1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int interp_name_len, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 106 ""); 107 108 #define CORE_BUF_SIZE (16 * 1024) 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0, 139 ""); 140 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 141 142 static int __elfN(aslr_enabled) = 0; 143 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 144 &__elfN(aslr_enabled), 0, 145 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 146 ": enable address map randomization"); 147 148 static int __elfN(pie_aslr_enabled) = 0; 149 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 150 &__elfN(pie_aslr_enabled), 0, 151 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 152 ": enable address map randomization for PIE binaries"); 153 154 static int __elfN(aslr_honor_sbrk) = 1; 155 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 156 &__elfN(aslr_honor_sbrk), 0, 157 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 158 159 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 160 161 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 162 163 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 164 165 Elf_Brandnote __elfN(freebsd_brandnote) = { 166 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 167 .hdr.n_descsz = sizeof(int32_t), 168 .hdr.n_type = NT_FREEBSD_ABI_TAG, 169 .vendor = FREEBSD_ABI_VENDOR, 170 .flags = BN_TRANSLATE_OSREL, 171 .trans_osrel = __elfN(freebsd_trans_osrel) 172 }; 173 174 static bool 175 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 176 { 177 uintptr_t p; 178 179 p = (uintptr_t)(note + 1); 180 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 181 *osrel = *(const int32_t *)(p); 182 183 return (true); 184 } 185 186 static const char GNU_ABI_VENDOR[] = "GNU"; 187 static int GNU_KFREEBSD_ABI_DESC = 3; 188 189 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 190 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 191 .hdr.n_descsz = 16, /* XXX at least 16 */ 192 .hdr.n_type = 1, 193 .vendor = GNU_ABI_VENDOR, 194 .flags = BN_TRANSLATE_OSREL, 195 .trans_osrel = kfreebsd_trans_osrel 196 }; 197 198 static bool 199 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 200 { 201 const Elf32_Word *desc; 202 uintptr_t p; 203 204 p = (uintptr_t)(note + 1); 205 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 206 207 desc = (const Elf32_Word *)p; 208 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 209 return (false); 210 211 /* 212 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 213 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 214 */ 215 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 216 217 return (true); 218 } 219 220 int 221 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 222 { 223 int i; 224 225 for (i = 0; i < MAX_BRANDS; i++) { 226 if (elf_brand_list[i] == NULL) { 227 elf_brand_list[i] = entry; 228 break; 229 } 230 } 231 if (i == MAX_BRANDS) { 232 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 233 __func__, entry); 234 return (-1); 235 } 236 return (0); 237 } 238 239 int 240 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 241 { 242 int i; 243 244 for (i = 0; i < MAX_BRANDS; i++) { 245 if (elf_brand_list[i] == entry) { 246 elf_brand_list[i] = NULL; 247 break; 248 } 249 } 250 if (i == MAX_BRANDS) 251 return (-1); 252 return (0); 253 } 254 255 int 256 __elfN(brand_inuse)(Elf_Brandinfo *entry) 257 { 258 struct proc *p; 259 int rval = FALSE; 260 261 sx_slock(&allproc_lock); 262 FOREACH_PROC_IN_SYSTEM(p) { 263 if (p->p_sysent == entry->sysvec) { 264 rval = TRUE; 265 break; 266 } 267 } 268 sx_sunlock(&allproc_lock); 269 270 return (rval); 271 } 272 273 static Elf_Brandinfo * 274 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 275 int interp_name_len, int32_t *osrel, uint32_t *fctl0) 276 { 277 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 278 Elf_Brandinfo *bi, *bi_m; 279 boolean_t ret; 280 int i; 281 282 /* 283 * We support four types of branding -- (1) the ELF EI_OSABI field 284 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 285 * branding w/in the ELF header, (3) path of the `interp_path' 286 * field, and (4) the ".note.ABI-tag" ELF section. 287 */ 288 289 /* Look for an ".note.ABI-tag" ELF section */ 290 bi_m = NULL; 291 for (i = 0; i < MAX_BRANDS; i++) { 292 bi = elf_brand_list[i]; 293 if (bi == NULL) 294 continue; 295 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 296 continue; 297 if (hdr->e_machine == bi->machine && (bi->flags & 298 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 299 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 300 fctl0); 301 /* Give brand a chance to veto check_note's guess */ 302 if (ret && bi->header_supported) 303 ret = bi->header_supported(imgp); 304 /* 305 * If note checker claimed the binary, but the 306 * interpreter path in the image does not 307 * match default one for the brand, try to 308 * search for other brands with the same 309 * interpreter. Either there is better brand 310 * with the right interpreter, or, failing 311 * this, we return first brand which accepted 312 * our note and, optionally, header. 313 */ 314 if (ret && bi_m == NULL && interp != NULL && 315 (bi->interp_path == NULL || 316 (strlen(bi->interp_path) + 1 != interp_name_len || 317 strncmp(interp, bi->interp_path, interp_name_len) 318 != 0))) { 319 bi_m = bi; 320 ret = 0; 321 } 322 if (ret) 323 return (bi); 324 } 325 } 326 if (bi_m != NULL) 327 return (bi_m); 328 329 /* If the executable has a brand, search for it in the brand list. */ 330 for (i = 0; i < MAX_BRANDS; i++) { 331 bi = elf_brand_list[i]; 332 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 333 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 334 continue; 335 if (hdr->e_machine == bi->machine && 336 (hdr->e_ident[EI_OSABI] == bi->brand || 337 (bi->compat_3_brand != NULL && 338 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 339 bi->compat_3_brand) == 0))) { 340 /* Looks good, but give brand a chance to veto */ 341 if (bi->header_supported == NULL || 342 bi->header_supported(imgp)) { 343 /* 344 * Again, prefer strictly matching 345 * interpreter path. 346 */ 347 if (interp_name_len == 0 && 348 bi->interp_path == NULL) 349 return (bi); 350 if (bi->interp_path != NULL && 351 strlen(bi->interp_path) + 1 == 352 interp_name_len && strncmp(interp, 353 bi->interp_path, interp_name_len) == 0) 354 return (bi); 355 if (bi_m == NULL) 356 bi_m = bi; 357 } 358 } 359 } 360 if (bi_m != NULL) 361 return (bi_m); 362 363 /* No known brand, see if the header is recognized by any brand */ 364 for (i = 0; i < MAX_BRANDS; i++) { 365 bi = elf_brand_list[i]; 366 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 367 bi->header_supported == NULL) 368 continue; 369 if (hdr->e_machine == bi->machine) { 370 ret = bi->header_supported(imgp); 371 if (ret) 372 return (bi); 373 } 374 } 375 376 /* Lacking a known brand, search for a recognized interpreter. */ 377 if (interp != NULL) { 378 for (i = 0; i < MAX_BRANDS; i++) { 379 bi = elf_brand_list[i]; 380 if (bi == NULL || (bi->flags & 381 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 382 != 0) 383 continue; 384 if (hdr->e_machine == bi->machine && 385 bi->interp_path != NULL && 386 /* ELF image p_filesz includes terminating zero */ 387 strlen(bi->interp_path) + 1 == interp_name_len && 388 strncmp(interp, bi->interp_path, interp_name_len) 389 == 0 && (bi->header_supported == NULL || 390 bi->header_supported(imgp))) 391 return (bi); 392 } 393 } 394 395 /* Lacking a recognized interpreter, try the default brand */ 396 for (i = 0; i < MAX_BRANDS; i++) { 397 bi = elf_brand_list[i]; 398 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 399 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 400 continue; 401 if (hdr->e_machine == bi->machine && 402 __elfN(fallback_brand) == bi->brand && 403 (bi->header_supported == NULL || 404 bi->header_supported(imgp))) 405 return (bi); 406 } 407 return (NULL); 408 } 409 410 static int 411 __elfN(check_header)(const Elf_Ehdr *hdr) 412 { 413 Elf_Brandinfo *bi; 414 int i; 415 416 if (!IS_ELF(*hdr) || 417 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 418 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 419 hdr->e_ident[EI_VERSION] != EV_CURRENT || 420 hdr->e_phentsize != sizeof(Elf_Phdr) || 421 hdr->e_version != ELF_TARG_VER) 422 return (ENOEXEC); 423 424 /* 425 * Make sure we have at least one brand for this machine. 426 */ 427 428 for (i = 0; i < MAX_BRANDS; i++) { 429 bi = elf_brand_list[i]; 430 if (bi != NULL && bi->machine == hdr->e_machine) 431 break; 432 } 433 if (i == MAX_BRANDS) 434 return (ENOEXEC); 435 436 return (0); 437 } 438 439 static int 440 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 441 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 442 { 443 struct sf_buf *sf; 444 int error; 445 vm_offset_t off; 446 447 /* 448 * Create the page if it doesn't exist yet. Ignore errors. 449 */ 450 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 451 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 452 453 /* 454 * Find the page from the underlying object. 