1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_gzio.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/gzio.h> 43 #include <sys/imgact.h> 44 #include <sys/imgact_elf.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/lock.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/mman.h> 51 #include <sys/namei.h> 52 #include <sys/pioctl.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/racct.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sf_buf.h> 60 #include <sys/smp.h> 61 #include <sys/systm.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/sx.h> 65 #include <sys/syscall.h> 66 #include <sys/sysctl.h> 67 #include <sys/sysent.h> 68 #include <sys/vnode.h> 69 #include <sys/syslog.h> 70 #include <sys/eventhandler.h> 71 #include <sys/user.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #define CORE_BUF_SIZE (16 * 1024) 108 109 int __elfN(fallback_brand) = -1; 110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 111 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 112 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 113 114 static int elf_legacy_coredump = 0; 115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 116 &elf_legacy_coredump, 0, ""); 117 118 int __elfN(nxstack) = 119 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ 120 1; 121 #else 122 0; 123 #endif 124 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 125 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 126 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 127 128 #if __ELF_WORD_SIZE == 32 129 #if defined(__amd64__) 130 int i386_read_exec = 0; 131 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 132 "enable execution from readable segments"); 133 #endif 134 #endif 135 136 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 137 138 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 139 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 140 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 141 142 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 143 144 Elf_Brandnote __elfN(freebsd_brandnote) = { 145 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 146 .hdr.n_descsz = sizeof(int32_t), 147 .hdr.n_type = 1, 148 .vendor = FREEBSD_ABI_VENDOR, 149 .flags = BN_TRANSLATE_OSREL, 150 .trans_osrel = __elfN(freebsd_trans_osrel) 151 }; 152 153 static boolean_t 154 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 155 { 156 uintptr_t p; 157 158 p = (uintptr_t)(note + 1); 159 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 160 *osrel = *(const int32_t *)(p); 161 162 return (TRUE); 163 } 164 165 static const char GNU_ABI_VENDOR[] = "GNU"; 166 static int GNU_KFREEBSD_ABI_DESC = 3; 167 168 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 169 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 170 .hdr.n_descsz = 16, /* XXX at least 16 */ 171 .hdr.n_type = 1, 172 .vendor = GNU_ABI_VENDOR, 173 .flags = BN_TRANSLATE_OSREL, 174 .trans_osrel = kfreebsd_trans_osrel 175 }; 176 177 static boolean_t 178 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 179 { 180 const Elf32_Word *desc; 181 uintptr_t p; 182 183 p = (uintptr_t)(note + 1); 184 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 185 186 desc = (const Elf32_Word *)p; 187 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 188 return (FALSE); 189 190 /* 191 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 192 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 193 */ 194 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 195 196 return (TRUE); 197 } 198 199 int 200 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 201 { 202 int i; 203 204 for (i = 0; i < MAX_BRANDS; i++) { 205 if (elf_brand_list[i] == NULL) { 206 elf_brand_list[i] = entry; 207 break; 208 } 209 } 210 if (i == MAX_BRANDS) { 211 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 212 __func__, entry); 213 return (-1); 214 } 215 return (0); 216 } 217 218 int 219 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 220 { 221 int i; 222 223 for (i = 0; i < MAX_BRANDS; i++) { 224 if (elf_brand_list[i] == entry) { 225 elf_brand_list[i] = NULL; 226 break; 227 } 228 } 229 if (i == MAX_BRANDS) 230 return (-1); 231 return (0); 232 } 233 234 int 235 __elfN(brand_inuse)(Elf_Brandinfo *entry) 236 { 237 struct proc *p; 238 int rval = FALSE; 239 240 sx_slock(&allproc_lock); 241 FOREACH_PROC_IN_SYSTEM(p) { 242 if (p->p_sysent == entry->sysvec) { 243 rval = TRUE; 244 break; 245 } 246 } 247 sx_sunlock(&allproc_lock); 248 249 return (rval); 250 } 251 252 static Elf_Brandinfo * 253 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 254 int interp_name_len, int32_t *osrel) 255 { 256 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 257 Elf_Brandinfo *bi; 258 boolean_t ret; 259 int i; 260 261 /* 262 * We support four types of branding -- (1) the ELF EI_OSABI field 263 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 264 * branding w/in the ELF header, (3) path of the `interp_path' 265 * field, and (4) the ".note.ABI-tag" ELF section. 266 */ 267 268 /* Look for an ".note.ABI-tag" ELF section */ 269 for (i = 0; i < MAX_BRANDS; i++) { 270 bi = elf_brand_list[i]; 271 if (bi == NULL) 272 continue; 273 if (hdr->e_machine == bi->machine && (bi->flags & 274 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 275 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 276 if (ret) 277 return (bi); 278 } 279 } 280 281 /* If the executable has a brand, search for it in the brand list. */ 282 for (i = 0; i < MAX_BRANDS; i++) { 283 bi = elf_brand_list[i]; 284 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 285 continue; 286 if (hdr->e_machine == bi->machine && 287 (hdr->e_ident[EI_OSABI] == bi->brand || 288 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 289 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 290 return (bi); 291 } 292 293 /* No known brand, see if the header is recognized by any brand */ 294 for (i = 0; i < MAX_BRANDS; i++) { 295 bi = elf_brand_list[i]; 296 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 297 bi->header_supported == NULL) 298 continue; 299 if (hdr->e_machine == bi->machine) { 300 ret = bi->header_supported(imgp); 301 if (ret) 302 return (bi); 303 } 304 } 305 306 /* Lacking a known brand, search for a recognized interpreter. */ 307 if (interp != NULL) { 308 for (i = 0; i < MAX_BRANDS; i++) { 309 bi = elf_brand_list[i]; 310 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 311 continue; 312 if (hdr->e_machine == bi->machine && 313 /* ELF image p_filesz includes terminating zero */ 314 strlen(bi->interp_path) + 1 == interp_name_len && 315 strncmp(interp, bi->interp_path, interp_name_len) 316 == 0) 317 return (bi); 318 } 319 } 320 321 /* Lacking a recognized interpreter, try the default brand */ 322 for (i = 0; i < MAX_BRANDS; i++) { 323 bi = elf_brand_list[i]; 324 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 325 continue; 326 if (hdr->e_machine == bi->machine && 327 __elfN(fallback_brand) == bi->brand) 328 return (bi); 329 } 330 return (NULL); 331 } 332 333 static int 334 __elfN(check_header)(const Elf_Ehdr *hdr) 335 { 336 Elf_Brandinfo *bi; 337 int i; 338 339 if (!IS_ELF(*hdr) || 340 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 341 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 342 hdr->e_ident[EI_VERSION] != EV_CURRENT || 343 hdr->e_phentsize != sizeof(Elf_Phdr) || 344 hdr->e_version != ELF_TARG_VER) 345 return (ENOEXEC); 346 347 /* 348 * Make sure we have at least one brand for this machine. 