1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 #include "opt_compat.h" 39 40 #include <sys/param.h> 41 #include <sys/capsicum.h> 42 #include <sys/compressor.h> 43 #include <sys/exec.h> 44 #include <sys/fcntl.h> 45 #include <sys/imgact.h> 46 #include <sys/imgact_elf.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mount.h> 52 #include <sys/mman.h> 53 #include <sys/namei.h> 54 #include <sys/pioctl.h> 55 #include <sys/proc.h> 56 #include <sys/procfs.h> 57 #include <sys/ptrace.h> 58 #include <sys/racct.h> 59 #include <sys/resourcevar.h> 60 #include <sys/rwlock.h> 61 #include <sys/sbuf.h> 62 #include <sys/sf_buf.h> 63 #include <sys/smp.h> 64 #include <sys/systm.h> 65 #include <sys/signalvar.h> 66 #include <sys/stat.h> 67 #include <sys/sx.h> 68 #include <sys/syscall.h> 69 #include <sys/sysctl.h> 70 #include <sys/sysent.h> 71 #include <sys/vnode.h> 72 #include <sys/syslog.h> 73 #include <sys/eventhandler.h> 74 #include <sys/user.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_param.h> 79 #include <vm/pmap.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_extern.h> 83 84 #include <machine/elf.h> 85 #include <machine/md_var.h> 86 87 #define ELF_NOTE_ROUNDSIZE 4 88 #define OLD_EI_BRAND 8 89 90 static int __elfN(check_header)(const Elf_Ehdr *hdr); 91 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 92 const char *interp, int interp_name_len, int32_t *osrel); 93 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 94 u_long *entry, size_t pagesize); 95 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 96 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 97 size_t pagesize); 98 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 99 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 100 int32_t *osrel); 101 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 102 static boolean_t __elfN(check_note)(struct image_params *imgp, 103 Elf_Brandnote *checknote, int32_t *osrel); 104 static vm_prot_t __elfN(trans_prot)(Elf_Word); 105 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 106 107 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 108 ""); 109 110 #define CORE_BUF_SIZE (16 * 1024) 111 112 int __elfN(fallback_brand) = -1; 113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 114 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 115 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 116 117 static int elf_legacy_coredump = 0; 118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 119 &elf_legacy_coredump, 0, 120 "include all and only RW pages in core dumps"); 121 122 int __elfN(nxstack) = 123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 124 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) 125 1; 126 #else 127 0; 128 #endif 129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 132 133 #if __ELF_WORD_SIZE == 32 134 #if defined(__amd64__) 135 int i386_read_exec = 0; 136 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 137 "enable execution from readable segments"); 138 #endif 139 #endif 140 141 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 142 143 #define trunc_page_ps(va, ps) rounddown2(va, ps) 144 #define round_page_ps(va, ps) roundup2(va, ps) 145 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 146 147 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 148 149 Elf_Brandnote __elfN(freebsd_brandnote) = { 150 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 151 .hdr.n_descsz = sizeof(int32_t), 152 .hdr.n_type = NT_FREEBSD_ABI_TAG, 153 .vendor = FREEBSD_ABI_VENDOR, 154 .flags = BN_TRANSLATE_OSREL, 155 .trans_osrel = __elfN(freebsd_trans_osrel) 156 }; 157 158 static boolean_t 159 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 160 { 161 uintptr_t p; 162 163 p = (uintptr_t)(note + 1); 164 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 165 *osrel = *(const int32_t *)(p); 166 167 return (TRUE); 168 } 169 170 static const char GNU_ABI_VENDOR[] = "GNU"; 171 static int GNU_KFREEBSD_ABI_DESC = 3; 172 173 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 174 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 175 .hdr.n_descsz = 16, /* XXX at least 16 */ 176 .hdr.n_type = 1, 177 .vendor = GNU_ABI_VENDOR, 178 .flags = BN_TRANSLATE_OSREL, 179 .trans_osrel = kfreebsd_trans_osrel 180 }; 181 182 static boolean_t 183 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 184 { 185 const Elf32_Word *desc; 186 uintptr_t p; 187 188 p = (uintptr_t)(note + 1); 189 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 190 191 desc = (const Elf32_Word *)p; 192 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 193 return (FALSE); 194 195 /* 196 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 197 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 198 */ 199 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 200 201 return (TRUE); 202 } 203 204 int 205 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 206 { 207 int i; 208 209 for (i = 0; i < MAX_BRANDS; i++) { 210 if (elf_brand_list[i] == NULL) { 211 elf_brand_list[i] = entry; 212 break; 213 } 214 } 215 if (i == MAX_BRANDS) { 216 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 217 __func__, entry); 218 return (-1); 219 } 220 return (0); 221 } 222 223 int 224 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 225 { 226 int i; 227 228 for (i = 0; i < MAX_BRANDS; i++) { 229 if (elf_brand_list[i] == entry) { 230 elf_brand_list[i] = NULL; 231 break; 232 } 233 } 234 if (i == MAX_BRANDS) 235 return (-1); 236 return (0); 237 } 238 239 int 240 __elfN(brand_inuse)(Elf_Brandinfo *entry) 241 { 242 struct proc *p; 243 int rval = FALSE; 244 245 sx_slock(&allproc_lock); 246 FOREACH_PROC_IN_SYSTEM(p) { 247 if (p->p_sysent == entry->sysvec) { 248 rval = TRUE; 249 break; 250 } 251 } 252 sx_sunlock(&allproc_lock); 253 254 return (rval); 255 } 256 257 static Elf_Brandinfo * 258 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 259 int interp_name_len, int32_t *osrel) 260 { 261 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 262 Elf_Brandinfo *bi, *bi_m; 263 boolean_t ret; 264 int i; 265 266 /* 267 * We support four types of branding -- (1) the ELF EI_OSABI field 268 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 269 * branding w/in the ELF header, (3) path of the `interp_path' 270 * field, and (4) the ".note.ABI-tag" ELF section. 271 */ 272 273 /* Look for an ".note.ABI-tag" ELF section */ 274 bi_m = NULL; 275 for (i = 0; i < MAX_BRANDS; i++) { 276 bi = elf_brand_list[i]; 277 if (bi == NULL) 278 continue; 279 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 280 continue; 281 if (hdr->e_machine == bi->machine && (bi->flags & 282 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 283 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 284 /* Give brand a chance to veto check_note's guess */ 285 if (ret && bi->header_supported) 286 ret = bi->header_supported(imgp); 287 /* 288 * If note checker claimed the binary, but the 289 * interpreter path in the image does not 290 * match default one for the brand, try to 291 * search for other brands with the same 292 * interpreter. Either there is better brand 293 * with the right interpreter, or, failing 294 * this, we return first brand which accepted 295 * our note and, optionally, header. 296 */ 297 if (ret && bi_m == NULL && interp != NULL && 298 (bi->interp_path == NULL || 299 (strlen(bi->interp_path) + 1 != interp_name_len || 300 strncmp(interp, bi->interp_path, interp_name_len) 301 != 0))) { 302 bi_m = bi; 303 ret = 0; 304 } 305 if (ret) 306 return (bi); 307 } 308 } 309 if (bi_m != NULL) 310 return (bi_m); 311 312 /* If the executable has a brand, search for it in the brand list. */ 313 for (i = 0; i < MAX_BRANDS; i++) { 314 bi = elf_brand_list[i]; 315 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 316 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 317 continue; 318 if (hdr->e_machine == bi->machine && 319 (hdr->e_ident[EI_OSABI] == bi->brand || 320 (bi->compat_3_brand != NULL && 321 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 322 bi->compat_3_brand) == 0))) { 323 /* Looks good, but give brand a chance to veto */ 324 if (!bi->header_supported || 325 bi->header_supported(imgp)) { 326 /* 327 * Again, prefer strictly matching 328 * interpreter path. 329 */ 330 if (interp_name_len == 0 && 331 bi->interp_path == NULL) 332 return (bi); 333 if (bi->interp_path != NULL && 334 strlen(bi->interp_path) + 1 == 335 interp_name_len && strncmp(interp, 336 bi->interp_path, interp_name_len) == 0) 337 return (bi); 338 if (bi_m == NULL) 339 bi_m = bi; 340 } 341 } 342 } 343 if (bi_m != NULL) 344 return (bi_m); 345 346 /* No known brand, see if the header is recognized by any brand */ 347 for (i = 0; i < MAX_BRANDS; i++) { 348 bi = elf_brand_list[i]; 349 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 350 bi->header_supported == NULL) 351 continue; 352 if (hdr->e_machine == bi->machine) { 353 ret = bi->header_supported(imgp); 354 if (ret) 355 return (bi); 356 } 357 } 358 359 /* Lacking a known brand, search for a recognized interpreter. */ 360 if (interp != NULL) { 361 for (i = 0; i < MAX_BRANDS; i++) { 362 bi = elf_brand_list[i]; 363 if (bi == NULL || (bi->flags & 364 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 365 != 0) 366 continue; 367 if (hdr->e_machine == bi->machine && 368 bi->interp_path != NULL && 369 /* ELF image p_filesz includes terminating zero */ 370 strlen(bi->interp_path) + 1 == interp_name_len && 371 strncmp(interp, bi->interp_path, interp_name_len) 372 == 0) 373 return (bi); 374 } 375 } 376 377 /* Lacking a recognized interpreter, try the default brand */ 378 for (i = 0; i < MAX_BRANDS; i++) { 379 bi = elf_brand_list[i]; 380 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 381 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 382 continue; 383 if (hdr->e_machine == bi->machine && 384 __elfN(fallback_brand) == bi->brand) 385 return (bi); 386 } 387 return (NULL); 388 } 389 390 static int 391 __elfN(check_header)(const Elf_Ehdr *hdr) 392 { 393 Elf_Brandinfo *bi; 394 int i; 395 396 if (!IS_ELF(*hdr) || 397 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 398 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 399 hdr->e_ident[EI_VERSION] != EV_CURRENT || 400 hdr->e_phentsize != sizeof(Elf_Phdr) || 401 hdr->e_version != ELF_TARG_VER) 402 return (ENOEXEC); 403 404 /* 405 * Make sure we have at least one brand for this machine. 406 */ 407 408 for (i = 0; i < MAX_BRANDS; i++) { 409 bi = elf_brand_list[i]; 410 if (bi != NULL && bi->machine == hdr->e_machine) 411 break; 412 } 413 if (i == MAX_BRANDS) 414 return (ENOEXEC); 415 416 return (0); 417 } 418 419 static int 420 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 421 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 422 { 423 struct sf_buf *sf; 424 int error; 425 vm_offset_t off; 426 427 /* 428 * Create the page if it doesn't exist yet. Ignore errors. 429 */ 430 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 431 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 432 433 /* 434 * Find the page from the underlying object. 435 */ 436 if (object != NULL) { 437 sf = vm_imgact_map_page(object, offset); 438 if (sf == NULL) 439 return (KERN_FAILURE); 440 off = offset - trunc_page(offset); 441 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 442 end - start); 443 vm_imgact_unmap_page(sf); 444 if (error != 0) 445 return (KERN_FAILURE); 446 } 447 448 return (KERN_SUCCESS); 449 } 450 451 static int 452 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 453 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 454 int cow) 455 { 456 struct sf_buf *sf; 457 vm_offset_t off; 458 vm_size_t sz; 459 int error, locked, rv; 460 461 if (start != trunc_page(start)) { 462 rv = __elfN(map_partial)(map, object, offset, start, 463 round_page(start), prot); 464 if (rv != KERN_SUCCESS) 465 return (rv); 466 offset += round_page(start) - start; 467 start = round_page(start); 468 } 469 if (end != round_page(end)) { 470 rv = __elfN(map_partial)(map, object, offset + 471 trunc_page(end) - start, trunc_page(end), end, prot); 472 if (rv != KERN_SUCCESS) 473 return (rv); 474 end = trunc_page(end); 475 } 476 if (start >= end) 477 return (KERN_SUCCESS); 478 if ((offset & PAGE_MASK) != 0) { 479 /* 480 * The mapping is not page aligned. This means that we have 481 * to copy the data. 482 */ 483 rv = vm_map_fixed(map, NULL, 0, start, end - start, 484 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 485 if (rv != KERN_SUCCESS) 486 return (rv); 487 if (object == NULL) 488 return (KERN_SUCCESS); 489 for (; start < end; start += sz) { 490 sf = vm_imgact_map_page(object, offset); 491 if (sf == NULL) 492 return (KERN_FAILURE); 493 off = offset - trunc_page(offset); 494 sz = end - start; 495 if (sz > PAGE_SIZE - off) 496 sz = PAGE_SIZE - off; 497 error = copyout((caddr_t)sf_buf_kva(sf) + off, 498 (caddr_t)start, sz); 499 vm_imgact_unmap_page(sf); 500 if (error != 0) 501 return (KERN_FAILURE); 502 offset += sz; 503 } 504 } else { 505 vm_object_reference(object); 506 rv = vm_map_fixed(map, object, offset, start, end - start, 507 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 508 if (rv != KERN_SUCCESS) { 509 locked = VOP_ISLOCKED(imgp->vp); 510 VOP_UNLOCK(imgp->vp, 0); 511 vm_object_deallocate(object); 512 vn_lock(imgp->vp, locked | LK_RETRY); 513 return (rv); 514 } 515 } 516 return (KERN_SUCCESS); 517 } 518 519 static int 520 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 521 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 522 size_t pagesize) 523 { 524 struct sf_buf *sf; 525 size_t map_len; 526 vm_map_t map; 527 vm_object_t object; 528 vm_offset_t off, map_addr; 529 int error, rv, cow; 530 size_t copy_len; 531 vm_ooffset_t file_addr; 532 533 /* 534 * It's necessary to fail if the filsz + offset taken from the 535 * header is greater than the actual file pager object's size. 536 * If we were to allow this, then the vm_map_find() below would 537 * walk right off the end of the file object and into the ether. 538 * 539 * While I'm here, might as well check for something else that 540 * is invalid: filsz cannot be greater than memsz. 541 */ 542 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 543 filsz > memsz) { 544 uprintf("elf_load_section: truncated ELF file\n"); 545 return (ENOEXEC); 546 } 547 548 object = imgp->object; 549 map = &imgp->proc->p_vmspace->vm_map; 550 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 551 file_addr = trunc_page_ps(offset, pagesize); 552 553 /* 554 * We have two choices. We can either clear the data in the last page 555 * of an oversized mapping, or we can start the anon mapping a page 556 * early and copy the initialized data into that first page. We 557 * choose the second. 558 */ 559 if (filsz == 0) 560 map_len = 0; 561 else if (memsz > filsz) 562 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 563 else 564 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 565 566 if (map_len != 0) { 567 /* cow flags: don't dump readonly sections in core */ 568 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 569 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 570 571 rv = __elfN(map_insert)(imgp, map, 572 object, 573 file_addr, /* file offset */ 574 map_addr, /* virtual start */ 575 map_addr + map_len,/* virtual end */ 576 prot, 577 cow); 578 if (rv != KERN_SUCCESS) 579 return (EINVAL); 580 581 /* we can stop now if we've covered it all */ 582 if (memsz == filsz) 583 return (0); 584 } 585 586 587 /* 588 * We have to get the remaining bit of the file into the first part 589 * of the oversized map segment. This is normally because the .data 590 * segment in the file is extended to provide bss. It's a neat idea 591 * to try and save a page, but it's a pain in the behind to implement. 592 */ 593 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset + 594 filsz, pagesize); 595 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 596 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 597 map_addr; 598 599 /* This had damn well better be true! */ 600 if (map_len != 0) { 601 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 602 map_addr + map_len, prot, 0); 603 if (rv != KERN_SUCCESS) 604 return (EINVAL); 605 } 606 607 if (copy_len != 0) { 608 sf = vm_imgact_map_page(object, offset + filsz); 609 if (sf == NULL) 610 return (EIO); 611 612 /* send the page fragment to user space */ 613 off = trunc_page_ps(offset + filsz, pagesize) - 614 trunc_page(offset + filsz); 615 error = copyout((caddr_t)sf_buf_kva(sf) + off, 616 (caddr_t)map_addr, copy_len); 617 vm_imgact_unmap_page(sf); 618 if (error != 0) 619 return (error); 620 } 621 622 /* 623 * Remove write access to the page if it was only granted by map_insert 624 * to allow copyout. 625 */ 626 if ((prot & VM_PROT_WRITE) == 0) 627 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 628 map_len), prot, FALSE); 629 630 return (0); 631 } 632 633 /* 634 * Load the file "file" into memory. It may be either a shared object 635 * or an executable. 636 * 637 * The "addr" reference parameter is in/out. On entry, it specifies 638 * the address where a shared object should be loaded. If the file is 639 * an executable, this value is ignored. On exit, "addr" specifies 640 * where the file was actually loaded. 641 * 642 * The "entry" reference parameter is out only. On exit, it specifies 643 * the entry point for the loaded file. 644 */ 645 static int 646 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 647 u_long *entry, size_t pagesize) 648 { 649 struct { 650 struct nameidata nd; 651 struct vattr attr; 652 struct image_params image_params; 653 } *tempdata; 654 const Elf_Ehdr *hdr = NULL; 655 const Elf_Phdr *phdr = NULL; 656 struct nameidata *nd; 657 struct vattr *attr; 658 struct image_params *imgp; 659 vm_prot_t prot; 660 u_long rbase; 661 u_long base_addr = 0; 662 int error, i, numsegs; 663 664 #ifdef CAPABILITY_MODE 665 /* 666 * XXXJA: This check can go away once we are sufficiently confident 667 * that the checks in namei() are correct. 