455 */ 456 if (object != NULL) { 457 sf = vm_imgact_map_page(object, offset); 458 if (sf == NULL) 459 return (KERN_FAILURE); 460 off = offset - trunc_page(offset); 461 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 462 end - start); 463 vm_imgact_unmap_page(sf); 464 if (error != 0) 465 return (KERN_FAILURE); 466 } 467 468 return (KERN_SUCCESS); 469 } 470 471 static int 472 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 473 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 474 int cow) 475 { 476 struct sf_buf *sf; 477 vm_offset_t off; 478 vm_size_t sz; 479 int error, locked, rv; 480 481 if (start != trunc_page(start)) { 482 rv = __elfN(map_partial)(map, object, offset, start, 483 round_page(start), prot); 484 if (rv != KERN_SUCCESS) 485 return (rv); 486 offset += round_page(start) - start; 487 start = round_page(start); 488 } 489 if (end != round_page(end)) { 490 rv = __elfN(map_partial)(map, object, offset + 491 trunc_page(end) - start, trunc_page(end), end, prot); 492 if (rv != KERN_SUCCESS) 493 return (rv); 494 end = trunc_page(end); 495 } 496 if (start >= end) 497 return (KERN_SUCCESS); 498 if ((offset & PAGE_MASK) != 0) { 499 /* 500 * The mapping is not page aligned. This means that we have 501 * to copy the data. 502 */ 503 rv = vm_map_fixed(map, NULL, 0, start, end - start, 504 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 505 if (rv != KERN_SUCCESS) 506 return (rv); 507 if (object == NULL) 508 return (KERN_SUCCESS); 509 for (; start < end; start += sz) { 510 sf = vm_imgact_map_page(object, offset); 511 if (sf == NULL) 512 return (KERN_FAILURE); 513 off = offset - trunc_page(offset); 514 sz = end - start; 515 if (sz > PAGE_SIZE - off) 516 sz = PAGE_SIZE - off; 517 error = copyout((caddr_t)sf_buf_kva(sf) + off, 518 (caddr_t)start, sz); 519 vm_imgact_unmap_page(sf); 520 if (error != 0) 521 return (KERN_FAILURE); 522 offset += sz; 523 } 524 } else { 525 vm_object_reference(object); 526 rv = vm_map_fixed(map, object, offset, start, end - start, 527 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 528 if (rv != KERN_SUCCESS) { 529 locked = VOP_ISLOCKED(imgp->vp); 530 VOP_UNLOCK(imgp->vp, 0); 531 vm_object_deallocate(object); 532 vn_lock(imgp->vp, locked | LK_RETRY); 533 return (rv); 534 } 535 } 536 return (KERN_SUCCESS); 537 } 538 539 static int 540 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 541 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 542 { 543 struct sf_buf *sf; 544 size_t map_len; 545 vm_map_t map; 546 vm_object_t object; 547 vm_offset_t off, map_addr; 548 int error, rv, cow; 549 size_t copy_len; 550 vm_ooffset_t file_addr; 551 552 /* 553 * It's necessary to fail if the filsz + offset taken from the 554 * header is greater than the actual file pager object's size. 555 * If we were to allow this, then the vm_map_find() below would 556 * walk right off the end of the file object and into the ether. 557 * 558 * While I'm here, might as well check for something else that 559 * is invalid: filsz cannot be greater than memsz. 560 */ 561 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 562 filsz > memsz) { 563 uprintf("elf_load_section: truncated ELF file\n"); 564 return (ENOEXEC); 565 } 566 567 object = imgp->object; 568 map = &imgp->proc->p_vmspace->vm_map; 569 map_addr = trunc_page((vm_offset_t)vmaddr); 570 file_addr = trunc_page(offset); 571 572 /* 573 * We have two choices. We can either clear the data in the last page 574 * of an oversized mapping, or we can start the anon mapping a page 575 * early and copy the initialized data into that first page. We 576 * choose the second. 577 */ 578 if (filsz == 0) 579 map_len = 0; 580 else if (memsz > filsz) 581 map_len = trunc_page(offset + filsz) - file_addr; 582 else 583 map_len = round_page(offset + filsz) - file_addr; 584 585 if (map_len != 0) { 586 /* cow flags: don't dump readonly sections in core */ 587 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 588 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 589 590 rv = __elfN(map_insert)(imgp, map, 591 object, 592 file_addr, /* file offset */ 593 map_addr, /* virtual start */ 594 map_addr + map_len,/* virtual end */ 595 prot, 596 cow); 597 if (rv != KERN_SUCCESS) 598 return (EINVAL); 599 600 /* we can stop now if we've covered it all */ 601 if (memsz == filsz) 602 return (0); 603 } 604 605 606 /* 607 * We have to get the remaining bit of the file into the first part 608 * of the oversized map segment. This is normally because the .data 609 * segment in the file is extended to provide bss. It's a neat idea 610 * to try and save a page, but it's a pain in the behind to implement. 611 */ 612 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 613 filsz); 614 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 615 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 616 617 /* This had damn well better be true! */ 618 if (map_len != 0) { 619 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 620 map_addr + map_len, prot, 0); 621 if (rv != KERN_SUCCESS) 622 return (EINVAL); 623 } 624 625 if (copy_len != 0) { 626 sf = vm_imgact_map_page(object, offset + filsz); 627 if (sf == NULL) 628 return (EIO); 629 630 /* send the page fragment to user space */ 631 off = trunc_page(offset + filsz) - trunc_page(offset + filsz); 632 error = copyout((caddr_t)sf_buf_kva(sf) + off, 633 (caddr_t)map_addr, copy_len); 634 vm_imgact_unmap_page(sf); 635 if (error != 0) 636 return (error); 637 } 638 639 /* 640 * Remove write access to the page if it was only granted by map_insert 641 * to allow copyout. 642 */ 643 if ((prot & VM_PROT_WRITE) == 0) 644 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 645 map_len), prot, FALSE); 646 647 return (0); 648 } 649 650 /* 651 * Load the file "file" into memory. It may be either a shared object 652 * or an executable. 653 * 654 * The "addr" reference parameter is in/out. On entry, it specifies 655 * the address where a shared object should be loaded. If the file is 656 * an executable, this value is ignored. On exit, "addr" specifies 657 * where the file was actually loaded. 658 * 659 * The "entry" reference parameter is out only. On exit, it specifies 660 * the entry point for the loaded file. 661 */ 662 static int 663 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 664 u_long *entry) 665 { 666 struct { 667 struct nameidata nd; 668 struct vattr attr; 669 struct image_params image_params; 670 } *tempdata; 671 const Elf_Ehdr *hdr = NULL; 672 const Elf_Phdr *phdr = NULL; 673 struct nameidata *nd; 674 struct vattr *attr; 675 struct image_params *imgp; 676 vm_prot_t prot; 677 u_long rbase; 678 u_long base_addr = 0; 679 int error, i, numsegs; 680 681 #ifdef CAPABILITY_MODE 682 /* 683 * XXXJA: This check can go away once we are sufficiently confident 684 * that the checks in namei() are correct. 685 */ 686 if (IN_CAPABILITY_MODE(curthread)) 687 return (ECAPMODE); 688 #endif 689 690 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 691 nd = &tempdata->nd; 692 attr = &tempdata->attr; 693 imgp = &tempdata->image_params; 694 695 /* 696 * Initialize part of the common data 697 */ 698 imgp->proc = p; 699 imgp->attr = attr; 700 imgp->firstpage = NULL; 701 imgp->image_header = NULL; 702 imgp->object = NULL; 703 imgp->execlabel = NULL; 704 705 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 706 if ((error = namei(nd)) != 0) { 707 nd->ni_vp = NULL; 708 goto fail; 709 } 710 NDFREE(nd, NDF_ONLY_PNBUF); 711 imgp->vp = nd->ni_vp; 712 713 /* 714 * Check permissions, modes, uid, etc on the file, and "open" it. 715 */ 716 error = exec_check_permissions(imgp); 717 if (error) 718 goto fail; 719 720 error = exec_map_first_page(imgp); 721 if (error) 722 goto fail; 723 724 /* 725 * Also make certain that the interpreter stays the same, so set 726 * its VV_TEXT flag, too. 727 */ 728 VOP_SET_TEXT(nd->ni_vp); 729 730 imgp->object = nd->ni_vp->v_object; 731 732 hdr = (const Elf_Ehdr *)imgp->image_header; 733 if ((error = __elfN(check_header)(hdr)) != 0) 734 goto fail; 735 if (hdr->e_type == ET_DYN) 736 rbase = *addr; 737 else if (hdr->e_type == ET_EXEC) 738 rbase = 0; 739 else { 740 error = ENOEXEC; 741 goto fail; 742 } 743 744 /* Only support headers that fit within first page for now */ 745 if ((hdr->e_phoff > PAGE_SIZE) || 746 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 747 error = ENOEXEC; 748 goto fail; 749 } 750 751 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 752 if (!aligned(phdr, Elf_Addr)) { 753 error = ENOEXEC; 754 goto fail; 755 } 756 757 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 758 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 759 /* Loadable segment */ 760 prot = __elfN(trans_prot)(phdr[i].p_flags); 761 error = __elfN(load_section)(imgp, phdr[i].p_offset, 762 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 763 phdr[i].p_memsz, phdr[i].p_filesz, prot); 764 if (error != 0) 765 goto fail; 766 /* 767 * Establish the base address if this is the 768 * first segment. 769 */ 770 if (numsegs == 0) 771 base_addr = trunc_page(phdr[i].p_vaddr + 772 rbase); 773 numsegs++; 774 } 775 } 776 *addr = base_addr; 777 *entry = (unsigned long)hdr->e_entry + rbase; 778 779 fail: 780 if (imgp->firstpage) 781 exec_unmap_first_page(imgp); 782 783 if (nd->ni_vp) 784 vput(nd->ni_vp); 785 786 free(tempdata, M_TEMP); 787 788 return (error); 789 } 790 791 static u_long 792 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 793 u_int align) 794 { 795 u_long rbase, res; 796 797 MPASS(vm_map_min(map) <= minv); 798 MPASS(maxv <= vm_map_max(map)); 799 MPASS(minv < maxv); 800 MPASS(minv + align < maxv); 801 arc4rand(&rbase, sizeof(rbase), 0); 802 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 803 res &= ~((u_long)align - 1); 804 if (res >= maxv) 805 res -= align; 806 KASSERT(res >= minv, 807 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 808 res, minv, maxv, rbase)); 809 KASSERT(res < maxv, 810 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 811 res, maxv, minv, rbase)); 812 return (res); 813 } 814 815 /* 816 * Impossible et_dyn_addr initial value indicating that the real base 817 * must be calculated later with some randomization applied. 