349 */ 350 351 for (i = 0; i < MAX_BRANDS; i++) { 352 bi = elf_brand_list[i]; 353 if (bi != NULL && bi->machine == hdr->e_machine) 354 break; 355 } 356 if (i == MAX_BRANDS) 357 return (ENOEXEC); 358 359 return (0); 360 } 361 362 static int 363 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 364 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 365 { 366 struct sf_buf *sf; 367 int error; 368 vm_offset_t off; 369 370 /* 371 * Create the page if it doesn't exist yet. Ignore errors. 372 */ 373 vm_map_lock(map); 374 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 375 VM_PROT_ALL, VM_PROT_ALL, 0); 376 vm_map_unlock(map); 377 378 /* 379 * Find the page from the underlying object. 380 */ 381 if (object) { 382 sf = vm_imgact_map_page(object, offset); 383 if (sf == NULL) 384 return (KERN_FAILURE); 385 off = offset - trunc_page(offset); 386 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 387 end - start); 388 vm_imgact_unmap_page(sf); 389 if (error) { 390 return (KERN_FAILURE); 391 } 392 } 393 394 return (KERN_SUCCESS); 395 } 396 397 static int 398 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 399 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 400 { 401 struct sf_buf *sf; 402 vm_offset_t off; 403 vm_size_t sz; 404 int error, rv; 405 406 if (start != trunc_page(start)) { 407 rv = __elfN(map_partial)(map, object, offset, start, 408 round_page(start), prot); 409 if (rv) 410 return (rv); 411 offset += round_page(start) - start; 412 start = round_page(start); 413 } 414 if (end != round_page(end)) { 415 rv = __elfN(map_partial)(map, object, offset + 416 trunc_page(end) - start, trunc_page(end), end, prot); 417 if (rv) 418 return (rv); 419 end = trunc_page(end); 420 } 421 if (end > start) { 422 if (offset & PAGE_MASK) { 423 /* 424 * The mapping is not page aligned. This means we have 425 * to copy the data. Sigh. 426 */ 427 rv = vm_map_find(map, NULL, 0, &start, end - start, 0, 428 VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL, 429 0); 430 if (rv) 431 return (rv); 432 if (object == NULL) 433 return (KERN_SUCCESS); 434 for (; start < end; start += sz) { 435 sf = vm_imgact_map_page(object, offset); 436 if (sf == NULL) 437 return (KERN_FAILURE); 438 off = offset - trunc_page(offset); 439 sz = end - start; 440 if (sz > PAGE_SIZE - off) 441 sz = PAGE_SIZE - off; 442 error = copyout((caddr_t)sf_buf_kva(sf) + off, 443 (caddr_t)start, sz); 444 vm_imgact_unmap_page(sf); 445 if (error) { 446 return (KERN_FAILURE); 447 } 448 offset += sz; 449 } 450 rv = KERN_SUCCESS; 451 } else { 452 vm_object_reference(object); 453 vm_map_lock(map); 454 rv = vm_map_insert(map, object, offset, start, end, 455 prot, VM_PROT_ALL, cow); 456 vm_map_unlock(map); 457 if (rv != KERN_SUCCESS) 458 vm_object_deallocate(object); 459 } 460 return (rv); 461 } else { 462 return (KERN_SUCCESS); 463 } 464 } 465 466 static int 467 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 468 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 469 size_t pagesize) 470 { 471 struct sf_buf *sf; 472 size_t map_len; 473 vm_map_t map; 474 vm_object_t object; 475 vm_offset_t map_addr; 476 int error, rv, cow; 477 size_t copy_len; 478 vm_offset_t file_addr; 479 480 /* 481 * It's necessary to fail if the filsz + offset taken from the 482 * header is greater than the actual file pager object's size. 483 * If we were to allow this, then the vm_map_find() below would 484 * walk right off the end of the file object and into the ether. 485 * 486 * While I'm here, might as well check for something else that 487 * is invalid: filsz cannot be greater than memsz. 488 */ 489 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 490 uprintf("elf_load_section: truncated ELF file\n"); 491 return (ENOEXEC); 492 } 493 494 object = imgp->object; 495 map = &imgp->proc->p_vmspace->vm_map; 496 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 497 file_addr = trunc_page_ps(offset, pagesize); 498 499 /* 500 * We have two choices. We can either clear the data in the last page 501 * of an oversized mapping, or we can start the anon mapping a page 502 * early and copy the initialized data into that first page. We 503 * choose the second.. 504 */ 505 if (memsz > filsz) 506 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 507 else 508 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 509 510 if (map_len != 0) { 511 /* cow flags: don't dump readonly sections in core */ 512 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 513 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 514 515 rv = __elfN(map_insert)(map, 516 object, 517 file_addr, /* file offset */ 518 map_addr, /* virtual start */ 519 map_addr + map_len,/* virtual end */ 520 prot, 521 cow); 522 if (rv != KERN_SUCCESS) 523 return (EINVAL); 524 525 /* we can stop now if we've covered it all */ 526 if (memsz == filsz) { 527 return (0); 528 } 529 } 530 531 532 /* 533 * We have to get the remaining bit of the file into the first part 534 * of the oversized map segment. This is normally because the .data 535 * segment in the file is extended to provide bss. It's a neat idea 536 * to try and save a page, but it's a pain in the behind to implement. 537 */ 538 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 539 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 540 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 541 map_addr; 542 543 /* This had damn well better be true! */ 544 if (map_len != 0) { 545 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr + 546 map_len, VM_PROT_ALL, 0); 547 if (rv != KERN_SUCCESS) { 548 return (EINVAL); 549 } 550 } 551 552 if (copy_len != 0) { 553 vm_offset_t off; 554 555 sf = vm_imgact_map_page(object, offset + filsz); 556 if (sf == NULL) 557 return (EIO); 558 559 /* send the page fragment to user space */ 560 off = trunc_page_ps(offset + filsz, pagesize) - 561 trunc_page(offset + filsz); 562 error = copyout((caddr_t)sf_buf_kva(sf) + off, 563 (caddr_t)map_addr, copy_len); 564 vm_imgact_unmap_page(sf); 565 if (error) { 566 return (error); 567 } 568 } 569 570 /* 571 * set it to the specified protection. 572 * XXX had better undo the damage from pasting over the cracks here! 573 */ 574 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 575 map_len), prot, FALSE); 576 577 return (0); 578 } 579 580 /* 581 * Load the file "file" into memory. It may be either a shared object 582 * or an executable. 583 * 584 * The "addr" reference parameter is in/out. On entry, it specifies 585 * the address where a shared object should be loaded. If the file is 586 * an executable, this value is ignored. On exit, "addr" specifies 587 * where the file was actually loaded. 