668 */ 669 if (IN_CAPABILITY_MODE(curthread)) 670 return (ECAPMODE); 671 #endif 672 673 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 674 nd = &tempdata->nd; 675 attr = &tempdata->attr; 676 imgp = &tempdata->image_params; 677 678 /* 679 * Initialize part of the common data 680 */ 681 imgp->proc = p; 682 imgp->attr = attr; 683 imgp->firstpage = NULL; 684 imgp->image_header = NULL; 685 imgp->object = NULL; 686 imgp->execlabel = NULL; 687 688 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 689 if ((error = namei(nd)) != 0) { 690 nd->ni_vp = NULL; 691 goto fail; 692 } 693 NDFREE(nd, NDF_ONLY_PNBUF); 694 imgp->vp = nd->ni_vp; 695 696 /* 697 * Check permissions, modes, uid, etc on the file, and "open" it. 698 */ 699 error = exec_check_permissions(imgp); 700 if (error) 701 goto fail; 702 703 error = exec_map_first_page(imgp); 704 if (error) 705 goto fail; 706 707 /* 708 * Also make certain that the interpreter stays the same, so set 709 * its VV_TEXT flag, too. 710 */ 711 VOP_SET_TEXT(nd->ni_vp); 712 713 imgp->object = nd->ni_vp->v_object; 714 715 hdr = (const Elf_Ehdr *)imgp->image_header; 716 if ((error = __elfN(check_header)(hdr)) != 0) 717 goto fail; 718 if (hdr->e_type == ET_DYN) 719 rbase = *addr; 720 else if (hdr->e_type == ET_EXEC) 721 rbase = 0; 722 else { 723 error = ENOEXEC; 724 goto fail; 725 } 726 727 /* Only support headers that fit within first page for now */ 728 if ((hdr->e_phoff > PAGE_SIZE) || 729 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 730 error = ENOEXEC; 731 goto fail; 732 } 733 734 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 735 if (!aligned(phdr, Elf_Addr)) { 736 error = ENOEXEC; 737 goto fail; 738 } 739 740 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 741 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 742 /* Loadable segment */ 743 prot = __elfN(trans_prot)(phdr[i].p_flags); 744 error = __elfN(load_section)(imgp, phdr[i].p_offset, 745 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 746 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 747 if (error != 0) 748 goto fail; 749 /* 750 * Establish the base address if this is the 751 * first segment. 752 */ 753 if (numsegs == 0) 754 base_addr = trunc_page(phdr[i].p_vaddr + 755 rbase); 756 numsegs++; 757 } 758 } 759 *addr = base_addr; 760 *entry = (unsigned long)hdr->e_entry + rbase; 761 762 fail: 763 if (imgp->firstpage) 764 exec_unmap_first_page(imgp); 765 766 if (nd->ni_vp) 767 vput(nd->ni_vp); 768 769 free(tempdata, M_TEMP); 770 771 return (error); 772 } 773 774 static int 775 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 776 { 777 struct thread *td; 778 const Elf_Ehdr *hdr; 779 const Elf_Phdr *phdr; 780 Elf_Auxargs *elf_auxargs; 781 struct vmspace *vmspace; 782 const char *err_str, *newinterp; 783 char *interp, *interp_buf, *path; 784 Elf_Brandinfo *brand_info; 785 struct sysentvec *sv; 786 vm_prot_t prot; 787 u_long text_size, data_size, total_size, text_addr, data_addr; 788 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 789 int32_t osrel; 790 int error, i, n, interp_name_len, have_interp; 791 792 hdr = (const Elf_Ehdr *)imgp->image_header; 793 794 /* 795 * Do we have a valid ELF header ? 796 * 797 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 798 * if particular brand doesn't support it. 799 */ 800 if (__elfN(check_header)(hdr) != 0 || 801 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 802 return (-1); 803 804 /* 805 * From here on down, we return an errno, not -1, as we've 806 * detected an ELF file. 807 */ 808 809 if ((hdr->e_phoff > PAGE_SIZE) || 810 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 811 /* Only support headers in first page for now */ 812 uprintf("Program headers not in the first page\n"); 813 return (ENOEXEC); 814 } 815 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 816 if (!aligned(phdr, Elf_Addr)) { 817 uprintf("Unaligned program headers\n"); 818 return (ENOEXEC); 819 } 820 821 n = error = 0; 822 baddr = 0; 823 osrel = 0; 824 text_size = data_size = total_size = text_addr = data_addr = 0; 825 entry = proghdr = 0; 826 interp_name_len = 0; 827 err_str = newinterp = NULL; 828 interp = interp_buf = NULL; 829 td = curthread; 830 831 for (i = 0; i < hdr->e_phnum; i++) { 832 switch (phdr[i].p_type) { 833 case PT_LOAD: 834 if (n == 0) 835 baddr = phdr[i].p_vaddr; 836 n++; 837 break; 838 case PT_INTERP: 839 /* Path to interpreter */ 840 if (phdr[i].p_filesz > MAXPATHLEN) { 841 uprintf("Invalid PT_INTERP\n"); 842 error = ENOEXEC; 843 goto ret; 844 } 845 if (interp != NULL) { 846 uprintf("Multiple PT_INTERP headers\n"); 847 error = ENOEXEC; 848 goto ret; 849 } 850 interp_name_len = phdr[i].p_filesz; 851 if (phdr[i].p_offset > PAGE_SIZE || 852 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 853 VOP_UNLOCK(imgp->vp, 0); 854 interp_buf = malloc(interp_name_len + 1, M_TEMP, 855 M_WAITOK); 856 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 857 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 858 interp_name_len, phdr[i].p_offset, 859 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 860 NOCRED, NULL, td); 861 if (error != 0) { 862 uprintf("i/o error PT_INTERP\n"); 863 goto ret; 864 } 865 interp_buf[interp_name_len] = '\0'; 866 interp = interp_buf; 867 } else { 868 interp = __DECONST(char *, imgp->image_header) + 869 phdr[i].p_offset; 870 } 871 break; 872 case PT_GNU_STACK: 873 if (__elfN(nxstack)) 874 imgp->stack_prot = 875 __elfN(trans_prot)(phdr[i].p_flags); 876 imgp->stack_sz = phdr[i].p_memsz; 877 break; 878 } 879 } 880 881 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 882 &osrel); 883 if (brand_info == NULL) { 884 uprintf("ELF binary type \"%u\" not known.\n", 885 hdr->e_ident[EI_OSABI]); 886 error = ENOEXEC; 887 goto ret; 888 } 889 et_dyn_addr = 0; 890 if (hdr->e_type == ET_DYN) { 891 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 892 uprintf("Cannot execute shared object\n"); 893 error = ENOEXEC; 894 goto ret; 895 } 896 /* 897 * Honour the base load address from the dso if it is 898 * non-zero for some reason. 899 */ 900 if (baddr == 0) 901 et_dyn_addr = ET_DYN_LOAD_ADDR; 902 } 903 sv = brand_info->sysvec; 904 if (interp != NULL && brand_info->interp_newpath != NULL) 905 newinterp = brand_info->interp_newpath; 906 907 /* 908 * Avoid a possible deadlock if the current address space is destroyed 909 * and that address space maps the locked vnode. In the common case, 910 * the locked vnode's v_usecount is decremented but remains greater 911 * than zero. Consequently, the vnode lock is not needed by vrele(). 912 * However, in cases where the vnode lock is external, such as nullfs, 913 * v_usecount may become zero. 914 * 915 * The VV_TEXT flag prevents modifications to the executable while 916 * the vnode is unlocked. 917 */ 918 VOP_UNLOCK(imgp->vp, 0); 919 920 error = exec_new_vmspace(imgp, sv); 921 imgp->proc->p_sysent = sv; 922 923 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 924 if (error != 0) 925 goto ret; 926 927 for (i = 0; i < hdr->e_phnum; i++) { 928 switch (phdr[i].p_type) { 929 case PT_LOAD: /* Loadable segment */ 930 if (phdr[i].p_memsz == 0) 931 break; 932 prot = __elfN(trans_prot)(phdr[i].p_flags); 933 error = __elfN(load_section)(imgp, phdr[i].p_offset, 934 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 935 phdr[i].p_memsz, phdr[i].p_filesz, prot, 936 sv->sv_pagesize); 937 if (error != 0) 938 goto ret; 939 940 /* 941 * If this segment contains the program headers, 942 * remember their virtual address for the AT_PHDR 943 * aux entry. Static binaries don't usually include 944 * a PT_PHDR entry. 945 */ 946 if (phdr[i].p_offset == 0 && 947 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 948 <= phdr[i].p_filesz) 949 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 950 et_dyn_addr; 951 952 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 953 seg_size = round_page(phdr[i].p_memsz + 954 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 955 956 /* 957 * Make the largest executable segment the official 958 * text segment and all others data. 959 * 960 * Note that obreak() assumes that data_addr + 961 * data_size == end of data load area, and the ELF 962 * file format expects segments to be sorted by 963 * address. If multiple data segments exist, the 964 * last one will be used. 965 */ 966 967 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 968 text_size = seg_size; 969 text_addr = seg_addr; 970 } else { 971 data_size = seg_size; 972 data_addr = seg_addr; 973 } 974 total_size += seg_size; 975 break; 976 case PT_PHDR: /* Program header table info */ 977 proghdr = phdr[i].p_vaddr + et_dyn_addr; 978 break; 979 default: 980 break; 981 } 982 } 983 984 if (data_addr == 0 && data_size == 0) { 985 data_addr = text_addr; 986 data_size = text_size; 987 } 988 989 entry = (u_long)hdr->e_entry + et_dyn_addr; 990 991 /* 992 * Check limits. It should be safe to check the 993 * limits after loading the segments since we do 994 * not actually fault in all the segments pages. 