818 */ 819 #define ET_DYN_ADDR_RAND 1 820 821 static int 822 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 823 { 824 struct thread *td; 825 const Elf_Ehdr *hdr; 826 const Elf_Phdr *phdr; 827 Elf_Auxargs *elf_auxargs; 828 struct vmspace *vmspace; 829 vm_map_t map; 830 const char *err_str, *newinterp; 831 char *interp, *interp_buf, *path; 832 Elf_Brandinfo *brand_info; 833 struct sysentvec *sv; 834 vm_prot_t prot; 835 u_long text_size, data_size, total_size, text_addr, data_addr; 836 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 837 u_long maxalign, mapsz, maxv, maxv1; 838 uint32_t fctl0; 839 int32_t osrel; 840 int error, i, n, interp_name_len, have_interp; 841 842 hdr = (const Elf_Ehdr *)imgp->image_header; 843 844 /* 845 * Do we have a valid ELF header ? 846 * 847 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 848 * if particular brand doesn't support it. 849 */ 850 if (__elfN(check_header)(hdr) != 0 || 851 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 852 return (-1); 853 854 /* 855 * From here on down, we return an errno, not -1, as we've 856 * detected an ELF file. 857 */ 858 859 if ((hdr->e_phoff > PAGE_SIZE) || 860 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 861 /* Only support headers in first page for now */ 862 uprintf("Program headers not in the first page\n"); 863 return (ENOEXEC); 864 } 865 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 866 if (!aligned(phdr, Elf_Addr)) { 867 uprintf("Unaligned program headers\n"); 868 return (ENOEXEC); 869 } 870 871 n = error = 0; 872 baddr = 0; 873 osrel = 0; 874 fctl0 = 0; 875 text_size = data_size = total_size = text_addr = data_addr = 0; 876 entry = proghdr = 0; 877 interp_name_len = 0; 878 err_str = newinterp = NULL; 879 interp = interp_buf = NULL; 880 td = curthread; 881 maxalign = PAGE_SIZE; 882 mapsz = 0; 883 884 for (i = 0; i < hdr->e_phnum; i++) { 885 switch (phdr[i].p_type) { 886 case PT_LOAD: 887 if (n == 0) 888 baddr = phdr[i].p_vaddr; 889 if (phdr[i].p_align > maxalign) 890 maxalign = phdr[i].p_align; 891 mapsz += phdr[i].p_memsz; 892 n++; 893 break; 894 case PT_INTERP: 895 /* Path to interpreter */ 896 if (phdr[i].p_filesz < 2 || 897 phdr[i].p_filesz > MAXPATHLEN) { 898 uprintf("Invalid PT_INTERP\n"); 899 error = ENOEXEC; 900 goto ret; 901 } 902 if (interp != NULL) { 903 uprintf("Multiple PT_INTERP headers\n"); 904 error = ENOEXEC; 905 goto ret; 906 } 907 interp_name_len = phdr[i].p_filesz; 908 if (phdr[i].p_offset > PAGE_SIZE || 909 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 910 VOP_UNLOCK(imgp->vp, 0); 911 interp_buf = malloc(interp_name_len + 1, M_TEMP, 912 M_WAITOK); 913 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 914 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 915 interp_name_len, phdr[i].p_offset, 916 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 917 NOCRED, NULL, td); 918 if (error != 0) { 919 uprintf("i/o error PT_INTERP %d\n", 920 error); 921 goto ret; 922 } 923 interp_buf[interp_name_len] = '\0'; 924 interp = interp_buf; 925 } else { 926 interp = __DECONST(char *, imgp->image_header) + 927 phdr[i].p_offset; 928 if (interp[interp_name_len - 1] != '\0') { 929 uprintf("Invalid PT_INTERP\n"); 930 error = ENOEXEC; 931 goto ret; 932 } 933 } 934 break; 935 case PT_GNU_STACK: 936 if (__elfN(nxstack)) 937 imgp->stack_prot = 938 __elfN(trans_prot)(phdr[i].p_flags); 939 imgp->stack_sz = phdr[i].p_memsz; 940 break; 941 } 942 } 943 944 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 945 &osrel, &fctl0); 946 if (brand_info == NULL) { 947 uprintf("ELF binary type \"%u\" not known.\n", 948 hdr->e_ident[EI_OSABI]); 949 error = ENOEXEC; 950 goto ret; 951 } 952 sv = brand_info->sysvec; 953 et_dyn_addr = 0; 954 if (hdr->e_type == ET_DYN) { 955 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 956 uprintf("Cannot execute shared object\n"); 957 error = ENOEXEC; 958 goto ret; 959 } 960 /* 961 * Honour the base load address from the dso if it is 962 * non-zero for some reason. 963 */ 964 if (baddr == 0) { 965 if ((sv->sv_flags & SV_ASLR) == 0 || 966 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 967 et_dyn_addr = ET_DYN_LOAD_ADDR; 968 else if ((__elfN(pie_aslr_enabled) && 969 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 970 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 971 et_dyn_addr = ET_DYN_ADDR_RAND; 972 else 973 et_dyn_addr = ET_DYN_LOAD_ADDR; 974 } 975 } 976 if (interp != NULL && brand_info->interp_newpath != NULL) 977 newinterp = brand_info->interp_newpath; 978 979 /* 980 * Avoid a possible deadlock if the current address space is destroyed 981 * and that address space maps the locked vnode. In the common case, 982 * the locked vnode's v_usecount is decremented but remains greater 983 * than zero. Consequently, the vnode lock is not needed by vrele(). 984 * However, in cases where the vnode lock is external, such as nullfs, 985 * v_usecount may become zero. 986 * 987 * The VV_TEXT flag prevents modifications to the executable while 988 * the vnode is unlocked. 989 */ 990 VOP_UNLOCK(imgp->vp, 0); 991 992 /* 993 * Decide whether to enable randomization of user mappings. 994 * First, reset user preferences for the setid binaries. 995 * Then, account for the support of the randomization by the 996 * ABI, by user preferences, and make special treatment for 997 * PIE binaries. 998 */ 999 if (imgp->credential_setid) { 1000 PROC_LOCK(imgp->proc); 1001 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1002 PROC_UNLOCK(imgp->proc); 1003 } 1004 if ((sv->sv_flags & SV_ASLR) == 0 || 1005 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1006 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1007 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1008 ("et_dyn_addr == RAND and !ASLR")); 1009 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1010 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1011 et_dyn_addr == ET_DYN_ADDR_RAND) { 1012 imgp->map_flags |= MAP_ASLR; 1013 /* 1014 * If user does not care about sbrk, utilize the bss 1015 * grow region for mappings as well. We can select 1016 * the base for the image anywere and still not suffer 1017 * from the fragmentation. 1018 */ 1019 if (!__elfN(aslr_honor_sbrk) || 1020 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1021 imgp->map_flags |= MAP_ASLR_IGNSTART; 1022 } 1023 1024 error = exec_new_vmspace(imgp, sv); 1025 vmspace = imgp->proc->p_vmspace; 1026 map = &vmspace->vm_map; 1027 1028 imgp->proc->p_sysent = sv; 1029 1030 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1031 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1032 KASSERT((map->flags & MAP_ASLR) != 0, 1033 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1034 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1035 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1036 /* reserve half of the address space to interpreter */ 1037 maxv / 2, 1UL << flsl(maxalign)); 1038 } 1039 1040 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1041 if (error != 0) 1042 goto ret; 1043 1044 for (i = 0; i < hdr->e_phnum; i++) { 1045 switch (phdr[i].p_type) { 1046 case PT_LOAD: /* Loadable segment */ 1047 if (phdr[i].p_memsz == 0) 1048 break; 1049 prot = __elfN(trans_prot)(phdr[i].p_flags); 1050 error = __elfN(load_section)(imgp, phdr[i].p_offset, 1051 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 1052 phdr[i].p_memsz, phdr[i].p_filesz, prot); 1053 if (error != 0) 1054 goto ret; 1055 1056 /* 1057 * If this segment contains the program headers, 1058 * remember their virtual address for the AT_PHDR 1059 * aux entry. Static binaries don't usually include 1060 * a PT_PHDR entry. 1061 */ 1062 if (phdr[i].p_offset == 0 && 1063 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1064 <= phdr[i].p_filesz) 1065 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 1066 et_dyn_addr; 1067 1068 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 1069 seg_size = round_page(phdr[i].p_memsz + 1070 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 1071 1072 /* 1073 * Make the largest executable segment the official 1074 * text segment and all others data. 1075 * 1076 * Note that obreak() assumes that data_addr + 1077 * data_size == end of data load area, and the ELF 1078 * file format expects segments to be sorted by 1079 * address. If multiple data segments exist, the 1080 * last one will be used. 1081 */ 1082 1083 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 1084 text_size = seg_size; 1085 text_addr = seg_addr; 1086 } else { 1087 data_size = seg_size; 1088 data_addr = seg_addr; 1089 } 1090 total_size += seg_size; 1091 break; 1092 case PT_PHDR: /* Program header table info */ 1093 proghdr = phdr[i].p_vaddr + et_dyn_addr; 1094 break; 1095 default: 1096 break; 1097 } 1098 } 1099 1100 if (data_addr == 0 && data_size == 0) { 1101 data_addr = text_addr; 1102 data_size = text_size; 1103 } 1104 1105 entry = (u_long)hdr->e_entry + et_dyn_addr; 1106 1107 /* 1108 * Check limits. It should be safe to check the 1109 * limits after loading the segments since we do 1110 * not actually fault in all the segments pages. 