1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 S�ren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_compat.h" 35 #include "opt_core.h" 36 37 #include <sys/param.h> 38 #include <sys/exec.h> 39 #include <sys/fcntl.h> 40 #include <sys/imgact.h> 41 #include <sys/imgact_elf.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mount.h> 46 #include <sys/mutex.h> 47 #include <sys/mman.h> 48 #include <sys/namei.h> 49 #include <sys/pioctl.h> 50 #include <sys/proc.h> 51 #include <sys/procfs.h> 52 #include <sys/resourcevar.h> 53 #include <sys/sf_buf.h> 54 #include <sys/smp.h> 55 #include <sys/systm.h> 56 #include <sys/signalvar.h> 57 #include <sys/stat.h> 58 #include <sys/sx.h> 59 #include <sys/syscall.h> 60 #include <sys/sysctl.h> 61 #include <sys/sysent.h> 62 #include <sys/vnode.h> 63 #include <sys/syslog.h> 64 #include <sys/eventhandler.h> 65 66 #include <net/zlib.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_kern.h> 70 #include <vm/vm_param.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_object.h> 74 #include <vm/vm_extern.h> 75 76 #include <machine/elf.h> 77 #include <machine/md_var.h> 78 79 #define OLD_EI_BRAND 8 80 81 static int __elfN(check_header)(const Elf_Ehdr *hdr); 82 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 83 const char *interp, int32_t *osrel); 84 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 85 u_long *entry, size_t pagesize); 86 static int __elfN(load_section)(struct vmspace *vmspace, vm_object_t object, 87 vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, 88 vm_prot_t prot, size_t pagesize); 89 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 90 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 91 int32_t *osrel); 92 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 93 static boolean_t __elfN(check_note)(struct image_params *imgp, 94 Elf_Brandnote *checknote, int32_t *osrel); 95 96 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 97 ""); 98 99 #ifdef COMPRESS_USER_CORES 100 static int compress_core(gzFile, char *, char *, unsigned int, 101 struct thread * td); 102 #define CORE_BUF_SIZE (16 * 1024) 103 #endif 104 105 int __elfN(fallback_brand) = -1; 106 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 107 fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0, 108 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 109 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand", 110 &__elfN(fallback_brand)); 111 112 static int elf_legacy_coredump = 0; 113 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 114 &elf_legacy_coredump, 0, ""); 115 116 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 117 118 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 119 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 120 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 121 122 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 123 124 Elf_Brandnote __elfN(freebsd_brandnote) = { 125 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 126 .hdr.n_descsz = sizeof(int32_t), 127 .hdr.n_type = 1, 128 .vendor = FREEBSD_ABI_VENDOR, 129 .flags = BN_TRANSLATE_OSREL, 130 .trans_osrel = __elfN(freebsd_trans_osrel) 131 }; 132 133 static boolean_t 134 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 135 { 136 uintptr_t p; 137 138 p = (uintptr_t)(note + 1); 139 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 140 *osrel = *(const int32_t *)(p); 141 142 return (TRUE); 143 } 144 145 static const char GNU_ABI_VENDOR[] = "GNU"; 146 static int GNU_KFREEBSD_ABI_DESC = 3; 147 148 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 149 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 150 .hdr.n_descsz = 16, /* XXX at least 16 */ 151 .hdr.n_type = 1, 152 .vendor = GNU_ABI_VENDOR, 153 .flags = BN_TRANSLATE_OSREL, 154 .trans_osrel = kfreebsd_trans_osrel 155 }; 156 157 static boolean_t 158 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 159 { 160 const Elf32_Word *desc; 161 uintptr_t p; 162 163 p = (uintptr_t)(note + 1); 164 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 165 166 desc = (const Elf32_Word *)p; 167 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 168 return (FALSE); 169 170 /* 171 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 172 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 173 */ 174 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 175 176 return (TRUE); 177 } 178 179 int 180 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 181 { 182 int i; 183 184 for (i = 0; i < MAX_BRANDS; i++) { 185 if (elf_brand_list[i] == NULL) { 186 elf_brand_list[i] = entry; 187 break; 188 } 189 } 190 if (i == MAX_BRANDS) { 191 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 192 __func__, entry); 193 return (-1); 194 } 195 return (0); 196 } 197 198 int 199 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 200 { 201 int i; 202 203 for (i = 0; i < MAX_BRANDS; i++) { 204 if (elf_brand_list[i] == entry) { 205 elf_brand_list[i] = NULL; 206 break; 207 } 208 } 209 if (i == MAX_BRANDS) 210 return (-1); 211 return (0); 212 } 213 214 int 215 __elfN(brand_inuse)(Elf_Brandinfo *entry) 216 { 217 struct proc *p; 218 int rval = FALSE; 219 220 sx_slock(&allproc_lock); 221 FOREACH_PROC_IN_SYSTEM(p) { 222 if (p->p_sysent == entry->sysvec) { 223 rval = TRUE; 224 break; 225 } 226 } 227 sx_sunlock(&allproc_lock); 228 229 return (rval); 230 } 231 232 static Elf_Brandinfo * 233 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 234 int32_t *osrel) 235 { 236 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 237 Elf_Brandinfo *bi; 238 boolean_t ret; 239 int i; 240 241 /* 242 * We support four types of branding -- (1) the ELF EI_OSABI field 243 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 244 * branding w/in the ELF header, (3) path of the `interp_path' 245 * field, and (4) the ".note.ABI-tag" ELF section. 