xref: /freebsd/sys/kern/imgact_elf.c (revision 77a1348b3c1cfe8547be49a121b56299a1e18b69)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/ptrace.h>
56 #include <sys/racct.h>
57 #include <sys/resourcevar.h>
58 #include <sys/rwlock.h>
59 #include <sys/sbuf.h>
60 #include <sys/sf_buf.h>
61 #include <sys/smp.h>
62 #include <sys/systm.h>
63 #include <sys/signalvar.h>
64 #include <sys/stat.h>
65 #include <sys/sx.h>
66 #include <sys/syscall.h>
67 #include <sys/sysctl.h>
68 #include <sys/sysent.h>
69 #include <sys/vnode.h>
70 #include <sys/syslog.h>
71 #include <sys/eventhandler.h>
72 #include <sys/user.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_extern.h>
81 
82 #include <machine/elf.h>
83 #include <machine/md_var.h>
84 
85 #define ELF_NOTE_ROUNDSIZE	4
86 #define OLD_EI_BRAND	8
87 
88 static int __elfN(check_header)(const Elf_Ehdr *hdr);
89 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
90     const char *interp, int32_t *osrel, uint32_t *fctl0);
91 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
92     u_long *entry);
93 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
94     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
96 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
97     int32_t *osrel);
98 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
99 static boolean_t __elfN(check_note)(struct image_params *imgp,
100     Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0);
101 static vm_prot_t __elfN(trans_prot)(Elf_Word);
102 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
103 
104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
105     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
106     "");
107 
108 #define	CORE_BUF_SIZE	(16 * 1024)
109 
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114 
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117     &elf_legacy_coredump, 0,
118     "include all and only RW pages in core dumps");
119 
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
123     defined(__riscv)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
131 
132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
133 int i386_read_exec = 0;
134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
135     "enable execution from readable segments");
136 #endif
137 
138 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
139 static int
140 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
141 {
142 	u_long val;
143 	int error;
144 
145 	val = __elfN(pie_base);
146 	error = sysctl_handle_long(oidp, &val, 0, req);
147 	if (error != 0 || req->newptr == NULL)
148 		return (error);
149 	if ((val & PAGE_MASK) != 0)
150 		return (EINVAL);
151 	__elfN(pie_base) = val;
152 	return (0);
153 }
154 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
155     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
156     sysctl_pie_base, "LU",
157     "PIE load base without randomization");
158 
159 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
160     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
161     "");
162 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
163 
164 static int __elfN(aslr_enabled) = 0;
165 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
166     &__elfN(aslr_enabled), 0,
167     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
168     ": enable address map randomization");
169 
170 static int __elfN(pie_aslr_enabled) = 0;
171 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
172     &__elfN(pie_aslr_enabled), 0,
173     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
174     ": enable address map randomization for PIE binaries");
175 
176 static int __elfN(aslr_honor_sbrk) = 1;
177 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
178     &__elfN(aslr_honor_sbrk), 0,
179     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
180 
181 static int __elfN(aslr_stack_gap) = 3;
182 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW,
183     &__elfN(aslr_stack_gap), 0,
184     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
185     ": maximum percentage of main stack to waste on a random gap");
186 
187 static int __elfN(sigfastblock) = 1;
188 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
189     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
190     "enable sigfastblock for new processes");
191 
192 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
193 
194 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
195 
196 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
197 
198 Elf_Brandnote __elfN(freebsd_brandnote) = {
199 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
200 	.hdr.n_descsz	= sizeof(int32_t),
201 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
202 	.vendor		= FREEBSD_ABI_VENDOR,
203 	.flags		= BN_TRANSLATE_OSREL,
204 	.trans_osrel	= __elfN(freebsd_trans_osrel)
205 };
206 
207 static bool
208 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
209 {
210 	uintptr_t p;
211 
212 	p = (uintptr_t)(note + 1);
213 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
214 	*osrel = *(const int32_t *)(p);
215 
216 	return (true);
217 }
218 
219 static const char GNU_ABI_VENDOR[] = "GNU";
220 static int GNU_KFREEBSD_ABI_DESC = 3;
221 
222 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
223 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
224 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
225 	.hdr.n_type	= 1,
226 	.vendor		= GNU_ABI_VENDOR,
227 	.flags		= BN_TRANSLATE_OSREL,
228 	.trans_osrel	= kfreebsd_trans_osrel
229 };
230 
231 static bool
232 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
233 {
234 	const Elf32_Word *desc;
235 	uintptr_t p;
236 
237 	p = (uintptr_t)(note + 1);
238 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
239 
240 	desc = (const Elf32_Word *)p;
241 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
242 		return (false);
243 
244 	/*
245 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
246 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
247 	 */
248 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
249 
250 	return (true);
251 }
252 
253 int
254 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
255 {
256 	int i;
257 
258 	for (i = 0; i < MAX_BRANDS; i++) {
259 		if (elf_brand_list[i] == NULL) {
260 			elf_brand_list[i] = entry;
261 			break;
262 		}
263 	}
264 	if (i == MAX_BRANDS) {
265 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
266 			__func__, entry);
267 		return (-1);
268 	}
269 	return (0);
270 }
271 
272 int
273 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
274 {
275 	int i;
276 
277 	for (i = 0; i < MAX_BRANDS; i++) {
278 		if (elf_brand_list[i] == entry) {
279 			elf_brand_list[i] = NULL;
280 			break;
281 		}
282 	}
283 	if (i == MAX_BRANDS)
284 		return (-1);
285 	return (0);
286 }
287 
288 int
289 __elfN(brand_inuse)(Elf_Brandinfo *entry)
290 {
291 	struct proc *p;
292 	int rval = FALSE;
293 
294 	sx_slock(&allproc_lock);
295 	FOREACH_PROC_IN_SYSTEM(p) {
296 		if (p->p_sysent == entry->sysvec) {
297 			rval = TRUE;
298 			break;
299 		}
300 	}
301 	sx_sunlock(&allproc_lock);
302 
303 	return (rval);
304 }
305 
306 static Elf_Brandinfo *
307 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
308     int32_t *osrel, uint32_t *fctl0)
309 {
310 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
311 	Elf_Brandinfo *bi, *bi_m;
312 	boolean_t ret;
313 	int i, interp_name_len;
314 
315 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
316 
317 	/*
318 	 * We support four types of branding -- (1) the ELF EI_OSABI field
319 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
320 	 * branding w/in the ELF header, (3) path of the `interp_path'
321 	 * field, and (4) the ".note.ABI-tag" ELF section.
322 	 */
323 
324 	/* Look for an ".note.ABI-tag" ELF section */
325 	bi_m = NULL;
326 	for (i = 0; i < MAX_BRANDS; i++) {
327 		bi = elf_brand_list[i];
328 		if (bi == NULL)
329 			continue;
330 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
331 			continue;
332 		if (hdr->e_machine == bi->machine && (bi->flags &
333 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
334 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
335 			    fctl0);
336 			/* Give brand a chance to veto check_note's guess */
337 			if (ret && bi->header_supported)
338 				ret = bi->header_supported(imgp);
339 			/*
340 			 * If note checker claimed the binary, but the
341 			 * interpreter path in the image does not
342 			 * match default one for the brand, try to
343 			 * search for other brands with the same
344 			 * interpreter.  Either there is better brand
345 			 * with the right interpreter, or, failing
346 			 * this, we return first brand which accepted
347 			 * our note and, optionally, header.
348 			 */
349 			if (ret && bi_m == NULL && interp != NULL &&
350 			    (bi->interp_path == NULL ||
351 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
352 			    strncmp(interp, bi->interp_path, interp_name_len)
353 			    != 0))) {
354 				bi_m = bi;
355 				ret = 0;
356 			}
357 			if (ret)
358 				return (bi);
359 		}
360 	}
361 	if (bi_m != NULL)
362 		return (bi_m);
363 
364 	/* If the executable has a brand, search for it in the brand list. */
365 	for (i = 0; i < MAX_BRANDS; i++) {
366 		bi = elf_brand_list[i];
367 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
368 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
369 			continue;
370 		if (hdr->e_machine == bi->machine &&
371 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
372 		    (bi->compat_3_brand != NULL &&
373 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
374 		    bi->compat_3_brand) == 0))) {
375 			/* Looks good, but give brand a chance to veto */
376 			if (bi->header_supported == NULL ||
377 			    bi->header_supported(imgp)) {
378 				/*
379 				 * Again, prefer strictly matching
380 				 * interpreter path.
381 				 */
382 				if (interp_name_len == 0 &&
383 				    bi->interp_path == NULL)
384 					return (bi);
385 				if (bi->interp_path != NULL &&
386 				    strlen(bi->interp_path) + 1 ==
387 				    interp_name_len && strncmp(interp,
388 				    bi->interp_path, interp_name_len) == 0)
389 					return (bi);
390 				if (bi_m == NULL)
391 					bi_m = bi;
392 			}
393 		}
394 	}
395 	if (bi_m != NULL)
396 		return (bi_m);
397 
398 	/* No known brand, see if the header is recognized by any brand */
399 	for (i = 0; i < MAX_BRANDS; i++) {
400 		bi = elf_brand_list[i];
401 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
402 		    bi->header_supported == NULL)
403 			continue;
404 		if (hdr->e_machine == bi->machine) {
405 			ret = bi->header_supported(imgp);
406 			if (ret)
407 				return (bi);
408 		}
409 	}
410 
411 	/* Lacking a known brand, search for a recognized interpreter. */
412 	if (interp != NULL) {
413 		for (i = 0; i < MAX_BRANDS; i++) {
414 			bi = elf_brand_list[i];
415 			if (bi == NULL || (bi->flags &
416 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
417 			    != 0)
418 				continue;
419 			if (hdr->e_machine == bi->machine &&
420 			    bi->interp_path != NULL &&
421 			    /* ELF image p_filesz includes terminating zero */
422 			    strlen(bi->interp_path) + 1 == interp_name_len &&
423 			    strncmp(interp, bi->interp_path, interp_name_len)
424 			    == 0 && (bi->header_supported == NULL ||
425 			    bi->header_supported(imgp)))
426 				return (bi);
427 		}
428 	}
429 
430 	/* Lacking a recognized interpreter, try the default brand */
431 	for (i = 0; i < MAX_BRANDS; i++) {
432 		bi = elf_brand_list[i];
433 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
434 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
435 			continue;
436 		if (hdr->e_machine == bi->machine &&
437 		    __elfN(fallback_brand) == bi->brand &&
438 		    (bi->header_supported == NULL ||
439 		    bi->header_supported(imgp)))
440 			return (bi);
441 	}
442 	return (NULL);
443 }
444 
445 static int
446 __elfN(check_header)(const Elf_Ehdr *hdr)
447 {
448 	Elf_Brandinfo *bi;
449 	int i;
450 
451 	if (!IS_ELF(*hdr) ||
452 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
453 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
454 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
455 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
456 	    hdr->e_version != ELF_TARG_VER)
457 		return (ENOEXEC);
458 
459 	/*
460 	 * Make sure we have at least one brand for this machine.