588 * 589 * The "entry" reference parameter is out only. On exit, it specifies 590 * the entry point for the loaded file. 591 */ 592 static int 593 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 594 u_long *entry, size_t pagesize) 595 { 596 struct { 597 struct nameidata nd; 598 struct vattr attr; 599 struct image_params image_params; 600 } *tempdata; 601 const Elf_Ehdr *hdr = NULL; 602 const Elf_Phdr *phdr = NULL; 603 struct nameidata *nd; 604 struct vattr *attr; 605 struct image_params *imgp; 606 vm_prot_t prot; 607 u_long rbase; 608 u_long base_addr = 0; 609 int error, i, numsegs; 610 611 #ifdef CAPABILITY_MODE 612 /* 613 * XXXJA: This check can go away once we are sufficiently confident 614 * that the checks in namei() are correct. 615 */ 616 if (IN_CAPABILITY_MODE(curthread)) 617 return (ECAPMODE); 618 #endif 619 620 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 621 nd = &tempdata->nd; 622 attr = &tempdata->attr; 623 imgp = &tempdata->image_params; 624 625 /* 626 * Initialize part of the common data 627 */ 628 imgp->proc = p; 629 imgp->attr = attr; 630 imgp->firstpage = NULL; 631 imgp->image_header = NULL; 632 imgp->object = NULL; 633 imgp->execlabel = NULL; 634 635 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 636 if ((error = namei(nd)) != 0) { 637 nd->ni_vp = NULL; 638 goto fail; 639 } 640 NDFREE(nd, NDF_ONLY_PNBUF); 641 imgp->vp = nd->ni_vp; 642 643 /* 644 * Check permissions, modes, uid, etc on the file, and "open" it. 645 */ 646 error = exec_check_permissions(imgp); 647 if (error) 648 goto fail; 649 650 error = exec_map_first_page(imgp); 651 if (error) 652 goto fail; 653 654 /* 655 * Also make certain that the interpreter stays the same, so set 656 * its VV_TEXT flag, too. 657 */ 658 VOP_SET_TEXT(nd->ni_vp); 659 660 imgp->object = nd->ni_vp->v_object; 661 662 hdr = (const Elf_Ehdr *)imgp->image_header; 663 if ((error = __elfN(check_header)(hdr)) != 0) 664 goto fail; 665 if (hdr->e_type == ET_DYN) 666 rbase = *addr; 667 else if (hdr->e_type == ET_EXEC) 668 rbase = 0; 669 else { 670 error = ENOEXEC; 671 goto fail; 672 } 673 674 /* Only support headers that fit within first page for now */ 675 if ((hdr->e_phoff > PAGE_SIZE) || 676 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 677 error = ENOEXEC; 678 goto fail; 679 } 680 681 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 682 if (!aligned(phdr, Elf_Addr)) { 683 error = ENOEXEC; 684 goto fail; 685 } 686 687 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 688 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 689 /* Loadable segment */ 690 prot = __elfN(trans_prot)(phdr[i].p_flags); 691 error = __elfN(load_section)(imgp, phdr[i].p_offset, 692 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 693 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 694 if (error != 0) 695 goto fail; 696 /* 697 * Establish the base address if this is the 698 * first segment. 699 */ 700 if (numsegs == 0) 701 base_addr = trunc_page(phdr[i].p_vaddr + 702 rbase); 703 numsegs++; 704 } 705 } 706 *addr = base_addr; 707 *entry = (unsigned long)hdr->e_entry + rbase; 708 709 fail: 710 if (imgp->firstpage) 711 exec_unmap_first_page(imgp); 712 713 if (nd->ni_vp) 714 vput(nd->ni_vp); 715 716 free(tempdata, M_TEMP); 717 718 return (error); 719 } 720 721 static int 722 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 723 { 724 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 725 const Elf_Phdr *phdr; 726 Elf_Auxargs *elf_auxargs; 727 struct vmspace *vmspace; 728 vm_prot_t prot; 729 u_long text_size = 0, data_size = 0, total_size = 0; 730 u_long text_addr = 0, data_addr = 0; 731 u_long seg_size, seg_addr; 732 u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; 733 int32_t osrel = 0; 734 int error = 0, i, n, interp_name_len = 0; 735 const char *err_str = NULL, *interp = NULL, *newinterp = NULL; 736 Elf_Brandinfo *brand_info; 737 char *path; 738 struct sysentvec *sv; 739 740 /* 741 * Do we have a valid ELF header ? 742 * 743 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 744 * if particular brand doesn't support it. 745 */ 746 if (__elfN(check_header)(hdr) != 0 || 747 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 748 return (-1); 749 750 /* 751 * From here on down, we return an errno, not -1, as we've 752 * detected an ELF file. 753 */ 754 755 if ((hdr->e_phoff > PAGE_SIZE) || 756 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 757 /* Only support headers in first page for now */ 758 uprintf("Program headers not in the first page\n"); 759 return (ENOEXEC); 760 } 761 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 762 if (!aligned(phdr, Elf_Addr)) { 763 uprintf("Unaligned program headers\n"); 764 return (ENOEXEC); 765 } 766 n = 0; 767 baddr = 0; 768 for (i = 0; i < hdr->e_phnum; i++) { 769 switch (phdr[i].p_type) { 770 case PT_LOAD: 771 if (n == 0) 772 baddr = phdr[i].p_vaddr; 773 n++; 774 break; 775 case PT_INTERP: 776 /* Path to interpreter */ 777 if (phdr[i].p_filesz > MAXPATHLEN || 778 phdr[i].p_offset > PAGE_SIZE || 779 phdr[i].p_filesz > PAGE_SIZE - phdr[i].p_offset) { 780 uprintf("Invalid PT_INTERP\n"); 781 return (ENOEXEC); 782 } 783 interp = imgp->image_header + phdr[i].p_offset; 784 interp_name_len = phdr[i].p_filesz; 785 break; 786 case PT_GNU_STACK: 787 if (__elfN(nxstack)) 788 imgp->stack_prot = 789 __elfN(trans_prot)(phdr[i].p_flags); 790 imgp->stack_sz = phdr[i].p_memsz; 791 break; 792 } 793 } 794 795 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 796 &osrel); 797 if (brand_info == NULL) { 798 uprintf("ELF binary type \"%u\" not known.\n", 799 hdr->e_ident[EI_OSABI]); 800 return (ENOEXEC); 801 } 802 if (hdr->e_type == ET_DYN) { 803 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 804 uprintf("Cannot execute shared object\n"); 805 return (ENOEXEC); 806 } 807 /* 808 * Honour the base load address from the dso if it is 809 * non-zero for some reason. 810 */ 811 if (baddr == 0) 812 et_dyn_addr = ET_DYN_LOAD_ADDR; 813 else 814 et_dyn_addr = 0; 815 } else 816 et_dyn_addr = 0; 817 sv = brand_info->sysvec; 818 if (interp != NULL && brand_info->interp_newpath != NULL) 819 newinterp = brand_info->interp_newpath; 820 821 /* 822 * Avoid a possible deadlock if the current address space is destroyed 823 * and that address space maps the locked vnode. In the common case, 824 * the locked vnode's v_usecount is decremented but remains greater 825 * than zero. Consequently, the vnode lock is not needed by vrele(). 826 * However, in cases where the vnode lock is external, such as nullfs, 827 * v_usecount may become zero. 828 * 829 * The VV_TEXT flag prevents modifications to the executable while 830 * the vnode is unlocked. 831 */ 832 VOP_UNLOCK(imgp->vp, 0); 833 834 error = exec_new_vmspace(imgp, sv); 835 imgp->proc->p_sysent = sv; 836 837 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 838 if (error) 839 return (error); 840 841 for (i = 0; i < hdr->e_phnum; i++) { 842 switch (phdr[i].p_type) { 843 case PT_LOAD: /* Loadable segment */ 844 if (phdr[i].p_memsz == 0) 845 break; 846 prot = __elfN(trans_prot)(phdr[i].p_flags); 847 error = __elfN(load_section)(imgp, phdr[i].p_offset, 848 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 849 phdr[i].p_memsz, phdr[i].p_filesz, prot, 850 sv->sv_pagesize); 851 if (error != 0) 852 return (error); 853 854 /* 855 * If this segment contains the program headers, 856 * remember their virtual address for the AT_PHDR 857 * aux entry. Static binaries don't usually include 858 * a PT_PHDR entry. 