246 */ 247 248 /* Look for an ".note.ABI-tag" ELF section */ 249 for (i = 0; i < MAX_BRANDS; i++) { 250 bi = elf_brand_list[i]; 251 if (bi == NULL) 252 continue; 253 if (hdr->e_machine == bi->machine && (bi->flags & 254 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 255 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 256 if (ret) 257 return (bi); 258 } 259 } 260 261 /* If the executable has a brand, search for it in the brand list. */ 262 for (i = 0; i < MAX_BRANDS; i++) { 263 bi = elf_brand_list[i]; 264 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 265 continue; 266 if (hdr->e_machine == bi->machine && 267 (hdr->e_ident[EI_OSABI] == bi->brand || 268 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 269 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 270 return (bi); 271 } 272 273 /* Lacking a known brand, search for a recognized interpreter. */ 274 if (interp != NULL) { 275 for (i = 0; i < MAX_BRANDS; i++) { 276 bi = elf_brand_list[i]; 277 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 278 continue; 279 if (hdr->e_machine == bi->machine && 280 strcmp(interp, bi->interp_path) == 0) 281 return (bi); 282 } 283 } 284 285 /* Lacking a recognized interpreter, try the default brand */ 286 for (i = 0; i < MAX_BRANDS; i++) { 287 bi = elf_brand_list[i]; 288 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 289 continue; 290 if (hdr->e_machine == bi->machine && 291 __elfN(fallback_brand) == bi->brand) 292 return (bi); 293 } 294 return (NULL); 295 } 296 297 static int 298 __elfN(check_header)(const Elf_Ehdr *hdr) 299 { 300 Elf_Brandinfo *bi; 301 int i; 302 303 if (!IS_ELF(*hdr) || 304 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 305 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 306 hdr->e_ident[EI_VERSION] != EV_CURRENT || 307 hdr->e_phentsize != sizeof(Elf_Phdr) || 308 hdr->e_version != ELF_TARG_VER) 309 return (ENOEXEC); 310 311 /* 312 * Make sure we have at least one brand for this machine. 313 */ 314 315 for (i = 0; i < MAX_BRANDS; i++) { 316 bi = elf_brand_list[i]; 317 if (bi != NULL && bi->machine == hdr->e_machine) 318 break; 319 } 320 if (i == MAX_BRANDS) 321 return (ENOEXEC); 322 323 return (0); 324 } 325 326 static int 327 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 328 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 329 { 330 struct sf_buf *sf; 331 int error; 332 vm_offset_t off; 333 334 /* 335 * Create the page if it doesn't exist yet. Ignore errors. 336 */ 337 vm_map_lock(map); 338 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 339 VM_PROT_ALL, VM_PROT_ALL, 0); 340 vm_map_unlock(map); 341 342 /* 343 * Find the page from the underlying object. 344 */ 345 if (object) { 346 sf = vm_imgact_map_page(object, offset); 347 if (sf == NULL) 348 return (KERN_FAILURE); 349 off = offset - trunc_page(offset); 350 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 351 end - start); 352 vm_imgact_unmap_page(sf); 353 if (error) { 354 return (KERN_FAILURE); 355 } 356 } 357 358 return (KERN_SUCCESS); 359 } 360 361 static int 362 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 363 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 364 { 365 struct sf_buf *sf; 366 vm_offset_t off; 367 vm_size_t sz; 368 int error, rv; 369 370 if (start != trunc_page(start)) { 371 rv = __elfN(map_partial)(map, object, offset, start, 372 round_page(start), prot); 373 if (rv) 374 return (rv); 375 offset += round_page(start) - start; 376 start = round_page(start); 377 } 378 if (end != round_page(end)) { 379 rv = __elfN(map_partial)(map, object, offset + 380 trunc_page(end) - start, trunc_page(end), end, prot); 381 if (rv) 382 return (rv); 383 end = trunc_page(end); 384 } 385 if (end > start) { 386 if (offset & PAGE_MASK) { 387 /* 388 * The mapping is not page aligned. This means we have 389 * to copy the data. Sigh. 390 */ 391 rv = vm_map_find(map, NULL, 0, &start, end - start, 392 FALSE, prot | VM_PROT_WRITE, VM_PROT_ALL, 0); 393 if (rv) 394 return (rv); 395 if (object == NULL) 396 return (KERN_SUCCESS); 397 for (; start < end; start += sz) { 398 sf = vm_imgact_map_page(object, offset); 399 if (sf == NULL) 400 return (KERN_FAILURE); 401 off = offset - trunc_page(offset); 402 sz = end - start; 403 if (sz > PAGE_SIZE - off) 404 sz = PAGE_SIZE - off; 405 error = copyout((caddr_t)sf_buf_kva(sf) + off, 406 (caddr_t)start, sz); 407 vm_imgact_unmap_page(sf); 408 if (error) { 409 return (KERN_FAILURE); 410 } 411 offset += sz; 412 } 413 rv = KERN_SUCCESS; 414 } else { 415 vm_object_reference(object); 416 vm_map_lock(map); 417 rv = vm_map_insert(map, object, offset, start, end, 418 prot, VM_PROT_ALL, cow); 419 vm_map_unlock(map); 420 if (rv != KERN_SUCCESS) 421 vm_object_deallocate(object); 422 } 423 return (rv); 424 } else { 425 return (KERN_SUCCESS); 426 } 427 } 428 429 static int 430 __elfN(load_section)(struct vmspace *vmspace, 431 vm_object_t object, vm_offset_t offset, 432 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 433 size_t pagesize) 434 { 435 struct sf_buf *sf; 436 size_t map_len; 437 vm_offset_t map_addr; 438 int error, rv, cow; 439 size_t copy_len; 440 vm_offset_t file_addr; 441 442 /* 443 * It's necessary to fail if the filsz + offset taken from the 444 * header is greater than the actual file pager object's size. 445 * If we were to allow this, then the vm_map_find() below would 446 * walk right off the end of the file object and into the ether. 447 * 448 * While I'm here, might as well check for something else that 449 * is invalid: filsz cannot be greater than memsz. 