1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/resourcevar.h> 58 #include <sys/rwlock.h> 59 #include <sys/sbuf.h> 60 #include <sys/sf_buf.h> 61 #include <sys/smp.h> 62 #include <sys/systm.h> 63 #include <sys/signalvar.h> 64 #include <sys/stat.h> 65 #include <sys/sx.h> 66 #include <sys/syscall.h> 67 #include <sys/sysctl.h> 68 #include <sys/sysent.h> 69 #include <sys/vnode.h> 70 #include <sys/syslog.h> 71 #include <sys/eventhandler.h> 72 #include <sys/user.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_kern.h> 76 #include <vm/vm_param.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_extern.h> 81 82 #include <machine/elf.h> 83 #include <machine/md_var.h> 84 85 #define ELF_NOTE_ROUNDSIZE 4 86 #define OLD_EI_BRAND 8 87 88 static int __elfN(check_header)(const Elf_Ehdr *hdr); 89 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 90 const char *interp, int32_t *osrel, uint32_t *fctl0); 91 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 92 u_long *entry); 93 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 94 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel, boolean_t *has_fctl0, 101 uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 106 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 107 ""); 108 109 #define CORE_BUF_SIZE (16 * 1024) 110 111 int __elfN(fallback_brand) = -1; 112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 113 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 114 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 115 116 static int elf_legacy_coredump = 0; 117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 118 &elf_legacy_coredump, 0, 119 "include all and only RW pages in core dumps"); 120 121 int __elfN(nxstack) = 122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 123 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 124 defined(__riscv) 125 1; 126 #else 127 0; 128 #endif 129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 132 133 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 134 int i386_read_exec = 0; 135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 136 "enable execution from readable segments"); 137 #endif 138 139 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 140 static int 141 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 142 { 143 u_long val; 144 int error; 145 146 val = __elfN(pie_base); 147 error = sysctl_handle_long(oidp, &val, 0, req); 148 if (error != 0 || req->newptr == NULL) 149 return (error); 150 if ((val & PAGE_MASK) != 0) 151 return (EINVAL); 152 __elfN(pie_base) = val; 153 return (0); 154 } 155 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 156 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 157 sysctl_pie_base, "LU", 158 "PIE load base without randomization"); 159 160 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 161 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 162 ""); 163 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 164 165 static int __elfN(aslr_enabled) = 0; 166 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 167 &__elfN(aslr_enabled), 0, 168 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 169 ": enable address map randomization"); 170 171 static int __elfN(pie_aslr_enabled) = 0; 172 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 173 &__elfN(pie_aslr_enabled), 0, 174 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 175 ": enable address map randomization for PIE binaries"); 176 177 static int __elfN(aslr_honor_sbrk) = 1; 178 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 179 &__elfN(aslr_honor_sbrk), 0, 180 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 181 182 static int __elfN(aslr_stack_gap) = 3; 183 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 184 &__elfN(aslr_stack_gap), 0, 185 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 186 ": maximum percentage of main stack to waste on a random gap"); 187 188 static int __elfN(sigfastblock) = 1; 189 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 190 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 191 "enable sigfastblock for new processes"); 192 193 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 194 195 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 196 197 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 198 199 Elf_Brandnote __elfN(freebsd_brandnote) = { 200 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 201 .hdr.n_descsz = sizeof(int32_t), 202 .hdr.n_type = NT_FREEBSD_ABI_TAG, 203 .vendor = FREEBSD_ABI_VENDOR, 204 .flags = BN_TRANSLATE_OSREL, 205 .trans_osrel = __elfN(freebsd_trans_osrel) 206 }; 207 208 static bool 209 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 210 { 211 uintptr_t p; 212 213 p = (uintptr_t)(note + 1); 214 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 215 *osrel = *(const int32_t *)(p); 216 217 return (true); 218 } 219 220 static const char GNU_ABI_VENDOR[] = "GNU"; 221 static int GNU_KFREEBSD_ABI_DESC = 3; 222 223 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 224 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 225 .hdr.n_descsz = 16, /* XXX at least 16 */ 226 .hdr.n_type = 1, 227 .vendor = GNU_ABI_VENDOR, 228 .flags = BN_TRANSLATE_OSREL, 229 .trans_osrel = kfreebsd_trans_osrel 230 }; 231 232 static bool 233 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 234 { 235 const Elf32_Word *desc; 236 uintptr_t p; 237 238 p = (uintptr_t)(note + 1); 239 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 240 241 desc = (const Elf32_Word *)p; 242 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 243 return (false); 244 245 /* 246 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 247 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 248 */ 249 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 250 251 return (true); 252 } 253 254 int 255 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 256 { 257 int i; 258 259 for (i = 0; i < MAX_BRANDS; i++) { 260 if (elf_brand_list[i] == NULL) { 261 elf_brand_list[i] = entry; 262 break; 263 } 264 } 265 if (i == MAX_BRANDS) { 266 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 267 __func__, entry); 268 return (-1); 269 } 270 return (0); 271 } 272 273 int 274 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 275 { 276 int i; 277 278 for (i = 0; i < MAX_BRANDS; i++) { 279 if (elf_brand_list[i] == entry) { 280 elf_brand_list[i] = NULL; 281 break; 282 } 283 } 284 if (i == MAX_BRANDS) 285 return (-1); 286 return (0); 287 } 288 289 int 290 __elfN(brand_inuse)(Elf_Brandinfo *entry) 291 { 292 struct proc *p; 293 int rval = FALSE; 294 295 sx_slock(&allproc_lock); 296 FOREACH_PROC_IN_SYSTEM(p) { 297 if (p->p_sysent == entry->sysvec) { 298 rval = TRUE; 299 break; 300 } 301 } 302 sx_sunlock(&allproc_lock); 303 304 return (rval); 305 } 306 307 static Elf_Brandinfo * 308 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 309 int32_t *osrel, uint32_t *fctl0) 310 { 311 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 312 Elf_Brandinfo *bi, *bi_m; 313 boolean_t ret, has_fctl0; 314 int i, interp_name_len; 315 316 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 317 318 /* 319 * We support four types of branding -- (1) the ELF EI_OSABI field 320 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 321 * branding w/in the ELF header, (3) path of the `interp_path' 322 * field, and (4) the ".note.ABI-tag" ELF section. 323 */ 324 325 /* Look for an ".note.ABI-tag" ELF section */ 326 bi_m = NULL; 327 for (i = 0; i < MAX_BRANDS; i++) { 328 bi = elf_brand_list[i]; 329 if (bi == NULL) 330 continue; 331 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 332 continue; 333 if (hdr->e_machine == bi->machine && (bi->flags & 334 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 335 has_fctl0 = false; 336 *fctl0 = 0; 337 *osrel = 0; 338 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 339 &has_fctl0, fctl0); 340 /* Give brand a chance to veto check_note's guess */ 341 if (ret && bi->header_supported) { 342 ret = bi->header_supported(imgp, osrel, 343 has_fctl0 ? fctl0 : NULL); 344 } 345 /* 346 * If note checker claimed the binary, but the 347 * interpreter path in the image does not 348 * match default one for the brand, try to 349 * search for other brands with the same 350 * interpreter. Either there is better brand 351 * with the right interpreter, or, failing 352 * this, we return first brand which accepted 353 * our note and, optionally, header. 354 */ 355 if (ret && bi_m == NULL && interp != NULL && 356 (bi->interp_path == NULL || 357 (strlen(bi->interp_path) + 1 != interp_name_len || 358 strncmp(interp, bi->interp_path, interp_name_len) 359 != 0))) { 360 bi_m = bi; 361 ret = 0; 362 } 363 if (ret) 364 return (bi); 365 } 366 } 367 if (bi_m != NULL) 368 return (bi_m); 369 370 /* If the executable has a brand, search for it in the brand list. */ 371 for (i = 0; i < MAX_BRANDS; i++) { 372 bi = elf_brand_list[i]; 373 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 374 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 375 continue; 376 if (hdr->e_machine == bi->machine && 377 (hdr->e_ident[EI_OSABI] == bi->brand || 378 (bi->compat_3_brand != NULL && 379 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 380 bi->compat_3_brand) == 0))) { 381 /* Looks good, but give brand a chance to veto */ 382 if (bi->header_supported == NULL || 383 bi->header_supported(imgp, NULL, NULL)) { 384 /* 385 * Again, prefer strictly matching 386 * interpreter path. 387 */ 388 if (interp_name_len == 0 && 389 bi->interp_path == NULL) 390 return (bi); 391 if (bi->interp_path != NULL && 392 strlen(bi->interp_path) + 1 == 393 interp_name_len && strncmp(interp, 394 bi->interp_path, interp_name_len) == 0) 395 return (bi); 396 if (bi_m == NULL) 397 bi_m = bi; 398 } 399 } 400 } 401 if (bi_m != NULL) 402 return (bi_m); 403 404 /* No known brand, see if the header is recognized by any brand */ 405 for (i = 0; i < MAX_BRANDS; i++) { 406 bi = elf_brand_list[i]; 407 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 408 bi->header_supported == NULL) 409 continue; 410 if (hdr->e_machine == bi->machine) { 411 