461 	 */
462 
463 	for (i = 0; i < MAX_BRANDS; i++) {
464 		bi = elf_brand_list[i];
465 		if (bi != NULL && bi->machine == hdr->e_machine)
466 			break;
467 	}
468 	if (i == MAX_BRANDS)
469 		return (ENOEXEC);
470 
471 	return (0);
472 }
473 
474 static int
475 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
476     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
477 {
478 	struct sf_buf *sf;
479 	int error;
480 	vm_offset_t off;
481 
482 	/*
483 	 * Create the page if it doesn't exist yet. Ignore errors.
484 	 */
485 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
486 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
487 
488 	/*
489 	 * Find the page from the underlying object.
490 	 */
491 	if (object != NULL) {
492 		sf = vm_imgact_map_page(object, offset);
493 		if (sf == NULL)
494 			return (KERN_FAILURE);
495 		off = offset - trunc_page(offset);
496 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
497 		    end - start);
498 		vm_imgact_unmap_page(sf);
499 		if (error != 0)
500 			return (KERN_FAILURE);
501 	}
502 
503 	return (KERN_SUCCESS);
504 }
505 
506 static int
507 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
508     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
509     int cow)
510 {
511 	struct sf_buf *sf;
512 	vm_offset_t off;
513 	vm_size_t sz;
514 	int error, locked, rv;
515 
516 	if (start != trunc_page(start)) {
517 		rv = __elfN(map_partial)(map, object, offset, start,
518 		    round_page(start), prot);
519 		if (rv != KERN_SUCCESS)
520 			return (rv);
521 		offset += round_page(start) - start;
522 		start = round_page(start);
523 	}
524 	if (end != round_page(end)) {
525 		rv = __elfN(map_partial)(map, object, offset +
526 		    trunc_page(end) - start, trunc_page(end), end, prot);
527 		if (rv != KERN_SUCCESS)
528 			return (rv);
529 		end = trunc_page(end);
530 	}
531 	if (start >= end)
532 		return (KERN_SUCCESS);
533 	if ((offset & PAGE_MASK) != 0) {
534 		/*
535 		 * The mapping is not page aligned.  This means that we have
536 		 * to copy the data.
537 		 */
538 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
539 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
540 		if (rv != KERN_SUCCESS)
541 			return (rv);
542 		if (object == NULL)
543 			return (KERN_SUCCESS);
544 		for (; start < end; start += sz) {
545 			sf = vm_imgact_map_page(object, offset);
546 			if (sf == NULL)
547 				return (KERN_FAILURE);
548 			off = offset - trunc_page(offset);
549 			sz = end - start;
550 			if (sz > PAGE_SIZE - off)
551 				sz = PAGE_SIZE - off;
552 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
553 			    (caddr_t)start, sz);
554 			vm_imgact_unmap_page(sf);
555 			if (error != 0)
556 				return (KERN_FAILURE);
557 			offset += sz;
558 		}
559 	} else {
560 		vm_object_reference(object);
561 		rv = vm_map_fixed(map, object, offset, start, end - start,
562 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
563 		    (object != NULL ? MAP_VN_EXEC : 0));
564 		if (rv != KERN_SUCCESS) {
565 			locked = VOP_ISLOCKED(imgp->vp);
566 			VOP_UNLOCK(imgp->vp);
567 			vm_object_deallocate(object);
568 			vn_lock(imgp->vp, locked | LK_RETRY);
569 			return (rv);
570 		} else if (object != NULL) {
571 			MPASS(imgp->vp->v_object == object);
572 			VOP_SET_TEXT_CHECKED(imgp->vp);
573 		}
574 	}
575 	return (KERN_SUCCESS);
576 }
577 
578 static int
579 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
580     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
581 {
582 	struct sf_buf *sf;
583 	size_t map_len;
584 	vm_map_t map;
585 	vm_object_t object;
586 	vm_offset_t map_addr;
587 	int error, rv, cow;
588 	size_t copy_len;
589 	vm_ooffset_t file_addr;
590 
591 	/*
592 	 * It's necessary to fail if the filsz + offset taken from the
593 	 * header is greater than the actual file pager object's size.
594 	 * If we were to allow this, then the vm_map_find() below would
595 	 * walk right off the end of the file object and into the ether.
596 	 *
597 	 * While I'm here, might as well check for something else that
598 	 * is invalid: filsz cannot be greater than memsz.
599 	 */
600 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
601 	    filsz > memsz) {
602 		uprintf("elf_load_section: truncated ELF file\n");
603 		return (ENOEXEC);
604 	}
605 
606 	object = imgp->object;
607 	map = &imgp->proc->p_vmspace->vm_map;
608 	map_addr = trunc_page((vm_offset_t)vmaddr);
609 	file_addr = trunc_page(offset);
610 
611 	/*
612 	 * We have two choices.  We can either clear the data in the last page
613 	 * of an oversized mapping, or we can start the anon mapping a page
614 	 * early and copy the initialized data into that first page.  We
615 	 * choose the second.
616 	 */
617 	if (filsz == 0)
618 		map_len = 0;
619 	else if (memsz > filsz)
620 		map_len = trunc_page(offset + filsz) - file_addr;
621 	else
622 		map_len = round_page(offset + filsz) - file_addr;
623 
624 	if (map_len != 0) {
625 		/* cow flags: don't dump readonly sections in core */
626 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
627 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
628 
629 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
630 		    map_addr, map_addr + map_len, prot, cow);
631 		if (rv != KERN_SUCCESS)
632 			return (EINVAL);
633 
634 		/* we can stop now if we've covered it all */
635 		if (memsz == filsz)
636 			return (0);
637 	}
638 
639 	/*
640 	 * We have to get the remaining bit of the file into the first part
641 	 * of the oversized map segment.  This is normally because the .data
642 	 * segment in the file is extended to provide bss.  It's a neat idea
643 	 * to try and save a page, but it's a pain in the behind to implement.
644 	 */
645 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
646 	    filsz);
647 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
648 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
649 
650 	/* This had damn well better be true! */
651 	if (map_len != 0) {
652 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
653 		    map_addr + map_len, prot, 0);
654 		if (rv != KERN_SUCCESS)
655 			return (EINVAL);
656 	}
657 
658 	if (copy_len != 0) {
659 		sf = vm_imgact_map_page(object, offset + filsz);
660 		if (sf == NULL)
661 			return (EIO);
662 
663 		/* send the page fragment to user space */
664 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
665 		    copy_len);
666 		vm_imgact_unmap_page(sf);
667 		if (error != 0)
668 			return (error);
669 	}
670 
671 	/*
672 	 * Remove write access to the page if it was only granted by map_insert
673 	 * to allow copyout.
674 	 */
675 	if ((prot & VM_PROT_WRITE) == 0)
676 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
677 		    map_len), prot, FALSE);
678 
679 	return (0);
680 }
681 
682 static int
683 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
684     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
685 {
686 	vm_prot_t prot;
687 	u_long base_addr;
688 	bool first;
689 	int error, i;
690 
691 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
692 
693 	base_addr = 0;
694 	first = true;
695 
696 	for (i = 0; i < hdr->e_phnum; i++) {
697 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
698 			continue;
699 
700 		/* Loadable segment */
701 		prot = __elfN(trans_prot)(phdr[i].p_flags);
702 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
703 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
704 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
705 		if (error != 0)
706 			return (error);
707 
708 		/*
709 		 * Establish the base address if this is the first segment.
710 		 */
711 		if (first) {
712   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
713 			first = false;
714 		}
715 	}
716 
717 	if (base_addrp != NULL)
718 		*base_addrp = base_addr;
719 
720 	return (0);
721 }
722 
723 /*
724  * Load the file "file" into memory.  It may be either a shared object
725  * or an executable.
726  *
727  * The "addr" reference parameter is in/out.  On entry, it specifies
728  * the address where a shared object should be loaded.  If the file is
729  * an executable, this value is ignored.  On exit, "addr" specifies
730  * where the file was actually loaded.
731  *
732  * The "entry" reference parameter is out only.  On exit, it specifies
733  * the entry point for the loaded file.
734  */
735 static int
736 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
737 	u_long *entry)
738 {
739 	struct {
740 		struct nameidata nd;
741 		struct vattr attr;
742 		struct image_params image_params;
743 	} *tempdata;
744 	const Elf_Ehdr *hdr = NULL;
745 	const Elf_Phdr *phdr = NULL;
746 	struct nameidata *nd;
747 	struct vattr *attr;
748 	struct image_params *imgp;
749 	u_long rbase;
750 	u_long base_addr = 0;
751 	int error;
752 
753 #ifdef CAPABILITY_MODE
754 	/*
755 	 * XXXJA: This check can go away once we are sufficiently confident
756 	 * that the checks in namei() are correct.
757 	 */
758 	if (IN_CAPABILITY_MODE(curthread))
759 		return (ECAPMODE);
760 #endif
761 
762 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
763 	nd = &tempdata->nd;
764 	attr = &tempdata->attr;
765 	imgp = &tempdata->image_params;
766 
767 	/*
768 	 * Initialize part of the common data
769 	 */
770 	imgp->proc = p;
771 	imgp->attr = attr;
772 
773 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
774 	    UIO_SYSSPACE, file, curthread);
775 	if ((error = namei(nd)) != 0) {
776 		nd->ni_vp = NULL;
777 		goto fail;
778 	}
779 	NDFREE(nd, NDF_ONLY_PNBUF);
780 	imgp->vp = nd->ni_vp;
781 
782 	/*
783 	 * Check permissions, modes, uid, etc on the file, and "open" it.