450 */ 451 if ((off_t)filsz + offset > object->un_pager.vnp.vnp_size || 452 filsz > memsz) { 453 uprintf("elf_load_section: truncated ELF file\n"); 454 return (ENOEXEC); 455 } 456 457 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 458 file_addr = trunc_page_ps(offset, pagesize); 459 460 /* 461 * We have two choices. We can either clear the data in the last page 462 * of an oversized mapping, or we can start the anon mapping a page 463 * early and copy the initialized data into that first page. We 464 * choose the second.. 465 */ 466 if (memsz > filsz) 467 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 468 else 469 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 470 471 if (map_len != 0) { 472 /* cow flags: don't dump readonly sections in core */ 473 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 474 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 475 476 rv = __elfN(map_insert)(&vmspace->vm_map, 477 object, 478 file_addr, /* file offset */ 479 map_addr, /* virtual start */ 480 map_addr + map_len,/* virtual end */ 481 prot, 482 cow); 483 if (rv != KERN_SUCCESS) 484 return (EINVAL); 485 486 /* we can stop now if we've covered it all */ 487 if (memsz == filsz) { 488 return (0); 489 } 490 } 491 492 493 /* 494 * We have to get the remaining bit of the file into the first part 495 * of the oversized map segment. This is normally because the .data 496 * segment in the file is extended to provide bss. It's a neat idea 497 * to try and save a page, but it's a pain in the behind to implement. 498 */ 499 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 500 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 501 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 502 map_addr; 503 504 /* This had damn well better be true! */ 505 if (map_len != 0) { 506 rv = __elfN(map_insert)(&vmspace->vm_map, NULL, 0, map_addr, 507 map_addr + map_len, VM_PROT_ALL, 0); 508 if (rv != KERN_SUCCESS) { 509 return (EINVAL); 510 } 511 } 512 513 if (copy_len != 0) { 514 vm_offset_t off; 515 516 sf = vm_imgact_map_page(object, offset + filsz); 517 if (sf == NULL) 518 return (EIO); 519 520 /* send the page fragment to user space */ 521 off = trunc_page_ps(offset + filsz, pagesize) - 522 trunc_page(offset + filsz); 523 error = copyout((caddr_t)sf_buf_kva(sf) + off, 524 (caddr_t)map_addr, copy_len); 525 vm_imgact_unmap_page(sf); 526 if (error) { 527 return (error); 528 } 529 } 530 531 /* 532 * set it to the specified protection. 533 * XXX had better undo the damage from pasting over the cracks here! 534 */ 535 vm_map_protect(&vmspace->vm_map, trunc_page(map_addr), 536 round_page(map_addr + map_len), prot, FALSE); 537 538 return (0); 539 } 540 541 /* 542 * Load the file "file" into memory. It may be either a shared object 543 * or an executable. 544 * 545 * The "addr" reference parameter is in/out. On entry, it specifies 546 * the address where a shared object should be loaded. If the file is 547 * an executable, this value is ignored. On exit, "addr" specifies 548 * where the file was actually loaded. 549 * 550 * The "entry" reference parameter is out only. On exit, it specifies 551 * the entry point for the loaded file. 552 */ 553 static int 554 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 555 u_long *entry, size_t pagesize) 556 { 557 struct { 558 struct nameidata nd; 559 struct vattr attr; 560 struct image_params image_params; 561 } *tempdata; 562 const Elf_Ehdr *hdr = NULL; 563 const Elf_Phdr *phdr = NULL; 564 struct nameidata *nd; 565 struct vmspace *vmspace = p->p_vmspace; 566 struct vattr *attr; 567 struct image_params *imgp; 568 vm_prot_t prot; 569 u_long rbase; 570 u_long base_addr = 0; 571 int vfslocked, error, i, numsegs; 572 573 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 574 nd = &tempdata->nd; 575 attr = &tempdata->attr; 576 imgp = &tempdata->image_params; 577 578 /* 579 * Initialize part of the common data 580 */ 581 imgp->proc = p; 582 imgp->attr = attr; 583 imgp->firstpage = NULL; 584 imgp->image_header = NULL; 585 imgp->object = NULL; 586 imgp->execlabel = NULL; 587 588 NDINIT(nd, LOOKUP, MPSAFE|LOCKLEAF|FOLLOW, UIO_SYSSPACE, file, 589 curthread); 590 vfslocked = 0; 591 if ((error = namei(nd)) != 0) { 592 nd->ni_vp = NULL; 593 goto fail; 594 } 595 vfslocked = NDHASGIANT(nd); 596 NDFREE(nd, NDF_ONLY_PNBUF); 597 imgp->vp = nd->ni_vp; 598 599 /* 600 * Check permissions, modes, uid, etc on the file, and "open" it. 601 */ 602 error = exec_check_permissions(imgp); 603 if (error) 604 goto fail; 605 606 error = exec_map_first_page(imgp); 607 if (error) 608 goto fail; 609 610 /* 611 * Also make certain that the interpreter stays the same, so set 612 * its VV_TEXT flag, too. 613 */ 614 nd->ni_vp->v_vflag |= VV_TEXT; 615 616 imgp->object = nd->ni_vp->v_object; 617 618 hdr = (const Elf_Ehdr *)imgp->image_header; 619 if ((error = __elfN(check_header)(hdr)) != 0) 620 goto fail; 621 if (hdr->e_type == ET_DYN) 622 rbase = *addr; 623 else if (hdr->e_type == ET_EXEC) 624 rbase = 0; 625 else { 626 error = ENOEXEC; 627 goto fail; 628 } 629 630 /* Only support headers that fit within first page for now */ 631 /* (multiplication of two Elf_Half fields will not overflow) */ 632 if ((hdr->e_phoff > PAGE_SIZE) || 633 (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) { 634 error = ENOEXEC; 635 goto fail; 636 } 637 638 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 639 if (!aligned(phdr, Elf_Addr)) { 640 error = ENOEXEC; 641 goto fail; 642 } 643 644 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 645 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 646 /* Loadable segment */ 647 prot = 0; 648 if (phdr[i].p_flags & PF_X) 649 prot |= VM_PROT_EXECUTE; 650 if (phdr[i].p_flags & PF_W) 651 prot |= VM_PROT_WRITE; 652 if (phdr[i].p_flags & PF_R) 653 prot |= VM_PROT_READ; 654 655 if ((error = __elfN(load_section)(vmspace, 656 imgp->object, phdr[i].p_offset, 657 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 658 phdr[i].p_memsz, phdr[i].p_filesz, prot, 659 pagesize)) != 0) 660 goto fail; 661 /* 662 * Establish the base address if this is the 663 * first segment. 