ret = bi->header_supported(imgp, NULL, NULL); 412 if (ret) 413 return (bi); 414 } 415 } 416 417 /* Lacking a known brand, search for a recognized interpreter. */ 418 if (interp != NULL) { 419 for (i = 0; i < MAX_BRANDS; i++) { 420 bi = elf_brand_list[i]; 421 if (bi == NULL || (bi->flags & 422 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 423 != 0) 424 continue; 425 if (hdr->e_machine == bi->machine && 426 bi->interp_path != NULL && 427 /* ELF image p_filesz includes terminating zero */ 428 strlen(bi->interp_path) + 1 == interp_name_len && 429 strncmp(interp, bi->interp_path, interp_name_len) 430 == 0 && (bi->header_supported == NULL || 431 bi->header_supported(imgp, NULL, NULL))) 432 return (bi); 433 } 434 } 435 436 /* Lacking a recognized interpreter, try the default brand */ 437 for (i = 0; i < MAX_BRANDS; i++) { 438 bi = elf_brand_list[i]; 439 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 440 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 441 continue; 442 if (hdr->e_machine == bi->machine && 443 __elfN(fallback_brand) == bi->brand && 444 (bi->header_supported == NULL || 445 bi->header_supported(imgp, NULL, NULL))) 446 return (bi); 447 } 448 return (NULL); 449 } 450 451 static int 452 __elfN(check_header)(const Elf_Ehdr *hdr) 453 { 454 Elf_Brandinfo *bi; 455 int i; 456 457 if (!IS_ELF(*hdr) || 458 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 459 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 460 hdr->e_ident[EI_VERSION] != EV_CURRENT || 461 hdr->e_phentsize != sizeof(Elf_Phdr) || 462 hdr->e_version != ELF_TARG_VER) 463 return (ENOEXEC); 464 465 /* 466 * Make sure we have at least one brand for this machine. 467 */ 468 469 for (i = 0; i < MAX_BRANDS; i++) { 470 bi = elf_brand_list[i]; 471 if (bi != NULL && bi->machine == hdr->e_machine) 472 break; 473 } 474 if (i == MAX_BRANDS) 475 return (ENOEXEC); 476 477 return (0); 478 } 479 480 static int 481 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 482 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 483 { 484 struct sf_buf *sf; 485 int error; 486 vm_offset_t off; 487 488 /* 489 * Create the page if it doesn't exist yet. Ignore errors. 490 */ 491 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 492 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 493 494 /* 495 * Find the page from the underlying object. 496 */ 497 if (object != NULL) { 498 sf = vm_imgact_map_page(object, offset); 499 if (sf == NULL) 500 return (KERN_FAILURE); 501 off = offset - trunc_page(offset); 502 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 503 end - start); 504 vm_imgact_unmap_page(sf); 505 if (error != 0) 506 return (KERN_FAILURE); 507 } 508 509 return (KERN_SUCCESS); 510 } 511 512 static int 513 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 514 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 515 int cow) 516 { 517 struct sf_buf *sf; 518 vm_offset_t off; 519 vm_size_t sz; 520 int error, locked, rv; 521 522 if (start != trunc_page(start)) { 523 rv = __elfN(map_partial)(map, object, offset, start, 524 round_page(start), prot); 525 if (rv != KERN_SUCCESS) 526 return (rv); 527 offset += round_page(start) - start; 528 start = round_page(start); 529 } 530 if (end != round_page(end)) { 531 rv = __elfN(map_partial)(map, object, offset + 532 trunc_page(end) - start, trunc_page(end), end, prot); 533 if (rv != KERN_SUCCESS) 534 return (rv); 535 end = trunc_page(end); 536 } 537 if (start >= end) 538 return (KERN_SUCCESS); 539 if ((offset & PAGE_MASK) != 0) { 540 /* 541 * The mapping is not page aligned. This means that we have 542 * to copy the data. 543 */ 544 rv = vm_map_fixed(map, NULL, 0, start, end - start, 545 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 546 if (rv != KERN_SUCCESS) 547 return (rv); 548 if (object == NULL) 549 return (KERN_SUCCESS); 550 for (; start < end; start += sz) { 551 sf = vm_imgact_map_page(object, offset); 552 if (sf == NULL) 553 return (KERN_FAILURE); 554 off = offset - trunc_page(offset); 555 sz = end - start; 556 if (sz > PAGE_SIZE - off) 557 sz = PAGE_SIZE - off; 558 error = copyout((caddr_t)sf_buf_kva(sf) + off, 559 (caddr_t)start, sz); 560 vm_imgact_unmap_page(sf); 561 if (error != 0) 562 return (KERN_FAILURE); 563 offset += sz; 564 } 565 } else { 566 vm_object_reference(object); 567 rv = vm_map_fixed(map, object, offset, start, end - start, 568 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 569 (object != NULL ? MAP_VN_EXEC : 0)); 570 if (rv != KERN_SUCCESS) { 571 locked = VOP_ISLOCKED(imgp->vp); 572 VOP_UNLOCK(imgp->vp); 573 vm_object_deallocate(object); 574 vn_lock(imgp->vp, locked | LK_RETRY); 575 return (rv); 576 } else if (object != NULL) { 577 MPASS(imgp->vp->v_object == object); 578 VOP_SET_TEXT_CHECKED(imgp->vp); 579 } 580 } 581 return (KERN_SUCCESS); 582 } 583 584 static int 585 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 586 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 587 { 588 struct sf_buf *sf; 589 size_t map_len; 590 vm_map_t map; 591 vm_object_t object; 592 vm_offset_t map_addr; 593 int error, rv, cow; 594 size_t copy_len; 595 vm_ooffset_t file_addr; 596 597 /* 598 * It's necessary to fail if the filsz + offset taken from the 599 * header is greater than the actual file pager object's size. 600 * If we were to allow this, then the vm_map_find() below would 601 * walk right off the end of the file object and into the ether. 602 * 603 * While I'm here, might as well check for something else that 604 * is invalid: filsz cannot be greater than memsz. 605 */ 606 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 607 filsz > memsz) { 608 uprintf("elf_load_section: truncated ELF file\n"); 609 return (ENOEXEC); 610 } 611 612 object = imgp->object; 613 map = &imgp->proc->p_vmspace->vm_map; 614 map_addr = trunc_page((vm_offset_t)vmaddr); 615 file_addr = trunc_page(offset); 616 617 /* 618 * We have two choices. We can either clear the data in the last page 619 * of an oversized mapping, or we can start the anon mapping a page 620 * early and copy the initialized data into that first page. We 621 * choose the second. 622 */ 623 if (filsz == 0) 624 map_len = 0; 625 else if (memsz > filsz) 626 map_len = trunc_page(offset + filsz) - file_addr; 627 else 628 map_len = round_page(offset + filsz) - file_addr; 629 630 if (map_len != 0) { 631 /* cow flags: don't dump readonly sections in core */ 632 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 633 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 634 635 rv = __elfN(map_insert)(imgp, map, object, file_addr, 636 map_addr, map_addr + map_len, prot, cow); 637 if (rv != KERN_SUCCESS) 638 return (EINVAL); 639 640 /* we can stop now if we've covered it all */ 641 if (memsz == filsz) 642 return (0); 643 } 644 645 /* 646 * We have to get the remaining bit of the file into the first part 647 * of the oversized map segment. This is normally because the .data 648 * segment in the file is extended to provide bss. It's a neat idea 649 * to try and save a page, but it's a pain in the behind to implement. 650 */ 651 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 652 filsz); 653 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 654 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 655 656 /* This had damn well better be true! */ 657 if (map_len != 0) { 658 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 659 map_addr + map_len, prot, 0); 660 if (rv != KERN_SUCCESS) 661 return (EINVAL); 662 } 663 664 if (copy_len != 0) { 665 sf = vm_imgact_map_page(object, offset + filsz); 666 if (sf == NULL) 667 return (EIO); 668 669 /* send the page fragment to user space */ 670 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 671 copy_len); 672 vm_imgact_unmap_page(sf); 673 if (error != 0) 674 return (error); 675 } 676 677 /* 678 * Remove write access to the page if it was only granted by map_insert 679 * to allow copyout. 680 */ 681 if ((prot & VM_PROT_WRITE) == 0) 682 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 683 map_len), prot, FALSE); 684 685 return (0); 686 } 687 688 static int 689 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 690 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 691 { 692 vm_prot_t prot; 693 u_long base_addr; 694 bool first; 695 int error, i; 696 697 ASSERT_VOP_LOCKED(imgp->vp, __func__); 698 699 base_addr = 0; 700 first = true; 701 702 for (i = 0; i < hdr->e_phnum; i++) { 703 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 704 continue; 705 706 /* Loadable segment */ 707 prot = __elfN(trans_prot)(phdr[i].p_flags); 708 error = __elfN(load_section)(imgp, phdr[i].p_offset, 709 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 710 phdr[i].p_memsz, phdr[i].p_filesz, prot); 711 if (error != 0) 712 return (error); 713 714 /* 715 * Establish the base address if this is the first segment. 716 */ 717 if (first) { 718 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 719 first = false; 720 } 721 } 722 723 if (base_addrp != NULL) 724 *base_addrp = base_addr; 725 726 return (0); 727 } 728 729 /* 730 * Load the file "file" into memory. It may be either a shared object 731 * or an executable. 732 * 733 * The "addr" reference parameter is in/out. On entry, it specifies 734 * the address where a shared object should be loaded. If the file is 735 * an executable, this value is ignored. On exit, "addr" specifies 736 * where the file was actually loaded. 737 * 738 * The "entry" reference parameter is out only. On exit, it specifies 739 * the entry point for the loaded file. 740 */ 741 static int 742 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 743 u_long *entry) 744 { 745 struct { 746 struct nameidata nd; 747 struct vattr attr; 748 struct image_params image_params; 749 } *tempdata; 750 const Elf_Ehdr *hdr = NULL; 751 const Elf_Phdr *phdr = NULL; 752 struct nameidata *nd; 753 struct vattr *attr; 754 struct image_params *imgp; 755 u_long rbase; 756 u_long base_addr = 0; 757 int error; 758 759 #ifdef CAPABILITY_MODE 760 /* 761 * XXXJA: This check can go away once we are sufficiently confident 762 * that the checks in namei() are correct. 