784 	 */
785 	error = exec_check_permissions(imgp);
786 	if (error)
787 		goto fail;
788 
789 	error = exec_map_first_page(imgp);
790 	if (error)
791 		goto fail;
792 
793 	imgp->object = nd->ni_vp->v_object;
794 
795 	hdr = (const Elf_Ehdr *)imgp->image_header;
796 	if ((error = __elfN(check_header)(hdr)) != 0)
797 		goto fail;
798 	if (hdr->e_type == ET_DYN)
799 		rbase = *addr;
800 	else if (hdr->e_type == ET_EXEC)
801 		rbase = 0;
802 	else {
803 		error = ENOEXEC;
804 		goto fail;
805 	}
806 
807 	/* Only support headers that fit within first page for now      */
808 	if ((hdr->e_phoff > PAGE_SIZE) ||
809 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
810 		error = ENOEXEC;
811 		goto fail;
812 	}
813 
814 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
815 	if (!aligned(phdr, Elf_Addr)) {
816 		error = ENOEXEC;
817 		goto fail;
818 	}
819 
820 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
821 	if (error != 0)
822 		goto fail;
823 
824 	*addr = base_addr;
825 	*entry = (unsigned long)hdr->e_entry + rbase;
826 
827 fail:
828 	if (imgp->firstpage)
829 		exec_unmap_first_page(imgp);
830 
831 	if (nd->ni_vp) {
832 		if (imgp->textset)
833 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
834 		vput(nd->ni_vp);
835 	}
836 	free(tempdata, M_TEMP);
837 
838 	return (error);
839 }
840 
841 static u_long
842 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv,
843     u_int align)
844 {
845 	u_long rbase, res;
846 
847 	MPASS(vm_map_min(map) <= minv);
848 	MPASS(maxv <= vm_map_max(map));
849 	MPASS(minv < maxv);
850 	MPASS(minv + align < maxv);
851 	arc4rand(&rbase, sizeof(rbase), 0);
852 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
853 	res &= ~((u_long)align - 1);
854 	if (res >= maxv)
855 		res -= align;
856 	KASSERT(res >= minv,
857 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
858 	    res, minv, maxv, rbase));
859 	KASSERT(res < maxv,
860 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
861 	    res, maxv, minv, rbase));
862 	return (res);
863 }
864 
865 static int
866 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
867     const Elf_Phdr *phdr, u_long et_dyn_addr)
868 {
869 	struct vmspace *vmspace;
870 	const char *err_str;
871 	u_long text_size, data_size, total_size, text_addr, data_addr;
872 	u_long seg_size, seg_addr;
873 	int i;
874 
875 	err_str = NULL;
876 	text_size = data_size = total_size = text_addr = data_addr = 0;
877 
878 	for (i = 0; i < hdr->e_phnum; i++) {
879 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
880 			continue;
881 
882 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
883 		seg_size = round_page(phdr[i].p_memsz +
884 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
885 
886 		/*
887 		 * Make the largest executable segment the official
888 		 * text segment and all others data.
889 		 *
890 		 * Note that obreak() assumes that data_addr + data_size == end
891 		 * of data load area, and the ELF file format expects segments
892 		 * to be sorted by address.  If multiple data segments exist,
893 		 * the last one will be used.
894 		 */
895 
896 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
897 			text_size = seg_size;
898 			text_addr = seg_addr;
899 		} else {
900 			data_size = seg_size;
901 			data_addr = seg_addr;
902 		}
903 		total_size += seg_size;
904 	}
905 
906 	if (data_addr == 0 && data_size == 0) {
907 		data_addr = text_addr;
908 		data_size = text_size;
909 	}
910 
911 	/*
912 	 * Check limits.  It should be safe to check the
913 	 * limits after loading the segments since we do
914 	 * not actually fault in all the segments pages.
915 	 */
916 	PROC_LOCK(imgp->proc);
917 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
918 		err_str = "Data segment size exceeds process limit";
919 	else if (text_size > maxtsiz)
920 		err_str = "Text segment size exceeds system limit";
921 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
922 		err_str = "Total segment size exceeds process limit";
923 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
924 		err_str = "Data segment size exceeds resource limit";
925 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
926 		err_str = "Total segment size exceeds resource limit";
927 	PROC_UNLOCK(imgp->proc);
928 	if (err_str != NULL) {
929 		uprintf("%s\n", err_str);
930 		return (ENOMEM);
931 	}
932 
933 	vmspace = imgp->proc->p_vmspace;
934 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
935 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
936 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
937 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
938 
939 	return (0);
940 }
941 
942 static int
943 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
944     char **interpp, bool *free_interpp)
945 {
946 	struct thread *td;
947 	char *interp;
948 	int error, interp_name_len;
949 
950 	KASSERT(phdr->p_type == PT_INTERP,
951 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
952 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
953 
954 	td = curthread;
955 
956 	/* Path to interpreter */
957 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
958 		uprintf("Invalid PT_INTERP\n");
959 		return (ENOEXEC);
960 	}
961 
962 	interp_name_len = phdr->p_filesz;
963 	if (phdr->p_offset > PAGE_SIZE ||
964 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
965 		/*
966 		 * The vnode lock might be needed by the pagedaemon to
967 		 * clean pages owned by the vnode.  Do not allow sleep
968 		 * waiting for memory with the vnode locked, instead
969 		 * try non-sleepable allocation first, and if it
970 		 * fails, go to the slow path were we drop the lock
971 		 * and do M_WAITOK.  A text reference prevents
972 		 * modifications to the vnode content.
973 		 */
974 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
975 		if (interp == NULL) {
976 			VOP_UNLOCK(imgp->vp);
977 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
978 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
979 		}
980 
981 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
982 		    interp_name_len, phdr->p_offset,
983 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
984 		    NOCRED, NULL, td);
985 		if (error != 0) {
986 			free(interp, M_TEMP);
987 			uprintf("i/o error PT_INTERP %d\n", error);
988 			return (error);
989 		}
990 		interp[interp_name_len] = '\0';
991 
992 		*interpp = interp;
993 		*free_interpp = true;
994 		return (0);
995 	}
996 
997 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
998 	if (interp[interp_name_len - 1] != '\0') {
999 		uprintf("Invalid PT_INTERP\n");
1000 		return (ENOEXEC);
1001 	}
1002 
1003 	*interpp = interp;
1004 	*free_interpp = false;
1005 	return (0);
1006 }
1007 
1008 static int
1009 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1010     const char *interp, u_long *addr, u_long *entry)
1011 {
1012 	char *path;
1013 	int error;
1014 
1015 	if (brand_info->emul_path != NULL &&
1016 	    brand_info->emul_path[0] != '\0') {
1017 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1018 		snprintf(path, MAXPATHLEN, "%s%s",
1019 		    brand_info->emul_path, interp);
1020 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1021 		free(path, M_TEMP);
1022 		if (error == 0)
1023 			return (0);
1024 	}
1025 
1026 	if (brand_info->interp_newpath != NULL &&
1027 	    (brand_info->interp_path == NULL ||
1028 	    strcmp(interp, brand_info->interp_path) == 0)) {
1029 		error = __elfN(load_file)(imgp->proc,
1030 		    brand_info->interp_newpath, addr, entry);
1031 		if (error == 0)
1032 			return (0);
1033 	}
1034 
1035 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1036 	if (error == 0)
1037 		return (0);
1038 
1039 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1040 	return (error);
1041 }
1042 
1043 /*
1044  * Impossible et_dyn_addr initial value indicating that the real base
1045  * must be calculated later with some randomization applied.
1046  */
1047 #define	ET_DYN_ADDR_RAND	1
1048 
1049 static int
1050 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1051 {
1052 	struct thread *td;
1053 	const Elf_Ehdr *hdr;
1054 	const Elf_Phdr *phdr;
1055 	Elf_Auxargs *elf_auxargs;
1056 	struct vmspace *vmspace;
1057 	vm_map_t map;
1058 	char *interp;
1059 	Elf_Brandinfo *brand_info;
1060 	struct sysentvec *sv;
1061 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1062 	u_long maxalign, mapsz, maxv, maxv1;
1063 	uint32_t fctl0;
1064 	int32_t osrel;
1065 	bool free_interp;
1066 	int error, i, n;
1067 
1068 	hdr = (const Elf_Ehdr *)imgp->image_header;
1069 
1070 	/*
1071 	 * Do we have a valid ELF header ?
1072 	 *
1073 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1074 	 * if particular brand doesn't support it.
1075 	 */
1076 	if (__elfN(check_header)(hdr) != 0 ||
1077 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1078 		return (-1);
1079 
1080 	/*
1081 	 * From here on down, we return an errno, not -1, as we've
1082 	 * detected an ELF file.
1083 	 */
1084 
1085 	if ((hdr->e_phoff > PAGE_SIZE) ||
1086 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
1087 		/* Only support headers in first page for now */
1088 		uprintf("Program headers not in the first page\n");
1089 		return (ENOEXEC);
1090 	}
1091 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1092 	if (!aligned(phdr, Elf_Addr)) {
1093 		uprintf("Unaligned program headers\n");
1094 		return (ENOEXEC);
1095 	}
1096 
1097 	n = error = 0;
1098 	baddr = 0;
1099 	osrel = 0;
1100 	fctl0 = 0;
1101 	entry = proghdr = 0;
1102 	interp = NULL;
1103 	free_interp = false;
1104 	td = curthread;
1105 	maxalign = PAGE_SIZE;
1106 	mapsz = 0;
1107 
1108 	for (i = 0; i < hdr->e_phnum; i++) {
1109 		switch (phdr[i].p_type) {
1110 		case PT_LOAD:
1111 			if (n == 0)
1112 				baddr = phdr[i].p_vaddr;
1113 			if (phdr[i].p_align > maxalign)
1114 				maxalign = phdr[i].p_align;
1115 			mapsz += phdr[i].p_memsz;
1116 			n++;
1117 
1118 			/*
1119 			 * If this segment contains the program headers,
1120 			 * remember their virtual address for the AT_PHDR
1121 			 * aux entry. Static binaries don't usually include
1122 			 * a PT_PHDR entry.