664 */ 665 if (numsegs == 0) 666 base_addr = trunc_page(phdr[i].p_vaddr + 667 rbase); 668 numsegs++; 669 } 670 } 671 *addr = base_addr; 672 *entry = (unsigned long)hdr->e_entry + rbase; 673 674 fail: 675 if (imgp->firstpage) 676 exec_unmap_first_page(imgp); 677 678 if (nd->ni_vp) 679 vput(nd->ni_vp); 680 681 VFS_UNLOCK_GIANT(vfslocked); 682 free(tempdata, M_TEMP); 683 684 return (error); 685 } 686 687 static int 688 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 689 { 690 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 691 const Elf_Phdr *phdr; 692 Elf_Auxargs *elf_auxargs; 693 struct vmspace *vmspace; 694 vm_prot_t prot; 695 u_long text_size = 0, data_size = 0, total_size = 0; 696 u_long text_addr = 0, data_addr = 0; 697 u_long seg_size, seg_addr; 698 u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; 699 int32_t osrel = 0; 700 int error = 0, i, n; 701 const char *interp = NULL, *newinterp = NULL; 702 Elf_Brandinfo *brand_info; 703 char *path; 704 struct sysentvec *sv; 705 706 /* 707 * Do we have a valid ELF header ? 708 * 709 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 710 * if particular brand doesn't support it. 711 */ 712 if (__elfN(check_header)(hdr) != 0 || 713 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 714 return (-1); 715 716 /* 717 * From here on down, we return an errno, not -1, as we've 718 * detected an ELF file. 719 */ 720 721 if ((hdr->e_phoff > PAGE_SIZE) || 722 (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) { 723 /* Only support headers in first page for now */ 724 return (ENOEXEC); 725 } 726 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 727 if (!aligned(phdr, Elf_Addr)) 728 return (ENOEXEC); 729 n = 0; 730 baddr = 0; 731 for (i = 0; i < hdr->e_phnum; i++) { 732 if (phdr[i].p_type == PT_LOAD) { 733 if (n == 0) 734 baddr = phdr[i].p_vaddr; 735 n++; 736 continue; 737 } 738 if (phdr[i].p_type == PT_INTERP) { 739 /* Path to interpreter */ 740 if (phdr[i].p_filesz > MAXPATHLEN || 741 phdr[i].p_offset + phdr[i].p_filesz > PAGE_SIZE) 742 return (ENOEXEC); 743 interp = imgp->image_header + phdr[i].p_offset; 744 continue; 745 } 746 } 747 748 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel); 749 if (brand_info == NULL) { 750 uprintf("ELF binary type \"%u\" not known.\n", 751 hdr->e_ident[EI_OSABI]); 752 return (ENOEXEC); 753 } 754 if (hdr->e_type == ET_DYN) { 755 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) 756 return (ENOEXEC); 757 /* 758 * Honour the base load address from the dso if it is 759 * non-zero for some reason. 760 */ 761 if (baddr == 0) 762 et_dyn_addr = ET_DYN_LOAD_ADDR; 763 else 764 et_dyn_addr = 0; 765 } else 766 et_dyn_addr = 0; 767 sv = brand_info->sysvec; 768 if (interp != NULL && brand_info->interp_newpath != NULL) 769 newinterp = brand_info->interp_newpath; 770 771 /* 772 * Avoid a possible deadlock if the current address space is destroyed 773 * and that address space maps the locked vnode. In the common case, 774 * the locked vnode's v_usecount is decremented but remains greater 775 * than zero. Consequently, the vnode lock is not needed by vrele(). 776 * However, in cases where the vnode lock is external, such as nullfs, 777 * v_usecount may become zero. 778 */ 779 VOP_UNLOCK(imgp->vp, 0); 780 781 error = exec_new_vmspace(imgp, sv); 782 imgp->proc->p_sysent = sv; 783 784 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 785 if (error) 786 return (error); 787 788 vmspace = imgp->proc->p_vmspace; 789 790 for (i = 0; i < hdr->e_phnum; i++) { 791 switch (phdr[i].p_type) { 792 case PT_LOAD: /* Loadable segment */ 793 if (phdr[i].p_memsz == 0) 794 break; 795 prot = 0; 796 if (phdr[i].p_flags & PF_X) 797 prot |= VM_PROT_EXECUTE; 798 if (phdr[i].p_flags & PF_W) 799 prot |= VM_PROT_WRITE; 800 if (phdr[i].p_flags & PF_R) 801 prot |= VM_PROT_READ; 802 803 #if defined(__ia64__) && __ELF_WORD_SIZE == 32 && defined(IA32_ME_HARDER) 804 /* 805 * Some x86 binaries assume read == executable, 806 * notably the M3 runtime and therefore cvsup 807 */ 808 if (prot & VM_PROT_READ) 809 prot |= VM_PROT_EXECUTE; 810 #endif 811 812 if ((error = __elfN(load_section)(vmspace, 813 imgp->object, phdr[i].p_offset, 814 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 815 phdr[i].p_memsz, phdr[i].p_filesz, prot, 816 sv->sv_pagesize)) != 0) 817 return (error); 818 819 /* 820 * If this segment contains the program headers, 821 * remember their virtual address for the AT_PHDR 822 * aux entry. Static binaries don't usually include 823 * a PT_PHDR entry. 824 */ 825 if (phdr[i].p_offset == 0 && 826 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 827 <= phdr[i].p_filesz) 828 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 829 et_dyn_addr; 830 831 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 832 seg_size = round_page(phdr[i].p_memsz + 833 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 834 835 /* 836 * Make the largest executable segment the official 837 * text segment and all others data. 838 * 839 * Note that obreak() assumes that data_addr + 840 * data_size == end of data load area, and the ELF 841 * file format expects segments to be sorted by 842 * address. If multiple data segments exist, the 843 * last one will be used. 844 */ 845 846 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 847 text_size = seg_size; 848 text_addr = seg_addr; 849 } else { 850 data_size = seg_size; 851 data_addr = seg_addr; 852 } 853 total_size += seg_size; 854 break; 855 case PT_PHDR: /* Program header table info */ 856 proghdr = phdr[i].p_vaddr + et_dyn_addr; 857 break; 858 default: 859 break; 860 } 861 } 862 863 if (data_addr == 0 && data_size == 0) { 864 data_addr = text_addr; 865 data_size = text_size; 866 } 867 868 entry = (u_long)hdr->e_entry + et_dyn_addr; 869 870 /* 871 * Check limits. It should be safe to check the 872 * limits after loading the segments since we do 873 * not actually fault in all the segments pages. 