763 */ 764 if (IN_CAPABILITY_MODE(curthread)) 765 return (ECAPMODE); 766 #endif 767 768 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 769 nd = &tempdata->nd; 770 attr = &tempdata->attr; 771 imgp = &tempdata->image_params; 772 773 /* 774 * Initialize part of the common data 775 */ 776 imgp->proc = p; 777 imgp->attr = attr; 778 779 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 780 UIO_SYSSPACE, file, curthread); 781 if ((error = namei(nd)) != 0) { 782 nd->ni_vp = NULL; 783 goto fail; 784 } 785 NDFREE(nd, NDF_ONLY_PNBUF); 786 imgp->vp = nd->ni_vp; 787 788 /* 789 * Check permissions, modes, uid, etc on the file, and "open" it. 790 */ 791 error = exec_check_permissions(imgp); 792 if (error) 793 goto fail; 794 795 error = exec_map_first_page(imgp); 796 if (error) 797 goto fail; 798 799 imgp->object = nd->ni_vp->v_object; 800 801 hdr = (const Elf_Ehdr *)imgp->image_header; 802 if ((error = __elfN(check_header)(hdr)) != 0) 803 goto fail; 804 if (hdr->e_type == ET_DYN) 805 rbase = *addr; 806 else if (hdr->e_type == ET_EXEC) 807 rbase = 0; 808 else { 809 error = ENOEXEC; 810 goto fail; 811 } 812 813 /* Only support headers that fit within first page for now */ 814 if ((hdr->e_phoff > PAGE_SIZE) || 815 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 816 error = ENOEXEC; 817 goto fail; 818 } 819 820 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 821 if (!aligned(phdr, Elf_Addr)) { 822 error = ENOEXEC; 823 goto fail; 824 } 825 826 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 827 if (error != 0) 828 goto fail; 829 830 *addr = base_addr; 831 *entry = (unsigned long)hdr->e_entry + rbase; 832 833 fail: 834 if (imgp->firstpage) 835 exec_unmap_first_page(imgp); 836 837 if (nd->ni_vp) { 838 if (imgp->textset) 839 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 840 vput(nd->ni_vp); 841 } 842 free(tempdata, M_TEMP); 843 844 return (error); 845 } 846 847 static u_long 848 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 849 u_int align) 850 { 851 u_long rbase, res; 852 853 MPASS(vm_map_min(map) <= minv); 854 MPASS(maxv <= vm_map_max(map)); 855 MPASS(minv < maxv); 856 MPASS(minv + align < maxv); 857 arc4rand(&rbase, sizeof(rbase), 0); 858 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 859 res &= ~((u_long)align - 1); 860 if (res >= maxv) 861 res -= align; 862 KASSERT(res >= minv, 863 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 864 res, minv, maxv, rbase)); 865 KASSERT(res < maxv, 866 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 867 res, maxv, minv, rbase)); 868 return (res); 869 } 870 871 static int 872 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 873 const Elf_Phdr *phdr, u_long et_dyn_addr) 874 { 875 struct vmspace *vmspace; 876 const char *err_str; 877 u_long text_size, data_size, total_size, text_addr, data_addr; 878 u_long seg_size, seg_addr; 879 int i; 880 881 err_str = NULL; 882 text_size = data_size = total_size = text_addr = data_addr = 0; 883 884 for (i = 0; i < hdr->e_phnum; i++) { 885 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 886 continue; 887 888 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 889 seg_size = round_page(phdr[i].p_memsz + 890 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 891 892 /* 893 * Make the largest executable segment the official 894 * text segment and all others data. 895 * 896 * Note that obreak() assumes that data_addr + data_size == end 897 * of data load area, and the ELF file format expects segments 898 * to be sorted by address. If multiple data segments exist, 899 * the last one will be used. 900 */ 901 902 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 903 text_size = seg_size; 904 text_addr = seg_addr; 905 } else { 906 data_size = seg_size; 907 data_addr = seg_addr; 908 } 909 total_size += seg_size; 910 } 911 912 if (data_addr == 0 && data_size == 0) { 913 data_addr = text_addr; 914 data_size = text_size; 915 } 916 917 /* 918 * Check limits. It should be safe to check the 919 * limits after loading the segments since we do 920 * not actually fault in all the segments pages. 921 */ 922 PROC_LOCK(imgp->proc); 923 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 924 err_str = "Data segment size exceeds process limit"; 925 else if (text_size > maxtsiz) 926 err_str = "Text segment size exceeds system limit"; 927 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 928 err_str = "Total segment size exceeds process limit"; 929 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 930 err_str = "Data segment size exceeds resource limit"; 931 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 932 err_str = "Total segment size exceeds resource limit"; 933 PROC_UNLOCK(imgp->proc); 934 if (err_str != NULL) { 935 uprintf("%s\n", err_str); 936 return (ENOMEM); 937 } 938 939 vmspace = imgp->proc->p_vmspace; 940 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 941 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 942 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 943 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 944 945 return (0); 946 } 947 948 static int 949 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 950 char **interpp, bool *free_interpp) 951 { 952 struct thread *td; 953 char *interp; 954 int error, interp_name_len; 955 956 KASSERT(phdr->p_type == PT_INTERP, 957 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 958 ASSERT_VOP_LOCKED(imgp->vp, __func__); 959 960 td = curthread; 961 962 /* Path to interpreter */ 963 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 964 uprintf("Invalid PT_INTERP\n"); 965 return (ENOEXEC); 966 } 967 968 interp_name_len = phdr->p_filesz; 969 if (phdr->p_offset > PAGE_SIZE || 970 interp_name_len > PAGE_SIZE - phdr->p_offset) { 971 /* 972 * The vnode lock might be needed by the pagedaemon to 973 * clean pages owned by the vnode. Do not allow sleep 974 * waiting for memory with the vnode locked, instead 975 * try non-sleepable allocation first, and if it 976 * fails, go to the slow path were we drop the lock 977 * and do M_WAITOK. A text reference prevents 978 * modifications to the vnode content. 979 */ 980 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 981 if (interp == NULL) { 982 VOP_UNLOCK(imgp->vp); 983 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 984 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 985 } 986 987 error = vn_rdwr(UIO_READ, imgp->vp, interp, 988 interp_name_len, phdr->p_offset, 989 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 990 NOCRED, NULL, td); 991 if (error != 0) { 992 free(interp, M_TEMP); 993 uprintf("i/o error PT_INTERP %d\n", error); 994 return (error); 995 } 996 interp[interp_name_len] = '\0'; 997 998 *interpp = interp; 999 *free_interpp = true; 1000 return (0); 1001 } 1002 1003 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1004 if (interp[interp_name_len - 1] != '\0') { 1005 uprintf("Invalid PT_INTERP\n"); 1006 return (ENOEXEC); 1007 } 1008 1009 *interpp = interp; 1010 *free_interpp = false; 1011 return (0); 1012 } 1013 1014 static int 1015 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1016 const char *interp, u_long *addr, u_long *entry) 1017 { 1018 char *path; 1019 int error; 1020 1021 if (brand_info->emul_path != NULL && 1022 brand_info->emul_path[0] != '\0') { 1023 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1024 snprintf(path, MAXPATHLEN, "%s%s", 1025 brand_info->emul_path, interp); 1026 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1027 free(path, M_TEMP); 1028 if (error == 0) 1029 return (0); 1030 } 1031 1032 if (brand_info->interp_newpath != NULL && 1033 (brand_info->interp_path == NULL || 1034 strcmp(interp, brand_info->interp_path) == 0)) { 1035 error = __elfN(load_file)(imgp->proc, 1036 brand_info->interp_newpath, addr, entry); 1037 if (error == 0) 1038 return (0); 1039 } 1040 1041 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1042 if (error == 0) 1043 return (0); 1044 1045 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1046 return (error); 1047 } 1048 1049 /* 1050 * Impossible et_dyn_addr initial value indicating that the real base 1051 * must be calculated later with some randomization applied. 1052 */ 1053 #define ET_DYN_ADDR_RAND 1 1054 1055 static int 1056 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1057 { 1058 struct thread *td; 1059 const Elf_Ehdr *hdr; 1060 const Elf_Phdr *phdr; 1061 Elf_Auxargs *elf_auxargs; 1062 struct vmspace *vmspace; 1063 vm_map_t map; 1064 char *interp; 1065 Elf_Brandinfo *brand_info; 1066 struct sysentvec *sv; 1067 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1068 u_long maxalign, mapsz, maxv, maxv1; 1069 uint32_t fctl0; 1070 int32_t osrel; 1071 bool free_interp; 1072 int error, i, n; 1073 1074 hdr = (const Elf_Ehdr *)imgp->image_header; 1075 1076 /* 1077 * Do we have a valid ELF header ? 1078 * 1079 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1080 * if particular brand doesn't support it. 1081 */ 1082 if (__elfN(check_header)(hdr) != 0 || 1083 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1084 return (-1); 1085 1086 /* 1087 * From here on down, we return an errno, not -1, as we've 1088 * detected an ELF file. 1089 */ 1090 1091 if ((hdr->e_phoff > PAGE_SIZE) || 1092 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 1093 /* Only support headers in first page for now */ 1094 uprintf("Program headers not in the first page\n"); 1095 return (ENOEXEC); 1096 } 1097 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1098 if (!aligned(phdr, Elf_Addr)) { 1099 uprintf("Unaligned program headers\n"); 1100 return (ENOEXEC); 1101 } 1102 1103 n = error = 0; 1104 baddr = 0; 1105 osrel = 0; 1106 fctl0 = 0; 1107 entry = proghdr = 0; 1108 interp = NULL; 1109 free_interp = false; 1110 td = curthread; 1111 maxalign = PAGE_SIZE; 1112 mapsz = 0; 1113 1114 for (i = 0; i < hdr->e_phnum; i++) { 1115 switch (phdr[i].p_type) { 1116 case PT_LOAD: 1117 if (n == 0) 1118 baddr = phdr[i].p_vaddr; 1119 if (phdr[i].p_align > maxalign) 1120 maxalign = phdr[i].p_align; 1121 mapsz += phdr[i].p_memsz; 1122 n++; 1123 1124 /* 1125 * If this segment contains the program headers, 1126 * remember their virtual address for the AT_PHDR 1127 * aux entry. Static binaries don't usually include 1128 * a PT_PHDR entry. 