1123 			 */
1124 			if (phdr[i].p_offset == 0 &&
1125 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
1126 				<= phdr[i].p_filesz)
1127 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1128 			break;
1129 		case PT_INTERP:
1130 			/* Path to interpreter */
1131 			if (interp != NULL) {
1132 				uprintf("Multiple PT_INTERP headers\n");
1133 				error = ENOEXEC;
1134 				goto ret;
1135 			}
1136 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1137 			    &free_interp);
1138 			if (error != 0)
1139 				goto ret;
1140 			break;
1141 		case PT_GNU_STACK:
1142 			if (__elfN(nxstack))
1143 				imgp->stack_prot =
1144 				    __elfN(trans_prot)(phdr[i].p_flags);
1145 			imgp->stack_sz = phdr[i].p_memsz;
1146 			break;
1147 		case PT_PHDR: 	/* Program header table info */
1148 			proghdr = phdr[i].p_vaddr;
1149 			break;
1150 		}
1151 	}
1152 
1153 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1154 	if (brand_info == NULL) {
1155 		uprintf("ELF binary type \"%u\" not known.\n",
1156 		    hdr->e_ident[EI_OSABI]);
1157 		error = ENOEXEC;
1158 		goto ret;
1159 	}
1160 	sv = brand_info->sysvec;
1161 	et_dyn_addr = 0;
1162 	if (hdr->e_type == ET_DYN) {
1163 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1164 			uprintf("Cannot execute shared object\n");
1165 			error = ENOEXEC;
1166 			goto ret;
1167 		}
1168 		/*
1169 		 * Honour the base load address from the dso if it is
1170 		 * non-zero for some reason.
1171 		 */
1172 		if (baddr == 0) {
1173 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1174 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1175 				et_dyn_addr = __elfN(pie_base);
1176 			else if ((__elfN(pie_aslr_enabled) &&
1177 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1178 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1179 				et_dyn_addr = ET_DYN_ADDR_RAND;
1180 			else
1181 				et_dyn_addr = __elfN(pie_base);
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * Avoid a possible deadlock if the current address space is destroyed
1187 	 * and that address space maps the locked vnode.  In the common case,
1188 	 * the locked vnode's v_usecount is decremented but remains greater
1189 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1190 	 * However, in cases where the vnode lock is external, such as nullfs,
1191 	 * v_usecount may become zero.
1192 	 *
1193 	 * The VV_TEXT flag prevents modifications to the executable while
1194 	 * the vnode is unlocked.
1195 	 */
1196 	VOP_UNLOCK(imgp->vp);
1197 
1198 	/*
1199 	 * Decide whether to enable randomization of user mappings.
1200 	 * First, reset user preferences for the setid binaries.
1201 	 * Then, account for the support of the randomization by the
1202 	 * ABI, by user preferences, and make special treatment for
1203 	 * PIE binaries.
1204 	 */
1205 	if (imgp->credential_setid) {
1206 		PROC_LOCK(imgp->proc);
1207 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
1208 		PROC_UNLOCK(imgp->proc);
1209 	}
1210 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1211 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1212 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1213 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1214 		    ("et_dyn_addr == RAND and !ASLR"));
1215 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1216 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1217 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1218 		imgp->map_flags |= MAP_ASLR;
1219 		/*
1220 		 * If user does not care about sbrk, utilize the bss
1221 		 * grow region for mappings as well.  We can select
1222 		 * the base for the image anywere and still not suffer
1223 		 * from the fragmentation.
1224 		 */
1225 		if (!__elfN(aslr_honor_sbrk) ||
1226 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1227 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1228 	}
1229 
1230 	error = exec_new_vmspace(imgp, sv);
1231 	vmspace = imgp->proc->p_vmspace;
1232 	map = &vmspace->vm_map;
1233 
1234 	imgp->proc->p_sysent = sv;
1235 
1236 	maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK);
1237 	if (et_dyn_addr == ET_DYN_ADDR_RAND) {
1238 		KASSERT((map->flags & MAP_ASLR) != 0,
1239 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1240 		et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map,
1241 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1242 		    /* reserve half of the address space to interpreter */
1243 		    maxv / 2, 1UL << flsl(maxalign));
1244 	}
1245 
1246 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1247 	if (error != 0)
1248 		goto ret;
1249 
1250 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1251 	if (error != 0)
1252 		goto ret;
1253 
1254 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1255 	if (error != 0)
1256 		goto ret;
1257 
1258 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1259 
1260 	/*
1261 	 * We load the dynamic linker where a userland call
1262 	 * to mmap(0, ...) would put it.  The rationale behind this
1263 	 * calculation is that it leaves room for the heap to grow to
1264 	 * its maximum allowed size.
1265 	 */
1266 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1267 	    RLIMIT_DATA));
1268 	if ((map->flags & MAP_ASLR) != 0) {
1269 		maxv1 = maxv / 2 + addr / 2;
1270 		MPASS(maxv1 >= addr);	/* No overflow */
1271 		map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1272 		    MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]);
1273 	} else {
1274 		map->anon_loc = addr;
1275 	}
1276 
1277 	imgp->entry_addr = entry;
1278 
1279 	if (interp != NULL) {
1280 		VOP_UNLOCK(imgp->vp);
1281 		if ((map->flags & MAP_ASLR) != 0) {
1282 			/* Assume that interpeter fits into 1/4 of AS */
1283 			maxv1 = maxv / 2 + addr / 2;
1284 			MPASS(maxv1 >= addr);	/* No overflow */
1285 			addr = __CONCAT(rnd_, __elfN(base))(map, addr,
1286 			    maxv1, PAGE_SIZE);
1287 		}
1288 		error = __elfN(load_interp)(imgp, brand_info, interp, &addr,
1289 		    &imgp->entry_addr);
1290 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1291 		if (error != 0)
1292 			goto ret;
1293 	} else
1294 		addr = et_dyn_addr;
1295 
1296 	/*
1297 	 * Construct auxargs table (used by the copyout_auxargs routine)
1298 	 */
1299 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1300 	if (elf_auxargs == NULL) {
1301 		VOP_UNLOCK(imgp->vp);
1302 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1303 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1304 	}
1305 	elf_auxargs->execfd = -1;
1306 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1307 	elf_auxargs->phent = hdr->e_phentsize;
1308 	elf_auxargs->phnum = hdr->e_phnum;
1309 	elf_auxargs->pagesz = PAGE_SIZE;
1310 	elf_auxargs->base = addr;
1311 	elf_auxargs->flags = 0;
1312 	elf_auxargs->entry = entry;
1313 	elf_auxargs->hdr_eflags = hdr->e_flags;
1314 
1315 	imgp->auxargs = elf_auxargs;
1316 	imgp->interpreted = 0;
1317 	imgp->reloc_base = addr;
1318 	imgp->proc->p_osrel = osrel;
1319 	imgp->proc->p_fctl0 = fctl0;
1320 	imgp->proc->p_elf_machine = hdr->e_machine;
1321 	imgp->proc->p_elf_flags = hdr->e_flags;
1322 
1323 ret:
1324 	if (free_interp)
1325 		free(interp, M_TEMP);
1326 	return (error);
1327 }
1328 
1329 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1330 
1331 int
1332 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1333 {
1334 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1335 	Elf_Auxinfo *argarray, *pos;
1336 	int error;
1337 
1338 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1339 	    M_WAITOK | M_ZERO);
1340 
1341 	if (args->execfd != -1)
1342 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1343 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1344 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1345 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1346 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1347 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1348 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1349 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1350 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1351 	if (imgp->execpathp != 0)
1352 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1353 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1354 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1355 	if (imgp->canary != 0) {
1356 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1357 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1358 	}
1359 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1360 	if (imgp->pagesizes != 0) {
1361 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1362 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1363 	}
1364 	if (imgp->sysent->sv_timekeep_base != 0) {
1365 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1366 		    imgp->sysent->sv_timekeep_base);
1367 	}
1368 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1369 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1370 	    imgp->sysent->sv_stackprot);
1371 	if (imgp->sysent->sv_hwcap != NULL)
1372 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1373 	if (imgp->sysent->sv_hwcap2 != NULL)
1374 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1375 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ?
1376 	    ELF_BSDF_SIGFASTBLK : 0);
1377 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1378 
1379 	free(imgp->auxargs, M_TEMP);
1380 	imgp->auxargs = NULL;
1381 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1382 
1383 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1384 	free(argarray, M_TEMP);
1385 	return (error);
1386 }
1387 
1388 int
1389 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1390 {
1391 	Elf_Addr *base;
1392 
1393 	base = (Elf_Addr *)*stack_base;
1394 	base--;
1395 	if (suword(base, imgp->args->argc) == -1)
1396 		return (EFAULT);
1397 	*stack_base = (uintptr_t)base;
1398 	return (0);
1399 }
1400 
1401 /*
1402  * Code for generating ELF core dumps.
1403  */
1404 
1405 typedef void (*segment_callback)(vm_map_entry_t, void *);
1406 
1407 /* Closure for cb_put_phdr(). */
1408 struct phdr_closure {
1409 	Elf_Phdr *phdr;		/* Program header to fill in */
1410 	Elf_Off offset;		/* Offset of segment in core file */
1411 };
1412 
1413 /* Closure for cb_size_segment(). */
1414 struct sseg_closure {
1415 	int count;		/* Count of writable segments. */
1416 	size_t size;		/* Total size of all writable segments. */
1417 };
1418 
1419 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1420 
1421 struct note_info {
1422 	int		type;		/* Note type. */
1423 	outfunc_t 	outfunc; 	/* Output function. */
1424 	void		*outarg;	/* Argument for the output function. */
1425 	size_t		outsize;	/* Output size. */
1426 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1427 };
1428 
1429 TAILQ_HEAD(note_info_list, note_info);
1430 
1431 /* Coredump output parameters. */
1432 struct coredump_params {
1433 	off_t		offset;
1434 	struct ucred	*active_cred;
1435 	struct ucred	*file_cred;
1436 	struct thread	*td;
1437 	struct vnode	*vp;
1438 	struct compressor *comp;
1439 };
1440 
1441 extern int compress_user_cores;
1442 extern int compress_user_cores_level;
1443 
1444 static void cb_put_phdr(vm_map_entry_t, void *);
1445 static void cb_size_segment(vm_map_entry_t, void *);
1446 static int core_write(struct coredump_params *, const void *, size_t, off_t,
1447     enum uio_seg);
1448 static void each_dumpable_segment(struct thread *, segment_callback, void *);
1449 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1450     struct note_info_list *, size_t);
1451 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1452     size_t *);
1453 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1454 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1455 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1456 static int sbuf_drain_core_output(void *, const char *, int);
1457 
1458 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1459 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1460 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1461 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1462 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1463 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
1464 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1465 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1466 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1467 static void note_procstat_files(void *, struct sbuf *, size_t *);
1468 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1469 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1470 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1471 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1472 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1473 
1474 /*
1475  * Write out a core segment to the compression stream.