1111 */ 1112 PROC_LOCK(imgp->proc); 1113 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 1114 err_str = "Data segment size exceeds process limit"; 1115 else if (text_size > maxtsiz) 1116 err_str = "Text segment size exceeds system limit"; 1117 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 1118 err_str = "Total segment size exceeds process limit"; 1119 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 1120 err_str = "Data segment size exceeds resource limit"; 1121 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 1122 err_str = "Total segment size exceeds resource limit"; 1123 if (err_str != NULL) { 1124 PROC_UNLOCK(imgp->proc); 1125 uprintf("%s\n", err_str); 1126 error = ENOMEM; 1127 goto ret; 1128 } 1129 1130 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 1131 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 1132 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 1133 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 1134 1135 /* 1136 * We load the dynamic linker where a userland call 1137 * to mmap(0, ...) would put it. The rationale behind this 1138 * calculation is that it leaves room for the heap to grow to 1139 * its maximum allowed size. 1140 */ 1141 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1142 RLIMIT_DATA)); 1143 if ((map->flags & MAP_ASLR) != 0) { 1144 maxv1 = maxv / 2 + addr / 2; 1145 MPASS(maxv1 >= addr); /* No overflow */ 1146 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1147 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1148 } else { 1149 map->anon_loc = addr; 1150 } 1151 PROC_UNLOCK(imgp->proc); 1152 1153 imgp->entry_addr = entry; 1154 1155 if (interp != NULL) { 1156 have_interp = FALSE; 1157 VOP_UNLOCK(imgp->vp, 0); 1158 if ((map->flags & MAP_ASLR) != 0) { 1159 /* Assume that interpeter fits into 1/4 of AS */ 1160 maxv1 = maxv / 2 + addr / 2; 1161 MPASS(maxv1 >= addr); /* No overflow */ 1162 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1163 maxv1, PAGE_SIZE); 1164 } 1165 if (brand_info->emul_path != NULL && 1166 brand_info->emul_path[0] != '\0') { 1167 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1168 snprintf(path, MAXPATHLEN, "%s%s", 1169 brand_info->emul_path, interp); 1170 error = __elfN(load_file)(imgp->proc, path, &addr, 1171 &imgp->entry_addr); 1172 free(path, M_TEMP); 1173 if (error == 0) 1174 have_interp = TRUE; 1175 } 1176 if (!have_interp && newinterp != NULL && 1177 (brand_info->interp_path == NULL || 1178 strcmp(interp, brand_info->interp_path) == 0)) { 1179 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1180 &imgp->entry_addr); 1181 if (error == 0) 1182 have_interp = TRUE; 1183 } 1184 if (!have_interp) { 1185 error = __elfN(load_file)(imgp->proc, interp, &addr, 1186 &imgp->entry_addr); 1187 } 1188 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1189 if (error != 0) { 1190 uprintf("ELF interpreter %s not found, error %d\n", 1191 interp, error); 1192 goto ret; 1193 } 1194 } else 1195 addr = et_dyn_addr; 1196 1197 /* 1198 * Construct auxargs table (used by the fixup routine) 1199 */ 1200 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1201 elf_auxargs->execfd = -1; 1202 elf_auxargs->phdr = proghdr; 1203 elf_auxargs->phent = hdr->e_phentsize; 1204 elf_auxargs->phnum = hdr->e_phnum; 1205 elf_auxargs->pagesz = PAGE_SIZE; 1206 elf_auxargs->base = addr; 1207 elf_auxargs->flags = 0; 1208 elf_auxargs->entry = entry; 1209 elf_auxargs->hdr_eflags = hdr->e_flags; 1210 1211 imgp->auxargs = elf_auxargs; 1212 imgp->interpreted = 0; 1213 imgp->reloc_base = addr; 1214 imgp->proc->p_osrel = osrel; 1215 imgp->proc->p_fctl0 = fctl0; 1216 imgp->proc->p_elf_machine = hdr->e_machine; 1217 imgp->proc->p_elf_flags = hdr->e_flags; 1218 1219 ret: 1220 free(interp_buf, M_TEMP); 1221 return (error); 1222 } 1223 1224 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1225 1226 int 1227 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1228 { 1229 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1230 Elf_Auxinfo *argarray, *pos; 1231 Elf_Addr *base, *auxbase; 1232 int error; 1233 1234 base = (Elf_Addr *)*stack_base; 1235 auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1; 1236 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1237 M_WAITOK | M_ZERO); 1238 1239 if (args->execfd != -1) 1240 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1241 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1242 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1243 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1244 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1245 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1246 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1247 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1248 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1249 if (imgp->execpathp != 0) 1250 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1251 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1252 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1253 if (imgp->canary != 0) { 1254 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1255 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1256 } 1257 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1258 if (imgp->pagesizes != 0) { 1259 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1260 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1261 } 1262 if (imgp->sysent->sv_timekeep_base != 0) { 1263 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1264 imgp->sysent->sv_timekeep_base); 1265 } 1266 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1267 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1268 imgp->sysent->sv_stackprot); 1269 if (imgp->sysent->sv_hwcap != NULL) 1270 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1271 if (imgp->sysent->sv_hwcap2 != NULL) 1272 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1273 AUXARGS_ENTRY(pos, AT_NULL, 0); 1274 1275 free(imgp->auxargs, M_TEMP); 1276 imgp->auxargs = NULL; 1277 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1278 1279 error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT); 1280 free(argarray, M_TEMP); 1281 if (error != 0) 1282 return (error); 1283 1284 base--; 1285 if (suword(base, imgp->args->argc) == -1) 1286 return (EFAULT); 1287 *stack_base = (register_t *)base; 1288 return (0); 1289 } 1290 1291 /* 1292 * Code for generating ELF core dumps. 1293 */ 1294 1295 typedef void (*segment_callback)(vm_map_entry_t, void *); 1296 1297 /* Closure for cb_put_phdr(). */ 1298 struct phdr_closure { 1299 Elf_Phdr *phdr; /* Program header to fill in */ 1300 Elf_Off offset; /* Offset of segment in core file */ 1301 }; 1302 1303 /* Closure for cb_size_segment(). */ 1304 struct sseg_closure { 1305 int count; /* Count of writable segments. */ 1306 size_t size; /* Total size of all writable segments. */ 1307 }; 1308 1309 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1310 1311 struct note_info { 1312 int type; /* Note type. */ 1313 outfunc_t outfunc; /* Output function. */ 1314 void *outarg; /* Argument for the output function. */ 1315 size_t outsize; /* Output size. */ 1316 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1317 }; 1318 1319 TAILQ_HEAD(note_info_list, note_info); 1320 1321 /* Coredump output parameters. */ 1322 struct coredump_params { 1323 off_t offset; 1324 struct ucred *active_cred; 1325 struct ucred *file_cred; 1326 struct thread *td; 1327 struct vnode *vp; 1328 struct compressor *comp; 1329 }; 1330 1331 extern int compress_user_cores; 1332 extern int compress_user_cores_level; 1333 1334 static void cb_put_phdr(vm_map_entry_t, void *); 1335 static void cb_size_segment(vm_map_entry_t, void *); 1336 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1337 enum uio_seg); 1338 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1339 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1340 struct note_info_list *, size_t); 1341 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1342 size_t *); 1343 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1344 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1345 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1346 static int sbuf_drain_core_output(void *, const char *, int); 1347 static int sbuf_drain_count(void *arg, const char *data, int len); 1348 1349 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1350 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1351 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1352 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1353 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1354 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1355 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1356 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1357 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1358 static void note_procstat_files(void *, struct sbuf *, size_t *); 1359 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1360 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1361 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1362 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1363 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1364 1365 /* 1366 * Write out a core segment to the compression stream. 