874 */ 875 PROC_LOCK(imgp->proc); 876 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 877 text_size > maxtsiz || 878 total_size > lim_cur(imgp->proc, RLIMIT_VMEM)) { 879 PROC_UNLOCK(imgp->proc); 880 return (ENOMEM); 881 } 882 883 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 884 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 885 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 886 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 887 888 /* 889 * We load the dynamic linker where a userland call 890 * to mmap(0, ...) would put it. The rationale behind this 891 * calculation is that it leaves room for the heap to grow to 892 * its maximum allowed size. 893 */ 894 addr = round_page((vm_offset_t)imgp->proc->p_vmspace->vm_daddr + 895 lim_max(imgp->proc, RLIMIT_DATA)); 896 PROC_UNLOCK(imgp->proc); 897 898 imgp->entry_addr = entry; 899 900 if (interp != NULL) { 901 int have_interp = FALSE; 902 VOP_UNLOCK(imgp->vp, 0); 903 if (brand_info->emul_path != NULL && 904 brand_info->emul_path[0] != '\0') { 905 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 906 snprintf(path, MAXPATHLEN, "%s%s", 907 brand_info->emul_path, interp); 908 error = __elfN(load_file)(imgp->proc, path, &addr, 909 &imgp->entry_addr, sv->sv_pagesize); 910 free(path, M_TEMP); 911 if (error == 0) 912 have_interp = TRUE; 913 } 914 if (!have_interp && newinterp != NULL) { 915 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 916 &imgp->entry_addr, sv->sv_pagesize); 917 if (error == 0) 918 have_interp = TRUE; 919 } 920 if (!have_interp) { 921 error = __elfN(load_file)(imgp->proc, interp, &addr, 922 &imgp->entry_addr, sv->sv_pagesize); 923 } 924 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 925 if (error != 0) { 926 uprintf("ELF interpreter %s not found\n", interp); 927 return (error); 928 } 929 } else 930 addr = et_dyn_addr; 931 932 /* 933 * Construct auxargs table (used by the fixup routine) 934 */ 935 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 936 elf_auxargs->execfd = -1; 937 elf_auxargs->phdr = proghdr; 938 elf_auxargs->phent = hdr->e_phentsize; 939 elf_auxargs->phnum = hdr->e_phnum; 940 elf_auxargs->pagesz = PAGE_SIZE; 941 elf_auxargs->base = addr; 942 elf_auxargs->flags = 0; 943 elf_auxargs->entry = entry; 944 945 imgp->auxargs = elf_auxargs; 946 imgp->interpreted = 0; 947 imgp->reloc_base = addr; 948 imgp->proc->p_osrel = osrel; 949 950 return (error); 951 } 952 953 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 954 955 int 956 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 957 { 958 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 959 Elf_Addr *base; 960 Elf_Addr *pos; 961 962 base = (Elf_Addr *)*stack_base; 963 pos = base + (imgp->args->argc + imgp->args->envc + 2); 964 965 if (args->execfd != -1) 966 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 967 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 968 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 969 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 970 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 971 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 972 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 973 AUXARGS_ENTRY(pos, AT_BASE, args->base); 974 if (imgp->execpathp != 0) 975 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 976 AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate); 977 if (imgp->canary != 0) { 978 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 979 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 980 } 981 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 982 if (imgp->pagesizes != 0) { 983 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 984 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 985 } 986 AUXARGS_ENTRY(pos, AT_NULL, 0); 987 988 free(imgp->auxargs, M_TEMP); 989 imgp->auxargs = NULL; 990 991 base--; 992 suword(base, (long)imgp->args->argc); 993 *stack_base = (register_t *)base; 994 return (0); 995 } 996 997 /* 998 * Code for generating ELF core dumps. 999 */ 1000 1001 typedef void (*segment_callback)(vm_map_entry_t, void *); 1002 1003 /* Closure for cb_put_phdr(). */ 1004 struct phdr_closure { 1005 Elf_Phdr *phdr; /* Program header to fill in */ 1006 Elf_Off offset; /* Offset of segment in core file */ 1007 }; 1008 1009 /* Closure for cb_size_segment(). */ 1010 struct sseg_closure { 1011 int count; /* Count of writable segments. */ 1012 size_t size; /* Total size of all writable segments. */ 1013 }; 1014 1015 static void cb_put_phdr(vm_map_entry_t, void *); 1016 static void cb_size_segment(vm_map_entry_t, void *); 1017 static void each_writable_segment(struct thread *, segment_callback, void *); 1018 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *, 1019 int, void *, size_t, gzFile); 1020 static void __elfN(puthdr)(struct thread *, void *, size_t *, int); 1021 static void __elfN(putnote)(void *, size_t *, const char *, int, 1022 const void *, size_t); 1023 1024 #ifdef COMPRESS_USER_CORES 1025 extern int compress_user_cores; 1026 extern int compress_user_cores_gzlevel; 1027 #endif 1028 1029 static int 1030 core_output(struct vnode *vp, void *base, size_t len, off_t offset, 1031 struct ucred *active_cred, struct ucred *file_cred, 1032 struct thread *td, char *core_buf, gzFile gzfile) { 1033 1034 int error; 1035 if (gzfile) { 1036 #ifdef COMPRESS_USER_CORES 1037 error = compress_core(gzfile, base, core_buf, len, td); 1038 #else 1039 panic("shouldn't be here"); 1040 #endif 1041 } else { 1042 error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset, 1043 UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred, 