1476  */
1477 static int
1478 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1479 {
1480 	u_int chunk_len;
1481 	int error;
1482 
1483 	while (len > 0) {
1484 		chunk_len = MIN(len, CORE_BUF_SIZE);
1485 
1486 		/*
1487 		 * We can get EFAULT error here.
1488 		 * In that case zero out the current chunk of the segment.
1489 		 */
1490 		error = copyin(base, buf, chunk_len);
1491 		if (error != 0)
1492 			bzero(buf, chunk_len);
1493 		error = compressor_write(p->comp, buf, chunk_len);
1494 		if (error != 0)
1495 			break;
1496 		base += chunk_len;
1497 		len -= chunk_len;
1498 	}
1499 	return (error);
1500 }
1501 
1502 static int
1503 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1504 {
1505 
1506 	return (core_write((struct coredump_params *)arg, base, len, offset,
1507 	    UIO_SYSSPACE));
1508 }
1509 
1510 static int
1511 core_write(struct coredump_params *p, const void *base, size_t len,
1512     off_t offset, enum uio_seg seg)
1513 {
1514 
1515 	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1516 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1517 	    p->active_cred, p->file_cred, NULL, p->td));
1518 }
1519 
1520 static int
1521 core_output(void *base, size_t len, off_t offset, struct coredump_params *p,
1522     void *tmpbuf)
1523 {
1524 	int error;
1525 
1526 	if (p->comp != NULL)
1527 		return (compress_chunk(p, base, tmpbuf, len));
1528 
1529 	/*
1530 	 * EFAULT is a non-fatal error that we can get, for example,
1531 	 * if the segment is backed by a file but extends beyond its
1532 	 * end.
1533 	 */
1534 	error = core_write(p, base, len, offset, UIO_USERSPACE);
1535 	if (error == EFAULT) {
1536 		log(LOG_WARNING, "Failed to fully fault in a core file segment "
1537 		    "at VA %p with size 0x%zx to be written at offset 0x%jx "
1538 		    "for process %s\n", base, len, offset, curproc->p_comm);
1539 
1540 		/*
1541 		 * Write a "real" zero byte at the end of the target region
1542 		 * in the case this is the last segment.
1543 		 * The intermediate space will be implicitly zero-filled.
1544 		 */
1545 		error = core_write(p, zero_region, 1, offset + len - 1,
1546 		    UIO_SYSSPACE);
1547 	}
1548 	return (error);
1549 }
1550 
1551 /*
1552  * Drain into a core file.
1553  */
1554 static int
1555 sbuf_drain_core_output(void *arg, const char *data, int len)
1556 {
1557 	struct coredump_params *p;
1558 	int error, locked;
1559 
1560 	p = (struct coredump_params *)arg;
1561 
1562 	/*
1563 	 * Some kern_proc out routines that print to this sbuf may
1564 	 * call us with the process lock held. Draining with the
1565 	 * non-sleepable lock held is unsafe. The lock is needed for
1566 	 * those routines when dumping a live process. In our case we
1567 	 * can safely release the lock before draining and acquire
1568 	 * again after.
1569 	 */
1570 	locked = PROC_LOCKED(p->td->td_proc);
1571 	if (locked)
1572 		PROC_UNLOCK(p->td->td_proc);
1573 	if (p->comp != NULL)
1574 		error = compressor_write(p->comp, __DECONST(char *, data), len);
1575 	else
1576 		error = core_write(p, __DECONST(void *, data), len, p->offset,
1577 		    UIO_SYSSPACE);
1578 	if (locked)
1579 		PROC_LOCK(p->td->td_proc);
1580 	if (error != 0)
1581 		return (-error);
1582 	p->offset += len;
1583 	return (len);
1584 }
1585 
1586 int
1587 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1588 {
1589 	struct ucred *cred = td->td_ucred;
1590 	int error = 0;
1591 	struct sseg_closure seginfo;
1592 	struct note_info_list notelst;
1593 	struct coredump_params params;
1594 	struct note_info *ninfo;
1595 	void *hdr, *tmpbuf;
1596 	size_t hdrsize, notesz, coresize;
1597 
1598 	hdr = NULL;
1599 	tmpbuf = NULL;
1600 	TAILQ_INIT(&notelst);
1601 
1602 	/* Size the program segments. */
1603 	seginfo.count = 0;
1604 	seginfo.size = 0;
1605 	each_dumpable_segment(td, cb_size_segment, &seginfo);
1606 
1607 	/*
1608 	 * Collect info about the core file header area.
1609 	 */
1610 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1611 	if (seginfo.count + 1 >= PN_XNUM)
1612 		hdrsize += sizeof(Elf_Shdr);
1613 	__elfN(prepare_notes)(td, &notelst, &notesz);
1614 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1615 
1616 	/* Set up core dump parameters. */
1617 	params.offset = 0;
1618 	params.active_cred = cred;
1619 	params.file_cred = NOCRED;
1620 	params.td = td;
1621 	params.vp = vp;
1622 	params.comp = NULL;
1623 
1624 #ifdef RACCT
1625 	if (racct_enable) {
1626 		PROC_LOCK(td->td_proc);
1627 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1628 		PROC_UNLOCK(td->td_proc);
1629 		if (error != 0) {
1630 			error = EFAULT;
1631 			goto done;
1632 		}
1633 	}
1634 #endif
1635 	if (coresize >= limit) {
1636 		error = EFAULT;
1637 		goto done;
1638 	}
1639 
1640 	/* Create a compression stream if necessary. */
1641 	if (compress_user_cores != 0) {
1642 		params.comp = compressor_init(core_compressed_write,
1643 		    compress_user_cores, CORE_BUF_SIZE,
1644 		    compress_user_cores_level, &params);
1645 		if (params.comp == NULL) {
1646 			error = EFAULT;
1647 			goto done;
1648 		}
1649 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1650         }
1651 
1652 	/*
1653 	 * Allocate memory for building the header, fill it up,
1654 	 * and write it out following the notes.
1655 	 */
1656 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1657 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1658 	    notesz);
1659 
1660 	/* Write the contents of all of the writable segments. */
1661 	if (error == 0) {
1662 		Elf_Phdr *php;
1663 		off_t offset;
1664 		int i;
1665 
1666 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1667 		offset = round_page(hdrsize + notesz);
1668 		for (i = 0; i < seginfo.count; i++) {
1669 			error = core_output((caddr_t)(uintptr_t)php->p_vaddr,
1670 			    php->p_filesz, offset, &params, tmpbuf);
1671 			if (error != 0)
1672 				break;
1673 			offset += php->p_filesz;
1674 			php++;
1675 		}
1676 		if (error == 0 && params.comp != NULL)
1677 			error = compressor_flush(params.comp);
1678 	}
1679 	if (error) {
1680 		log(LOG_WARNING,
1681 		    "Failed to write core file for process %s (error %d)\n",
1682 		    curproc->p_comm, error);
1683 	}
1684 
1685 done:
1686 	free(tmpbuf, M_TEMP);
1687 	if (params.comp != NULL)
1688 		compressor_fini(params.comp);
1689 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1690 		TAILQ_REMOVE(&notelst, ninfo, link);
1691 		free(ninfo, M_TEMP);
1692 	}
1693 	if (hdr != NULL)
1694 		free(hdr, M_TEMP);
1695 
1696 	return (error);
1697 }
1698 
1699 /*
1700  * A callback for each_dumpable_segment() to write out the segment's
1701  * program header entry.
1702  */
1703 static void
1704 cb_put_phdr(vm_map_entry_t entry, void *closure)
1705 {
1706 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1707 	Elf_Phdr *phdr = phc->phdr;
1708 
1709 	phc->offset = round_page(phc->offset);
1710 
1711 	phdr->p_type = PT_LOAD;
1712 	phdr->p_offset = phc->offset;
1713 	phdr->p_vaddr = entry->start;
1714 	phdr->p_paddr = 0;
1715 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1716 	phdr->p_align = PAGE_SIZE;
1717 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1718 
1719 	phc->offset += phdr->p_filesz;
1720 	phc->phdr++;
1721 }
1722 
1723 /*
1724  * A callback for each_dumpable_segment() to gather information about
1725  * the number of segments and their total size.
1726  */
1727 static void
1728 cb_size_segment(vm_map_entry_t entry, void *closure)
1729 {
1730 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1731 
1732 	ssc->count++;
1733 	ssc->size += entry->end - entry->start;
1734 }
1735 
1736 /*
1737  * For each writable segment in the process's memory map, call the given
1738  * function with a pointer to the map entry and some arbitrary
1739  * caller-supplied data.
1740  */
1741 static void
1742 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
1743 {
1744 	struct proc *p = td->td_proc;
1745 	vm_map_t map = &p->p_vmspace->vm_map;
1746 	vm_map_entry_t entry;
1747 	vm_object_t backing_object, object;
1748 	boolean_t ignore_entry;
1749 
1750 	vm_map_lock_read(map);
1751 	VM_MAP_ENTRY_FOREACH(entry, map) {
1752 		/*
1753 		 * Don't dump inaccessible mappings, deal with legacy
1754 		 * coredump mode.
1755 		 *
1756 		 * Note that read-only segments related to the elf binary
1757 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1758 		 * need to arbitrarily ignore such segments.
1759 		 */
1760 		if (elf_legacy_coredump) {
1761 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1762 				continue;
1763 		} else {
1764 			if ((entry->protection & VM_PROT_ALL) == 0)
1765 				continue;
1766 		}
1767 
1768 		/*
1769 		 * Dont include memory segment in the coredump if
1770 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1771 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1772 		 * kernel map).
