprintf("ELF note to short\n"); 2768 goto retf; 2769 } 2770 if (note->n_namesz != checknote->n_namesz || 2771 note->n_descsz != checknote->n_descsz || 2772 note->n_type != checknote->n_type) 2773 goto nextnote; 2774 note_name = (const char *)(note + 1); 2775 if (note_name + checknote->n_namesz >= 2776 (const char *)note_end || strncmp(note_vendor, 2777 note_name, checknote->n_namesz) != 0) 2778 goto nextnote; 2779 2780 if (cb(note, cb_arg, &res)) 2781 goto ret; 2782 nextnote: 2783 note = (const Elf_Note *)((const char *)(note + 1) + 2784 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2785 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2786 } 2787 if (i >= MAX_NOTES_LOOP) 2788 uprintf("ELF note parser reached %d notes\n", i); 2789 retf: 2790 res = false; 2791 ret: 2792 free(buf, M_TEMP); 2793 return (res); 2794 } 2795 2796 struct brandnote_cb_arg { 2797 Elf_Brandnote *brandnote; 2798 int32_t *osrel; 2799 }; 2800 2801 static bool 2802 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2803 { 2804 struct brandnote_cb_arg *arg; 2805 2806 arg = arg0; 2807 2808 /* 2809 * Fetch the osreldate for binary from the ELF OSABI-note if 2810 * necessary. 2811 */ 2812 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2813 arg->brandnote->trans_osrel != NULL ? 2814 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2815 2816 return (true); 2817 } 2818 2819 static Elf_Note fctl_note = { 2820 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2821 .n_descsz = sizeof(uint32_t), 2822 .n_type = NT_FREEBSD_FEATURE_CTL, 2823 }; 2824 2825 struct fctl_cb_arg { 2826 bool *has_fctl0; 2827 uint32_t *fctl0; 2828 }; 2829 2830 static bool 2831 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2832 { 2833 struct fctl_cb_arg *arg; 2834 const Elf32_Word *desc; 2835 uintptr_t p; 2836 2837 arg = arg0; 2838 p = (uintptr_t)(note + 1); 2839 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2840 desc = (const Elf32_Word *)p; 2841 *arg->has_fctl0 = true; 2842 *arg->fctl0 = desc[0]; 2843 *res = true; 2844 return (true); 2845 } 2846 2847 /* 2848 * Try to find the appropriate ABI-note section for checknote, fetch 2849 * the osreldate and feature control flags for binary from the ELF 2850 * OSABI-note. Only the first page of the image is searched, the same 2851 * as for headers. 2852 */ 2853 static bool 2854 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2855 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2856 { 2857 const Elf_Phdr *phdr; 2858 const Elf_Ehdr *hdr; 2859 struct brandnote_cb_arg b_arg; 2860 struct fctl_cb_arg f_arg; 2861 int i, j; 2862 2863 hdr = (const Elf_Ehdr *)imgp->image_header; 2864 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2865 b_arg.brandnote = brandnote; 2866 b_arg.osrel = osrel; 2867 f_arg.has_fctl0 = has_fctl0; 2868 f_arg.fctl0 = fctl0; 2869 2870 for (i = 0; i < hdr->e_phnum; i++) { 2871 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2872 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2873 &b_arg)) { 2874 for (j = 0; j < hdr->e_phnum; j++) { 2875 if (phdr[j].p_type == PT_NOTE && 2876 __elfN(parse_notes)(imgp, &fctl_note, 2877 FREEBSD_ABI_VENDOR, &phdr[j], 2878 note_fctl_cb, &f_arg)) 2879 break; 2880 } 2881 return (true); 2882 } 2883 } 2884 return (false); 2885 2886 } 2887 2888 /* 2889 * Tell kern_execve.c about it, with a little help from the linker. 2890 */ 2891 static struct execsw __elfN(execsw) = { 2892 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2893 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2894 }; 2895 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2896 2897 static vm_prot_t 2898 __elfN(trans_prot)(Elf_Word flags) 2899 { 2900 vm_prot_t prot; 2901 2902 prot = 0; 2903 if (flags & PF_X) 2904 prot |= VM_PROT_EXECUTE; 2905 if (flags & PF_W) 2906 prot |= VM_PROT_WRITE; 2907 if (flags & PF_R) 2908 prot |= VM_PROT_READ; 2909 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2910 if (i386_read_exec && (flags & PF_R)) 2911 prot |= VM_PROT_EXECUTE; 2912 #endif 2913 return (prot); 2914 } 2915 2916 static Elf_Word 2917 __elfN(untrans_prot)(vm_prot_t prot) 2918 { 2919 Elf_Word flags; 2920 2921 flags = 0; 2922 if (prot & VM_PROT_EXECUTE) 2923 flags |= PF_X; 2924 if (prot & VM_PROT_READ) 2925 flags |= PF_R; 2926 if (prot & VM_PROT_WRITE) 2927 flags |= PF_W; 2928 return (flags); 2929 } 2930