1044 NULL, td); 1045 } 1046 return (error); 1047 } 1048 1049 int 1050 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1051 { 1052 struct ucred *cred = td->td_ucred; 1053 int error = 0; 1054 struct sseg_closure seginfo; 1055 void *hdr; 1056 size_t hdrsize; 1057 1058 gzFile gzfile = Z_NULL; 1059 char *core_buf = NULL; 1060 #ifdef COMPRESS_USER_CORES 1061 char gzopen_flags[8]; 1062 char *p; 1063 int doing_compress = flags & IMGACT_CORE_COMPRESS; 1064 #endif 1065 1066 hdr = NULL; 1067 1068 #ifdef COMPRESS_USER_CORES 1069 if (doing_compress) { 1070 p = gzopen_flags; 1071 *p++ = 'w'; 1072 if (compress_user_cores_gzlevel >= 0 && 1073 compress_user_cores_gzlevel <= 9) 1074 *p++ = '0' + compress_user_cores_gzlevel; 1075 *p = 0; 1076 gzfile = gz_open("", gzopen_flags, vp); 1077 if (gzfile == Z_NULL) { 1078 error = EFAULT; 1079 goto done; 1080 } 1081 core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1082 if (!core_buf) { 1083 error = ENOMEM; 1084 goto done; 1085 } 1086 } 1087 #endif 1088 1089 /* Size the program segments. */ 1090 seginfo.count = 0; 1091 seginfo.size = 0; 1092 each_writable_segment(td, cb_size_segment, &seginfo); 1093 1094 /* 1095 * Calculate the size of the core file header area by making 1096 * a dry run of generating it. Nothing is written, but the 1097 * size is calculated. 1098 */ 1099 hdrsize = 0; 1100 __elfN(puthdr)(td, (void *)NULL, &hdrsize, seginfo.count); 1101 1102 if (hdrsize + seginfo.size >= limit) { 1103 error = EFAULT; 1104 goto done; 1105 } 1106 1107 /* 1108 * Allocate memory for building the header, fill it up, 1109 * and write it out. 1110 */ 1111 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1112 if (hdr == NULL) { 1113 error = EINVAL; 1114 goto done; 1115 } 1116 error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize, 1117 gzfile); 1118 1119 /* Write the contents of all of the writable segments. */ 1120 if (error == 0) { 1121 Elf_Phdr *php; 1122 off_t offset; 1123 int i; 1124 1125 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1126 offset = hdrsize; 1127 for (i = 0; i < seginfo.count; i++) { 1128 error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr, 1129 php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile); 1130 if (error != 0) 1131 break; 1132 offset += php->p_filesz; 1133 php++; 1134 } 1135 } 1136 if (error) { 1137 log(LOG_WARNING, 1138 "Failed to write core file for process %s (error %d)\n", 1139 curproc->p_comm, error); 1140 } 1141 1142 done: 1143 #ifdef COMPRESS_USER_CORES 1144 if (core_buf) 1145 free(core_buf, M_TEMP); 1146 if (gzfile) 1147 gzclose(gzfile); 1148 #endif 1149 1150 free(hdr, M_TEMP); 1151 1152 return (error); 1153 } 1154 1155 /* 1156 * A callback for each_writable_segment() to write out the segment's 1157 * program header entry. 1158 */ 1159 static void 1160 cb_put_phdr(entry, closure) 1161 vm_map_entry_t entry; 1162 void *closure; 1163 { 1164 struct phdr_closure *phc = (struct phdr_closure *)closure; 1165 Elf_Phdr *phdr = phc->phdr; 1166 1167 phc->offset = round_page(phc->offset); 1168 1169 phdr->p_type = PT_LOAD; 1170 phdr->p_offset = phc->offset; 1171 phdr->p_vaddr = entry->start; 1172 phdr->p_paddr = 0; 1173 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1174 phdr->p_align = PAGE_SIZE; 1175 phdr->p_flags = 0; 1176 if (entry->protection & VM_PROT_READ) 1177 phdr->p_flags |= PF_R; 1178 if (entry->protection & VM_PROT_WRITE) 1179 phdr->p_flags |= PF_W; 1180 if (entry->protection & VM_PROT_EXECUTE) 1181 phdr->p_flags |= PF_X; 1182 1183 phc->offset += phdr->p_filesz; 1184 phc->phdr++; 1185 } 1186 1187 /* 1188 * A callback for each_writable_segment() to gather information about 1189 * the number of segments and their total size. 1190 */ 1191 static void 1192 cb_size_segment(entry, closure) 1193 vm_map_entry_t entry; 1194 void *closure; 1195 { 1196 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1197 1198 ssc->count++; 1199 ssc->size += entry->end - entry->start; 1200 } 1201 1202 /* 1203 * For each writable segment in the process's memory map, call the given 1204 * function with a pointer to the map entry and some arbitrary 1205 * caller-supplied data. 1206 */ 1207 static void 1208 each_writable_segment(td, func, closure) 1209 struct thread *td; 1210 segment_callback func; 1211 void *closure; 1212 { 1213 struct proc *p = td->td_proc; 1214 vm_map_t map = &p->p_vmspace->vm_map; 1215 vm_map_entry_t entry; 1216 vm_object_t backing_object, object; 1217 boolean_t ignore_entry; 1218 1219 vm_map_lock_read(map); 1220 for (entry = map->header.next; entry != &map->header; 1221 entry = entry->next) { 1222 /* 1223 * Don't dump inaccessible mappings, deal with legacy 1224 * coredump mode. 1225 * 1226 * Note that read-only segments related to the elf binary 1227 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1228 * need to arbitrarily ignore such segments. 1229 */ 1230 if (elf_legacy_coredump) { 1231 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1232 continue; 1233 } else { 1234 if ((entry->protection & VM_PROT_ALL) == 0) 1235 continue; 1236 } 1237 1238 /* 1239 * Dont include memory segment in the coredump if 1240 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1241 * madvise(2). Do not dump submaps (i.e. parts of the 1242 * kernel map). 1243 */ 1244 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1245 continue; 1246 1247 if ((object = entry->object.vm_object) == NULL) 1248 continue; 1249 1250 /* Ignore memory-mapped devices and such things. */ 1251 VM_OBJECT_LOCK(object); 1252 while ((backing_object = object->backing_object) != NULL) { 1253 VM_OBJECT_LOCK(backing_object); 1254 VM_OBJECT_UNLOCK(object); 1255 object = backing_object; 1256 } 1257 ignore_entry = object->type != OBJT_DEFAULT && 1258 object->type != OBJT_SWAP && object->type != OBJT_VNODE; 1259 VM_OBJECT_UNLOCK(object); 1260 if (ignore_entry) 1261 continue; 1262 1263 (*func)(entry, closure); 1264 } 1265 vm_map_unlock_read(map); 1266 } 1267 1268 /* 1269 * Write the core file header to the file, including padding up to 1270 * the page boundary. 