995 */ 996 PROC_LOCK(imgp->proc); 997 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 998 err_str = "Data segment size exceeds process limit"; 999 else if (text_size > maxtsiz) 1000 err_str = "Text segment size exceeds system limit"; 1001 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 1002 err_str = "Total segment size exceeds process limit"; 1003 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 1004 err_str = "Data segment size exceeds resource limit"; 1005 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 1006 err_str = "Total segment size exceeds resource limit"; 1007 if (err_str != NULL) { 1008 PROC_UNLOCK(imgp->proc); 1009 uprintf("%s\n", err_str); 1010 error = ENOMEM; 1011 goto ret; 1012 } 1013 1014 vmspace = imgp->proc->p_vmspace; 1015 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 1016 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 1017 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 1018 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 1019 1020 /* 1021 * We load the dynamic linker where a userland call 1022 * to mmap(0, ...) would put it. The rationale behind this 1023 * calculation is that it leaves room for the heap to grow to 1024 * its maximum allowed size. 1025 */ 1026 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1027 RLIMIT_DATA)); 1028 PROC_UNLOCK(imgp->proc); 1029 1030 imgp->entry_addr = entry; 1031 1032 if (interp != NULL) { 1033 have_interp = FALSE; 1034 VOP_UNLOCK(imgp->vp, 0); 1035 if (brand_info->emul_path != NULL && 1036 brand_info->emul_path[0] != '\0') { 1037 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1038 snprintf(path, MAXPATHLEN, "%s%s", 1039 brand_info->emul_path, interp); 1040 error = __elfN(load_file)(imgp->proc, path, &addr, 1041 &imgp->entry_addr, sv->sv_pagesize); 1042 free(path, M_TEMP); 1043 if (error == 0) 1044 have_interp = TRUE; 1045 } 1046 if (!have_interp && newinterp != NULL && 1047 (brand_info->interp_path == NULL || 1048 strcmp(interp, brand_info->interp_path) == 0)) { 1049 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1050 &imgp->entry_addr, sv->sv_pagesize); 1051 if (error == 0) 1052 have_interp = TRUE; 1053 } 1054 if (!have_interp) { 1055 error = __elfN(load_file)(imgp->proc, interp, &addr, 1056 &imgp->entry_addr, sv->sv_pagesize); 1057 } 1058 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1059 if (error != 0) { 1060 uprintf("ELF interpreter %s not found, error %d\n", 1061 interp, error); 1062 goto ret; 1063 } 1064 } else 1065 addr = et_dyn_addr; 1066 1067 /* 1068 * Construct auxargs table (used by the fixup routine) 1069 */ 1070 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1071 elf_auxargs->execfd = -1; 1072 elf_auxargs->phdr = proghdr; 1073 elf_auxargs->phent = hdr->e_phentsize; 1074 elf_auxargs->phnum = hdr->e_phnum; 1075 elf_auxargs->pagesz = PAGE_SIZE; 1076 elf_auxargs->base = addr; 1077 elf_auxargs->flags = 0; 1078 elf_auxargs->entry = entry; 1079 elf_auxargs->hdr_eflags = hdr->e_flags; 1080 1081 imgp->auxargs = elf_auxargs; 1082 imgp->interpreted = 0; 1083 imgp->reloc_base = addr; 1084 imgp->proc->p_osrel = osrel; 1085 imgp->proc->p_elf_machine = hdr->e_machine; 1086 imgp->proc->p_elf_flags = hdr->e_flags; 1087 1088 ret: 1089 free(interp_buf, M_TEMP); 1090 return (error); 1091 } 1092 1093 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1094 1095 int 1096 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1097 { 1098 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1099 Elf_Addr *base; 1100 Elf_Addr *pos; 1101 1102 base = (Elf_Addr *)*stack_base; 1103 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1104 1105 if (args->execfd != -1) 1106 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1107 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1108 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1109 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1110 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1111 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1112 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1113 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1114 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1115 if (imgp->execpathp != 0) 1116 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1117 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1118 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1119 if (imgp->canary != 0) { 1120 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1121 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1122 } 1123 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1124 if (imgp->pagesizes != 0) { 1125 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1126 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1127 } 1128 if (imgp->sysent->sv_timekeep_base != 0) { 1129 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1130 imgp->sysent->sv_timekeep_base); 1131 } 1132 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1133 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1134 imgp->sysent->sv_stackprot); 1135 if (imgp->sysent->sv_hwcap != NULL) 1136 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1137 if (imgp->sysent->sv_hwcap2 != NULL) 1138 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1139 AUXARGS_ENTRY(pos, AT_NULL, 0); 1140 1141 free(imgp->auxargs, M_TEMP); 1142 imgp->auxargs = NULL; 1143 1144 base--; 1145 suword(base, (long)imgp->args->argc); 1146 *stack_base = (register_t *)base; 1147 return (0); 1148 } 1149 1150 /* 1151 * Code for generating ELF core dumps. 1152 */ 1153 1154 typedef void (*segment_callback)(vm_map_entry_t, void *); 1155 1156 /* Closure for cb_put_phdr(). */ 1157 struct phdr_closure { 1158 Elf_Phdr *phdr; /* Program header to fill in */ 1159 Elf_Off offset; /* Offset of segment in core file */ 1160 }; 1161 1162 /* Closure for cb_size_segment(). */ 1163 struct sseg_closure { 1164 int count; /* Count of writable segments. */ 1165 size_t size; /* Total size of all writable segments. */ 1166 }; 1167 1168 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1169 1170 struct note_info { 1171 int type; /* Note type. */ 1172 outfunc_t outfunc; /* Output function. */ 1173 void *outarg; /* Argument for the output function. */ 1174 size_t outsize; /* Output size. */ 1175 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1176 }; 1177 1178 TAILQ_HEAD(note_info_list, note_info); 1179 1180 /* Coredump output parameters. */ 1181 struct coredump_params { 1182 off_t offset; 1183 struct ucred *active_cred; 1184 struct ucred *file_cred; 1185 struct thread *td; 1186 struct vnode *vp; 1187 struct compressor *comp; 1188 }; 1189 1190 extern int compress_user_cores; 1191 extern int compress_user_cores_level; 1192 1193 static void cb_put_phdr(vm_map_entry_t, void *); 1194 static void cb_size_segment(vm_map_entry_t, void *); 1195 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1196 enum uio_seg); 1197 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1198 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1199 struct note_info_list *, size_t); 1200 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1201 size_t *); 1202 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1203 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1204 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1205 static int sbuf_drain_core_output(void *, const char *, int); 1206 static int sbuf_drain_count(void *arg, const char *data, int len); 1207 1208 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1209 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1210 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1211 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1212 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1213 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1214 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1215 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1216 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1217 static void note_procstat_files(void *, struct sbuf *, size_t *); 1218 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1219 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1220 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1221 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1222 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1223 1224 /* 1225 * Write out a core segment to the compression stream. 1226 */ 1227 static int 1228 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1229 { 1230 u_int chunk_len; 1231 int error; 1232 1233 while (len > 0) { 1234 chunk_len = MIN(len, CORE_BUF_SIZE); 1235 1236 /* 1237 * We can get EFAULT error here. 1238 * In that case zero out the current chunk of the segment. 