1129 */ 1130 if (phdr[i].p_offset == 0 && 1131 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1132 <= phdr[i].p_filesz) 1133 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1134 break; 1135 case PT_INTERP: 1136 /* Path to interpreter */ 1137 if (interp != NULL) { 1138 uprintf("Multiple PT_INTERP headers\n"); 1139 error = ENOEXEC; 1140 goto ret; 1141 } 1142 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1143 &free_interp); 1144 if (error != 0) 1145 goto ret; 1146 break; 1147 case PT_GNU_STACK: 1148 if (__elfN(nxstack)) 1149 imgp->stack_prot = 1150 __elfN(trans_prot)(phdr[i].p_flags); 1151 imgp->stack_sz = phdr[i].p_memsz; 1152 break; 1153 case PT_PHDR: /* Program header table info */ 1154 proghdr = phdr[i].p_vaddr; 1155 break; 1156 } 1157 } 1158 1159 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1160 if (brand_info == NULL) { 1161 uprintf("ELF binary type \"%u\" not known.\n", 1162 hdr->e_ident[EI_OSABI]); 1163 error = ENOEXEC; 1164 goto ret; 1165 } 1166 sv = brand_info->sysvec; 1167 et_dyn_addr = 0; 1168 if (hdr->e_type == ET_DYN) { 1169 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1170 uprintf("Cannot execute shared object\n"); 1171 error = ENOEXEC; 1172 goto ret; 1173 } 1174 /* 1175 * Honour the base load address from the dso if it is 1176 * non-zero for some reason. 1177 */ 1178 if (baddr == 0) { 1179 if ((sv->sv_flags & SV_ASLR) == 0 || 1180 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1181 et_dyn_addr = __elfN(pie_base); 1182 else if ((__elfN(pie_aslr_enabled) && 1183 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1184 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1185 et_dyn_addr = ET_DYN_ADDR_RAND; 1186 else 1187 et_dyn_addr = __elfN(pie_base); 1188 } 1189 } 1190 1191 /* 1192 * Avoid a possible deadlock if the current address space is destroyed 1193 * and that address space maps the locked vnode. In the common case, 1194 * the locked vnode's v_usecount is decremented but remains greater 1195 * than zero. Consequently, the vnode lock is not needed by vrele(). 1196 * However, in cases where the vnode lock is external, such as nullfs, 1197 * v_usecount may become zero. 1198 * 1199 * The VV_TEXT flag prevents modifications to the executable while 1200 * the vnode is unlocked. 1201 */ 1202 VOP_UNLOCK(imgp->vp); 1203 1204 /* 1205 * Decide whether to enable randomization of user mappings. 1206 * First, reset user preferences for the setid binaries. 1207 * Then, account for the support of the randomization by the 1208 * ABI, by user preferences, and make special treatment for 1209 * PIE binaries. 1210 */ 1211 if (imgp->credential_setid) { 1212 PROC_LOCK(imgp->proc); 1213 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1214 PROC_UNLOCK(imgp->proc); 1215 } 1216 if ((sv->sv_flags & SV_ASLR) == 0 || 1217 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1218 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1219 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1220 ("et_dyn_addr == RAND and !ASLR")); 1221 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1222 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1223 et_dyn_addr == ET_DYN_ADDR_RAND) { 1224 imgp->map_flags |= MAP_ASLR; 1225 /* 1226 * If user does not care about sbrk, utilize the bss 1227 * grow region for mappings as well. We can select 1228 * the base for the image anywere and still not suffer 1229 * from the fragmentation. 1230 */ 1231 if (!__elfN(aslr_honor_sbrk) || 1232 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1233 imgp->map_flags |= MAP_ASLR_IGNSTART; 1234 } 1235 1236 error = exec_new_vmspace(imgp, sv); 1237 vmspace = imgp->proc->p_vmspace; 1238 map = &vmspace->vm_map; 1239 1240 imgp->proc->p_sysent = sv; 1241 1242 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1243 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1244 KASSERT((map->flags & MAP_ASLR) != 0, 1245 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1246 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1247 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1248 /* reserve half of the address space to interpreter */ 1249 maxv / 2, 1UL << flsl(maxalign)); 1250 } 1251 1252 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1253 if (error != 0) 1254 goto ret; 1255 1256 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1257 if (error != 0) 1258 goto ret; 1259 1260 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1261 if (error != 0) 1262 goto ret; 1263 1264 entry = (u_long)hdr->e_entry + et_dyn_addr; 1265 1266 /* 1267 * We load the dynamic linker where a userland call 1268 * to mmap(0, ...) would put it. The rationale behind this 1269 * calculation is that it leaves room for the heap to grow to 1270 * its maximum allowed size. 1271 */ 1272 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1273 RLIMIT_DATA)); 1274 if ((map->flags & MAP_ASLR) != 0) { 1275 maxv1 = maxv / 2 + addr / 2; 1276 MPASS(maxv1 >= addr); /* No overflow */ 1277 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1278 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1279 } else { 1280 map->anon_loc = addr; 1281 } 1282 1283 imgp->entry_addr = entry; 1284 1285 if (interp != NULL) { 1286 VOP_UNLOCK(imgp->vp); 1287 if ((map->flags & MAP_ASLR) != 0) { 1288 /* Assume that interpeter fits into 1/4 of AS */ 1289 maxv1 = maxv / 2 + addr / 2; 1290 MPASS(maxv1 >= addr); /* No overflow */ 1291 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1292 maxv1, PAGE_SIZE); 1293 } 1294 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1295 &imgp->entry_addr); 1296 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1297 if (error != 0) 1298 goto ret; 1299 } else 1300 addr = et_dyn_addr; 1301 1302 /* 1303 * Construct auxargs table (used by the copyout_auxargs routine) 1304 */ 1305 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1306 if (elf_auxargs == NULL) { 1307 VOP_UNLOCK(imgp->vp); 1308 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1309 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1310 } 1311 elf_auxargs->execfd = -1; 1312 elf_auxargs->phdr = proghdr + et_dyn_addr; 1313 elf_auxargs->phent = hdr->e_phentsize; 1314 elf_auxargs->phnum = hdr->e_phnum; 1315 elf_auxargs->pagesz = PAGE_SIZE; 1316 elf_auxargs->base = addr; 1317 elf_auxargs->flags = 0; 1318 elf_auxargs->entry = entry; 1319 elf_auxargs->hdr_eflags = hdr->e_flags; 1320 1321 imgp->auxargs = elf_auxargs; 1322 imgp->interpreted = 0; 1323 imgp->reloc_base = addr; 1324 imgp->proc->p_osrel = osrel; 1325 imgp->proc->p_fctl0 = fctl0; 1326 imgp->proc->p_elf_machine = hdr->e_machine; 1327 imgp->proc->p_elf_flags = hdr->e_flags; 1328 1329 ret: 1330 if (free_interp) 1331 free(interp, M_TEMP); 1332 return (error); 1333 } 1334 1335 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1336 1337 int 1338 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1339 { 1340 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1341 Elf_Auxinfo *argarray, *pos; 1342 int error; 1343 1344 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1345 M_WAITOK | M_ZERO); 1346 1347 if (args->execfd != -1) 1348 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1349 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1350 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1351 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1352 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1353 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1354 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1355 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1356 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1357 if (imgp->execpathp != 0) 1358 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1359 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1360 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1361 if (imgp->canary != 0) { 1362 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1363 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1364 } 1365 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1366 if (imgp->pagesizes != 0) { 1367 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1368 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1369 } 1370 if (imgp->sysent->sv_timekeep_base != 0) { 1371 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1372 imgp->sysent->sv_timekeep_base); 1373 } 1374 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1375 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1376 imgp->sysent->sv_stackprot); 1377 if (imgp->sysent->sv_hwcap != NULL) 1378 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1379 if (imgp->sysent->sv_hwcap2 != NULL) 1380 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1381 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1382 ELF_BSDF_SIGFASTBLK : 0); 1383 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1384 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1385 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1386 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1387 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1388 AUXARGS_ENTRY(pos, AT_NULL, 0); 1389 1390 free(imgp->auxargs, M_TEMP); 1391 imgp->auxargs = NULL; 1392 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1393 1394 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1395 free(argarray, M_TEMP); 1396 return (error); 1397 } 1398 1399 int 1400 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1401 { 1402 Elf_Addr *base; 1403 1404 base = (Elf_Addr *)*stack_base; 1405 base--; 1406 if (suword(base, imgp->args->argc) == -1) 1407 return (EFAULT); 1408 *stack_base = (uintptr_t)base; 1409 return (0); 1410 } 1411 1412 /* 1413 * Code for generating ELF core dumps. 