859 */ 860 if (phdr[i].p_offset == 0 && 861 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 862 <= phdr[i].p_filesz) 863 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 864 et_dyn_addr; 865 866 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 867 seg_size = round_page(phdr[i].p_memsz + 868 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 869 870 /* 871 * Make the largest executable segment the official 872 * text segment and all others data. 873 * 874 * Note that obreak() assumes that data_addr + 875 * data_size == end of data load area, and the ELF 876 * file format expects segments to be sorted by 877 * address. If multiple data segments exist, the 878 * last one will be used. 879 */ 880 881 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 882 text_size = seg_size; 883 text_addr = seg_addr; 884 } else { 885 data_size = seg_size; 886 data_addr = seg_addr; 887 } 888 total_size += seg_size; 889 break; 890 case PT_PHDR: /* Program header table info */ 891 proghdr = phdr[i].p_vaddr + et_dyn_addr; 892 break; 893 default: 894 break; 895 } 896 } 897 898 if (data_addr == 0 && data_size == 0) { 899 data_addr = text_addr; 900 data_size = text_size; 901 } 902 903 entry = (u_long)hdr->e_entry + et_dyn_addr; 904 905 /* 906 * Check limits. It should be safe to check the 907 * limits after loading the segments since we do 908 * not actually fault in all the segments pages. 909 */ 910 PROC_LOCK(imgp->proc); 911 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 912 err_str = "Data segment size exceeds process limit"; 913 else if (text_size > maxtsiz) 914 err_str = "Text segment size exceeds system limit"; 915 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 916 err_str = "Total segment size exceeds process limit"; 917 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 918 err_str = "Data segment size exceeds resource limit"; 919 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 920 err_str = "Total segment size exceeds resource limit"; 921 if (err_str != NULL) { 922 PROC_UNLOCK(imgp->proc); 923 uprintf("%s\n", err_str); 924 return (ENOMEM); 925 } 926 927 vmspace = imgp->proc->p_vmspace; 928 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 929 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 930 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 931 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 932 933 /* 934 * We load the dynamic linker where a userland call 935 * to mmap(0, ...) would put it. The rationale behind this 936 * calculation is that it leaves room for the heap to grow to 937 * its maximum allowed size. 938 */ 939 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(curthread, 940 RLIMIT_DATA)); 941 PROC_UNLOCK(imgp->proc); 942 943 imgp->entry_addr = entry; 944 945 if (interp != NULL) { 946 int have_interp = FALSE; 947 VOP_UNLOCK(imgp->vp, 0); 948 if (brand_info->emul_path != NULL && 949 brand_info->emul_path[0] != '\0') { 950 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 951 snprintf(path, MAXPATHLEN, "%s%s", 952 brand_info->emul_path, interp); 953 error = __elfN(load_file)(imgp->proc, path, &addr, 954 &imgp->entry_addr, sv->sv_pagesize); 955 free(path, M_TEMP); 956 if (error == 0) 957 have_interp = TRUE; 958 } 959 if (!have_interp && newinterp != NULL) { 960 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 961 &imgp->entry_addr, sv->sv_pagesize); 962 if (error == 0) 963 have_interp = TRUE; 964 } 965 if (!have_interp) { 966 error = __elfN(load_file)(imgp->proc, interp, &addr, 967 &imgp->entry_addr, sv->sv_pagesize); 968 } 969 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 970 if (error != 0) { 971 uprintf("ELF interpreter %s not found\n", interp); 972 return (error); 973 } 974 } else 975 addr = et_dyn_addr; 976 977 /* 978 * Construct auxargs table (used by the fixup routine) 979 */ 980 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 981 elf_auxargs->execfd = -1; 982 elf_auxargs->phdr = proghdr; 983 elf_auxargs->phent = hdr->e_phentsize; 984 elf_auxargs->phnum = hdr->e_phnum; 985 elf_auxargs->pagesz = PAGE_SIZE; 986 elf_auxargs->base = addr; 987 elf_auxargs->flags = 0; 988 elf_auxargs->entry = entry; 989 elf_auxargs->hdr_eflags = hdr->e_flags; 990 991 imgp->auxargs = elf_auxargs; 992 imgp->interpreted = 0; 993 imgp->reloc_base = addr; 994 imgp->proc->p_osrel = osrel; 995 996 return (error); 997 } 998 999 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1000 1001 int 1002 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1003 { 1004 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1005 Elf_Addr *base; 1006 Elf_Addr *pos; 1007 1008 base = (Elf_Addr *)*stack_base; 1009 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1010 1011 if (args->execfd != -1) 1012 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1013 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1014 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1015 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1016 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1017 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1018 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1019 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1020 #ifdef AT_EHDRFLAGS 1021 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1022 #endif 1023 if (imgp->execpathp != 0) 1024 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1025 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1026 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1027 if (imgp->canary != 0) { 1028 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1029 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1030 } 1031 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1032 if (imgp->pagesizes != 0) { 1033 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1034 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1035 } 1036 if (imgp->sysent->sv_timekeep_base != 0) { 1037 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1038 imgp->sysent->sv_timekeep_base); 1039 } 1040 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1041 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1042 imgp->sysent->sv_stackprot); 1043 AUXARGS_ENTRY(pos, AT_NULL, 0); 1044 1045 free(imgp->auxargs, M_TEMP); 1046 imgp->auxargs = NULL; 1047 1048 base--; 1049 suword(base, (long)imgp->args->argc); 1050 *stack_base = (register_t *)base; 1051 return (0); 1052 } 1053 1054 /* 1055 * Code for generating ELF core dumps. 