1239 */ 1240 error = copyin(base, buf, chunk_len); 1241 if (error != 0) 1242 bzero(buf, chunk_len); 1243 error = compressor_write(p->comp, buf, chunk_len); 1244 if (error != 0) 1245 break; 1246 base += chunk_len; 1247 len -= chunk_len; 1248 } 1249 return (error); 1250 } 1251 1252 static int 1253 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1254 { 1255 1256 return (core_write((struct coredump_params *)arg, base, len, offset, 1257 UIO_SYSSPACE)); 1258 } 1259 1260 static int 1261 core_write(struct coredump_params *p, const void *base, size_t len, 1262 off_t offset, enum uio_seg seg) 1263 { 1264 1265 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1266 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1267 p->active_cred, p->file_cred, NULL, p->td)); 1268 } 1269 1270 static int 1271 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1272 void *tmpbuf) 1273 { 1274 int error; 1275 1276 if (p->comp != NULL) 1277 return (compress_chunk(p, base, tmpbuf, len)); 1278 1279 /* 1280 * EFAULT is a non-fatal error that we can get, for example, 1281 * if the segment is backed by a file but extends beyond its 1282 * end. 1283 */ 1284 error = core_write(p, base, len, offset, UIO_USERSPACE); 1285 if (error == EFAULT) { 1286 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1287 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1288 "for process %s\n", base, len, offset, curproc->p_comm); 1289 1290 /* 1291 * Write a "real" zero byte at the end of the target region 1292 * in the case this is the last segment. 1293 * The intermediate space will be implicitly zero-filled. 1294 */ 1295 error = core_write(p, zero_region, 1, offset + len - 1, 1296 UIO_SYSSPACE); 1297 } 1298 return (error); 1299 } 1300 1301 /* 1302 * Drain into a core file. 1303 */ 1304 static int 1305 sbuf_drain_core_output(void *arg, const char *data, int len) 1306 { 1307 struct coredump_params *p; 1308 int error, locked; 1309 1310 p = (struct coredump_params *)arg; 1311 1312 /* 1313 * Some kern_proc out routines that print to this sbuf may 1314 * call us with the process lock held. Draining with the 1315 * non-sleepable lock held is unsafe. The lock is needed for 1316 * those routines when dumping a live process. In our case we 1317 * can safely release the lock before draining and acquire 1318 * again after. 1319 */ 1320 locked = PROC_LOCKED(p->td->td_proc); 1321 if (locked) 1322 PROC_UNLOCK(p->td->td_proc); 1323 if (p->comp != NULL) 1324 error = compressor_write(p->comp, __DECONST(char *, data), len); 1325 else 1326 error = core_write(p, __DECONST(void *, data), len, p->offset, 1327 UIO_SYSSPACE); 1328 if (locked) 1329 PROC_LOCK(p->td->td_proc); 1330 if (error != 0) 1331 return (-error); 1332 p->offset += len; 1333 return (len); 1334 } 1335 1336 /* 1337 * Drain into a counter. 1338 */ 1339 static int 1340 sbuf_drain_count(void *arg, const char *data __unused, int len) 1341 { 1342 size_t *sizep; 1343 1344 sizep = (size_t *)arg; 1345 *sizep += len; 1346 return (len); 1347 } 1348 1349 int 1350 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1351 { 1352 struct ucred *cred = td->td_ucred; 1353 int error = 0; 1354 struct sseg_closure seginfo; 1355 struct note_info_list notelst; 1356 struct coredump_params params; 1357 struct note_info *ninfo; 1358 void *hdr, *tmpbuf; 1359 size_t hdrsize, notesz, coresize; 1360 1361 hdr = NULL; 1362 tmpbuf = NULL; 1363 TAILQ_INIT(¬elst); 1364 1365 /* Size the program segments. */ 1366 seginfo.count = 0; 1367 seginfo.size = 0; 1368 each_dumpable_segment(td, cb_size_segment, &seginfo); 1369 1370 /* 1371 * Collect info about the core file header area. 1372 */ 1373 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1374 if (seginfo.count + 1 >= PN_XNUM) 1375 hdrsize += sizeof(Elf_Shdr); 1376 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1377 coresize = round_page(hdrsize + notesz) + seginfo.size; 1378 1379 /* Set up core dump parameters. */ 1380 params.offset = 0; 1381 params.active_cred = cred; 1382 params.file_cred = NOCRED; 1383 params.td = td; 1384 params.vp = vp; 1385 params.comp = NULL; 1386 1387 #ifdef RACCT 1388 if (racct_enable) { 1389 PROC_LOCK(td->td_proc); 1390 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1391 PROC_UNLOCK(td->td_proc); 1392 if (error != 0) { 1393 error = EFAULT; 1394 goto done; 1395 } 1396 } 1397 #endif 1398 if (coresize >= limit) { 1399 error = EFAULT; 1400 goto done; 1401 } 1402 1403 /* Create a compression stream if necessary. */ 1404 if (compress_user_cores != 0) { 1405 params.comp = compressor_init(core_compressed_write, 1406 compress_user_cores, CORE_BUF_SIZE, 1407 compress_user_cores_level, ¶ms); 1408 if (params.comp == NULL) { 1409 error = EFAULT; 1410 goto done; 1411 } 1412 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1413 } 1414 1415 /* 1416 * Allocate memory for building the header, fill it up, 1417 * and write it out following the notes. 1418 */ 1419 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1420 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1421 notesz); 1422 1423 /* Write the contents of all of the writable segments. */ 1424 if (error == 0) { 1425 Elf_Phdr *php; 1426 off_t offset; 1427 int i; 1428 1429 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1430 offset = round_page(hdrsize + notesz); 1431 for (i = 0; i < seginfo.count; i++) { 1432 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1433 php->p_filesz, offset, ¶ms, tmpbuf); 1434 if (error != 0) 1435 break; 1436 offset += php->p_filesz; 1437 php++; 1438 } 1439 if (error == 0 && params.comp != NULL) 1440 error = compressor_flush(params.comp); 1441 } 1442 if (error) { 1443 log(LOG_WARNING, 1444 "Failed to write core file for process %s (error %d)\n", 1445 curproc->p_comm, error); 1446 } 1447 1448 done: 1449 free(tmpbuf, M_TEMP); 1450 if (params.comp != NULL) 1451 compressor_fini(params.comp); 1452 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1453 TAILQ_REMOVE(¬elst, ninfo, link); 1454 free(ninfo, M_TEMP); 1455 } 1456 if (hdr != NULL) 1457 free(hdr, M_TEMP); 1458 1459 return (error); 1460 } 1461 1462 /* 1463 * A callback for each_dumpable_segment() to write out the segment's 1464 * program header entry. 1465 */ 1466 static void 1467 cb_put_phdr(entry, closure) 1468 vm_map_entry_t entry; 1469 void *closure; 1470 { 1471 struct phdr_closure *phc = (struct phdr_closure *)closure; 1472 Elf_Phdr *phdr = phc->phdr; 1473 1474 phc->offset = round_page(phc->offset); 1475 1476 phdr->p_type = PT_LOAD; 1477 phdr->p_offset = phc->offset; 1478 phdr->p_vaddr = entry->start; 1479 phdr->p_paddr = 0; 1480 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1481 phdr->p_align = PAGE_SIZE; 1482 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1483 1484 phc->offset += phdr->p_filesz; 1485 phc->phdr++; 1486 } 1487 1488 /* 1489 * A callback for each_dumpable_segment() to gather information about 1490 * the number of segments and their total size. 1491 */ 1492 static void 1493 cb_size_segment(vm_map_entry_t entry, void *closure) 1494 { 1495 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1496 1497 ssc->count++; 1498 ssc->size += entry->end - entry->start; 1499 } 1500 1501 /* 1502 * For each writable segment in the process's memory map, call the given 1503 * function with a pointer to the map entry and some arbitrary 1504 * caller-supplied data. 1505 */ 1506 static void 1507 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1508 { 1509 struct proc *p = td->td_proc; 1510 vm_map_t map = &p->p_vmspace->vm_map; 1511 vm_map_entry_t entry; 1512 vm_object_t backing_object, object; 1513 boolean_t ignore_entry; 1514 1515 vm_map_lock_read(map); 1516 for (entry = map->header.next; entry != &map->header; 1517 entry = entry->next) { 1518 /* 1519 * Don't dump inaccessible mappings, deal with legacy 1520 * coredump mode. 1521 * 1522 * Note that read-only segments related to the elf binary 1523 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1524 * need to arbitrarily ignore such segments. 1525 */ 1526 if (elf_legacy_coredump) { 1527 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1528 continue; 1529 } else { 1530 if ((entry->protection & VM_PROT_ALL) == 0) 1531 continue; 1532 } 1533 1534 /* 1535 * Dont include memory segment in the coredump if 1536 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1537 * madvise(2). Do not dump submaps (i.e. parts of the 1538 * kernel map). 1539 */ 1540 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1541 continue; 1542 1543 if ((object = entry->object.vm_object) == NULL) 1544 continue; 1545 1546 /* Ignore memory-mapped devices and such things. */ 1547 VM_OBJECT_RLOCK(object); 1548 while ((backing_object = object->backing_object) != NULL) { 1549 VM_OBJECT_RLOCK(backing_object); 1550 VM_OBJECT_RUNLOCK(object); 1551 object = backing_object; 1552 } 1553 ignore_entry = object->type != OBJT_DEFAULT && 1554 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1555 object->type != OBJT_PHYS; 1556 VM_OBJECT_RUNLOCK(object); 1557 if (ignore_entry) 1558 continue; 1559 1560 (*func)(entry, closure); 1561 } 1562 vm_map_unlock_read(map); 1563 } 1564 1565 /* 1566 * Write the core file header to the file, including padding up to 1567 * the page boundary. 