1414 */ 1415 1416 typedef void (*segment_callback)(vm_map_entry_t, void *); 1417 1418 /* Closure for cb_put_phdr(). */ 1419 struct phdr_closure { 1420 Elf_Phdr *phdr; /* Program header to fill in */ 1421 Elf_Off offset; /* Offset of segment in core file */ 1422 }; 1423 1424 /* Closure for cb_size_segment(). */ 1425 struct sseg_closure { 1426 int count; /* Count of writable segments. */ 1427 size_t size; /* Total size of all writable segments. */ 1428 }; 1429 1430 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1431 1432 struct note_info { 1433 int type; /* Note type. */ 1434 outfunc_t outfunc; /* Output function. */ 1435 void *outarg; /* Argument for the output function. */ 1436 size_t outsize; /* Output size. */ 1437 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1438 }; 1439 1440 TAILQ_HEAD(note_info_list, note_info); 1441 1442 /* Coredump output parameters. */ 1443 struct coredump_params { 1444 off_t offset; 1445 struct ucred *active_cred; 1446 struct ucred *file_cred; 1447 struct thread *td; 1448 struct vnode *vp; 1449 struct compressor *comp; 1450 }; 1451 1452 extern int compress_user_cores; 1453 extern int compress_user_cores_level; 1454 1455 static void cb_put_phdr(vm_map_entry_t, void *); 1456 static void cb_size_segment(vm_map_entry_t, void *); 1457 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1458 enum uio_seg); 1459 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1460 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1461 struct note_info_list *, size_t); 1462 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1463 size_t *); 1464 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1465 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1466 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1467 static int sbuf_drain_core_output(void *, const char *, int); 1468 1469 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1470 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1471 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1472 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1473 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1474 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1475 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1476 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1477 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1478 static void note_procstat_files(void *, struct sbuf *, size_t *); 1479 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1480 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1481 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1482 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1483 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1484 1485 /* 1486 * Write out a core segment to the compression stream. 1487 */ 1488 static int 1489 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1490 { 1491 u_int chunk_len; 1492 int error; 1493 1494 while (len > 0) { 1495 chunk_len = MIN(len, CORE_BUF_SIZE); 1496 1497 /* 1498 * We can get EFAULT error here. 1499 * In that case zero out the current chunk of the segment. 1500 */ 1501 error = copyin(base, buf, chunk_len); 1502 if (error != 0) 1503 bzero(buf, chunk_len); 1504 error = compressor_write(p->comp, buf, chunk_len); 1505 if (error != 0) 1506 break; 1507 base += chunk_len; 1508 len -= chunk_len; 1509 } 1510 return (error); 1511 } 1512 1513 static int 1514 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1515 { 1516 1517 return (core_write((struct coredump_params *)arg, base, len, offset, 1518 UIO_SYSSPACE)); 1519 } 1520 1521 static int 1522 core_write(struct coredump_params *p, const void *base, size_t len, 1523 off_t offset, enum uio_seg seg) 1524 { 1525 1526 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1527 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1528 p->active_cred, p->file_cred, NULL, p->td)); 1529 } 1530 1531 static int 1532 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1533 void *tmpbuf) 1534 { 1535 int error; 1536 1537 if (p->comp != NULL) 1538 return (compress_chunk(p, base, tmpbuf, len)); 1539 1540 /* 1541 * EFAULT is a non-fatal error that we can get, for example, 1542 * if the segment is backed by a file but extends beyond its 1543 * end. 1544 */ 1545 error = core_write(p, base, len, offset, UIO_USERSPACE); 1546 if (error == EFAULT) { 1547 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1548 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1549 "for process %s\n", base, len, offset, curproc->p_comm); 1550 1551 /* 1552 * Write a "real" zero byte at the end of the target region 1553 * in the case this is the last segment. 1554 * The intermediate space will be implicitly zero-filled. 1555 */ 1556 error = core_write(p, zero_region, 1, offset + len - 1, 1557 UIO_SYSSPACE); 1558 } 1559 return (error); 1560 } 1561 1562 /* 1563 * Drain into a core file. 1564 */ 1565 static int 1566 sbuf_drain_core_output(void *arg, const char *data, int len) 1567 { 1568 struct coredump_params *p; 1569 int error, locked; 1570 1571 p = (struct coredump_params *)arg; 1572 1573 /* 1574 * Some kern_proc out routines that print to this sbuf may 1575 * call us with the process lock held. Draining with the 1576 * non-sleepable lock held is unsafe. The lock is needed for 1577 * those routines when dumping a live process. In our case we 1578 * can safely release the lock before draining and acquire 1579 * again after. 1580 */ 1581 locked = PROC_LOCKED(p->td->td_proc); 1582 if (locked) 1583 PROC_UNLOCK(p->td->td_proc); 1584 if (p->comp != NULL) 1585 error = compressor_write(p->comp, __DECONST(char *, data), len); 1586 else 1587 error = core_write(p, __DECONST(void *, data), len, p->offset, 1588 UIO_SYSSPACE); 1589 if (locked) 1590 PROC_LOCK(p->td->td_proc); 1591 if (error != 0) 1592 return (-error); 1593 p->offset += len; 1594 return (len); 1595 } 1596 1597 int 1598 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1599 { 1600 struct ucred *cred = td->td_ucred; 1601 int error = 0; 1602 struct sseg_closure seginfo; 1603 struct note_info_list notelst; 1604 struct coredump_params params; 1605 struct note_info *ninfo; 1606 void *hdr, *tmpbuf; 1607 size_t hdrsize, notesz, coresize; 1608 1609 hdr = NULL; 1610 tmpbuf = NULL; 1611 TAILQ_INIT(¬elst); 1612 1613 /* Size the program segments. */ 1614 seginfo.count = 0; 1615 seginfo.size = 0; 1616 each_dumpable_segment(td, cb_size_segment, &seginfo); 1617 1618 /* 1619 * Collect info about the core file header area. 1620 */ 1621 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1622 if (seginfo.count + 1 >= PN_XNUM) 1623 hdrsize += sizeof(Elf_Shdr); 1624 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1625 coresize = round_page(hdrsize + notesz) + seginfo.size; 1626 1627 /* Set up core dump parameters. */ 1628 params.offset = 0; 1629 params.active_cred = cred; 1630 params.file_cred = NOCRED; 1631 params.td = td; 1632 params.vp = vp; 1633 params.comp = NULL; 1634 1635 #ifdef RACCT 1636 if (racct_enable) { 1637 PROC_LOCK(td->td_proc); 1638 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1639 PROC_UNLOCK(td->td_proc); 1640 if (error != 0) { 1641 error = EFAULT; 1642 goto done; 1643 } 1644 } 1645 #endif 1646 if (coresize >= limit) { 1647 error = EFAULT; 1648 goto done; 1649 } 1650 1651 /* Create a compression stream if necessary. */ 1652 if (compress_user_cores != 0) { 1653 params.comp = compressor_init(core_compressed_write, 1654 compress_user_cores, CORE_BUF_SIZE, 1655 compress_user_cores_level, ¶ms); 1656 if (params.comp == NULL) { 1657 error = EFAULT; 1658 goto done; 1659 } 1660 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1661 } 1662 1663 /* 1664 * Allocate memory for building the header, fill it up, 1665 * and write it out following the notes. 1666 */ 1667 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1668 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1669 notesz); 1670 1671 /* Write the contents of all of the writable segments. */ 1672 if (error == 0) { 1673 Elf_Phdr *php; 1674 off_t offset; 1675 int i; 1676 1677 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1678 offset = round_page(hdrsize + notesz); 1679 for (i = 0; i < seginfo.count; i++) { 1680 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1681 php->p_filesz, offset, ¶ms, tmpbuf); 1682 if (error != 0) 1683 break; 1684 offset += php->p_filesz; 1685 php++; 1686 } 1687 if (error == 0 && params.comp != NULL) 1688 error = compressor_flush(params.comp); 1689 } 1690 if (error) { 1691 log(LOG_WARNING, 1692 "Failed to write core file for process %s (error %d)\n", 1693 curproc->p_comm, error); 1694 } 1695 1696 done: 1697 free(tmpbuf, M_TEMP); 1698 if (params.comp != NULL) 1699 compressor_fini(params.comp); 1700 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1701 TAILQ_REMOVE(¬elst, ninfo, link); 1702 free(ninfo, M_TEMP); 1703 } 1704 if (hdr != NULL) 1705 free(hdr, M_TEMP); 1706 1707 return (error); 1708 } 1709 1710 /* 1711 * A callback for each_dumpable_segment() to write out the segment's 1712 * program header entry. 1713 */ 1714 static void 1715 cb_put_phdr(vm_map_entry_t entry, void *closure) 1716 { 1717 struct phdr_closure *phc = (struct phdr_closure *)closure; 1718 Elf_Phdr *phdr = phc->phdr; 1719 1720 phc->offset = round_page(phc->offset); 1721 1722 phdr->p_type = PT_LOAD; 1723 phdr->p_offset = phc->offset; 1724 phdr->p_vaddr = entry->start; 1725 phdr->p_paddr = 0; 1726 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1727 phdr->p_align = PAGE_SIZE; 1728 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1729 1730 phc->offset += phdr->p_filesz; 1731 phc->phdr++; 1732 } 1733 1734 /* 1735 * A callback for each_dumpable_segment() to gather information about 1736 * the number of segments and their total size. 1737 */ 1738 static void 1739 cb_size_segment(vm_map_entry_t entry, void *closure) 1740 { 1741 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1742 1743 ssc->count++; 1744 ssc->size += entry->end - entry->start; 1745 } 1746 1747 /* 1748 * For each writable segment in the process's memory map, call the given 1749 * function with a pointer to the map entry and some arbitrary 1750 * caller-supplied data. 1751 */ 1752 static void 1753 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1754 { 1755 struct proc *p = td->td_proc; 1756 vm_map_t map = &p->p_vmspace->vm_map; 1757 vm_map_entry_t entry; 1758 vm_object_t backing_object, object; 1759 boolean_t ignore_entry; 1760 1761 vm_map_lock_read(map); 1762 VM_MAP_ENTRY_FOREACH(entry, map) { 1763 /* 1764 * Don't dump inaccessible mappings, deal with legacy 1765 * coredump mode. 1766 * 1767 * Note that read-only segments related to the elf binary 1768 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1769 * need to arbitrarily ignore such segments. 