1056 */ 1057 1058 typedef void (*segment_callback)(vm_map_entry_t, void *); 1059 1060 /* Closure for cb_put_phdr(). */ 1061 struct phdr_closure { 1062 Elf_Phdr *phdr; /* Program header to fill in */ 1063 Elf_Off offset; /* Offset of segment in core file */ 1064 }; 1065 1066 /* Closure for cb_size_segment(). */ 1067 struct sseg_closure { 1068 int count; /* Count of writable segments. */ 1069 size_t size; /* Total size of all writable segments. */ 1070 }; 1071 1072 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1073 1074 struct note_info { 1075 int type; /* Note type. */ 1076 outfunc_t outfunc; /* Output function. */ 1077 void *outarg; /* Argument for the output function. */ 1078 size_t outsize; /* Output size. */ 1079 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1080 }; 1081 1082 TAILQ_HEAD(note_info_list, note_info); 1083 1084 /* Coredump output parameters. */ 1085 struct coredump_params { 1086 off_t offset; 1087 struct ucred *active_cred; 1088 struct ucred *file_cred; 1089 struct thread *td; 1090 struct vnode *vp; 1091 struct gzio_stream *gzs; 1092 }; 1093 1094 static void cb_put_phdr(vm_map_entry_t, void *); 1095 static void cb_size_segment(vm_map_entry_t, void *); 1096 static int core_write(struct coredump_params *, void *, size_t, off_t, 1097 enum uio_seg); 1098 static void each_writable_segment(struct thread *, segment_callback, void *); 1099 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1100 struct note_info_list *, size_t); 1101 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1102 size_t *); 1103 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1104 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1105 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1106 static int sbuf_drain_core_output(void *, const char *, int); 1107 static int sbuf_drain_count(void *arg, const char *data, int len); 1108 1109 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1110 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1111 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1112 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1113 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1114 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1115 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1116 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1117 static void note_procstat_files(void *, struct sbuf *, size_t *); 1118 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1119 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1120 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1121 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1122 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1123 1124 #ifdef GZIO 1125 extern int compress_user_cores_gzlevel; 1126 1127 /* 1128 * Write out a core segment to the compression stream. 1129 */ 1130 static int 1131 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1132 { 1133 u_int chunk_len; 1134 int error; 1135 1136 while (len > 0) { 1137 chunk_len = MIN(len, CORE_BUF_SIZE); 1138 copyin(base, buf, chunk_len); 1139 error = gzio_write(p->gzs, buf, chunk_len); 1140 if (error != 0) 1141 break; 1142 base += chunk_len; 1143 len -= chunk_len; 1144 } 1145 return (error); 1146 } 1147 1148 static int 1149 core_gz_write(void *base, size_t len, off_t offset, void *arg) 1150 { 1151 1152 return (core_write((struct coredump_params *)arg, base, len, offset, 1153 UIO_SYSSPACE)); 1154 } 1155 #endif /* GZIO */ 1156 1157 static int 1158 core_write(struct coredump_params *p, void *base, size_t len, off_t offset, 1159 enum uio_seg seg) 1160 { 1161 1162 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, base, len, offset, 1163 seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1164 p->active_cred, p->file_cred, NULL, p->td)); 1165 } 1166 1167 static int 1168 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1169 void *tmpbuf) 1170 { 1171 1172 #ifdef GZIO 1173 if (p->gzs != NULL) 1174 return (compress_chunk(p, base, tmpbuf, len)); 1175 #endif 1176 return (core_write(p, base, len, offset, UIO_USERSPACE)); 1177 } 1178 1179 /* 1180 * Drain into a core file. 1181 */ 1182 static int 1183 sbuf_drain_core_output(void *arg, const char *data, int len) 1184 { 1185 struct coredump_params *p; 1186 int error, locked; 1187 1188 p = (struct coredump_params *)arg; 1189 1190 /* 1191 * Some kern_proc out routines that print to this sbuf may 1192 * call us with the process lock held. Draining with the 1193 * non-sleepable lock held is unsafe. The lock is needed for 1194 * those routines when dumping a live process. In our case we 1195 * can safely release the lock before draining and acquire 1196 * again after. 1197 */ 1198 locked = PROC_LOCKED(p->td->td_proc); 1199 if (locked) 1200 PROC_UNLOCK(p->td->td_proc); 1201 #ifdef GZIO 1202 if (p->gzs != NULL) 1203 error = gzio_write(p->gzs, __DECONST(char *, data), len); 1204 else 1205 #endif 1206 error = core_write(p, __DECONST(void *, data), len, p->offset, 1207 UIO_SYSSPACE); 1208 if (locked) 1209 PROC_LOCK(p->td->td_proc); 1210 if (error != 0) 1211 return (-error); 1212 p->offset += len; 1213 return (len); 1214 } 1215 1216 /* 1217 * Drain into a counter. 1218 */ 1219 static int 1220 sbuf_drain_count(void *arg, const char *data __unused, int len) 1221 { 1222 size_t *sizep; 1223 1224 sizep = (size_t *)arg; 1225 *sizep += len; 1226 return (len); 1227 } 1228 1229 int 1230 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1231 { 1232 struct ucred *cred = td->td_ucred; 1233 int error = 0; 1234 struct sseg_closure seginfo; 1235 struct note_info_list notelst; 1236 struct coredump_params params; 1237 struct note_info *ninfo; 1238 void *hdr, *tmpbuf; 1239 size_t hdrsize, notesz, coresize; 1240 boolean_t compress; 1241 1242 compress = (flags & IMGACT_CORE_COMPRESS) != 0; 1243 hdr = NULL; 1244 tmpbuf = NULL; 1245 TAILQ_INIT(¬elst); 1246 1247 /* Size the program segments. */ 1248 seginfo.count = 0; 1249 seginfo.size = 0; 1250 each_writable_segment(td, cb_size_segment, &seginfo); 1251 1252 /* 1253 * Collect info about the core file header area. 1254 */ 1255 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1256 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1257 coresize = round_page(hdrsize + notesz) + seginfo.size; 1258 1259 /* Set up core dump parameters. */ 1260 params.offset = 0; 1261 params.active_cred = cred; 1262 params.file_cred = NOCRED; 1263 params.td = td; 1264 params.vp = vp; 1265 params.gzs = NULL; 1266 1267 #ifdef RACCT 1268 if (racct_enable) { 1269 PROC_LOCK(td->td_proc); 1270 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1271 PROC_UNLOCK(td->td_proc); 1272 if (error != 0) { 1273 error = EFAULT; 1274 goto done; 1275 } 1276 } 1277 #endif 1278 if (coresize >= limit) { 1279 error = EFAULT; 1280 goto done; 1281 } 1282 1283 #ifdef GZIO 1284 /* Create a compression stream if necessary. */ 1285 if (compress) { 1286 params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE, 1287 CORE_BUF_SIZE, compress_user_cores_gzlevel, ¶ms); 1288 if (params.gzs == NULL) { 1289 error = EFAULT; 1290 goto done; 1291 } 1292 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1293 } 1294 #endif 1295 1296 /* 1297 * Allocate memory for building the header, fill it up, 1298 * and write it out following the notes. 