1773 		 */
1774 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1775 			continue;
1776 
1777 		if ((object = entry->object.vm_object) == NULL)
1778 			continue;
1779 
1780 		/* Ignore memory-mapped devices and such things. */
1781 		VM_OBJECT_RLOCK(object);
1782 		while ((backing_object = object->backing_object) != NULL) {
1783 			VM_OBJECT_RLOCK(backing_object);
1784 			VM_OBJECT_RUNLOCK(object);
1785 			object = backing_object;
1786 		}
1787 		ignore_entry = object->type != OBJT_DEFAULT &&
1788 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1789 		    object->type != OBJT_PHYS;
1790 		VM_OBJECT_RUNLOCK(object);
1791 		if (ignore_entry)
1792 			continue;
1793 
1794 		(*func)(entry, closure);
1795 	}
1796 	vm_map_unlock_read(map);
1797 }
1798 
1799 /*
1800  * Write the core file header to the file, including padding up to
1801  * the page boundary.
1802  */
1803 static int
1804 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1805     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
1806 {
1807 	struct note_info *ninfo;
1808 	struct sbuf *sb;
1809 	int error;
1810 
1811 	/* Fill in the header. */
1812 	bzero(hdr, hdrsize);
1813 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
1814 
1815 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1816 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1817 	sbuf_start_section(sb, NULL);
1818 	sbuf_bcat(sb, hdr, hdrsize);
1819 	TAILQ_FOREACH(ninfo, notelst, link)
1820 	    __elfN(putnote)(ninfo, sb);
1821 	/* Align up to a page boundary for the program segments. */
1822 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1823 	error = sbuf_finish(sb);
1824 	sbuf_delete(sb);
1825 
1826 	return (error);
1827 }
1828 
1829 static void
1830 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1831     size_t *sizep)
1832 {
1833 	struct proc *p;
1834 	struct thread *thr;
1835 	size_t size;
1836 
1837 	p = td->td_proc;
1838 	size = 0;
1839 
1840 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1841 
1842 	/*
1843 	 * To have the debugger select the right thread (LWP) as the initial
1844 	 * thread, we dump the state of the thread passed to us in td first.
1845 	 * This is the thread that causes the core dump and thus likely to
1846 	 * be the right thread one wants to have selected in the debugger.
1847 	 */
1848 	thr = td;
1849 	while (thr != NULL) {
1850 		size += register_note(list, NT_PRSTATUS,
1851 		    __elfN(note_prstatus), thr);
1852 		size += register_note(list, NT_FPREGSET,
1853 		    __elfN(note_fpregset), thr);
1854 		size += register_note(list, NT_THRMISC,
1855 		    __elfN(note_thrmisc), thr);
1856 		size += register_note(list, NT_PTLWPINFO,
1857 		    __elfN(note_ptlwpinfo), thr);
1858 		size += register_note(list, -1,
1859 		    __elfN(note_threadmd), thr);
1860 
1861 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1862 		    TAILQ_NEXT(thr, td_plist);
1863 		if (thr == td)
1864 			thr = TAILQ_NEXT(thr, td_plist);
1865 	}
1866 
1867 	size += register_note(list, NT_PROCSTAT_PROC,
1868 	    __elfN(note_procstat_proc), p);
1869 	size += register_note(list, NT_PROCSTAT_FILES,
1870 	    note_procstat_files, p);
1871 	size += register_note(list, NT_PROCSTAT_VMMAP,
1872 	    note_procstat_vmmap, p);
1873 	size += register_note(list, NT_PROCSTAT_GROUPS,
1874 	    note_procstat_groups, p);
1875 	size += register_note(list, NT_PROCSTAT_UMASK,
1876 	    note_procstat_umask, p);
1877 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1878 	    note_procstat_rlimit, p);
1879 	size += register_note(list, NT_PROCSTAT_OSREL,
1880 	    note_procstat_osrel, p);
1881 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1882 	    __elfN(note_procstat_psstrings), p);
1883 	size += register_note(list, NT_PROCSTAT_AUXV,
1884 	    __elfN(note_procstat_auxv), p);
1885 
1886 	*sizep = size;
1887 }
1888 
1889 static void
1890 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1891     size_t notesz)
1892 {
1893 	Elf_Ehdr *ehdr;
1894 	Elf_Phdr *phdr;
1895 	Elf_Shdr *shdr;
1896 	struct phdr_closure phc;
1897 
1898 	ehdr = (Elf_Ehdr *)hdr;
1899 
1900 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1901 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1902 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1903 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1904 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1905 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1906 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1907 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1908 	ehdr->e_ident[EI_ABIVERSION] = 0;
1909 	ehdr->e_ident[EI_PAD] = 0;
1910 	ehdr->e_type = ET_CORE;
1911 	ehdr->e_machine = td->td_proc->p_elf_machine;
1912 	ehdr->e_version = EV_CURRENT;
1913 	ehdr->e_entry = 0;
1914 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1915 	ehdr->e_flags = td->td_proc->p_elf_flags;
1916 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1917 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1918 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1919 	ehdr->e_shstrndx = SHN_UNDEF;
1920 	if (numsegs + 1 < PN_XNUM) {
1921 		ehdr->e_phnum = numsegs + 1;
1922 		ehdr->e_shnum = 0;
1923 	} else {
1924 		ehdr->e_phnum = PN_XNUM;
1925 		ehdr->e_shnum = 1;
1926 
1927 		ehdr->e_shoff = ehdr->e_phoff +
1928 		    (numsegs + 1) * ehdr->e_phentsize;
1929 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1930 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1931 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1932 
1933 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1934 		memset(shdr, 0, sizeof(*shdr));
1935 		/*
1936 		 * A special first section is used to hold large segment and
1937 		 * section counts.  This was proposed by Sun Microsystems in
1938 		 * Solaris and has been adopted by Linux; the standard ELF
1939 		 * tools are already familiar with the technique.
1940 		 *
1941 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1942 		 * (or 12-7 depending on the version of the document) for more
1943 		 * details.
1944 		 */
1945 		shdr->sh_type = SHT_NULL;
1946 		shdr->sh_size = ehdr->e_shnum;
1947 		shdr->sh_link = ehdr->e_shstrndx;
1948 		shdr->sh_info = numsegs + 1;
1949 	}
1950 
1951 	/*
1952 	 * Fill in the program header entries.
1953 	 */
1954 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1955 
1956 	/* The note segement. */
1957 	phdr->p_type = PT_NOTE;
1958 	phdr->p_offset = hdrsize;
1959 	phdr->p_vaddr = 0;
1960 	phdr->p_paddr = 0;
1961 	phdr->p_filesz = notesz;
1962 	phdr->p_memsz = 0;
1963 	phdr->p_flags = PF_R;
1964 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1965 	phdr++;
1966 
1967 	/* All the writable segments from the program. */
1968 	phc.phdr = phdr;
1969 	phc.offset = round_page(hdrsize + notesz);
1970 	each_dumpable_segment(td, cb_put_phdr, &phc);
1971 }
1972 
1973 static size_t
1974 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1975 {
1976 	struct note_info *ninfo;
1977 	size_t size, notesize;
1978 
1979 	size = 0;
1980 	out(arg, NULL, &size);
1981 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1982 	ninfo->type = type;
1983 	ninfo->outfunc = out;
1984 	ninfo->outarg = arg;
1985 	ninfo->outsize = size;
1986 	TAILQ_INSERT_TAIL(list, ninfo, link);
1987 
1988 	if (type == -1)
1989 		return (size);
1990 
1991 	notesize = sizeof(Elf_Note) +		/* note header */
1992 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1993 						/* note name */
1994 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1995 
1996 	return (notesize);
1997 }
1998 
1999 static size_t
2000 append_note_data(const void *src, void *dst, size_t len)
2001 {
2002 	size_t padded_len;
2003 
2004 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2005 	if (dst != NULL) {
2006 		bcopy(src, dst, len);
2007 		bzero((char *)dst + len, padded_len - len);
2008 	}
2009 	return (padded_len);
2010 }
2011 
2012 size_t
2013 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2014 {
2015 	Elf_Note *note;
2016 	char *buf;
2017 	size_t notesize;
2018 
2019 	buf = dst;
2020 	if (buf != NULL) {
2021 		note = (Elf_Note *)buf;
2022 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2023 		note->n_descsz = size;
2024 		note->n_type = type;
2025 		buf += sizeof(*note);
2026 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2027 		    sizeof(FREEBSD_ABI_VENDOR));
2028 		append_note_data(src, buf, size);
2029 		if (descp != NULL)
2030 			*descp = buf;
2031 	}
2032 
2033 	notesize = sizeof(Elf_Note) +		/* note header */
2034 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2035 						/* note name */
2036 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2037 
2038 	return (notesize);
2039 }
2040 
2041 static void
2042 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
2043 {
2044 	Elf_Note note;
2045 	ssize_t old_len, sect_len;
2046 	size_t new_len, descsz, i;
2047 
2048 	if (ninfo->type == -1) {
2049 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2050 		return;
2051 	}
2052 
2053 	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2054 	note.n_descsz = ninfo->outsize;
2055 	note.n_type = ninfo->type;
2056 
2057 	sbuf_bcat(sb, &note, sizeof(note));
2058 	sbuf_start_section(sb, &old_len);
2059 	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
2060 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2061 	if (note.n_descsz == 0)
2062 		return;
2063 	sbuf_start_section(sb, &old_len);
2064 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2065 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2066 	if (sect_len < 0)
2067 		return;
2068 
2069 	new_len = (size_t)sect_len;
2070 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2071 	if (new_len < descsz) {
2072 		/*
2073 		 * It is expected that individual note emitters will correctly
2074 		 * predict their expected output size and fill up to that size
2075 		 * themselves, padding in a format-specific way if needed.
2076 		 * However, in case they don't, just do it here with zeros.
2077 		 */
2078 		for (i = 0; i < descsz - new_len; i++)
2079 			sbuf_putc(sb, 0);
2080 	} else if (new_len > descsz) {
2081 		/*
2082 		 * We can't always truncate sb -- we may have drained some
2083 		 * of it already.
2084 		 */
2085 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2086 		    "read it (%zu > %zu).  Since it is longer than "
2087 		    "expected, this coredump's notes are corrupt.  THIS "
2088 		    "IS A BUG in the note_procstat routine for type %u.\n",
2089 		    __func__, (unsigned)note.n_type, new_len, descsz,
2090 		    (unsigned)note.n_type));
2091 	}
2092 }
2093 
2094 /*
2095  * Miscellaneous note out functions.