1770 */ 1771 if (elf_legacy_coredump) { 1772 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1773 continue; 1774 } else { 1775 if ((entry->protection & VM_PROT_ALL) == 0) 1776 continue; 1777 } 1778 1779 /* 1780 * Dont include memory segment in the coredump if 1781 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1782 * madvise(2). Do not dump submaps (i.e. parts of the 1783 * kernel map). 1784 */ 1785 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1786 continue; 1787 1788 if ((object = entry->object.vm_object) == NULL) 1789 continue; 1790 1791 /* Ignore memory-mapped devices and such things. */ 1792 VM_OBJECT_RLOCK(object); 1793 while ((backing_object = object->backing_object) != NULL) { 1794 VM_OBJECT_RLOCK(backing_object); 1795 VM_OBJECT_RUNLOCK(object); 1796 object = backing_object; 1797 } 1798 ignore_entry = object->type != OBJT_DEFAULT && 1799 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1800 object->type != OBJT_PHYS; 1801 VM_OBJECT_RUNLOCK(object); 1802 if (ignore_entry) 1803 continue; 1804 1805 (*func)(entry, closure); 1806 } 1807 vm_map_unlock_read(map); 1808 } 1809 1810 /* 1811 * Write the core file header to the file, including padding up to 1812 * the page boundary. 1813 */ 1814 static int 1815 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1816 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1817 { 1818 struct note_info *ninfo; 1819 struct sbuf *sb; 1820 int error; 1821 1822 /* Fill in the header. */ 1823 bzero(hdr, hdrsize); 1824 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1825 1826 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1827 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1828 sbuf_start_section(sb, NULL); 1829 sbuf_bcat(sb, hdr, hdrsize); 1830 TAILQ_FOREACH(ninfo, notelst, link) 1831 __elfN(putnote)(ninfo, sb); 1832 /* Align up to a page boundary for the program segments. */ 1833 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1834 error = sbuf_finish(sb); 1835 sbuf_delete(sb); 1836 1837 return (error); 1838 } 1839 1840 static void 1841 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1842 size_t *sizep) 1843 { 1844 struct proc *p; 1845 struct thread *thr; 1846 size_t size; 1847 1848 p = td->td_proc; 1849 size = 0; 1850 1851 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1852 1853 /* 1854 * To have the debugger select the right thread (LWP) as the initial 1855 * thread, we dump the state of the thread passed to us in td first. 1856 * This is the thread that causes the core dump and thus likely to 1857 * be the right thread one wants to have selected in the debugger. 1858 */ 1859 thr = td; 1860 while (thr != NULL) { 1861 size += register_note(list, NT_PRSTATUS, 1862 __elfN(note_prstatus), thr); 1863 size += register_note(list, NT_FPREGSET, 1864 __elfN(note_fpregset), thr); 1865 size += register_note(list, NT_THRMISC, 1866 __elfN(note_thrmisc), thr); 1867 size += register_note(list, NT_PTLWPINFO, 1868 __elfN(note_ptlwpinfo), thr); 1869 size += register_note(list, -1, 1870 __elfN(note_threadmd), thr); 1871 1872 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1873 TAILQ_NEXT(thr, td_plist); 1874 if (thr == td) 1875 thr = TAILQ_NEXT(thr, td_plist); 1876 } 1877 1878 size += register_note(list, NT_PROCSTAT_PROC, 1879 __elfN(note_procstat_proc), p); 1880 size += register_note(list, NT_PROCSTAT_FILES, 1881 note_procstat_files, p); 1882 size += register_note(list, NT_PROCSTAT_VMMAP, 1883 note_procstat_vmmap, p); 1884 size += register_note(list, NT_PROCSTAT_GROUPS, 1885 note_procstat_groups, p); 1886 size += register_note(list, NT_PROCSTAT_UMASK, 1887 note_procstat_umask, p); 1888 size += register_note(list, NT_PROCSTAT_RLIMIT, 1889 note_procstat_rlimit, p); 1890 size += register_note(list, NT_PROCSTAT_OSREL, 1891 note_procstat_osrel, p); 1892 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1893 __elfN(note_procstat_psstrings), p); 1894 size += register_note(list, NT_PROCSTAT_AUXV, 1895 __elfN(note_procstat_auxv), p); 1896 1897 *sizep = size; 1898 } 1899 1900 static void 1901 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1902 size_t notesz) 1903 { 1904 Elf_Ehdr *ehdr; 1905 Elf_Phdr *phdr; 1906 Elf_Shdr *shdr; 1907 struct phdr_closure phc; 1908 1909 ehdr = (Elf_Ehdr *)hdr; 1910 1911 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1912 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1913 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1914 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1915 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1916 ehdr->e_ident[EI_DATA] = ELF_DATA; 1917 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1918 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1919 ehdr->e_ident[EI_ABIVERSION] = 0; 1920 ehdr->e_ident[EI_PAD] = 0; 1921 ehdr->e_type = ET_CORE; 1922 ehdr->e_machine = td->td_proc->p_elf_machine; 1923 ehdr->e_version = EV_CURRENT; 1924 ehdr->e_entry = 0; 1925 ehdr->e_phoff = sizeof(Elf_Ehdr); 1926 ehdr->e_flags = td->td_proc->p_elf_flags; 1927 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1928 ehdr->e_phentsize = sizeof(Elf_Phdr); 1929 ehdr->e_shentsize = sizeof(Elf_Shdr); 1930 ehdr->e_shstrndx = SHN_UNDEF; 1931 if (numsegs + 1 < PN_XNUM) { 1932 ehdr->e_phnum = numsegs + 1; 1933 ehdr->e_shnum = 0; 1934 } else { 1935 ehdr->e_phnum = PN_XNUM; 1936 ehdr->e_shnum = 1; 1937 1938 ehdr->e_shoff = ehdr->e_phoff + 1939 (numsegs + 1) * ehdr->e_phentsize; 1940 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1941 ("e_shoff: %zu, hdrsize - shdr: %zu", 1942 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1943 1944 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1945 memset(shdr, 0, sizeof(*shdr)); 1946 /* 1947 * A special first section is used to hold large segment and 1948 * section counts. This was proposed by Sun Microsystems in 1949 * Solaris and has been adopted by Linux; the standard ELF 1950 * tools are already familiar with the technique. 1951 * 1952 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1953 * (or 12-7 depending on the version of the document) for more 1954 * details. 1955 */ 1956 shdr->sh_type = SHT_NULL; 1957 shdr->sh_size = ehdr->e_shnum; 1958 shdr->sh_link = ehdr->e_shstrndx; 1959 shdr->sh_info = numsegs + 1; 1960 } 1961 1962 /* 1963 * Fill in the program header entries. 1964 */ 1965 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1966 1967 /* The note segement. */ 1968 phdr->p_type = PT_NOTE; 1969 phdr->p_offset = hdrsize; 1970 phdr->p_vaddr = 0; 1971 phdr->p_paddr = 0; 1972 phdr->p_filesz = notesz; 1973 phdr->p_memsz = 0; 1974 phdr->p_flags = PF_R; 1975 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1976 phdr++; 1977 1978 /* All the writable segments from the program. */ 1979 phc.phdr = phdr; 1980 phc.offset = round_page(hdrsize + notesz); 1981 each_dumpable_segment(td, cb_put_phdr, &phc); 1982 } 1983 1984 static size_t 1985 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1986 { 1987 struct note_info *ninfo; 1988 size_t size, notesize; 1989 1990 size = 0; 1991 out(arg, NULL, &size); 1992 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1993 ninfo->type = type; 1994 ninfo->outfunc = out; 1995 ninfo->outarg = arg; 1996 ninfo->outsize = size; 1997 TAILQ_INSERT_TAIL(list, ninfo, link); 1998 1999 if (type == -1) 2000 return (size); 2001 2002 notesize = sizeof(Elf_Note) + /* note header */ 2003 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2004 /* note name */ 2005 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2006 2007 return (notesize); 2008 } 2009 2010 static size_t 2011 append_note_data(const void *src, void *dst, size_t len) 2012 { 2013 size_t padded_len; 2014 2015 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2016 if (dst != NULL) { 2017 bcopy(src, dst, len); 2018 bzero((char *)dst + len, padded_len - len); 2019 } 2020 return (padded_len); 2021 } 2022 2023 size_t 2024 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2025 { 2026 Elf_Note *note; 2027 char *buf; 2028 size_t notesize; 2029 2030 buf = dst; 2031 if (buf != NULL) { 2032 note = (Elf_Note *)buf; 2033 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2034 note->n_descsz = size; 2035 note->n_type = type; 2036 buf += sizeof(*note); 2037 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2038 sizeof(FREEBSD_ABI_VENDOR)); 2039 append_note_data(src, buf, size); 2040 if (descp != NULL) 2041 *descp = buf; 2042 } 2043 2044 notesize = sizeof(Elf_Note) + /* note header */ 2045 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2046 /* note name */ 2047 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2048 2049 return (notesize); 2050 } 2051 2052 static void 2053 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2054 { 2055 Elf_Note note; 2056 ssize_t old_len, sect_len; 2057 size_t new_len, descsz, i; 2058 2059 if (ninfo->type == -1) { 2060 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2061 return; 2062 } 2063 2064 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2065 note.n_descsz = ninfo->outsize; 2066 note.n_type = ninfo->type; 2067 2068 sbuf_bcat(sb, ¬e, sizeof(note)); 2069 sbuf_start_section(sb, &old_len); 2070 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2071 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2072 if (note.n_descsz == 0) 2073 return; 2074 sbuf_start_section(sb, &old_len); 2075 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2076 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2077 if (sect_len < 0) 2078 return; 2079 2080 new_len = (size_t)sect_len; 2081 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2082 if (new_len < descsz) { 2083 /* 2084 * It is expected that individual note emitters will correctly 2085 * predict their expected output size and fill up to that size 2086 * themselves, padding in a format-specific way if needed. 