1271 */ 1272 static int 1273 __elfN(corehdr)(td, vp, cred, numsegs, hdr, hdrsize, gzfile) 1274 struct thread *td; 1275 struct vnode *vp; 1276 struct ucred *cred; 1277 int numsegs; 1278 size_t hdrsize; 1279 void *hdr; 1280 gzFile gzfile; 1281 { 1282 size_t off; 1283 1284 /* Fill in the header. */ 1285 bzero(hdr, hdrsize); 1286 off = 0; 1287 __elfN(puthdr)(td, hdr, &off, numsegs); 1288 1289 if (!gzfile) { 1290 /* Write it to the core file. */ 1291 return (vn_rdwr_inchunks(UIO_WRITE, vp, hdr, hdrsize, (off_t)0, 1292 UIO_SYSSPACE, IO_UNIT | IO_DIRECT, cred, NOCRED, NULL, 1293 td)); 1294 } else { 1295 #ifdef COMPRESS_USER_CORES 1296 if (gzwrite(gzfile, hdr, hdrsize) != hdrsize) { 1297 log(LOG_WARNING, 1298 "Failed to compress core file header for process" 1299 " %s.\n", curproc->p_comm); 1300 return (EFAULT); 1301 } 1302 else { 1303 return (0); 1304 } 1305 #else 1306 panic("shouldn't be here"); 1307 #endif 1308 } 1309 } 1310 1311 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1312 #include <compat/freebsd32/freebsd32.h> 1313 1314 typedef struct prstatus32 elf_prstatus_t; 1315 typedef struct prpsinfo32 elf_prpsinfo_t; 1316 typedef struct fpreg32 elf_prfpregset_t; 1317 typedef struct fpreg32 elf_fpregset_t; 1318 typedef struct reg32 elf_gregset_t; 1319 typedef struct thrmisc32 elf_thrmisc_t; 1320 #else 1321 typedef prstatus_t elf_prstatus_t; 1322 typedef prpsinfo_t elf_prpsinfo_t; 1323 typedef prfpregset_t elf_prfpregset_t; 1324 typedef prfpregset_t elf_fpregset_t; 1325 typedef gregset_t elf_gregset_t; 1326 typedef thrmisc_t elf_thrmisc_t; 1327 #endif 1328 1329 static void 1330 __elfN(puthdr)(struct thread *td, void *dst, size_t *off, int numsegs) 1331 { 1332 struct { 1333 elf_prstatus_t status; 1334 elf_prfpregset_t fpregset; 1335 elf_prpsinfo_t psinfo; 1336 elf_thrmisc_t thrmisc; 1337 } *tempdata; 1338 elf_prstatus_t *status; 1339 elf_prfpregset_t *fpregset; 1340 elf_prpsinfo_t *psinfo; 1341 elf_thrmisc_t *thrmisc; 1342 struct proc *p; 1343 struct thread *thr; 1344 size_t ehoff, noteoff, notesz, phoff; 1345 1346 p = td->td_proc; 1347 1348 ehoff = *off; 1349 *off += sizeof(Elf_Ehdr); 1350 1351 phoff = *off; 1352 *off += (numsegs + 1) * sizeof(Elf_Phdr); 1353 1354 noteoff = *off; 1355 /* 1356 * Don't allocate space for the notes if we're just calculating 1357 * the size of the header. We also don't collect the data. 1358 */ 1359 if (dst != NULL) { 1360 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_ZERO|M_WAITOK); 1361 status = &tempdata->status; 1362 fpregset = &tempdata->fpregset; 1363 psinfo = &tempdata->psinfo; 1364 thrmisc = &tempdata->thrmisc; 1365 } else { 1366 tempdata = NULL; 1367 status = NULL; 1368 fpregset = NULL; 1369 psinfo = NULL; 1370 thrmisc = NULL; 1371 } 1372 1373 if (dst != NULL) { 1374 psinfo->pr_version = PRPSINFO_VERSION; 1375 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1376 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1377 /* 1378 * XXX - We don't fill in the command line arguments properly 1379 * yet. 1380 */ 1381 strlcpy(psinfo->pr_psargs, p->p_comm, 1382 sizeof(psinfo->pr_psargs)); 1383 } 1384 __elfN(putnote)(dst, off, "FreeBSD", NT_PRPSINFO, psinfo, 1385 sizeof *psinfo); 1386 1387 /* 1388 * To have the debugger select the right thread (LWP) as the initial 1389 * thread, we dump the state of the thread passed to us in td first. 1390 * This is the thread that causes the core dump and thus likely to 1391 * be the right thread one wants to have selected in the debugger. 1392 */ 1393 thr = td; 1394 while (thr != NULL) { 1395 if (dst != NULL) { 1396 status->pr_version = PRSTATUS_VERSION; 1397 status->pr_statussz = sizeof(elf_prstatus_t); 1398 status->pr_gregsetsz = sizeof(elf_gregset_t); 1399 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1400 status->pr_osreldate = osreldate; 1401 status->pr_cursig = p->p_sig; 1402 status->pr_pid = thr->td_tid; 1403 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1404 fill_regs32(thr, &status->pr_reg); 1405 fill_fpregs32(thr, fpregset); 1406 #else 1407 fill_regs(thr, &status->pr_reg); 1408 fill_fpregs(thr, fpregset); 1409 #endif 1410 memset(&thrmisc->_pad, 0, sizeof (thrmisc->_pad)); 1411 strcpy(thrmisc->pr_tname, thr->td_name); 1412 } 1413 __elfN(putnote)(dst, off, "FreeBSD", NT_PRSTATUS, status, 1414 sizeof *status); 1415 __elfN(putnote)(dst, off, "FreeBSD", NT_FPREGSET, fpregset, 1416 sizeof *fpregset); 1417 __elfN(putnote)(dst, off, "FreeBSD", NT_THRMISC, thrmisc, 1418 sizeof *thrmisc); 1419 /* 1420 * Allow for MD specific notes, as well as any MD 1421 * specific preparations for writing MI notes. 1422 */ 1423 __elfN(dump_thread)(thr, dst, off); 1424 1425 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1426 TAILQ_NEXT(thr, td_plist); 1427 if (thr == td) 1428 thr = TAILQ_NEXT(thr, td_plist); 1429 } 1430 1431 notesz = *off - noteoff; 1432 1433 if (dst != NULL) 1434 free(tempdata, M_TEMP); 1435 1436 /* Align up to a page boundary for the program segments. */ 1437 *off = round_page(*off); 1438 1439 if (dst != NULL) { 1440 Elf_Ehdr *ehdr; 1441 Elf_Phdr *phdr; 1442 struct phdr_closure phc; 1443 1444 /* 1445 * Fill in the ELF header. 