1568 */ 1569 static int 1570 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1571 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1572 { 1573 struct note_info *ninfo; 1574 struct sbuf *sb; 1575 int error; 1576 1577 /* Fill in the header. */ 1578 bzero(hdr, hdrsize); 1579 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1580 1581 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1582 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1583 sbuf_start_section(sb, NULL); 1584 sbuf_bcat(sb, hdr, hdrsize); 1585 TAILQ_FOREACH(ninfo, notelst, link) 1586 __elfN(putnote)(ninfo, sb); 1587 /* Align up to a page boundary for the program segments. */ 1588 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1589 error = sbuf_finish(sb); 1590 sbuf_delete(sb); 1591 1592 return (error); 1593 } 1594 1595 static void 1596 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1597 size_t *sizep) 1598 { 1599 struct proc *p; 1600 struct thread *thr; 1601 size_t size; 1602 1603 p = td->td_proc; 1604 size = 0; 1605 1606 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1607 1608 /* 1609 * To have the debugger select the right thread (LWP) as the initial 1610 * thread, we dump the state of the thread passed to us in td first. 1611 * This is the thread that causes the core dump and thus likely to 1612 * be the right thread one wants to have selected in the debugger. 1613 */ 1614 thr = td; 1615 while (thr != NULL) { 1616 size += register_note(list, NT_PRSTATUS, 1617 __elfN(note_prstatus), thr); 1618 size += register_note(list, NT_FPREGSET, 1619 __elfN(note_fpregset), thr); 1620 size += register_note(list, NT_THRMISC, 1621 __elfN(note_thrmisc), thr); 1622 size += register_note(list, NT_PTLWPINFO, 1623 __elfN(note_ptlwpinfo), thr); 1624 size += register_note(list, -1, 1625 __elfN(note_threadmd), thr); 1626 1627 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1628 TAILQ_NEXT(thr, td_plist); 1629 if (thr == td) 1630 thr = TAILQ_NEXT(thr, td_plist); 1631 } 1632 1633 size += register_note(list, NT_PROCSTAT_PROC, 1634 __elfN(note_procstat_proc), p); 1635 size += register_note(list, NT_PROCSTAT_FILES, 1636 note_procstat_files, p); 1637 size += register_note(list, NT_PROCSTAT_VMMAP, 1638 note_procstat_vmmap, p); 1639 size += register_note(list, NT_PROCSTAT_GROUPS, 1640 note_procstat_groups, p); 1641 size += register_note(list, NT_PROCSTAT_UMASK, 1642 note_procstat_umask, p); 1643 size += register_note(list, NT_PROCSTAT_RLIMIT, 1644 note_procstat_rlimit, p); 1645 size += register_note(list, NT_PROCSTAT_OSREL, 1646 note_procstat_osrel, p); 1647 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1648 __elfN(note_procstat_psstrings), p); 1649 size += register_note(list, NT_PROCSTAT_AUXV, 1650 __elfN(note_procstat_auxv), p); 1651 1652 *sizep = size; 1653 } 1654 1655 static void 1656 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1657 size_t notesz) 1658 { 1659 Elf_Ehdr *ehdr; 1660 Elf_Phdr *phdr; 1661 Elf_Shdr *shdr; 1662 struct phdr_closure phc; 1663 1664 ehdr = (Elf_Ehdr *)hdr; 1665 1666 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1667 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1668 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1669 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1670 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1671 ehdr->e_ident[EI_DATA] = ELF_DATA; 1672 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1673 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1674 ehdr->e_ident[EI_ABIVERSION] = 0; 1675 ehdr->e_ident[EI_PAD] = 0; 1676 ehdr->e_type = ET_CORE; 1677 ehdr->e_machine = td->td_proc->p_elf_machine; 1678 ehdr->e_version = EV_CURRENT; 1679 ehdr->e_entry = 0; 1680 ehdr->e_phoff = sizeof(Elf_Ehdr); 1681 ehdr->e_flags = td->td_proc->p_elf_flags; 1682 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1683 ehdr->e_phentsize = sizeof(Elf_Phdr); 1684 ehdr->e_shentsize = sizeof(Elf_Shdr); 1685 ehdr->e_shstrndx = SHN_UNDEF; 1686 if (numsegs + 1 < PN_XNUM) { 1687 ehdr->e_phnum = numsegs + 1; 1688 ehdr->e_shnum = 0; 1689 } else { 1690 ehdr->e_phnum = PN_XNUM; 1691 ehdr->e_shnum = 1; 1692 1693 ehdr->e_shoff = ehdr->e_phoff + 1694 (numsegs + 1) * ehdr->e_phentsize; 1695 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1696 ("e_shoff: %zu, hdrsize - shdr: %zu", 1697 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1698 1699 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1700 memset(shdr, 0, sizeof(*shdr)); 1701 /* 1702 * A special first section is used to hold large segment and 1703 * section counts. This was proposed by Sun Microsystems in 1704 * Solaris and has been adopted by Linux; the standard ELF 1705 * tools are already familiar with the technique. 1706 * 1707 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1708 * (or 12-7 depending on the version of the document) for more 1709 * details. 1710 */ 1711 shdr->sh_type = SHT_NULL; 1712 shdr->sh_size = ehdr->e_shnum; 1713 shdr->sh_link = ehdr->e_shstrndx; 1714 shdr->sh_info = numsegs + 1; 1715 } 1716 1717 /* 1718 * Fill in the program header entries. 1719 */ 1720 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1721 1722 /* The note segement. */ 1723 phdr->p_type = PT_NOTE; 1724 phdr->p_offset = hdrsize; 1725 phdr->p_vaddr = 0; 1726 phdr->p_paddr = 0; 1727 phdr->p_filesz = notesz; 1728 phdr->p_memsz = 0; 1729 phdr->p_flags = PF_R; 1730 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1731 phdr++; 1732 1733 /* All the writable segments from the program. */ 1734 phc.phdr = phdr; 1735 phc.offset = round_page(hdrsize + notesz); 1736 each_dumpable_segment(td, cb_put_phdr, &phc); 1737 } 1738 1739 static size_t 1740 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1741 { 1742 struct note_info *ninfo; 1743 size_t size, notesize; 1744 1745 size = 0; 1746 out(arg, NULL, &size); 1747 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1748 ninfo->type = type; 1749 ninfo->outfunc = out; 1750 ninfo->outarg = arg; 1751 ninfo->outsize = size; 1752 TAILQ_INSERT_TAIL(list, ninfo, link); 1753 1754 if (type == -1) 1755 return (size); 1756 1757 notesize = sizeof(Elf_Note) + /* note header */ 1758 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1759 /* note name */ 1760 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1761 1762 return (notesize); 1763 } 1764 1765 static size_t 1766 append_note_data(const void *src, void *dst, size_t len) 1767 { 1768 size_t padded_len; 1769 1770 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1771 if (dst != NULL) { 1772 bcopy(src, dst, len); 1773 bzero((char *)dst + len, padded_len - len); 1774 } 1775 return (padded_len); 1776 } 1777 1778 size_t 1779 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1780 { 1781 Elf_Note *note; 1782 char *buf; 1783 size_t notesize; 1784 1785 buf = dst; 1786 if (buf != NULL) { 1787 note = (Elf_Note *)buf; 1788 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1789 note->n_descsz = size; 1790 note->n_type = type; 1791 buf += sizeof(*note); 1792 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1793 sizeof(FREEBSD_ABI_VENDOR)); 1794 append_note_data(src, buf, size); 1795 if (descp != NULL) 1796 *descp = buf; 1797 } 1798 1799 notesize = sizeof(Elf_Note) + /* note header */ 1800 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1801 /* note name */ 1802 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1803 1804 return (notesize); 1805 } 1806 1807 static void 1808 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1809 { 1810 Elf_Note note; 1811 ssize_t old_len, sect_len; 1812 size_t new_len, descsz, i; 1813 1814 if (ninfo->type == -1) { 1815 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1816 return; 1817 } 1818 1819 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1820 note.n_descsz = ninfo->outsize; 1821 note.n_type = ninfo->type; 1822 1823 sbuf_bcat(sb, ¬e, sizeof(note)); 1824 sbuf_start_section(sb, &old_len); 1825 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1826 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1827 if (note.n_descsz == 0) 1828 return; 1829 sbuf_start_section(sb, &old_len); 1830 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1831 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1832 if (sect_len < 0) 1833 return; 1834 1835 new_len = (size_t)sect_len; 1836 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1837 if (new_len < descsz) { 1838 /* 1839 * It is expected that individual note emitters will correctly 1840 * predict their expected output size and fill up to that size 1841 * themselves, padding in a format-specific way if needed. 1842 * However, in case they don't, just do it here with zeros. 1843 */ 1844 for (i = 0; i < descsz - new_len; i++) 1845 sbuf_putc(sb, 0); 1846 } else if (new_len > descsz) { 1847 /* 1848 * We can't always truncate sb -- we may have drained some 1849 * of it already. 