1367 */ 1368 static int 1369 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1370 { 1371 u_int chunk_len; 1372 int error; 1373 1374 while (len > 0) { 1375 chunk_len = MIN(len, CORE_BUF_SIZE); 1376 1377 /* 1378 * We can get EFAULT error here. 1379 * In that case zero out the current chunk of the segment. 1380 */ 1381 error = copyin(base, buf, chunk_len); 1382 if (error != 0) 1383 bzero(buf, chunk_len); 1384 error = compressor_write(p->comp, buf, chunk_len); 1385 if (error != 0) 1386 break; 1387 base += chunk_len; 1388 len -= chunk_len; 1389 } 1390 return (error); 1391 } 1392 1393 static int 1394 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1395 { 1396 1397 return (core_write((struct coredump_params *)arg, base, len, offset, 1398 UIO_SYSSPACE)); 1399 } 1400 1401 static int 1402 core_write(struct coredump_params *p, const void *base, size_t len, 1403 off_t offset, enum uio_seg seg) 1404 { 1405 1406 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1407 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1408 p->active_cred, p->file_cred, NULL, p->td)); 1409 } 1410 1411 static int 1412 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1413 void *tmpbuf) 1414 { 1415 int error; 1416 1417 if (p->comp != NULL) 1418 return (compress_chunk(p, base, tmpbuf, len)); 1419 1420 /* 1421 * EFAULT is a non-fatal error that we can get, for example, 1422 * if the segment is backed by a file but extends beyond its 1423 * end. 1424 */ 1425 error = core_write(p, base, len, offset, UIO_USERSPACE); 1426 if (error == EFAULT) { 1427 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1428 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1429 "for process %s\n", base, len, offset, curproc->p_comm); 1430 1431 /* 1432 * Write a "real" zero byte at the end of the target region 1433 * in the case this is the last segment. 1434 * The intermediate space will be implicitly zero-filled. 1435 */ 1436 error = core_write(p, zero_region, 1, offset + len - 1, 1437 UIO_SYSSPACE); 1438 } 1439 return (error); 1440 } 1441 1442 /* 1443 * Drain into a core file. 1444 */ 1445 static int 1446 sbuf_drain_core_output(void *arg, const char *data, int len) 1447 { 1448 struct coredump_params *p; 1449 int error, locked; 1450 1451 p = (struct coredump_params *)arg; 1452 1453 /* 1454 * Some kern_proc out routines that print to this sbuf may 1455 * call us with the process lock held. Draining with the 1456 * non-sleepable lock held is unsafe. The lock is needed for 1457 * those routines when dumping a live process. In our case we 1458 * can safely release the lock before draining and acquire 1459 * again after. 1460 */ 1461 locked = PROC_LOCKED(p->td->td_proc); 1462 if (locked) 1463 PROC_UNLOCK(p->td->td_proc); 1464 if (p->comp != NULL) 1465 error = compressor_write(p->comp, __DECONST(char *, data), len); 1466 else 1467 error = core_write(p, __DECONST(void *, data), len, p->offset, 1468 UIO_SYSSPACE); 1469 if (locked) 1470 PROC_LOCK(p->td->td_proc); 1471 if (error != 0) 1472 return (-error); 1473 p->offset += len; 1474 return (len); 1475 } 1476 1477 /* 1478 * Drain into a counter. 1479 */ 1480 static int 1481 sbuf_drain_count(void *arg, const char *data __unused, int len) 1482 { 1483 size_t *sizep; 1484 1485 sizep = (size_t *)arg; 1486 *sizep += len; 1487 return (len); 1488 } 1489 1490 int 1491 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1492 { 1493 struct ucred *cred = td->td_ucred; 1494 int error = 0; 1495 struct sseg_closure seginfo; 1496 struct note_info_list notelst; 1497 struct coredump_params params; 1498 struct note_info *ninfo; 1499 void *hdr, *tmpbuf; 1500 size_t hdrsize, notesz, coresize; 1501 1502 hdr = NULL; 1503 tmpbuf = NULL; 1504 TAILQ_INIT(¬elst); 1505 1506 /* Size the program segments. */ 1507 seginfo.count = 0; 1508 seginfo.size = 0; 1509 each_dumpable_segment(td, cb_size_segment, &seginfo); 1510 1511 /* 1512 * Collect info about the core file header area. 1513 */ 1514 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1515 if (seginfo.count + 1 >= PN_XNUM) 1516 hdrsize += sizeof(Elf_Shdr); 1517 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1518 coresize = round_page(hdrsize + notesz) + seginfo.size; 1519 1520 /* Set up core dump parameters. */ 1521 params.offset = 0; 1522 params.active_cred = cred; 1523 params.file_cred = NOCRED; 1524 params.td = td; 1525 params.vp = vp; 1526 params.comp = NULL; 1527 1528 #ifdef RACCT 1529 if (racct_enable) { 1530 PROC_LOCK(td->td_proc); 1531 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1532 PROC_UNLOCK(td->td_proc); 1533 if (error != 0) { 1534 error = EFAULT; 1535 goto done; 1536 } 1537 } 1538 #endif 1539 if (coresize >= limit) { 1540 error = EFAULT; 1541 goto done; 1542 } 1543 1544 /* Create a compression stream if necessary. */ 1545 if (compress_user_cores != 0) { 1546 params.comp = compressor_init(core_compressed_write, 1547 compress_user_cores, CORE_BUF_SIZE, 1548 compress_user_cores_level, ¶ms); 1549 if (params.comp == NULL) { 1550 error = EFAULT; 1551 goto done; 1552 } 1553 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1554 } 1555 1556 /* 1557 * Allocate memory for building the header, fill it up, 1558 * and write it out following the notes. 1559 */ 1560 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1561 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1562 notesz); 1563 1564 /* Write the contents of all of the writable segments. */ 1565 if (error == 0) { 1566 Elf_Phdr *php; 1567 off_t offset; 1568 int i; 1569 1570 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1571 offset = round_page(hdrsize + notesz); 1572 for (i = 0; i < seginfo.count; i++) { 1573 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1574 php->p_filesz, offset, ¶ms, tmpbuf); 1575 if (error != 0) 1576 break; 1577 offset += php->p_filesz; 1578 php++; 1579 } 1580 if (error == 0 && params.comp != NULL) 1581 error = compressor_flush(params.comp); 1582 } 1583 if (error) { 1584 log(LOG_WARNING, 1585 "Failed to write core file for process %s (error %d)\n", 1586 curproc->p_comm, error); 1587 } 1588 1589 done: 1590 free(tmpbuf, M_TEMP); 1591 if (params.comp != NULL) 1592 compressor_fini(params.comp); 1593 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1594 TAILQ_REMOVE(¬elst, ninfo, link); 1595 free(ninfo, M_TEMP); 1596 } 1597 if (hdr != NULL) 1598 free(hdr, M_TEMP); 1599 1600 return (error); 1601 } 1602 1603 /* 1604 * A callback for each_dumpable_segment() to write out the segment's 1605 * program header entry. 1606 */ 1607 static void 1608 cb_put_phdr(vm_map_entry_t entry, void *closure) 1609 { 1610 struct phdr_closure *phc = (struct phdr_closure *)closure; 1611 Elf_Phdr *phdr = phc->phdr; 1612 1613 phc->offset = round_page(phc->offset); 1614 1615 phdr->p_type = PT_LOAD; 1616 phdr->p_offset = phc->offset; 1617 phdr->p_vaddr = entry->start; 1618 phdr->p_paddr = 0; 1619 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1620 phdr->p_align = PAGE_SIZE; 1621 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1622 1623 phc->offset += phdr->p_filesz; 1624 phc->phdr++; 1625 } 1626 1627 /* 1628 * A callback for each_dumpable_segment() to gather information about 1629 * the number of segments and their total size. 1630 */ 1631 static void 1632 cb_size_segment(vm_map_entry_t entry, void *closure) 1633 { 1634 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1635 1636 ssc->count++; 1637 ssc->size += entry->end - entry->start; 1638 } 1639 1640 /* 1641 * For each writable segment in the process's memory map, call the given 1642 * function with a pointer to the map entry and some arbitrary 1643 * caller-supplied data. 1644 */ 1645 static void 1646 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1647 { 1648 struct proc *p = td->td_proc; 1649 vm_map_t map = &p->p_vmspace->vm_map; 1650 vm_map_entry_t entry; 1651 vm_object_t backing_object, object; 1652 boolean_t ignore_entry; 1653 1654 vm_map_lock_read(map); 1655 for (entry = map->header.next; entry != &map->header; 1656 entry = entry->next) { 1657 /* 1658 * Don't dump inaccessible mappings, deal with legacy 1659 * coredump mode. 1660 * 1661 * Note that read-only segments related to the elf binary 1662 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1663 * need to arbitrarily ignore such segments. 1664 */ 1665 if (elf_legacy_coredump) { 1666 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1667 continue; 1668 } else { 1669 if ((entry->protection & VM_PROT_ALL) == 0) 1670 continue; 1671 } 1672 1673 /* 1674 * Dont include memory segment in the coredump if 1675 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1676 * madvise(2). Do not dump submaps (i.e. parts of the 1677 * kernel map). 1678 */ 1679 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1680 continue; 1681 1682 if ((object = entry->object.vm_object) == NULL) 1683 continue; 1684 1685 /* Ignore memory-mapped devices and such things. */ 1686 VM_OBJECT_RLOCK(object); 1687 while ((backing_object = object->backing_object) != NULL) { 1688 VM_OBJECT_RLOCK(backing_object); 1689 VM_OBJECT_RUNLOCK(object); 1690 object = backing_object; 1691 } 1692 ignore_entry = object->type != OBJT_DEFAULT && 1693 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1694 object->type != OBJT_PHYS; 1695 VM_OBJECT_RUNLOCK(object); 1696 if (ignore_entry) 1697 continue; 1698 1699 (*func)(entry, closure); 1700 } 1701 vm_map_unlock_read(map); 1702 } 1703 1704 /* 1705 * Write the core file header to the file, including padding up to 1706 * the page boundary. 