2096  */
2097 
2098 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2099 #include <compat/freebsd32/freebsd32.h>
2100 #include <compat/freebsd32/freebsd32_signal.h>
2101 
2102 typedef struct prstatus32 elf_prstatus_t;
2103 typedef struct prpsinfo32 elf_prpsinfo_t;
2104 typedef struct fpreg32 elf_prfpregset_t;
2105 typedef struct fpreg32 elf_fpregset_t;
2106 typedef struct reg32 elf_gregset_t;
2107 typedef struct thrmisc32 elf_thrmisc_t;
2108 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2109 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2110 typedef uint32_t elf_ps_strings_t;
2111 #else
2112 typedef prstatus_t elf_prstatus_t;
2113 typedef prpsinfo_t elf_prpsinfo_t;
2114 typedef prfpregset_t elf_prfpregset_t;
2115 typedef prfpregset_t elf_fpregset_t;
2116 typedef gregset_t elf_gregset_t;
2117 typedef thrmisc_t elf_thrmisc_t;
2118 #define ELF_KERN_PROC_MASK	0
2119 typedef struct kinfo_proc elf_kinfo_proc_t;
2120 typedef vm_offset_t elf_ps_strings_t;
2121 #endif
2122 
2123 static void
2124 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2125 {
2126 	struct sbuf sbarg;
2127 	size_t len;
2128 	char *cp, *end;
2129 	struct proc *p;
2130 	elf_prpsinfo_t *psinfo;
2131 	int error;
2132 
2133 	p = (struct proc *)arg;
2134 	if (sb != NULL) {
2135 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2136 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2137 		psinfo->pr_version = PRPSINFO_VERSION;
2138 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2139 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2140 		PROC_LOCK(p);
2141 		if (p->p_args != NULL) {
2142 			len = sizeof(psinfo->pr_psargs) - 1;
2143 			if (len > p->p_args->ar_length)
2144 				len = p->p_args->ar_length;
2145 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2146 			PROC_UNLOCK(p);
2147 			error = 0;
2148 		} else {
2149 			_PHOLD(p);
2150 			PROC_UNLOCK(p);
2151 			sbuf_new(&sbarg, psinfo->pr_psargs,
2152 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2153 			error = proc_getargv(curthread, p, &sbarg);
2154 			PRELE(p);
2155 			if (sbuf_finish(&sbarg) == 0)
2156 				len = sbuf_len(&sbarg) - 1;
2157 			else
2158 				len = sizeof(psinfo->pr_psargs) - 1;
2159 			sbuf_delete(&sbarg);
2160 		}
2161 		if (error || len == 0)
2162 			strlcpy(psinfo->pr_psargs, p->p_comm,
2163 			    sizeof(psinfo->pr_psargs));
2164 		else {
2165 			KASSERT(len < sizeof(psinfo->pr_psargs),
2166 			    ("len is too long: %zu vs %zu", len,
2167 			    sizeof(psinfo->pr_psargs)));
2168 			cp = psinfo->pr_psargs;
2169 			end = cp + len - 1;
2170 			for (;;) {
2171 				cp = memchr(cp, '\0', end - cp);
2172 				if (cp == NULL)
2173 					break;
2174 				*cp = ' ';
2175 			}
2176 		}
2177 		psinfo->pr_pid = p->p_pid;
2178 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2179 		free(psinfo, M_TEMP);
2180 	}
2181 	*sizep = sizeof(*psinfo);
2182 }
2183 
2184 static void
2185 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
2186 {
2187 	struct thread *td;
2188 	elf_prstatus_t *status;
2189 
2190 	td = (struct thread *)arg;
2191 	if (sb != NULL) {
2192 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
2193 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
2194 		status->pr_version = PRSTATUS_VERSION;
2195 		status->pr_statussz = sizeof(elf_prstatus_t);
2196 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2197 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2198 		status->pr_osreldate = osreldate;
2199 		status->pr_cursig = td->td_proc->p_sig;
2200 		status->pr_pid = td->td_tid;
2201 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2202 		fill_regs32(td, &status->pr_reg);
2203 #else
2204 		fill_regs(td, &status->pr_reg);
2205 #endif
2206 		sbuf_bcat(sb, status, sizeof(*status));
2207 		free(status, M_TEMP);
2208 	}
2209 	*sizep = sizeof(*status);
2210 }
2211 
2212 static void
2213 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
2214 {
2215 	struct thread *td;
2216 	elf_prfpregset_t *fpregset;
2217 
2218 	td = (struct thread *)arg;
2219 	if (sb != NULL) {
2220 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
2221 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
2222 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2223 		fill_fpregs32(td, fpregset);
2224 #else
2225 		fill_fpregs(td, fpregset);
2226 #endif
2227 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
2228 		free(fpregset, M_TEMP);
2229 	}
2230 	*sizep = sizeof(*fpregset);
2231 }
2232 
2233 static void
2234 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2235 {
2236 	struct thread *td;
2237 	elf_thrmisc_t thrmisc;
2238 
2239 	td = (struct thread *)arg;
2240 	if (sb != NULL) {
2241 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2242 		bzero(&thrmisc, sizeof(thrmisc));
2243 		strcpy(thrmisc.pr_tname, td->td_name);
2244 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2245 	}
2246 	*sizep = sizeof(thrmisc);
2247 }
2248 
2249 static void
2250 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2251 {
2252 	struct thread *td;
2253 	size_t size;
2254 	int structsize;
2255 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2256 	struct ptrace_lwpinfo32 pl;
2257 #else
2258 	struct ptrace_lwpinfo pl;
2259 #endif
2260 
2261 	td = (struct thread *)arg;
2262 	size = sizeof(structsize) + sizeof(pl);
2263 	if (sb != NULL) {
2264 		KASSERT(*sizep == size, ("invalid size"));
2265 		structsize = sizeof(pl);
2266 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2267 		bzero(&pl, sizeof(pl));
2268 		pl.pl_lwpid = td->td_tid;
2269 		pl.pl_event = PL_EVENT_NONE;
2270 		pl.pl_sigmask = td->td_sigmask;
2271 		pl.pl_siglist = td->td_siglist;
2272 		if (td->td_si.si_signo != 0) {
2273 			pl.pl_event = PL_EVENT_SIGNAL;
2274 			pl.pl_flags |= PL_FLAG_SI;
2275 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2276 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2277 #else
2278 			pl.pl_siginfo = td->td_si;
2279 #endif
2280 		}
2281 		strcpy(pl.pl_tdname, td->td_name);
2282 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2283 		sbuf_bcat(sb, &pl, sizeof(pl));
2284 	}
2285 	*sizep = size;
2286 }
2287 
2288 /*
2289  * Allow for MD specific notes, as well as any MD
2290  * specific preparations for writing MI notes.
2291  */
2292 static void
2293 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2294 {
2295 	struct thread *td;
2296 	void *buf;
2297 	size_t size;
2298 
2299 	td = (struct thread *)arg;
2300 	size = *sizep;
2301 	if (size != 0 && sb != NULL)
2302 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2303 	else
2304 		buf = NULL;
2305 	size = 0;
2306 	__elfN(dump_thread)(td, buf, &size);
2307 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2308 	if (size != 0 && sb != NULL)
2309 		sbuf_bcat(sb, buf, size);
2310 	free(buf, M_TEMP);
2311 	*sizep = size;
2312 }
2313 
2314 #ifdef KINFO_PROC_SIZE
2315 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2316 #endif
2317 
2318 static void
2319 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2320 {
2321 	struct proc *p;
2322 	size_t size;
2323 	int structsize;
2324 
2325 	p = (struct proc *)arg;
2326 	size = sizeof(structsize) + p->p_numthreads *
2327 	    sizeof(elf_kinfo_proc_t);
2328 
2329 	if (sb != NULL) {
2330 		KASSERT(*sizep == size, ("invalid size"));
2331 		structsize = sizeof(elf_kinfo_proc_t);
2332 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2333 		PROC_LOCK(p);
2334 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2335 	}
2336 	*sizep = size;
2337 }
2338 
2339 #ifdef KINFO_FILE_SIZE
2340 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2341 #endif
2342 
2343 static void
2344 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2345 {
2346 	struct proc *p;
2347 	size_t size, sect_sz, i;
2348 	ssize_t start_len, sect_len;
2349 	int structsize, filedesc_flags;
2350 
2351 	if (coredump_pack_fileinfo)
2352 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2353 	else
2354 		filedesc_flags = 0;
2355 
2356 	p = (struct proc *)arg;
2357 	structsize = sizeof(struct kinfo_file);
2358 	if (sb == NULL) {
2359 		size = 0;
2360 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2361 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2362 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2363 		PROC_LOCK(p);
2364 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2365 		sbuf_finish(sb);
2366 		sbuf_delete(sb);
2367 		*sizep = size;
2368 	} else {
2369 		sbuf_start_section(sb, &start_len);
2370 
2371 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2372 		PROC_LOCK(p);
2373 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2374 		    filedesc_flags);
2375 
2376 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2377 		if (sect_len < 0)
2378 			return;
2379 		sect_sz = sect_len;
2380 
2381 		KASSERT(sect_sz <= *sizep,
2382 		    ("kern_proc_filedesc_out did not respect maxlen; "
2383 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2384 		     sect_sz - sizeof(structsize)));
2385 
2386 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2387 			sbuf_putc(sb, 0);
2388 	}
2389 }
2390 
2391 #ifdef KINFO_VMENTRY_SIZE
2392 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2393 #endif
2394 
2395 static void
2396 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2397 {
2398 	struct proc *p;
2399 	size_t size;
2400 	int structsize, vmmap_flags;
2401 
2402 	if (coredump_pack_vmmapinfo)
2403 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2404 	else
2405 		vmmap_flags = 0;
2406 
2407 	p = (struct proc *)arg;
2408 	structsize = sizeof(struct kinfo_vmentry);
2409 	if (sb == NULL) {
2410 		size = 0;
2411 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2412 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2413 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2414 		PROC_LOCK(p);
2415 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2416 		sbuf_finish(sb);
2417 		sbuf_delete(sb);
2418 		*sizep = size;
2419 	} else {
2420 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2421 		PROC_LOCK(p);
2422 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2423 		    vmmap_flags);
2424 	}
2425 }
2426 
2427 static void