1446 */ 1447 ehdr = (Elf_Ehdr *)((char *)dst + ehoff); 1448 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1449 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1450 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1451 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1452 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1453 ehdr->e_ident[EI_DATA] = ELF_DATA; 1454 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1455 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1456 ehdr->e_ident[EI_ABIVERSION] = 0; 1457 ehdr->e_ident[EI_PAD] = 0; 1458 ehdr->e_type = ET_CORE; 1459 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1460 ehdr->e_machine = ELF_ARCH32; 1461 #else 1462 ehdr->e_machine = ELF_ARCH; 1463 #endif 1464 ehdr->e_version = EV_CURRENT; 1465 ehdr->e_entry = 0; 1466 ehdr->e_phoff = phoff; 1467 ehdr->e_flags = 0; 1468 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1469 ehdr->e_phentsize = sizeof(Elf_Phdr); 1470 ehdr->e_phnum = numsegs + 1; 1471 ehdr->e_shentsize = sizeof(Elf_Shdr); 1472 ehdr->e_shnum = 0; 1473 ehdr->e_shstrndx = SHN_UNDEF; 1474 1475 /* 1476 * Fill in the program header entries. 1477 */ 1478 phdr = (Elf_Phdr *)((char *)dst + phoff); 1479 1480 /* The note segement. */ 1481 phdr->p_type = PT_NOTE; 1482 phdr->p_offset = noteoff; 1483 phdr->p_vaddr = 0; 1484 phdr->p_paddr = 0; 1485 phdr->p_filesz = notesz; 1486 phdr->p_memsz = 0; 1487 phdr->p_flags = 0; 1488 phdr->p_align = 0; 1489 phdr++; 1490 1491 /* All the writable segments from the program. */ 1492 phc.phdr = phdr; 1493 phc.offset = *off; 1494 each_writable_segment(td, cb_put_phdr, &phc); 1495 } 1496 } 1497 1498 static void 1499 __elfN(putnote)(void *dst, size_t *off, const char *name, int type, 1500 const void *desc, size_t descsz) 1501 { 1502 Elf_Note note; 1503 1504 note.n_namesz = strlen(name) + 1; 1505 note.n_descsz = descsz; 1506 note.n_type = type; 1507 if (dst != NULL) 1508 bcopy(¬e, (char *)dst + *off, sizeof note); 1509 *off += sizeof note; 1510 if (dst != NULL) 1511 bcopy(name, (char *)dst + *off, note.n_namesz); 1512 *off += roundup2(note.n_namesz, sizeof(Elf_Size)); 1513 if (dst != NULL) 1514 bcopy(desc, (char *)dst + *off, note.n_descsz); 1515 *off += roundup2(note.n_descsz, sizeof(Elf_Size)); 1516 } 1517 1518 /* 1519 * Try to find the appropriate ABI-note section for checknote, 1520 * fetch the osreldate for binary from the ELF OSABI-note. Only the 1521 * first page of the image is searched, the same as for headers. 1522 */ 1523 static boolean_t 1524 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 1525 int32_t *osrel) 1526 { 1527 const Elf_Note *note, *note0, *note_end; 1528 const Elf_Phdr *phdr, *pnote; 1529 const Elf_Ehdr *hdr; 1530 const char *note_name; 1531 int i; 1532 1533 pnote = NULL; 1534 hdr = (const Elf_Ehdr *)imgp->image_header; 1535 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1536 1537 for (i = 0; i < hdr->e_phnum; i++) { 1538 if (phdr[i].p_type == PT_NOTE) { 1539 pnote = &phdr[i]; 1540 break; 1541 } 1542 } 1543 1544 if (pnote == NULL || pnote->p_offset >= PAGE_SIZE || 1545 pnote->p_offset + pnote->p_filesz >= PAGE_SIZE) 1546 return (FALSE); 1547 1548 note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); 1549 note_end = (const Elf_Note *)(imgp->image_header + 1550 pnote->p_offset + pnote->p_filesz); 1551 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 1552 if (!aligned(note, Elf32_Addr)) 1553 return (FALSE); 1554 if (note->n_namesz != checknote->hdr.n_namesz || 1555 note->n_descsz != checknote->hdr.n_descsz || 1556 note->n_type != checknote->hdr.n_type) 1557 goto nextnote; 1558 note_name = (const char *)(note + 1); 1559 if (strncmp(checknote->vendor, note_name, 1560 checknote->hdr.n_namesz) != 0) 1561 goto nextnote; 1562 1563 /* 1564 * Fetch the osreldate for binary 1565 * from the ELF OSABI-note if necessary. 1566 */ 1567 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 1568 checknote->trans_osrel != NULL) 1569 return (checknote->trans_osrel(note, osrel)); 1570 return (TRUE); 1571 1572 nextnote: 1573 note = (const Elf_Note *)((const char *)(note + 1) + 1574 roundup2(note->n_namesz, sizeof(Elf32_Addr)) + 1575 roundup2(note->n_descsz, sizeof(Elf32_Addr))); 1576 } 1577 1578 return (FALSE); 1579 } 1580 1581 /* 1582 * Tell kern_execve.c about it, with a little help from the linker. 1583 */ 1584 static struct execsw __elfN(execsw) = { 1585 __CONCAT(exec_, __elfN(imgact)), 1586 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 1587 }; 1588 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 1589 1590 #ifdef COMPRESS_USER_CORES 1591 /* 1592 * Compress and write out a core segment for a user process. 1593 * 1594 * 'inbuf' is the starting address of a VM segment in the process' address 1595 * space that is to be compressed and written out to the core file. 'dest_buf' 1596 * is a buffer in the kernel's address space. The segment is copied from 1597 * 'inbuf' to 'dest_buf' first before being processed by the compression 1598 * routine gzwrite(). This copying is necessary because the content of the VM 1599 * segment may change between the compression pass and the crc-computation pass 1600 * in gzwrite(). This is because realtime threads may preempt the UNIX kernel. 1601 */ 1602 static int 1603 compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len, 1604 struct thread *td) 1605 { 1606 int len_compressed; 1607 int error = 0; 1608 unsigned int chunk_len; 1609 1610 while (len) { 1611 chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len; 1612 copyin(inbuf, dest_buf, chunk_len); 1613 len_compressed = gzwrite(file, dest_buf, chunk_len); 1614 1615 EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed); 1616 1617 if ((unsigned int)len_compressed != chunk_len) { 1618 log(LOG_WARNING, 1619 "compress_core: length mismatch (0x%x returned, " 1620 "0x%x expected)\n", len_compressed, chunk_len); 1621 EVENTHANDLER_INVOKE(app_coredump_error, td, 1622 "compress_core: length mismatch %x -> %x", 1623 chunk_len, len_compressed); 1624 error = EFAULT; 1625 break; 1626 } 1627 inbuf += chunk_len; 1628 len -= chunk_len; 1629 if (ticks - PCPU_GET(switchticks) >= hogticks) 1630 uio_yield(); 1631 } 1632 1633 return (error); 1634 } 1635 #endif /* COMPRESS_USER_CORES */ 1636