1707 */ 1708 static int 1709 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1710 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1711 { 1712 struct note_info *ninfo; 1713 struct sbuf *sb; 1714 int error; 1715 1716 /* Fill in the header. */ 1717 bzero(hdr, hdrsize); 1718 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1719 1720 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1721 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1722 sbuf_start_section(sb, NULL); 1723 sbuf_bcat(sb, hdr, hdrsize); 1724 TAILQ_FOREACH(ninfo, notelst, link) 1725 __elfN(putnote)(ninfo, sb); 1726 /* Align up to a page boundary for the program segments. */ 1727 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1728 error = sbuf_finish(sb); 1729 sbuf_delete(sb); 1730 1731 return (error); 1732 } 1733 1734 static void 1735 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1736 size_t *sizep) 1737 { 1738 struct proc *p; 1739 struct thread *thr; 1740 size_t size; 1741 1742 p = td->td_proc; 1743 size = 0; 1744 1745 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1746 1747 /* 1748 * To have the debugger select the right thread (LWP) as the initial 1749 * thread, we dump the state of the thread passed to us in td first. 1750 * This is the thread that causes the core dump and thus likely to 1751 * be the right thread one wants to have selected in the debugger. 1752 */ 1753 thr = td; 1754 while (thr != NULL) { 1755 size += register_note(list, NT_PRSTATUS, 1756 __elfN(note_prstatus), thr); 1757 size += register_note(list, NT_FPREGSET, 1758 __elfN(note_fpregset), thr); 1759 size += register_note(list, NT_THRMISC, 1760 __elfN(note_thrmisc), thr); 1761 size += register_note(list, NT_PTLWPINFO, 1762 __elfN(note_ptlwpinfo), thr); 1763 size += register_note(list, -1, 1764 __elfN(note_threadmd), thr); 1765 1766 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1767 TAILQ_NEXT(thr, td_plist); 1768 if (thr == td) 1769 thr = TAILQ_NEXT(thr, td_plist); 1770 } 1771 1772 size += register_note(list, NT_PROCSTAT_PROC, 1773 __elfN(note_procstat_proc), p); 1774 size += register_note(list, NT_PROCSTAT_FILES, 1775 note_procstat_files, p); 1776 size += register_note(list, NT_PROCSTAT_VMMAP, 1777 note_procstat_vmmap, p); 1778 size += register_note(list, NT_PROCSTAT_GROUPS, 1779 note_procstat_groups, p); 1780 size += register_note(list, NT_PROCSTAT_UMASK, 1781 note_procstat_umask, p); 1782 size += register_note(list, NT_PROCSTAT_RLIMIT, 1783 note_procstat_rlimit, p); 1784 size += register_note(list, NT_PROCSTAT_OSREL, 1785 note_procstat_osrel, p); 1786 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1787 __elfN(note_procstat_psstrings), p); 1788 size += register_note(list, NT_PROCSTAT_AUXV, 1789 __elfN(note_procstat_auxv), p); 1790 1791 *sizep = size; 1792 } 1793 1794 static void 1795 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1796 size_t notesz) 1797 { 1798 Elf_Ehdr *ehdr; 1799 Elf_Phdr *phdr; 1800 Elf_Shdr *shdr; 1801 struct phdr_closure phc; 1802 1803 ehdr = (Elf_Ehdr *)hdr; 1804 1805 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1806 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1807 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1808 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1809 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1810 ehdr->e_ident[EI_DATA] = ELF_DATA; 1811 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1812 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1813 ehdr->e_ident[EI_ABIVERSION] = 0; 1814 ehdr->e_ident[EI_PAD] = 0; 1815 ehdr->e_type = ET_CORE; 1816 ehdr->e_machine = td->td_proc->p_elf_machine; 1817 ehdr->e_version = EV_CURRENT; 1818 ehdr->e_entry = 0; 1819 ehdr->e_phoff = sizeof(Elf_Ehdr); 1820 ehdr->e_flags = td->td_proc->p_elf_flags; 1821 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1822 ehdr->e_phentsize = sizeof(Elf_Phdr); 1823 ehdr->e_shentsize = sizeof(Elf_Shdr); 1824 ehdr->e_shstrndx = SHN_UNDEF; 1825 if (numsegs + 1 < PN_XNUM) { 1826 ehdr->e_phnum = numsegs + 1; 1827 ehdr->e_shnum = 0; 1828 } else { 1829 ehdr->e_phnum = PN_XNUM; 1830 ehdr->e_shnum = 1; 1831 1832 ehdr->e_shoff = ehdr->e_phoff + 1833 (numsegs + 1) * ehdr->e_phentsize; 1834 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1835 ("e_shoff: %zu, hdrsize - shdr: %zu", 1836 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1837 1838 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1839 memset(shdr, 0, sizeof(*shdr)); 1840 /* 1841 * A special first section is used to hold large segment and 1842 * section counts. This was proposed by Sun Microsystems in 1843 * Solaris and has been adopted by Linux; the standard ELF 1844 * tools are already familiar with the technique. 1845 * 1846 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1847 * (or 12-7 depending on the version of the document) for more 1848 * details. 1849 */ 1850 shdr->sh_type = SHT_NULL; 1851 shdr->sh_size = ehdr->e_shnum; 1852 shdr->sh_link = ehdr->e_shstrndx; 1853 shdr->sh_info = numsegs + 1; 1854 } 1855 1856 /* 1857 * Fill in the program header entries. 1858 */ 1859 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1860 1861 /* The note segement. */ 1862 phdr->p_type = PT_NOTE; 1863 phdr->p_offset = hdrsize; 1864 phdr->p_vaddr = 0; 1865 phdr->p_paddr = 0; 1866 phdr->p_filesz = notesz; 1867 phdr->p_memsz = 0; 1868 phdr->p_flags = PF_R; 1869 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1870 phdr++; 1871 1872 /* All the writable segments from the program. */ 1873 phc.phdr = phdr; 1874 phc.offset = round_page(hdrsize + notesz); 1875 each_dumpable_segment(td, cb_put_phdr, &phc); 1876 } 1877 1878 static size_t 1879 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1880 { 1881 struct note_info *ninfo; 1882 size_t size, notesize; 1883 1884 size = 0; 1885 out(arg, NULL, &size); 1886 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1887 ninfo->type = type; 1888 ninfo->outfunc = out; 1889 ninfo->outarg = arg; 1890 ninfo->outsize = size; 1891 TAILQ_INSERT_TAIL(list, ninfo, link); 1892 1893 if (type == -1) 1894 return (size); 1895 1896 notesize = sizeof(Elf_Note) + /* note header */ 1897 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1898 /* note name */ 1899 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1900 1901 return (notesize); 1902 } 1903 1904 static size_t 1905 append_note_data(const void *src, void *dst, size_t len) 1906 { 1907 size_t padded_len; 1908 1909 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1910 if (dst != NULL) { 1911 bcopy(src, dst, len); 1912 bzero((char *)dst + len, padded_len - len); 1913 } 1914 return (padded_len); 1915 } 1916 1917 size_t 1918 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1919 { 1920 Elf_Note *note; 1921 char *buf; 1922 size_t notesize; 1923 1924 buf = dst; 1925 if (buf != NULL) { 1926 note = (Elf_Note *)buf; 1927 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1928 note->n_descsz = size; 1929 note->n_type = type; 1930 buf += sizeof(*note); 1931 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1932 sizeof(FREEBSD_ABI_VENDOR)); 1933 append_note_data(src, buf, size); 1934 if (descp != NULL) 1935 *descp = buf; 1936 } 1937 1938 notesize = sizeof(Elf_Note) + /* note header */ 1939 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1940 /* note name */ 1941 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1942 1943 return (notesize); 1944 } 1945 1946 static void 1947 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1948 { 1949 Elf_Note note; 1950 ssize_t old_len, sect_len; 1951 size_t new_len, descsz, i; 1952 1953 if (ninfo->type == -1) { 1954 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1955 return; 1956 } 1957 1958 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1959 note.n_descsz = ninfo->outsize; 1960 note.n_type = ninfo->type; 1961 1962 sbuf_bcat(sb, ¬e, sizeof(note)); 1963 sbuf_start_section(sb, &old_len); 1964 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1965 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1966 if (note.n_descsz == 0) 1967 return; 1968 sbuf_start_section(sb, &old_len); 1969 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1970 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1971 if (sect_len < 0) 1972 return; 1973 1974 new_len = (size_t)sect_len; 1975 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1976 if (new_len < descsz) { 1977 /* 1978 * It is expected that individual note emitters will correctly 1979 * predict their expected output size and fill up to that size 1980 * themselves, padding in a format-specific way if needed. 1981 * However, in case they don't, just do it here with zeros. 1982 */ 1983 for (i = 0; i < descsz - new_len; i++) 1984 sbuf_putc(sb, 0); 1985 } else if (new_len > descsz) { 1986 /* 1987 * We can't always truncate sb -- we may have drained some 1988 * of it already. 1989 */ 1990 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1991 "read it (%zu > %zu). Since it is longer than " 1992 "expected, this coredump's notes are corrupt. THIS " 1993 "IS A BUG in the note_procstat routine for type %u.\n", 1994 __func__, (unsigned)note.n_type, new_len, descsz, 1995 (unsigned)note.n_type)); 1996 } 1997 } 1998 1999 /* 2000 * Miscellaneous note out functions. 