2428 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2429 {
2430 	struct proc *p;
2431 	size_t size;
2432 	int structsize;
2433 
2434 	p = (struct proc *)arg;
2435 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2436 	if (sb != NULL) {
2437 		KASSERT(*sizep == size, ("invalid size"));
2438 		structsize = sizeof(gid_t);
2439 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2440 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2441 		    sizeof(gid_t));
2442 	}
2443 	*sizep = size;
2444 }
2445 
2446 static void
2447 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2448 {
2449 	struct proc *p;
2450 	size_t size;
2451 	int structsize;
2452 
2453 	p = (struct proc *)arg;
2454 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2455 	if (sb != NULL) {
2456 		KASSERT(*sizep == size, ("invalid size"));
2457 		structsize = sizeof(p->p_fd->fd_cmask);
2458 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2459 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2460 	}
2461 	*sizep = size;
2462 }
2463 
2464 static void
2465 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2466 {
2467 	struct proc *p;
2468 	struct rlimit rlim[RLIM_NLIMITS];
2469 	size_t size;
2470 	int structsize, i;
2471 
2472 	p = (struct proc *)arg;
2473 	size = sizeof(structsize) + sizeof(rlim);
2474 	if (sb != NULL) {
2475 		KASSERT(*sizep == size, ("invalid size"));
2476 		structsize = sizeof(rlim);
2477 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2478 		PROC_LOCK(p);
2479 		for (i = 0; i < RLIM_NLIMITS; i++)
2480 			lim_rlimit_proc(p, i, &rlim[i]);
2481 		PROC_UNLOCK(p);
2482 		sbuf_bcat(sb, rlim, sizeof(rlim));
2483 	}
2484 	*sizep = size;
2485 }
2486 
2487 static void
2488 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2489 {
2490 	struct proc *p;
2491 	size_t size;
2492 	int structsize;
2493 
2494 	p = (struct proc *)arg;
2495 	size = sizeof(structsize) + sizeof(p->p_osrel);
2496 	if (sb != NULL) {
2497 		KASSERT(*sizep == size, ("invalid size"));
2498 		structsize = sizeof(p->p_osrel);
2499 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2500 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2501 	}
2502 	*sizep = size;
2503 }
2504 
2505 static void
2506 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2507 {
2508 	struct proc *p;
2509 	elf_ps_strings_t ps_strings;
2510 	size_t size;
2511 	int structsize;
2512 
2513 	p = (struct proc *)arg;
2514 	size = sizeof(structsize) + sizeof(ps_strings);
2515 	if (sb != NULL) {
2516 		KASSERT(*sizep == size, ("invalid size"));
2517 		structsize = sizeof(ps_strings);
2518 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2519 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2520 #else
2521 		ps_strings = p->p_sysent->sv_psstrings;
2522 #endif
2523 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2524 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2525 	}
2526 	*sizep = size;
2527 }
2528 
2529 static void
2530 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2531 {
2532 	struct proc *p;
2533 	size_t size;
2534 	int structsize;
2535 
2536 	p = (struct proc *)arg;
2537 	if (sb == NULL) {
2538 		size = 0;
2539 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2540 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2541 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2542 		PHOLD(p);
2543 		proc_getauxv(curthread, p, sb);
2544 		PRELE(p);
2545 		sbuf_finish(sb);
2546 		sbuf_delete(sb);
2547 		*sizep = size;
2548 	} else {
2549 		structsize = sizeof(Elf_Auxinfo);
2550 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2551 		PHOLD(p);
2552 		proc_getauxv(curthread, p, sb);
2553 		PRELE(p);
2554 	}
2555 }
2556 
2557 static boolean_t
2558 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2559     const char *note_vendor, const Elf_Phdr *pnote,
2560     boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg)
2561 {
2562 	const Elf_Note *note, *note0, *note_end;
2563 	const char *note_name;
2564 	char *buf;
2565 	int i, error;
2566 	boolean_t res;
2567 
2568 	/* We need some limit, might as well use PAGE_SIZE. */
2569 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2570 		return (FALSE);
2571 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2572 	if (pnote->p_offset > PAGE_SIZE ||
2573 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2574 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2575 		if (buf == NULL) {
2576 			VOP_UNLOCK(imgp->vp);
2577 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2578 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2579 		}
2580 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2581 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2582 		    curthread->td_ucred, NOCRED, NULL, curthread);
2583 		if (error != 0) {
2584 			uprintf("i/o error PT_NOTE\n");
2585 			goto retf;
2586 		}
2587 		note = note0 = (const Elf_Note *)buf;
2588 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2589 	} else {
2590 		note = note0 = (const Elf_Note *)(imgp->image_header +
2591 		    pnote->p_offset);
2592 		note_end = (const Elf_Note *)(imgp->image_header +
2593 		    pnote->p_offset + pnote->p_filesz);
2594 		buf = NULL;
2595 	}
2596 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2597 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2598 		    (const char *)note < sizeof(Elf_Note)) {
2599 			goto retf;
2600 		}
2601 		if (note->n_namesz != checknote->n_namesz ||
2602 		    note->n_descsz != checknote->n_descsz ||
2603 		    note->n_type != checknote->n_type)
2604 			goto nextnote;
2605 		note_name = (const char *)(note + 1);
2606 		if (note_name + checknote->n_namesz >=
2607 		    (const char *)note_end || strncmp(note_vendor,
2608 		    note_name, checknote->n_namesz) != 0)
2609 			goto nextnote;
2610 
2611 		if (cb(note, cb_arg, &res))
2612 			goto ret;
2613 nextnote:
2614 		note = (const Elf_Note *)((const char *)(note + 1) +
2615 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2616 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2617 	}
2618 retf:
2619 	res = FALSE;
2620 ret:
2621 	free(buf, M_TEMP);
2622 	return (res);
2623 }
2624 
2625 struct brandnote_cb_arg {
2626 	Elf_Brandnote *brandnote;
2627 	int32_t *osrel;
2628 };
2629 
2630 static boolean_t
2631 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2632 {
2633 	struct brandnote_cb_arg *arg;
2634 
2635 	arg = arg0;
2636 
2637 	/*
2638 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2639 	 * necessary.
2640 	 */
2641 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2642 	    arg->brandnote->trans_osrel != NULL ?
2643 	    arg->brandnote->trans_osrel(note, arg->osrel) : TRUE;
2644 
2645 	return (TRUE);
2646 }
2647 
2648 static Elf_Note fctl_note = {
2649 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2650 	.n_descsz = sizeof(uint32_t),
2651 	.n_type = NT_FREEBSD_FEATURE_CTL,
2652 };
2653 
2654 struct fctl_cb_arg {
2655 	uint32_t *fctl0;
2656 };
2657 
2658 static boolean_t
2659 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2660 {
2661 	struct fctl_cb_arg *arg;
2662 	const Elf32_Word *desc;
2663 	uintptr_t p;
2664 
2665 	arg = arg0;
2666 	p = (uintptr_t)(note + 1);
2667 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2668 	desc = (const Elf32_Word *)p;
2669 	*arg->fctl0 = desc[0];
2670 	return (TRUE);
2671 }
2672 
2673 /*
2674  * Try to find the appropriate ABI-note section for checknote, fetch
2675  * the osreldate and feature control flags for binary from the ELF
2676  * OSABI-note.  Only the first page of the image is searched, the same
2677  * as for headers.
2678  */
2679 static boolean_t
2680 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2681     int32_t *osrel, uint32_t *fctl0)
2682 {
2683 	const Elf_Phdr *phdr;
2684 	const Elf_Ehdr *hdr;
2685 	struct brandnote_cb_arg b_arg;
2686 	struct fctl_cb_arg f_arg;
2687 	int i, j;
2688 
2689 	hdr = (const Elf_Ehdr *)imgp->image_header;
2690 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2691 	b_arg.brandnote = brandnote;
2692 	b_arg.osrel = osrel;
2693 	f_arg.fctl0 = fctl0;
2694 
2695 	for (i = 0; i < hdr->e_phnum; i++) {
2696 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2697 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2698 		    &b_arg)) {
2699 			for (j = 0; j < hdr->e_phnum; j++) {
2700 				if (phdr[j].p_type == PT_NOTE &&
2701 				    __elfN(parse_notes)(imgp, &fctl_note,
2702 				    FREEBSD_ABI_VENDOR, &phdr[j],
2703 				    note_fctl_cb, &f_arg))
2704 					break;
2705 			}
2706 			return (TRUE);
2707 		}
2708 	}
2709 	return (FALSE);
2710 
2711 }
2712 
2713 /*
2714  * Tell kern_execve.c about it, with a little help from the linker.
2715  */
2716 static struct execsw __elfN(execsw) = {
2717 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2718 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2719 };
2720 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2721 
2722 static vm_prot_t
2723 __elfN(trans_prot)(Elf_Word flags)
2724 {
2725 	vm_prot_t prot;
2726 
2727 	prot = 0;
2728 	if (flags & PF_X)
2729 		prot |= VM_PROT_EXECUTE;
2730 	if (flags & PF_W)
2731 		prot |= VM_PROT_WRITE;
2732 	if (flags & PF_R)
2733 		prot |= VM_PROT_READ;
2734 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2735 	if (i386_read_exec && (flags & PF_R))
2736 		prot |= VM_PROT_EXECUTE;
2737 #endif
2738 	return (prot);
2739 }
2740 
2741 static Elf_Word
2742 __elfN(untrans_prot)(vm_prot_t prot)
2743 {
2744 	Elf_Word flags;
2745 
2746 	flags = 0;
2747 	if (prot & VM_PROT_EXECUTE)
2748 		flags |= PF_X;
2749 	if (prot & VM_PROT_READ)
2750 		flags |= PF_R;
2751 	if (prot & VM_PROT_WRITE)
2752 		flags |= PF_W;
2753 	return (flags);
2754 }
2755 
2756 void
2757 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base)
2758 {
2759 	uintptr_t range, rbase, gap;
2760 	int pct;
2761 
2762 	if ((imgp->map_flags & MAP_ASLR) == 0)
2763 		return;
2764 	pct = __elfN(aslr_stack_gap);
2765 	if (pct == 0)
2766 		return;
2767 	if (pct > 50)
2768 		pct = 50;
2769 	range = imgp->eff_stack_sz * pct / 100;
2770 	arc4rand(&rbase, sizeof(rbase), 0);
2771 	gap = rbase % range;
2772 	gap &= ~(sizeof(u_long) - 1);
2773 	*stack_base -= gap;
2774 }
2775