2087 * However, in case they don't, just do it here with zeros. 2088 */ 2089 for (i = 0; i < descsz - new_len; i++) 2090 sbuf_putc(sb, 0); 2091 } else if (new_len > descsz) { 2092 /* 2093 * We can't always truncate sb -- we may have drained some 2094 * of it already. 2095 */ 2096 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2097 "read it (%zu > %zu). Since it is longer than " 2098 "expected, this coredump's notes are corrupt. THIS " 2099 "IS A BUG in the note_procstat routine for type %u.\n", 2100 __func__, (unsigned)note.n_type, new_len, descsz, 2101 (unsigned)note.n_type)); 2102 } 2103 } 2104 2105 /* 2106 * Miscellaneous note out functions. 2107 */ 2108 2109 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2110 #include <compat/freebsd32/freebsd32.h> 2111 #include <compat/freebsd32/freebsd32_signal.h> 2112 2113 typedef struct prstatus32 elf_prstatus_t; 2114 typedef struct prpsinfo32 elf_prpsinfo_t; 2115 typedef struct fpreg32 elf_prfpregset_t; 2116 typedef struct fpreg32 elf_fpregset_t; 2117 typedef struct reg32 elf_gregset_t; 2118 typedef struct thrmisc32 elf_thrmisc_t; 2119 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2120 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2121 typedef uint32_t elf_ps_strings_t; 2122 #else 2123 typedef prstatus_t elf_prstatus_t; 2124 typedef prpsinfo_t elf_prpsinfo_t; 2125 typedef prfpregset_t elf_prfpregset_t; 2126 typedef prfpregset_t elf_fpregset_t; 2127 typedef gregset_t elf_gregset_t; 2128 typedef thrmisc_t elf_thrmisc_t; 2129 #define ELF_KERN_PROC_MASK 0 2130 typedef struct kinfo_proc elf_kinfo_proc_t; 2131 typedef vm_offset_t elf_ps_strings_t; 2132 #endif 2133 2134 static void 2135 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2136 { 2137 struct sbuf sbarg; 2138 size_t len; 2139 char *cp, *end; 2140 struct proc *p; 2141 elf_prpsinfo_t *psinfo; 2142 int error; 2143 2144 p = (struct proc *)arg; 2145 if (sb != NULL) { 2146 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2147 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2148 psinfo->pr_version = PRPSINFO_VERSION; 2149 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2150 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2151 PROC_LOCK(p); 2152 if (p->p_args != NULL) { 2153 len = sizeof(psinfo->pr_psargs) - 1; 2154 if (len > p->p_args->ar_length) 2155 len = p->p_args->ar_length; 2156 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2157 PROC_UNLOCK(p); 2158 error = 0; 2159 } else { 2160 _PHOLD(p); 2161 PROC_UNLOCK(p); 2162 sbuf_new(&sbarg, psinfo->pr_psargs, 2163 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2164 error = proc_getargv(curthread, p, &sbarg); 2165 PRELE(p); 2166 if (sbuf_finish(&sbarg) == 0) 2167 len = sbuf_len(&sbarg) - 1; 2168 else 2169 len = sizeof(psinfo->pr_psargs) - 1; 2170 sbuf_delete(&sbarg); 2171 } 2172 if (error || len == 0) 2173 strlcpy(psinfo->pr_psargs, p->p_comm, 2174 sizeof(psinfo->pr_psargs)); 2175 else { 2176 KASSERT(len < sizeof(psinfo->pr_psargs), 2177 ("len is too long: %zu vs %zu", len, 2178 sizeof(psinfo->pr_psargs))); 2179 cp = psinfo->pr_psargs; 2180 end = cp + len - 1; 2181 for (;;) { 2182 cp = memchr(cp, '\0', end - cp); 2183 if (cp == NULL) 2184 break; 2185 *cp = ' '; 2186 } 2187 } 2188 psinfo->pr_pid = p->p_pid; 2189 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2190 free(psinfo, M_TEMP); 2191 } 2192 *sizep = sizeof(*psinfo); 2193 } 2194 2195 static void 2196 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2197 { 2198 struct thread *td; 2199 elf_prstatus_t *status; 2200 2201 td = (struct thread *)arg; 2202 if (sb != NULL) { 2203 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2204 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2205 status->pr_version = PRSTATUS_VERSION; 2206 status->pr_statussz = sizeof(elf_prstatus_t); 2207 status->pr_gregsetsz = sizeof(elf_gregset_t); 2208 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2209 status->pr_osreldate = osreldate; 2210 status->pr_cursig = td->td_proc->p_sig; 2211 status->pr_pid = td->td_tid; 2212 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2213 fill_regs32(td, &status->pr_reg); 2214 #else 2215 fill_regs(td, &status->pr_reg); 2216 #endif 2217 sbuf_bcat(sb, status, sizeof(*status)); 2218 free(status, M_TEMP); 2219 } 2220 *sizep = sizeof(*status); 2221 } 2222 2223 static void 2224 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2225 { 2226 struct thread *td; 2227 elf_prfpregset_t *fpregset; 2228 2229 td = (struct thread *)arg; 2230 if (sb != NULL) { 2231 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2232 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2233 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2234 fill_fpregs32(td, fpregset); 2235 #else 2236 fill_fpregs(td, fpregset); 2237 #endif 2238 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2239 free(fpregset, M_TEMP); 2240 } 2241 *sizep = sizeof(*fpregset); 2242 } 2243 2244 static void 2245 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2246 { 2247 struct thread *td; 2248 elf_thrmisc_t thrmisc; 2249 2250 td = (struct thread *)arg; 2251 if (sb != NULL) { 2252 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2253 bzero(&thrmisc, sizeof(thrmisc)); 2254 strcpy(thrmisc.pr_tname, td->td_name); 2255 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2256 } 2257 *sizep = sizeof(thrmisc); 2258 } 2259 2260 static void 2261 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2262 { 2263 struct thread *td; 2264 size_t size; 2265 int structsize; 2266 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2267 struct ptrace_lwpinfo32 pl; 2268 #else 2269 struct ptrace_lwpinfo pl; 2270 #endif 2271 2272 td = (struct thread *)arg; 2273 size = sizeof(structsize) + sizeof(pl); 2274 if (sb != NULL) { 2275 KASSERT(*sizep == size, ("invalid size")); 2276 structsize = sizeof(pl); 2277 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2278 bzero(&pl, sizeof(pl)); 2279 pl.pl_lwpid = td->td_tid; 2280 pl.pl_event = PL_EVENT_NONE; 2281 pl.pl_sigmask = td->td_sigmask; 2282 pl.pl_siglist = td->td_siglist; 2283 if (td->td_si.si_signo != 0) { 2284 pl.pl_event = PL_EVENT_SIGNAL; 2285 pl.pl_flags |= PL_FLAG_SI; 2286 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2287 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2288 #else 2289 pl.pl_siginfo = td->td_si; 2290 #endif 2291 } 2292 strcpy(pl.pl_tdname, td->td_name); 2293 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2294 sbuf_bcat(sb, &pl, sizeof(pl)); 2295 } 2296 *sizep = size; 2297 } 2298 2299 /* 2300 * Allow for MD specific notes, as well as any MD 2301 * specific preparations for writing MI notes. 2302 */ 2303 static void 2304 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2305 { 2306 struct thread *td; 2307 void *buf; 2308 size_t size; 2309 2310 td = (struct thread *)arg; 2311 size = *sizep; 2312 if (size != 0 && sb != NULL) 2313 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2314 else 2315 buf = NULL; 2316 size = 0; 2317 __elfN(dump_thread)(td, buf, &size); 2318 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2319 if (size != 0 && sb != NULL) 2320 sbuf_bcat(sb, buf, size); 2321 free(buf, M_TEMP); 2322 *sizep = size; 2323 } 2324 2325 #ifdef KINFO_PROC_SIZE 2326 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2327 #endif 2328 2329 static void 2330 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2331 { 2332 struct proc *p; 2333 size_t size; 2334 int structsize; 2335 2336 p = (struct proc *)arg; 2337 size = sizeof(structsize) + p->p_numthreads * 2338 sizeof(elf_kinfo_proc_t); 2339 2340 if (sb != NULL) { 2341 KASSERT(*sizep == size, ("invalid size")); 2342 structsize = sizeof(elf_kinfo_proc_t); 2343 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2344 PROC_LOCK(p); 2345 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2346 } 2347 *sizep = size; 2348 } 2349 2350 #ifdef KINFO_FILE_SIZE 2351 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2352 #endif 2353 2354 static void 2355 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2356 { 2357 struct proc *p; 2358 size_t size, sect_sz, i; 2359 ssize_t start_len, sect_len; 2360 int structsize, filedesc_flags; 2361 2362 if (coredump_pack_fileinfo) 2363 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2364 else 2365 filedesc_flags = 0; 2366 2367 p = (struct proc *)arg; 2368 structsize = sizeof(struct kinfo_file); 2369 if (sb == NULL) { 2370 size = 0; 2371 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2372 sbuf_set_drain(sb, sbuf_count_drain, &size); 2373 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2374 PROC_LOCK(p); 2375 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2376 sbuf_finish(sb); 2377 sbuf_delete(sb); 2378 *sizep = size; 2379 } else { 2380 sbuf_start_section(sb, &start_len); 2381 2382 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2383 PROC_LOCK(p); 2384 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2385 filedesc_flags); 2386 2387 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2388 if (sect_len < 0) 2389 return; 2390 sect_sz = sect_len; 2391 2392 KASSERT(sect_sz <= *sizep, 2393 ("kern_proc_filedesc_out did not respect maxlen; " 2394 "requested %zu, got %zu", *sizep - sizeof(structsize), 2395 sect_sz - sizeof(structsize))); 2396 2397 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2398 sbuf_putc(sb, 0); 2399 } 2400 } 2401 2402 #ifdef KINFO_VMENTRY_SIZE 2403 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2404 #endif 2405 2406 static void 2407 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2408 { 2409 struct proc *p; 2410 size_t size; 2411 int structsize, vmmap_flags; 2412 2413 if (coredump_pack_vmmapinfo) 2414 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2415 else 2416 vmmap_flags = 0; 2417 2418 p = (struct proc *)arg; 2419 structsize = sizeof(struct kinfo_vmentry); 2420 if (sb == NULL) { 2421 size = 0; 2422 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2423 sbuf_set_drain(sb, sbuf_count_drain, &size); 2424 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2425 PROC_LOCK(p); 2426 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2427 