2001 */ 2002 2003 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2004 #include <compat/freebsd32/freebsd32.h> 2005 #include <compat/freebsd32/freebsd32_signal.h> 2006 2007 typedef struct prstatus32 elf_prstatus_t; 2008 typedef struct prpsinfo32 elf_prpsinfo_t; 2009 typedef struct fpreg32 elf_prfpregset_t; 2010 typedef struct fpreg32 elf_fpregset_t; 2011 typedef struct reg32 elf_gregset_t; 2012 typedef struct thrmisc32 elf_thrmisc_t; 2013 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2014 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2015 typedef uint32_t elf_ps_strings_t; 2016 #else 2017 typedef prstatus_t elf_prstatus_t; 2018 typedef prpsinfo_t elf_prpsinfo_t; 2019 typedef prfpregset_t elf_prfpregset_t; 2020 typedef prfpregset_t elf_fpregset_t; 2021 typedef gregset_t elf_gregset_t; 2022 typedef thrmisc_t elf_thrmisc_t; 2023 #define ELF_KERN_PROC_MASK 0 2024 typedef struct kinfo_proc elf_kinfo_proc_t; 2025 typedef vm_offset_t elf_ps_strings_t; 2026 #endif 2027 2028 static void 2029 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2030 { 2031 struct sbuf sbarg; 2032 size_t len; 2033 char *cp, *end; 2034 struct proc *p; 2035 elf_prpsinfo_t *psinfo; 2036 int error; 2037 2038 p = (struct proc *)arg; 2039 if (sb != NULL) { 2040 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2041 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2042 psinfo->pr_version = PRPSINFO_VERSION; 2043 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2044 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2045 PROC_LOCK(p); 2046 if (p->p_args != NULL) { 2047 len = sizeof(psinfo->pr_psargs) - 1; 2048 if (len > p->p_args->ar_length) 2049 len = p->p_args->ar_length; 2050 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2051 PROC_UNLOCK(p); 2052 error = 0; 2053 } else { 2054 _PHOLD(p); 2055 PROC_UNLOCK(p); 2056 sbuf_new(&sbarg, psinfo->pr_psargs, 2057 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2058 error = proc_getargv(curthread, p, &sbarg); 2059 PRELE(p); 2060 if (sbuf_finish(&sbarg) == 0) 2061 len = sbuf_len(&sbarg) - 1; 2062 else 2063 len = sizeof(psinfo->pr_psargs) - 1; 2064 sbuf_delete(&sbarg); 2065 } 2066 if (error || len == 0) 2067 strlcpy(psinfo->pr_psargs, p->p_comm, 2068 sizeof(psinfo->pr_psargs)); 2069 else { 2070 KASSERT(len < sizeof(psinfo->pr_psargs), 2071 ("len is too long: %zu vs %zu", len, 2072 sizeof(psinfo->pr_psargs))); 2073 cp = psinfo->pr_psargs; 2074 end = cp + len - 1; 2075 for (;;) { 2076 cp = memchr(cp, '\0', end - cp); 2077 if (cp == NULL) 2078 break; 2079 *cp = ' '; 2080 } 2081 } 2082 psinfo->pr_pid = p->p_pid; 2083 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2084 free(psinfo, M_TEMP); 2085 } 2086 *sizep = sizeof(*psinfo); 2087 } 2088 2089 static void 2090 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2091 { 2092 struct thread *td; 2093 elf_prstatus_t *status; 2094 2095 td = (struct thread *)arg; 2096 if (sb != NULL) { 2097 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2098 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2099 status->pr_version = PRSTATUS_VERSION; 2100 status->pr_statussz = sizeof(elf_prstatus_t); 2101 status->pr_gregsetsz = sizeof(elf_gregset_t); 2102 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2103 status->pr_osreldate = osreldate; 2104 status->pr_cursig = td->td_proc->p_sig; 2105 status->pr_pid = td->td_tid; 2106 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2107 fill_regs32(td, &status->pr_reg); 2108 #else 2109 fill_regs(td, &status->pr_reg); 2110 #endif 2111 sbuf_bcat(sb, status, sizeof(*status)); 2112 free(status, M_TEMP); 2113 } 2114 *sizep = sizeof(*status); 2115 } 2116 2117 static void 2118 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2119 { 2120 struct thread *td; 2121 elf_prfpregset_t *fpregset; 2122 2123 td = (struct thread *)arg; 2124 if (sb != NULL) { 2125 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2126 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2127 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2128 fill_fpregs32(td, fpregset); 2129 #else 2130 fill_fpregs(td, fpregset); 2131 #endif 2132 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2133 free(fpregset, M_TEMP); 2134 } 2135 *sizep = sizeof(*fpregset); 2136 } 2137 2138 static void 2139 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2140 { 2141 struct thread *td; 2142 elf_thrmisc_t thrmisc; 2143 2144 td = (struct thread *)arg; 2145 if (sb != NULL) { 2146 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2147 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2148 strcpy(thrmisc.pr_tname, td->td_name); 2149 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2150 } 2151 *sizep = sizeof(thrmisc); 2152 } 2153 2154 static void 2155 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2156 { 2157 struct thread *td; 2158 size_t size; 2159 int structsize; 2160 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2161 struct ptrace_lwpinfo32 pl; 2162 #else 2163 struct ptrace_lwpinfo pl; 2164 #endif 2165 2166 td = (struct thread *)arg; 2167 size = sizeof(structsize) + sizeof(pl); 2168 if (sb != NULL) { 2169 KASSERT(*sizep == size, ("invalid size")); 2170 structsize = sizeof(pl); 2171 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2172 bzero(&pl, sizeof(pl)); 2173 pl.pl_lwpid = td->td_tid; 2174 pl.pl_event = PL_EVENT_NONE; 2175 pl.pl_sigmask = td->td_sigmask; 2176 pl.pl_siglist = td->td_siglist; 2177 if (td->td_si.si_signo != 0) { 2178 pl.pl_event = PL_EVENT_SIGNAL; 2179 pl.pl_flags |= PL_FLAG_SI; 2180 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2181 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2182 #else 2183 pl.pl_siginfo = td->td_si; 2184 #endif 2185 } 2186 strcpy(pl.pl_tdname, td->td_name); 2187 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2188 sbuf_bcat(sb, &pl, sizeof(pl)); 2189 } 2190 *sizep = size; 2191 } 2192 2193 /* 2194 * Allow for MD specific notes, as well as any MD 2195 * specific preparations for writing MI notes. 2196 */ 2197 static void 2198 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2199 { 2200 struct thread *td; 2201 void *buf; 2202 size_t size; 2203 2204 td = (struct thread *)arg; 2205 size = *sizep; 2206 if (size != 0 && sb != NULL) 2207 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2208 else 2209 buf = NULL; 2210 size = 0; 2211 __elfN(dump_thread)(td, buf, &size); 2212 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2213 if (size != 0 && sb != NULL) 2214 sbuf_bcat(sb, buf, size); 2215 free(buf, M_TEMP); 2216 *sizep = size; 2217 } 2218 2219 #ifdef KINFO_PROC_SIZE 2220 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2221 #endif 2222 2223 static void 2224 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2225 { 2226 struct proc *p; 2227 size_t size; 2228 int structsize; 2229 2230 p = (struct proc *)arg; 2231 size = sizeof(structsize) + p->p_numthreads * 2232 sizeof(elf_kinfo_proc_t); 2233 2234 if (sb != NULL) { 2235 KASSERT(*sizep == size, ("invalid size")); 2236 structsize = sizeof(elf_kinfo_proc_t); 2237 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2238 PROC_LOCK(p); 2239 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2240 } 2241 *sizep = size; 2242 } 2243 2244 #ifdef KINFO_FILE_SIZE 2245 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2246 #endif 2247 2248 static void 2249 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2250 { 2251 struct proc *p; 2252 size_t size, sect_sz, i; 2253 ssize_t start_len, sect_len; 2254 int structsize, filedesc_flags; 2255 2256 if (coredump_pack_fileinfo) 2257 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2258 else 2259 filedesc_flags = 0; 2260 2261 p = (struct proc *)arg; 2262 structsize = sizeof(struct kinfo_file); 2263 if (sb == NULL) { 2264 size = 0; 2265 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2266 sbuf_set_drain(sb, sbuf_drain_count, &size); 2267 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2268 PROC_LOCK(p); 2269 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2270 sbuf_finish(sb); 2271 sbuf_delete(sb); 2272 *sizep = size; 2273 } else { 2274 sbuf_start_section(sb, &start_len); 2275 2276 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2277 PROC_LOCK(p); 2278 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2279 filedesc_flags); 2280 2281 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2282 if (sect_len < 0) 2283 return; 2284 sect_sz = sect_len; 2285 2286 KASSERT(sect_sz <= *sizep, 2287 ("kern_proc_filedesc_out did not respect maxlen; " 2288 "requested %zu, got %zu", *sizep - sizeof(structsize), 2289 sect_sz - sizeof(structsize))); 2290 2291 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2292 sbuf_putc(sb, 0); 2293 } 2294 } 2295 2296 #ifdef KINFO_VMENTRY_SIZE 2297 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2298 #endif 2299 2300 static void 2301 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2302 { 2303 struct proc *p; 2304 size_t size; 2305 int structsize, vmmap_flags; 2306 2307 if (coredump_pack_vmmapinfo) 2308 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2309 else 2310 vmmap_flags = 0; 2311 2312 p = (struct proc *)arg; 2313 structsize = sizeof(struct kinfo_vmentry); 2314 if (sb == NULL) { 2315 size = 0; 2316 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2317 sbuf_set_drain(sb, sbuf_drain_count, &size); 2318 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2319 PROC_LOCK(p); 2320 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2321 sbuf_finish(sb); 