1299 */ 1300 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1301 if (hdr == NULL) { 1302 error = EINVAL; 1303 goto done; 1304 } 1305 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1306 notesz); 1307 1308 /* Write the contents of all of the writable segments. */ 1309 if (error == 0) { 1310 Elf_Phdr *php; 1311 off_t offset; 1312 int i; 1313 1314 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1315 offset = round_page(hdrsize + notesz); 1316 for (i = 0; i < seginfo.count; i++) { 1317 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1318 php->p_filesz, offset, ¶ms, tmpbuf); 1319 if (error != 0) 1320 break; 1321 offset += php->p_filesz; 1322 php++; 1323 } 1324 #ifdef GZIO 1325 if (error == 0 && compress) 1326 error = gzio_flush(params.gzs); 1327 #endif 1328 } 1329 if (error) { 1330 log(LOG_WARNING, 1331 "Failed to write core file for process %s (error %d)\n", 1332 curproc->p_comm, error); 1333 } 1334 1335 done: 1336 #ifdef GZIO 1337 if (compress) { 1338 free(tmpbuf, M_TEMP); 1339 if (params.gzs != NULL) 1340 gzio_fini(params.gzs); 1341 } 1342 #endif 1343 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1344 TAILQ_REMOVE(¬elst, ninfo, link); 1345 free(ninfo, M_TEMP); 1346 } 1347 if (hdr != NULL) 1348 free(hdr, M_TEMP); 1349 1350 return (error); 1351 } 1352 1353 /* 1354 * A callback for each_writable_segment() to write out the segment's 1355 * program header entry. 1356 */ 1357 static void 1358 cb_put_phdr(entry, closure) 1359 vm_map_entry_t entry; 1360 void *closure; 1361 { 1362 struct phdr_closure *phc = (struct phdr_closure *)closure; 1363 Elf_Phdr *phdr = phc->phdr; 1364 1365 phc->offset = round_page(phc->offset); 1366 1367 phdr->p_type = PT_LOAD; 1368 phdr->p_offset = phc->offset; 1369 phdr->p_vaddr = entry->start; 1370 phdr->p_paddr = 0; 1371 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1372 phdr->p_align = PAGE_SIZE; 1373 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1374 1375 phc->offset += phdr->p_filesz; 1376 phc->phdr++; 1377 } 1378 1379 /* 1380 * A callback for each_writable_segment() to gather information about 1381 * the number of segments and their total size. 1382 */ 1383 static void 1384 cb_size_segment(entry, closure) 1385 vm_map_entry_t entry; 1386 void *closure; 1387 { 1388 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1389 1390 ssc->count++; 1391 ssc->size += entry->end - entry->start; 1392 } 1393 1394 /* 1395 * For each writable segment in the process's memory map, call the given 1396 * function with a pointer to the map entry and some arbitrary 1397 * caller-supplied data. 1398 */ 1399 static void 1400 each_writable_segment(td, func, closure) 1401 struct thread *td; 1402 segment_callback func; 1403 void *closure; 1404 { 1405 struct proc *p = td->td_proc; 1406 vm_map_t map = &p->p_vmspace->vm_map; 1407 vm_map_entry_t entry; 1408 vm_object_t backing_object, object; 1409 boolean_t ignore_entry; 1410 1411 vm_map_lock_read(map); 1412 for (entry = map->header.next; entry != &map->header; 1413 entry = entry->next) { 1414 /* 1415 * Don't dump inaccessible mappings, deal with legacy 1416 * coredump mode. 1417 * 1418 * Note that read-only segments related to the elf binary 1419 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1420 * need to arbitrarily ignore such segments. 1421 */ 1422 if (elf_legacy_coredump) { 1423 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1424 continue; 1425 } else { 1426 if ((entry->protection & VM_PROT_ALL) == 0) 1427 continue; 1428 } 1429 1430 /* 1431 * Dont include memory segment in the coredump if 1432 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1433 * madvise(2). Do not dump submaps (i.e. parts of the 1434 * kernel map). 1435 */ 1436 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1437 continue; 1438 1439 if ((object = entry->object.vm_object) == NULL) 1440 continue; 1441 1442 /* Ignore memory-mapped devices and such things. */ 1443 VM_OBJECT_RLOCK(object); 1444 while ((backing_object = object->backing_object) != NULL) { 1445 VM_OBJECT_RLOCK(backing_object); 1446 VM_OBJECT_RUNLOCK(object); 1447 object = backing_object; 1448 } 1449 ignore_entry = object->type != OBJT_DEFAULT && 1450 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1451 object->type != OBJT_PHYS; 1452 VM_OBJECT_RUNLOCK(object); 1453 if (ignore_entry) 1454 continue; 1455 1456 (*func)(entry, closure); 1457 } 1458 vm_map_unlock_read(map); 1459 } 1460 1461 /* 1462 * Write the core file header to the file, including padding up to 1463 * the page boundary. 1464 */ 1465 static int 1466 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1467 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1468 { 1469 struct note_info *ninfo; 1470 struct sbuf *sb; 1471 int error; 1472 1473 /* Fill in the header. */ 1474 bzero(hdr, hdrsize); 1475 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1476 1477 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1478 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1479 sbuf_start_section(sb, NULL); 1480 sbuf_bcat(sb, hdr, hdrsize); 1481 TAILQ_FOREACH(ninfo, notelst, link) 1482 __elfN(putnote)(ninfo, sb); 1483 /* Align up to a page boundary for the program segments. */ 1484 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1485 error = sbuf_finish(sb); 1486 sbuf_delete(sb); 1487 1488 return (error); 1489 } 1490 1491 static void 1492 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1493 size_t *sizep) 1494 { 1495 struct proc *p; 1496 struct thread *thr; 1497 size_t size; 1498 1499 p = td->td_proc; 1500 size = 0; 1501 1502 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1503 1504 /* 1505 * To have the debugger select the right thread (LWP) as the initial 1506 * thread, we dump the state of the thread passed to us in td first. 1507 * This is the thread that causes the core dump and thus likely to 1508 * be the right thread one wants to have selected in the debugger. 1509 */ 1510 thr = td; 1511 while (thr != NULL) { 1512 size += register_note(list, NT_PRSTATUS, 1513 __elfN(note_prstatus), thr); 1514 size += register_note(list, NT_FPREGSET, 1515 __elfN(note_fpregset), thr); 1516 size += register_note(list, NT_THRMISC, 1517 __elfN(note_thrmisc), thr); 1518 size += register_note(list, -1, 1519 __elfN(note_threadmd), thr); 1520 1521 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1522 TAILQ_NEXT(thr, td_plist); 1523 if (thr == td) 1524 thr = TAILQ_NEXT(thr, td_plist); 1525 } 1526 1527 size += register_note(list, NT_PROCSTAT_PROC, 1528 __elfN(note_procstat_proc), p); 1529 size += register_note(list, NT_PROCSTAT_FILES, 1530 note_procstat_files, p); 1531 size += register_note(list, NT_PROCSTAT_VMMAP, 1532 note_procstat_vmmap, p); 1533 size += register_note(list, NT_PROCSTAT_GROUPS, 1534 note_procstat_groups, p); 1535 size += register_note(list, NT_PROCSTAT_UMASK, 1536 note_procstat_umask, p); 1537 size += register_note(list, NT_PROCSTAT_RLIMIT, 1538 note_procstat_rlimit, p); 1539 size += register_note(list, NT_PROCSTAT_OSREL, 1540 note_procstat_osrel, p); 1541 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1542 __elfN(note_procstat_psstrings), p); 1543 size += register_note(list, NT_PROCSTAT_AUXV, 1544 __elfN(note_procstat_auxv), p); 1545 1546 *sizep = size; 1547 } 1548 1549 static void 1550 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1551 size_t notesz) 1552 { 1553 Elf_Ehdr *ehdr; 1554 Elf_Phdr *phdr; 1555 struct phdr_closure phc; 1556 1557 ehdr = (Elf_Ehdr *)hdr; 1558 phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)); 1559 1560 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1561 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1562 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1563 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1564 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1565 ehdr->e_ident[EI_DATA] = ELF_DATA; 1566 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1567 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1568 ehdr->e_ident[EI_ABIVERSION] = 0; 1569 ehdr->e_ident[EI_PAD] = 0; 1570 ehdr->e_type = ET_CORE; 1571 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1572 ehdr->e_machine = ELF_ARCH32; 1573 #else 1574 ehdr->e_machine = ELF_ARCH; 1575 #endif 1576 ehdr->e_version = EV_CURRENT; 1577 ehdr->e_entry = 0; 1578 ehdr->e_phoff = sizeof(Elf_Ehdr); 1579 ehdr->e_flags = 0; 1580 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1581 ehdr->e_phentsize = sizeof(Elf_Phdr); 1582 ehdr->e_phnum = numsegs + 1; 1583 ehdr->e_shentsize = sizeof(Elf_Shdr); 1584 ehdr->e_shnum = 0; 1585 ehdr->e_shstrndx = SHN_UNDEF; 1586 1587 /* 1588 * Fill in the program header entries. 