1850 */ 1851 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1852 "read it (%zu > %zu). Since it is longer than " 1853 "expected, this coredump's notes are corrupt. THIS " 1854 "IS A BUG in the note_procstat routine for type %u.\n", 1855 __func__, (unsigned)note.n_type, new_len, descsz, 1856 (unsigned)note.n_type)); 1857 } 1858 } 1859 1860 /* 1861 * Miscellaneous note out functions. 1862 */ 1863 1864 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1865 #include <compat/freebsd32/freebsd32.h> 1866 #include <compat/freebsd32/freebsd32_signal.h> 1867 1868 typedef struct prstatus32 elf_prstatus_t; 1869 typedef struct prpsinfo32 elf_prpsinfo_t; 1870 typedef struct fpreg32 elf_prfpregset_t; 1871 typedef struct fpreg32 elf_fpregset_t; 1872 typedef struct reg32 elf_gregset_t; 1873 typedef struct thrmisc32 elf_thrmisc_t; 1874 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1875 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1876 typedef uint32_t elf_ps_strings_t; 1877 #else 1878 typedef prstatus_t elf_prstatus_t; 1879 typedef prpsinfo_t elf_prpsinfo_t; 1880 typedef prfpregset_t elf_prfpregset_t; 1881 typedef prfpregset_t elf_fpregset_t; 1882 typedef gregset_t elf_gregset_t; 1883 typedef thrmisc_t elf_thrmisc_t; 1884 #define ELF_KERN_PROC_MASK 0 1885 typedef struct kinfo_proc elf_kinfo_proc_t; 1886 typedef vm_offset_t elf_ps_strings_t; 1887 #endif 1888 1889 static void 1890 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1891 { 1892 struct sbuf sbarg; 1893 size_t len; 1894 char *cp, *end; 1895 struct proc *p; 1896 elf_prpsinfo_t *psinfo; 1897 int error; 1898 1899 p = (struct proc *)arg; 1900 if (sb != NULL) { 1901 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1902 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1903 psinfo->pr_version = PRPSINFO_VERSION; 1904 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1905 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1906 PROC_LOCK(p); 1907 if (p->p_args != NULL) { 1908 len = sizeof(psinfo->pr_psargs) - 1; 1909 if (len > p->p_args->ar_length) 1910 len = p->p_args->ar_length; 1911 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 1912 PROC_UNLOCK(p); 1913 error = 0; 1914 } else { 1915 _PHOLD(p); 1916 PROC_UNLOCK(p); 1917 sbuf_new(&sbarg, psinfo->pr_psargs, 1918 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 1919 error = proc_getargv(curthread, p, &sbarg); 1920 PRELE(p); 1921 if (sbuf_finish(&sbarg) == 0) 1922 len = sbuf_len(&sbarg) - 1; 1923 else 1924 len = sizeof(psinfo->pr_psargs) - 1; 1925 sbuf_delete(&sbarg); 1926 } 1927 if (error || len == 0) 1928 strlcpy(psinfo->pr_psargs, p->p_comm, 1929 sizeof(psinfo->pr_psargs)); 1930 else { 1931 KASSERT(len < sizeof(psinfo->pr_psargs), 1932 ("len is too long: %zu vs %zu", len, 1933 sizeof(psinfo->pr_psargs))); 1934 cp = psinfo->pr_psargs; 1935 end = cp + len - 1; 1936 for (;;) { 1937 cp = memchr(cp, '\0', end - cp); 1938 if (cp == NULL) 1939 break; 1940 *cp = ' '; 1941 } 1942 } 1943 psinfo->pr_pid = p->p_pid; 1944 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1945 free(psinfo, M_TEMP); 1946 } 1947 *sizep = sizeof(*psinfo); 1948 } 1949 1950 static void 1951 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1952 { 1953 struct thread *td; 1954 elf_prstatus_t *status; 1955 1956 td = (struct thread *)arg; 1957 if (sb != NULL) { 1958 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1959 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1960 status->pr_version = PRSTATUS_VERSION; 1961 status->pr_statussz = sizeof(elf_prstatus_t); 1962 status->pr_gregsetsz = sizeof(elf_gregset_t); 1963 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1964 status->pr_osreldate = osreldate; 1965 status->pr_cursig = td->td_proc->p_sig; 1966 status->pr_pid = td->td_tid; 1967 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1968 fill_regs32(td, &status->pr_reg); 1969 #else 1970 fill_regs(td, &status->pr_reg); 1971 #endif 1972 sbuf_bcat(sb, status, sizeof(*status)); 1973 free(status, M_TEMP); 1974 } 1975 *sizep = sizeof(*status); 1976 } 1977 1978 static void 1979 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1980 { 1981 struct thread *td; 1982 elf_prfpregset_t *fpregset; 1983 1984 td = (struct thread *)arg; 1985 if (sb != NULL) { 1986 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1987 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1988 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1989 fill_fpregs32(td, fpregset); 1990 #else 1991 fill_fpregs(td, fpregset); 1992 #endif 1993 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1994 free(fpregset, M_TEMP); 1995 } 1996 *sizep = sizeof(*fpregset); 1997 } 1998 1999 static void 2000 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2001 { 2002 struct thread *td; 2003 elf_thrmisc_t thrmisc; 2004 2005 td = (struct thread *)arg; 2006 if (sb != NULL) { 2007 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2008 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2009 strcpy(thrmisc.pr_tname, td->td_name); 2010 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2011 } 2012 *sizep = sizeof(thrmisc); 2013 } 2014 2015 static void 2016 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2017 { 2018 struct thread *td; 2019 size_t size; 2020 int structsize; 2021 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2022 struct ptrace_lwpinfo32 pl; 2023 #else 2024 struct ptrace_lwpinfo pl; 2025 #endif 2026 2027 td = (struct thread *)arg; 2028 size = sizeof(structsize) + sizeof(pl); 2029 if (sb != NULL) { 2030 KASSERT(*sizep == size, ("invalid size")); 2031 structsize = sizeof(pl); 2032 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2033 bzero(&pl, sizeof(pl)); 2034 pl.pl_lwpid = td->td_tid; 2035 pl.pl_event = PL_EVENT_NONE; 2036 pl.pl_sigmask = td->td_sigmask; 2037 pl.pl_siglist = td->td_siglist; 2038 if (td->td_si.si_signo != 0) { 2039 pl.pl_event = PL_EVENT_SIGNAL; 2040 pl.pl_flags |= PL_FLAG_SI; 2041 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2042 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2043 #else 2044 pl.pl_siginfo = td->td_si; 2045 #endif 2046 } 2047 strcpy(pl.pl_tdname, td->td_name); 2048 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2049 sbuf_bcat(sb, &pl, sizeof(pl)); 2050 } 2051 *sizep = size; 2052 } 2053 2054 /* 2055 * Allow for MD specific notes, as well as any MD 2056 * specific preparations for writing MI notes. 2057 */ 2058 static void 2059 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2060 { 2061 struct thread *td; 2062 void *buf; 2063 size_t size; 2064 2065 td = (struct thread *)arg; 2066 size = *sizep; 2067 if (size != 0 && sb != NULL) 2068 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2069 else 2070 buf = NULL; 2071 size = 0; 2072 __elfN(dump_thread)(td, buf, &size); 2073 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2074 if (size != 0 && sb != NULL) 2075 sbuf_bcat(sb, buf, size); 2076 free(buf, M_TEMP); 2077 *sizep = size; 2078 } 2079 2080 #ifdef KINFO_PROC_SIZE 2081 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2082 #endif 2083 2084 static void 2085 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2086 { 2087 struct proc *p; 2088 size_t size; 2089 int structsize; 2090 2091 p = (struct proc *)arg; 2092 size = sizeof(structsize) + p->p_numthreads * 2093 sizeof(elf_kinfo_proc_t); 2094 2095 if (sb != NULL) { 2096 KASSERT(*sizep == size, ("invalid size")); 2097 structsize = sizeof(elf_kinfo_proc_t); 2098 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2099 sx_slock(&proctree_lock); 2100 PROC_LOCK(p); 2101 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2102 sx_sunlock(&proctree_lock); 2103 } 2104 *sizep = size; 2105 } 2106 2107 #ifdef KINFO_FILE_SIZE 2108 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2109 #endif 2110 2111 static void 2112 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2113 { 2114 struct proc *p; 2115 size_t size, sect_sz, i; 2116 ssize_t start_len, sect_len; 2117 int structsize, filedesc_flags; 2118 2119 if (coredump_pack_fileinfo) 2120 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2121 else 2122 filedesc_flags = 0; 2123 2124 p = (struct proc *)arg; 2125 structsize = sizeof(struct kinfo_file); 2126 if (sb == NULL) { 2127 size = 0; 2128 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2129 sbuf_set_drain(sb, sbuf_drain_count, &size); 2130 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2131 PROC_LOCK(p); 2132 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2133 sbuf_finish(sb); 2134 sbuf_delete(sb); 2135 *sizep = size; 2136 } else { 2137 sbuf_start_section(sb, &start_len); 2138 2139 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2140 PROC_LOCK(p); 2141 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2142 filedesc_flags); 2143 2144 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2145 if (sect_len < 0) 2146 return; 2147 sect_sz = sect_len; 2148 2149 KASSERT(sect_sz <= *sizep, 2150 ("kern_proc_filedesc_out did not respect maxlen; " 2151 "requested %zu, got %zu", *sizep - sizeof(structsize), 2152 sect_sz - sizeof(structsize))); 2153 2154 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2155 sbuf_putc(sb, 0); 2156 } 2157 } 2158 2159 #ifdef KINFO_VMENTRY_SIZE 2160 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2161 #endif 2162 2163 static void 2164 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2165 { 2166 struct proc *p; 2167 size_t size; 2168 int structsize, vmmap_flags; 2169 2170 if (coredump_pack_vmmapinfo) 2171 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2172 else 2173 vmmap_flags = 0; 2174 2175 p = (struct proc *)arg; 2176 structsize = sizeof(struct kinfo_vmentry); 2177 if (sb == NULL) { 2178 size = 0; 2179 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2180 sbuf_set_drain(sb, sbuf_drain_count, &size); 2181 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2182 PROC_LOCK(p); 2183 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2184 sbuf_finish(sb); 2185 sbuf_delete(sb); 2186 *sizep = size; 2187 } else { 2188 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2189 PROC_LOCK(p); 2190 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2191 vmmap_flags); 2192 } 2193 } 2194 2195 static void 2196 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2197 { 2198 struct proc *p; 2199 size_t size; 2200 int structsize; 2201 2202 p = (struct proc *)arg; 2203 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2204 if (sb != NULL) { 2205 KASSERT(*sizep == size, ("invalid size")); 2206 structsize = sizeof(gid_t); 2207 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2208 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2209 sizeof(gid_t)); 2210 } 2211 *sizep = size; 2212 } 2213 2214 static void 2215 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2216 { 2217 struct proc *p; 2218 size_t size; 2219 int structsize; 2220 2221 p = (struct proc *)arg; 2222 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2223 if (sb != NULL) { 2224 KASSERT(*sizep == size, ("invalid size")); 2225 structsize = sizeof(p->p_fd->fd_cmask); 2226 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2227 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2228 } 2229 *sizep = size; 2230 } 2231 2232 static void 2233 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2234 { 2235 struct proc *p; 2236 struct rlimit rlim[RLIM_NLIMITS]; 2237 size_t size; 2238 int structsize, i; 2239 2240 p = (struct proc *)arg; 2241 size = sizeof(structsize) + sizeof(rlim); 2242 if (sb != NULL) { 2243 KASSERT(*sizep == size, ("invalid size")); 2244 structsize = sizeof(rlim); 2245 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2246 PROC_LOCK(p); 2247 for (i = 0; i < RLIM_NLIMITS; i++) 2248 lim_rlimit_proc(p, i, &rlim[i]); 2249 PROC_UNLOCK(p); 2250 sbuf_bcat(sb, rlim, sizeof(rlim)); 2251 } 2252 *sizep = size; 2253 } 2254 2255 static void 2256 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2257 { 2258 struct proc *p; 2259 size_t size; 2260 int structsize; 2261 2262 p = (struct proc *)arg; 2263 size = sizeof(structsize) + sizeof(p->p_osrel); 2264 if (sb != NULL) { 2265 KASSERT(*sizep == size, ("invalid size")); 2266 structsize = sizeof(p->p_osrel); 2267 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2268 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2269 } 2270 *sizep = size; 2271 } 2272 2273 static void 2274 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2275 { 2276 struct proc *p; 2277 elf_ps_strings_t ps_strings; 2278 size_t size; 2279 int structsize; 2280 2281 p = (struct proc *)arg; 2282 size = sizeof(structsize) + sizeof(ps_strings); 2283 if (sb != NULL) { 2284 KASSERT(*sizep == size, ("invalid size")); 2285 structsize = sizeof(ps_strings); 2286 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2287 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2288 #else 2289 ps_strings = p->p_sysent->sv_psstrings; 2290 #endif 2291 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2292 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2293 } 2294 *sizep = size; 2295 } 2296 2297 static void 2298 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2299 { 2300 struct proc *p; 2301 size_t size; 2302 int structsize; 2303 2304 p = (struct proc *)arg; 2305 if (sb == NULL) { 2306 size = 0; 2307 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2308 sbuf_set_drain(sb, sbuf_drain_count, &size); 2309 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2310 PHOLD(p); 2311 proc_getauxv(curthread, p, sb); 2312 PRELE(p); 2313 sbuf_finish(sb); 2314 sbuf_delete(sb); 2315 *sizep = size; 2316 } else { 2317 structsize = sizeof(Elf_Auxinfo); 2318 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2319 PHOLD(p); 2320 proc_getauxv(curthread, p, sb); 2321 PRELE(p); 2322 } 2323 } 2324 2325 static boolean_t 2326 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2327 int32_t *osrel, const Elf_Phdr *pnote) 2328 { 2329 const Elf_Note *note, *note0, *note_end; 2330 const char *note_name; 2331 char *buf; 2332 int i, error; 2333 boolean_t res; 2334 2335 /* We need some limit, might as well use PAGE_SIZE. */ 2336 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2337 return (FALSE); 2338 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2339 if (pnote->p_offset > PAGE_SIZE || 2340 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2341 VOP_UNLOCK(imgp->vp, 0); 2342 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2343 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2344 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2345 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2346 curthread->td_ucred, NOCRED, NULL, curthread); 2347 if (error != 0) { 2348 uprintf("i/o error PT_NOTE\n"); 2349 res = FALSE; 2350 goto ret; 2351 } 2352 note = note0 = (const Elf_Note *)buf; 2353 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2354 } else { 2355 note = note0 = (const Elf_Note *)(imgp->image_header + 2356 pnote->p_offset); 2357 note_end = (const Elf_Note *)(imgp->image_header + 2358 pnote->p_offset + pnote->p_filesz); 2359 buf = NULL; 2360 } 2361 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2362 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2363 (const char *)note < sizeof(Elf_Note)) { 2364 res = FALSE; 2365 goto ret; 2366 } 2367 if (note->n_namesz != checknote->hdr.n_namesz || 2368 note->n_descsz != checknote->hdr.n_descsz || 2369 note->n_type != checknote->hdr.n_type) 2370 goto nextnote; 2371 note_name = (const char *)(note + 1); 2372 if (note_name + checknote->hdr.n_namesz >= 2373 (const char *)note_end || strncmp(checknote->vendor, 2374 note_name, checknote->hdr.n_namesz) != 0) 2375 goto nextnote; 2376 2377 /* 2378 * Fetch the osreldate for binary 2379 * from the ELF OSABI-note if necessary. 2380 */ 2381 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2382 checknote->trans_osrel != NULL) { 2383 res = checknote->trans_osrel(note, osrel); 2384 goto ret; 2385 } 2386 res = TRUE; 2387 goto ret; 2388 nextnote: 2389 note = (const Elf_Note *)((const char *)(note + 1) + 2390 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2391 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2392 } 2393 res = FALSE; 2394 ret: 2395 free(buf, M_TEMP); 2396 return (res); 2397 } 2398 2399 /* 2400 * Try to find the appropriate ABI-note section for checknote, 2401 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2402 * first page of the image is searched, the same as for headers. 2403 */ 2404 static boolean_t 2405 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2406 int32_t *osrel) 2407 { 2408 const Elf_Phdr *phdr; 2409 const Elf_Ehdr *hdr; 2410 int i; 2411 2412 hdr = (const Elf_Ehdr *)imgp->image_header; 2413 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2414 2415 for (i = 0; i < hdr->e_phnum; i++) { 2416 if (phdr[i].p_type == PT_NOTE && 2417 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2418 return (TRUE); 2419 } 2420 return (FALSE); 2421 2422 } 2423 2424 /* 2425 * Tell kern_execve.c about it, with a little help from the linker. 2426 */ 2427 static struct execsw __elfN(execsw) = { 2428 __CONCAT(exec_, __elfN(imgact)), 2429 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2430 }; 2431 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2432 2433 static vm_prot_t 2434 __elfN(trans_prot)(Elf_Word flags) 2435 { 2436 vm_prot_t prot; 2437 2438 prot = 0; 2439 if (flags & PF_X) 2440 prot |= VM_PROT_EXECUTE; 2441 if (flags & PF_W) 2442 prot |= VM_PROT_WRITE; 2443 if (flags & PF_R) 2444 prot |= VM_PROT_READ; 2445 #if __ELF_WORD_SIZE == 32 2446 #if defined(__amd64__) 2447 if (i386_read_exec && (flags & PF_R)) 2448 prot |= VM_PROT_EXECUTE; 2449 #endif 2450 #endif 2451 return (prot); 2452 } 2453 2454 static Elf_Word 2455 __elfN(untrans_prot)(vm_prot_t prot) 2456 { 2457 Elf_Word flags; 2458 2459 flags = 0; 2460 if (prot & VM_PROT_EXECUTE) 2461 flags |= PF_X; 2462 if (prot & VM_PROT_READ) 2463 flags |= PF_R; 2464 if (prot & VM_PROT_WRITE) 2465 flags |= PF_W; 2466 return (flags); 2467 } 2468