2322 sbuf_delete(sb); 2323 *sizep = size; 2324 } else { 2325 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2326 PROC_LOCK(p); 2327 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2328 vmmap_flags); 2329 } 2330 } 2331 2332 static void 2333 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2334 { 2335 struct proc *p; 2336 size_t size; 2337 int structsize; 2338 2339 p = (struct proc *)arg; 2340 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2341 if (sb != NULL) { 2342 KASSERT(*sizep == size, ("invalid size")); 2343 structsize = sizeof(gid_t); 2344 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2345 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2346 sizeof(gid_t)); 2347 } 2348 *sizep = size; 2349 } 2350 2351 static void 2352 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2353 { 2354 struct proc *p; 2355 size_t size; 2356 int structsize; 2357 2358 p = (struct proc *)arg; 2359 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2360 if (sb != NULL) { 2361 KASSERT(*sizep == size, ("invalid size")); 2362 structsize = sizeof(p->p_fd->fd_cmask); 2363 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2364 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2365 } 2366 *sizep = size; 2367 } 2368 2369 static void 2370 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2371 { 2372 struct proc *p; 2373 struct rlimit rlim[RLIM_NLIMITS]; 2374 size_t size; 2375 int structsize, i; 2376 2377 p = (struct proc *)arg; 2378 size = sizeof(structsize) + sizeof(rlim); 2379 if (sb != NULL) { 2380 KASSERT(*sizep == size, ("invalid size")); 2381 structsize = sizeof(rlim); 2382 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2383 PROC_LOCK(p); 2384 for (i = 0; i < RLIM_NLIMITS; i++) 2385 lim_rlimit_proc(p, i, &rlim[i]); 2386 PROC_UNLOCK(p); 2387 sbuf_bcat(sb, rlim, sizeof(rlim)); 2388 } 2389 *sizep = size; 2390 } 2391 2392 static void 2393 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2394 { 2395 struct proc *p; 2396 size_t size; 2397 int structsize; 2398 2399 p = (struct proc *)arg; 2400 size = sizeof(structsize) + sizeof(p->p_osrel); 2401 if (sb != NULL) { 2402 KASSERT(*sizep == size, ("invalid size")); 2403 structsize = sizeof(p->p_osrel); 2404 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2405 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2406 } 2407 *sizep = size; 2408 } 2409 2410 static void 2411 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2412 { 2413 struct proc *p; 2414 elf_ps_strings_t ps_strings; 2415 size_t size; 2416 int structsize; 2417 2418 p = (struct proc *)arg; 2419 size = sizeof(structsize) + sizeof(ps_strings); 2420 if (sb != NULL) { 2421 KASSERT(*sizep == size, ("invalid size")); 2422 structsize = sizeof(ps_strings); 2423 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2424 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2425 #else 2426 ps_strings = p->p_sysent->sv_psstrings; 2427 #endif 2428 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2429 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2430 } 2431 *sizep = size; 2432 } 2433 2434 static void 2435 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2436 { 2437 struct proc *p; 2438 size_t size; 2439 int structsize; 2440 2441 p = (struct proc *)arg; 2442 if (sb == NULL) { 2443 size = 0; 2444 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2445 sbuf_set_drain(sb, sbuf_drain_count, &size); 2446 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2447 PHOLD(p); 2448 proc_getauxv(curthread, p, sb); 2449 PRELE(p); 2450 sbuf_finish(sb); 2451 sbuf_delete(sb); 2452 *sizep = size; 2453 } else { 2454 structsize = sizeof(Elf_Auxinfo); 2455 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2456 PHOLD(p); 2457 proc_getauxv(curthread, p, sb); 2458 PRELE(p); 2459 } 2460 } 2461 2462 static boolean_t 2463 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2464 const char *note_vendor, const Elf_Phdr *pnote, 2465 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2466 { 2467 const Elf_Note *note, *note0, *note_end; 2468 const char *note_name; 2469 char *buf; 2470 int i, error; 2471 boolean_t res; 2472 2473 /* We need some limit, might as well use PAGE_SIZE. */ 2474 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2475 return (FALSE); 2476 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2477 if (pnote->p_offset > PAGE_SIZE || 2478 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2479 VOP_UNLOCK(imgp->vp, 0); 2480 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2481 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2482 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2483 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2484 curthread->td_ucred, NOCRED, NULL, curthread); 2485 if (error != 0) { 2486 uprintf("i/o error PT_NOTE\n"); 2487 goto retf; 2488 } 2489 note = note0 = (const Elf_Note *)buf; 2490 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2491 } else { 2492 note = note0 = (const Elf_Note *)(imgp->image_header + 2493 pnote->p_offset); 2494 note_end = (const Elf_Note *)(imgp->image_header + 2495 pnote->p_offset + pnote->p_filesz); 2496 buf = NULL; 2497 } 2498 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2499 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2500 (const char *)note < sizeof(Elf_Note)) { 2501 goto retf; 2502 } 2503 if (note->n_namesz != checknote->n_namesz || 2504 note->n_descsz != checknote->n_descsz || 2505 note->n_type != checknote->n_type) 2506 goto nextnote; 2507 note_name = (const char *)(note + 1); 2508 if (note_name + checknote->n_namesz >= 2509 (const char *)note_end || strncmp(note_vendor, 2510 note_name, checknote->n_namesz) != 0) 2511 goto nextnote; 2512 2513 if (cb(note, cb_arg, &res)) 2514 goto ret; 2515 nextnote: 2516 note = (const Elf_Note *)((const char *)(note + 1) + 2517 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2518 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2519 } 2520 retf: 2521 res = FALSE; 2522 ret: 2523 free(buf, M_TEMP); 2524 return (res); 2525 } 2526 2527 struct brandnote_cb_arg { 2528 Elf_Brandnote *brandnote; 2529 int32_t *osrel; 2530 }; 2531 2532 static boolean_t 2533 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2534 { 2535 struct brandnote_cb_arg *arg; 2536 2537 arg = arg0; 2538 2539 /* 2540 * Fetch the osreldate for binary from the ELF OSABI-note if 2541 * necessary. 2542 */ 2543 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2544 arg->brandnote->trans_osrel != NULL ? 2545 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2546 2547 return (TRUE); 2548 } 2549 2550 static Elf_Note fctl_note = { 2551 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2552 .n_descsz = sizeof(uint32_t), 2553 .n_type = NT_FREEBSD_FEATURE_CTL, 2554 }; 2555 2556 struct fctl_cb_arg { 2557 uint32_t *fctl0; 2558 }; 2559 2560 static boolean_t 2561 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2562 { 2563 struct fctl_cb_arg *arg; 2564 const Elf32_Word *desc; 2565 uintptr_t p; 2566 2567 arg = arg0; 2568 p = (uintptr_t)(note + 1); 2569 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2570 desc = (const Elf32_Word *)p; 2571 *arg->fctl0 = desc[0]; 2572 return (TRUE); 2573 } 2574 2575 /* 2576 * Try to find the appropriate ABI-note section for checknote, fetch 2577 * the osreldate and feature control flags for binary from the ELF 2578 * OSABI-note. Only the first page of the image is searched, the same 2579 * as for headers. 2580 */ 2581 static boolean_t 2582 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2583 int32_t *osrel, uint32_t *fctl0) 2584 { 2585 const Elf_Phdr *phdr; 2586 const Elf_Ehdr *hdr; 2587 struct brandnote_cb_arg b_arg; 2588 struct fctl_cb_arg f_arg; 2589 int i, j; 2590 2591 hdr = (const Elf_Ehdr *)imgp->image_header; 2592 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2593 b_arg.brandnote = brandnote; 2594 b_arg.osrel = osrel; 2595 f_arg.fctl0 = fctl0; 2596 2597 for (i = 0; i < hdr->e_phnum; i++) { 2598 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2599 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2600 &b_arg)) { 2601 for (j = 0; j < hdr->e_phnum; j++) { 2602 if (phdr[j].p_type == PT_NOTE && 2603 __elfN(parse_notes)(imgp, &fctl_note, 2604 FREEBSD_ABI_VENDOR, &phdr[j], 2605 note_fctl_cb, &f_arg)) 2606 break; 2607 } 2608 return (TRUE); 2609 } 2610 } 2611 return (FALSE); 2612 2613 } 2614 2615 /* 2616 * Tell kern_execve.c about it, with a little help from the linker. 2617 */ 2618 static struct execsw __elfN(execsw) = { 2619 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2620 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2621 }; 2622 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2623 2624 static vm_prot_t 2625 __elfN(trans_prot)(Elf_Word flags) 2626 { 2627 vm_prot_t prot; 2628 2629 prot = 0; 2630 if (flags & PF_X) 2631 prot |= VM_PROT_EXECUTE; 2632 if (flags & PF_W) 2633 prot |= VM_PROT_WRITE; 2634 if (flags & PF_R) 2635 prot |= VM_PROT_READ; 2636 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2637 if (i386_read_exec && (flags & PF_R)) 2638 prot |= VM_PROT_EXECUTE; 2639 #endif 2640 return (prot); 2641 } 2642 2643 static Elf_Word 2644 __elfN(untrans_prot)(vm_prot_t prot) 2645 { 2646 Elf_Word flags; 2647 2648 flags = 0; 2649 if (prot & VM_PROT_EXECUTE) 2650 flags |= PF_X; 2651 if (prot & VM_PROT_READ) 2652 flags |= PF_R; 2653 if (prot & VM_PROT_WRITE) 2654 flags |= PF_W; 2655 return (flags); 2656 } 2657