1589 */ 1590 1591 /* The note segement. */ 1592 phdr->p_type = PT_NOTE; 1593 phdr->p_offset = hdrsize; 1594 phdr->p_vaddr = 0; 1595 phdr->p_paddr = 0; 1596 phdr->p_filesz = notesz; 1597 phdr->p_memsz = 0; 1598 phdr->p_flags = PF_R; 1599 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1600 phdr++; 1601 1602 /* All the writable segments from the program. */ 1603 phc.phdr = phdr; 1604 phc.offset = round_page(hdrsize + notesz); 1605 each_writable_segment(td, cb_put_phdr, &phc); 1606 } 1607 1608 static size_t 1609 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1610 { 1611 struct note_info *ninfo; 1612 size_t size, notesize; 1613 1614 size = 0; 1615 out(arg, NULL, &size); 1616 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1617 ninfo->type = type; 1618 ninfo->outfunc = out; 1619 ninfo->outarg = arg; 1620 ninfo->outsize = size; 1621 TAILQ_INSERT_TAIL(list, ninfo, link); 1622 1623 if (type == -1) 1624 return (size); 1625 1626 notesize = sizeof(Elf_Note) + /* note header */ 1627 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1628 /* note name */ 1629 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1630 1631 return (notesize); 1632 } 1633 1634 static size_t 1635 append_note_data(const void *src, void *dst, size_t len) 1636 { 1637 size_t padded_len; 1638 1639 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1640 if (dst != NULL) { 1641 bcopy(src, dst, len); 1642 bzero((char *)dst + len, padded_len - len); 1643 } 1644 return (padded_len); 1645 } 1646 1647 size_t 1648 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1649 { 1650 Elf_Note *note; 1651 char *buf; 1652 size_t notesize; 1653 1654 buf = dst; 1655 if (buf != NULL) { 1656 note = (Elf_Note *)buf; 1657 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1658 note->n_descsz = size; 1659 note->n_type = type; 1660 buf += sizeof(*note); 1661 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1662 sizeof(FREEBSD_ABI_VENDOR)); 1663 append_note_data(src, buf, size); 1664 if (descp != NULL) 1665 *descp = buf; 1666 } 1667 1668 notesize = sizeof(Elf_Note) + /* note header */ 1669 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1670 /* note name */ 1671 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1672 1673 return (notesize); 1674 } 1675 1676 static void 1677 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1678 { 1679 Elf_Note note; 1680 ssize_t old_len, sect_len; 1681 size_t new_len, descsz, i; 1682 1683 if (ninfo->type == -1) { 1684 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1685 return; 1686 } 1687 1688 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1689 note.n_descsz = ninfo->outsize; 1690 note.n_type = ninfo->type; 1691 1692 sbuf_bcat(sb, ¬e, sizeof(note)); 1693 sbuf_start_section(sb, &old_len); 1694 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1695 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1696 if (note.n_descsz == 0) 1697 return; 1698 sbuf_start_section(sb, &old_len); 1699 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1700 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1701 if (sect_len < 0) 1702 return; 1703 1704 new_len = (size_t)sect_len; 1705 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1706 if (new_len < descsz) { 1707 /* 1708 * It is expected that individual note emitters will correctly 1709 * predict their expected output size and fill up to that size 1710 * themselves, padding in a format-specific way if needed. 1711 * However, in case they don't, just do it here with zeros. 1712 */ 1713 for (i = 0; i < descsz - new_len; i++) 1714 sbuf_putc(sb, 0); 1715 } else if (new_len > descsz) { 1716 /* 1717 * We can't always truncate sb -- we may have drained some 1718 * of it already. 1719 */ 1720 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1721 "read it (%zu > %zu). Since it is longer than " 1722 "expected, this coredump's notes are corrupt. THIS " 1723 "IS A BUG in the note_procstat routine for type %u.\n", 1724 __func__, (unsigned)note.n_type, new_len, descsz, 1725 (unsigned)note.n_type)); 1726 } 1727 } 1728 1729 /* 1730 * Miscellaneous note out functions. 1731 */ 1732 1733 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1734 #include <compat/freebsd32/freebsd32.h> 1735 1736 typedef struct prstatus32 elf_prstatus_t; 1737 typedef struct prpsinfo32 elf_prpsinfo_t; 1738 typedef struct fpreg32 elf_prfpregset_t; 1739 typedef struct fpreg32 elf_fpregset_t; 1740 typedef struct reg32 elf_gregset_t; 1741 typedef struct thrmisc32 elf_thrmisc_t; 1742 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1743 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1744 typedef uint32_t elf_ps_strings_t; 1745 #else 1746 typedef prstatus_t elf_prstatus_t; 1747 typedef prpsinfo_t elf_prpsinfo_t; 1748 typedef prfpregset_t elf_prfpregset_t; 1749 typedef prfpregset_t elf_fpregset_t; 1750 typedef gregset_t elf_gregset_t; 1751 typedef thrmisc_t elf_thrmisc_t; 1752 #define ELF_KERN_PROC_MASK 0 1753 typedef struct kinfo_proc elf_kinfo_proc_t; 1754 typedef vm_offset_t elf_ps_strings_t; 1755 #endif 1756 1757 static void 1758 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1759 { 1760 struct proc *p; 1761 elf_prpsinfo_t *psinfo; 1762 1763 p = (struct proc *)arg; 1764 if (sb != NULL) { 1765 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1766 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1767 psinfo->pr_version = PRPSINFO_VERSION; 1768 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1769 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1770 /* 1771 * XXX - We don't fill in the command line arguments properly 1772 * yet. 1773 */ 1774 strlcpy(psinfo->pr_psargs, p->p_comm, 1775 sizeof(psinfo->pr_psargs)); 1776 1777 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1778 free(psinfo, M_TEMP); 1779 } 1780 *sizep = sizeof(*psinfo); 1781 } 1782 1783 static void 1784 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1785 { 1786 struct thread *td; 1787 elf_prstatus_t *status; 1788 1789 td = (struct thread *)arg; 1790 if (sb != NULL) { 1791 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1792 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1793 