sbuf_finish(sb); 2428 sbuf_delete(sb); 2429 *sizep = size; 2430 } else { 2431 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2432 PROC_LOCK(p); 2433 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2434 vmmap_flags); 2435 } 2436 } 2437 2438 static void 2439 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2440 { 2441 struct proc *p; 2442 size_t size; 2443 int structsize; 2444 2445 p = (struct proc *)arg; 2446 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2447 if (sb != NULL) { 2448 KASSERT(*sizep == size, ("invalid size")); 2449 structsize = sizeof(gid_t); 2450 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2451 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2452 sizeof(gid_t)); 2453 } 2454 *sizep = size; 2455 } 2456 2457 static void 2458 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2459 { 2460 struct proc *p; 2461 size_t size; 2462 int structsize; 2463 2464 p = (struct proc *)arg; 2465 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2466 if (sb != NULL) { 2467 KASSERT(*sizep == size, ("invalid size")); 2468 structsize = sizeof(p->p_fd->fd_cmask); 2469 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2470 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2471 } 2472 *sizep = size; 2473 } 2474 2475 static void 2476 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2477 { 2478 struct proc *p; 2479 struct rlimit rlim[RLIM_NLIMITS]; 2480 size_t size; 2481 int structsize, i; 2482 2483 p = (struct proc *)arg; 2484 size = sizeof(structsize) + sizeof(rlim); 2485 if (sb != NULL) { 2486 KASSERT(*sizep == size, ("invalid size")); 2487 structsize = sizeof(rlim); 2488 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2489 PROC_LOCK(p); 2490 for (i = 0; i < RLIM_NLIMITS; i++) 2491 lim_rlimit_proc(p, i, &rlim[i]); 2492 PROC_UNLOCK(p); 2493 sbuf_bcat(sb, rlim, sizeof(rlim)); 2494 } 2495 *sizep = size; 2496 } 2497 2498 static void 2499 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2500 { 2501 struct proc *p; 2502 size_t size; 2503 int structsize; 2504 2505 p = (struct proc *)arg; 2506 size = sizeof(structsize) + sizeof(p->p_osrel); 2507 if (sb != NULL) { 2508 KASSERT(*sizep == size, ("invalid size")); 2509 structsize = sizeof(p->p_osrel); 2510 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2511 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2512 } 2513 *sizep = size; 2514 } 2515 2516 static void 2517 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2518 { 2519 struct proc *p; 2520 elf_ps_strings_t ps_strings; 2521 size_t size; 2522 int structsize; 2523 2524 p = (struct proc *)arg; 2525 size = sizeof(structsize) + sizeof(ps_strings); 2526 if (sb != NULL) { 2527 KASSERT(*sizep == size, ("invalid size")); 2528 structsize = sizeof(ps_strings); 2529 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2530 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2531 #else 2532 ps_strings = p->p_sysent->sv_psstrings; 2533 #endif 2534 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2535 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2536 } 2537 *sizep = size; 2538 } 2539 2540 static void 2541 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2542 { 2543 struct proc *p; 2544 size_t size; 2545 int structsize; 2546 2547 p = (struct proc *)arg; 2548 if (sb == NULL) { 2549 size = 0; 2550 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2551 sbuf_set_drain(sb, sbuf_count_drain, &size); 2552 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2553 PHOLD(p); 2554 proc_getauxv(curthread, p, sb); 2555 PRELE(p); 2556 sbuf_finish(sb); 2557 sbuf_delete(sb); 2558 *sizep = size; 2559 } else { 2560 structsize = sizeof(Elf_Auxinfo); 2561 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2562 PHOLD(p); 2563 proc_getauxv(curthread, p, sb); 2564 PRELE(p); 2565 } 2566 } 2567 2568 static boolean_t 2569 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2570 const char *note_vendor, const Elf_Phdr *pnote, 2571 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2572 { 2573 const Elf_Note *note, *note0, *note_end; 2574 const char *note_name; 2575 char *buf; 2576 int i, error; 2577 boolean_t res; 2578 2579 /* We need some limit, might as well use PAGE_SIZE. */ 2580 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2581 return (FALSE); 2582 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2583 if (pnote->p_offset > PAGE_SIZE || 2584 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2585 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2586 if (buf == NULL) { 2587 VOP_UNLOCK(imgp->vp); 2588 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2589 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2590 } 2591 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2592 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2593 curthread->td_ucred, NOCRED, NULL, curthread); 2594 if (error != 0) { 2595 uprintf("i/o error PT_NOTE\n"); 2596 goto retf; 2597 } 2598 note = note0 = (const Elf_Note *)buf; 2599 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2600 } else { 2601 note = note0 = (const Elf_Note *)(imgp->image_header + 2602 pnote->p_offset); 2603 note_end = (const Elf_Note *)(imgp->image_header + 2604 pnote->p_offset + pnote->p_filesz); 2605 buf = NULL; 2606 } 2607 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2608 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2609 (const char *)note < sizeof(Elf_Note)) { 2610 goto retf; 2611 } 2612 if (note->n_namesz != checknote->n_namesz || 2613 note->n_descsz != checknote->n_descsz || 2614 note->n_type != checknote->n_type) 2615 goto nextnote; 2616 note_name = (const char *)(note + 1); 2617 if (note_name + checknote->n_namesz >= 2618 (const char *)note_end || strncmp(note_vendor, 2619 note_name, checknote->n_namesz) != 0) 2620 goto nextnote; 2621 2622 if (cb(note, cb_arg, &res)) 2623 goto ret; 2624 nextnote: 2625 note = (const Elf_Note *)((const char *)(note + 1) + 2626 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2627 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2628 } 2629 retf: 2630 res = FALSE; 2631 ret: 2632 free(buf, M_TEMP); 2633 return (res); 2634 } 2635 2636 struct brandnote_cb_arg { 2637 Elf_Brandnote *brandnote; 2638 int32_t *osrel; 2639 }; 2640 2641 static boolean_t 2642 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2643 { 2644 struct brandnote_cb_arg *arg; 2645 2646 arg = arg0; 2647 2648 /* 2649 * Fetch the osreldate for binary from the ELF OSABI-note if 2650 * necessary. 2651 */ 2652 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2653 arg->brandnote->trans_osrel != NULL ? 2654 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2655 2656 return (TRUE); 2657 } 2658 2659 static Elf_Note fctl_note = { 2660 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2661 .n_descsz = sizeof(uint32_t), 2662 .n_type = NT_FREEBSD_FEATURE_CTL, 2663 }; 2664 2665 struct fctl_cb_arg { 2666 boolean_t *has_fctl0; 2667 uint32_t *fctl0; 2668 }; 2669 2670 static boolean_t 2671 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2672 { 2673 struct fctl_cb_arg *arg; 2674 const Elf32_Word *desc; 2675 uintptr_t p; 2676 2677 arg = arg0; 2678 p = (uintptr_t)(note + 1); 2679 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2680 desc = (const Elf32_Word *)p; 2681 *arg->has_fctl0 = TRUE; 2682 *arg->fctl0 = desc[0]; 2683 return (TRUE); 2684 } 2685 2686 /* 2687 * Try to find the appropriate ABI-note section for checknote, fetch 2688 * the osreldate and feature control flags for binary from the ELF 2689 * OSABI-note. Only the first page of the image is searched, the same 2690 * as for headers. 2691 */ 2692 static boolean_t 2693 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2694 int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0) 2695 { 2696 const Elf_Phdr *phdr; 2697 const Elf_Ehdr *hdr; 2698 struct brandnote_cb_arg b_arg; 2699 struct fctl_cb_arg f_arg; 2700 int i, j; 2701 2702 hdr = (const Elf_Ehdr *)imgp->image_header; 2703 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2704 b_arg.brandnote = brandnote; 2705 b_arg.osrel = osrel; 2706 f_arg.has_fctl0 = has_fctl0; 2707 f_arg.fctl0 = fctl0; 2708 2709 for (i = 0; i < hdr->e_phnum; i++) { 2710 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2711 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2712 &b_arg)) { 2713 for (j = 0; j < hdr->e_phnum; j++) { 2714 if (phdr[j].p_type == PT_NOTE && 2715 __elfN(parse_notes)(imgp, &fctl_note, 2716 FREEBSD_ABI_VENDOR, &phdr[j], 2717 note_fctl_cb, &f_arg)) 2718 break; 2719 } 2720 return (TRUE); 2721 } 2722 } 2723 return (FALSE); 2724 2725 } 2726 2727 /* 2728 * Tell kern_execve.c about it, with a little help from the linker. 2729 */ 2730 static struct execsw __elfN(execsw) = { 2731 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2732 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2733 }; 2734 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2735 2736 static vm_prot_t 2737 __elfN(trans_prot)(Elf_Word flags) 2738 { 2739 vm_prot_t prot; 2740 2741 prot = 0; 2742 if (flags & PF_X) 2743 prot |= VM_PROT_EXECUTE; 2744 if (flags & PF_W) 2745 prot |= VM_PROT_WRITE; 2746 if (flags & PF_R) 2747 prot |= VM_PROT_READ; 2748 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2749 if (i386_read_exec && (flags & PF_R)) 2750 prot |= VM_PROT_EXECUTE; 2751 #endif 2752 return (prot); 2753 } 2754 2755 static Elf_Word 2756 __elfN(untrans_prot)(vm_prot_t prot) 2757 { 2758 Elf_Word flags; 2759 2760 flags = 0; 2761 if (prot & VM_PROT_EXECUTE) 2762 flags |= PF_X; 2763 if (prot & VM_PROT_READ) 2764 flags |= PF_R; 2765 if (prot & VM_PROT_WRITE) 2766 flags |= PF_W; 2767 return (flags); 2768 } 2769 2770 void 2771 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) 2772 { 2773 uintptr_t range, rbase, gap; 2774 int pct; 2775 2776 if ((imgp->map_flags & MAP_ASLR) == 0) 2777 return; 2778 pct = __elfN(aslr_stack_gap); 2779 if (pct == 0) 2780 return; 2781 if (pct > 50) 2782 pct = 50; 2783 range = imgp->eff_stack_sz * pct / 100; 2784 arc4rand(&rbase, sizeof(rbase), 0); 2785 gap = rbase % range; 2786 gap &= ~(sizeof(u_long) - 1); 2787 *stack_base -= gap; 2788 } 2789