status->pr_version = PRSTATUS_VERSION; 1794 status->pr_statussz = sizeof(elf_prstatus_t); 1795 status->pr_gregsetsz = sizeof(elf_gregset_t); 1796 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1797 status->pr_osreldate = osreldate; 1798 status->pr_cursig = td->td_proc->p_sig; 1799 status->pr_pid = td->td_tid; 1800 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1801 fill_regs32(td, &status->pr_reg); 1802 #else 1803 fill_regs(td, &status->pr_reg); 1804 #endif 1805 sbuf_bcat(sb, status, sizeof(*status)); 1806 free(status, M_TEMP); 1807 } 1808 *sizep = sizeof(*status); 1809 } 1810 1811 static void 1812 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1813 { 1814 struct thread *td; 1815 elf_prfpregset_t *fpregset; 1816 1817 td = (struct thread *)arg; 1818 if (sb != NULL) { 1819 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1820 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1821 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1822 fill_fpregs32(td, fpregset); 1823 #else 1824 fill_fpregs(td, fpregset); 1825 #endif 1826 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1827 free(fpregset, M_TEMP); 1828 } 1829 *sizep = sizeof(*fpregset); 1830 } 1831 1832 static void 1833 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1834 { 1835 struct thread *td; 1836 elf_thrmisc_t thrmisc; 1837 1838 td = (struct thread *)arg; 1839 if (sb != NULL) { 1840 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1841 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1842 strcpy(thrmisc.pr_tname, td->td_name); 1843 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1844 } 1845 *sizep = sizeof(thrmisc); 1846 } 1847 1848 /* 1849 * Allow for MD specific notes, as well as any MD 1850 * specific preparations for writing MI notes. 1851 */ 1852 static void 1853 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 1854 { 1855 struct thread *td; 1856 void *buf; 1857 size_t size; 1858 1859 td = (struct thread *)arg; 1860 size = *sizep; 1861 if (size != 0 && sb != NULL) 1862 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 1863 else 1864 buf = NULL; 1865 size = 0; 1866 __elfN(dump_thread)(td, buf, &size); 1867 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 1868 if (size != 0 && sb != NULL) 1869 sbuf_bcat(sb, buf, size); 1870 free(buf, M_TEMP); 1871 *sizep = size; 1872 } 1873 1874 #ifdef KINFO_PROC_SIZE 1875 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 1876 #endif 1877 1878 static void 1879 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 1880 { 1881 struct proc *p; 1882 size_t size; 1883 int structsize; 1884 1885 p = (struct proc *)arg; 1886 size = sizeof(structsize) + p->p_numthreads * 1887 sizeof(elf_kinfo_proc_t); 1888 1889 if (sb != NULL) { 1890 KASSERT(*sizep == size, ("invalid size")); 1891 structsize = sizeof(elf_kinfo_proc_t); 1892 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1893 sx_slock(&proctree_lock); 1894 PROC_LOCK(p); 1895 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 1896 sx_sunlock(&proctree_lock); 1897 } 1898 *sizep = size; 1899 } 1900 1901 #ifdef KINFO_FILE_SIZE 1902 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 1903 #endif 1904 1905 static void 1906 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 1907 { 1908 struct proc *p; 1909 size_t size, sect_sz, i; 1910 ssize_t start_len, sect_len; 1911 int structsize, filedesc_flags; 1912 1913 if (coredump_pack_fileinfo) 1914 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 1915 else 1916 filedesc_flags = 0; 1917 1918 p = (struct proc *)arg; 1919 structsize = sizeof(struct kinfo_file); 1920 if (sb == NULL) { 1921 size = 0; 1922 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1923 sbuf_set_drain(sb, sbuf_drain_count, &size); 1924 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1925 PROC_LOCK(p); 1926 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 1927 sbuf_finish(sb); 1928 sbuf_delete(sb); 1929 *sizep = size; 1930 } else { 1931 sbuf_start_section(sb, &start_len); 1932 1933 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1934 PROC_LOCK(p); 1935 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 1936 filedesc_flags); 1937 1938 sect_len = sbuf_end_section(sb, start_len, 0, 0); 1939 if (sect_len < 0) 1940 return; 1941 sect_sz = sect_len; 1942 1943 KASSERT(sect_sz <= *sizep, 1944 ("kern_proc_filedesc_out did not respect maxlen; " 1945 "requested %zu, got %zu", *sizep - sizeof(structsize), 1946 sect_sz - sizeof(structsize))); 1947 1948 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 1949 sbuf_putc(sb, 0); 1950 } 1951 } 1952 1953 #ifdef KINFO_VMENTRY_SIZE 1954 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1955 #endif 1956 1957 static void 1958 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 1959 { 1960 struct proc *p; 1961 size_t size; 1962 int structsize; 1963 1964 p = (struct proc *)arg; 1965 if (sb == NULL) { 1966 size = 0; 1967 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1968 sbuf_set_drain(sb, sbuf_drain_count, &size); 1969 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1970 PROC_LOCK(p); 1971 kern_proc_vmmap_out(p, sb); 1972 sbuf_finish(sb); 1973 sbuf_delete(sb); 1974 *sizep = size; 1975 } else { 1976 structsize = sizeof(struct kinfo_vmentry); 1977 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1978 PROC_LOCK(p); 1979 kern_proc_vmmap_out(p, sb); 1980 } 1981 } 1982 1983 static void 1984 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 1985 { 1986 struct proc *p; 1987 size_t size; 1988 int structsize; 1989 1990 p = (struct proc *)arg; 1991 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 1992 if (sb != NULL) { 1993 KASSERT(*sizep == size, ("invalid size")); 1994 structsize = sizeof(gid_t); 1995 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1996 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 1997 sizeof(gid_t)); 1998 } 1999 *sizep = size; 2000 } 2001 2002 static void 2003 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2004 { 2005 struct proc *p; 2006 size_t size; 2007 int structsize; 2008 2009 p = (struct proc *)arg; 2010 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2011 if (sb != NULL) { 2012 KASSERT(*sizep == size, ("invalid size")); 2013 structsize = sizeof(p->p_fd->fd_cmask); 2014 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2015 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2016 } 2017 *sizep = size; 2018 } 2019 2020 static void 2021 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2022 { 2023 struct proc *p; 2024 struct rlimit rlim[RLIM_NLIMITS]; 2025 size_t size; 2026 int structsize, i; 2027 2028 p = (struct proc *)arg; 2029 size = sizeof(structsize) + sizeof(rlim); 2030 if (sb != NULL) { 2031 KASSERT(*sizep == size, ("invalid size")); 2032 structsize = sizeof(rlim); 2033 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2034 PROC_LOCK(p); 2035 for (i = 0; i < RLIM_NLIMITS; i++) 2036 lim_rlimit_proc(p, i, &rlim[i]); 2037 PROC_UNLOCK(p); 2038 sbuf_bcat(sb, rlim, sizeof(rlim)); 2039 } 2040 *sizep = size; 2041 } 2042 2043 static void 2044 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2045 { 2046 struct proc *p; 2047 size_t size; 2048 int structsize; 2049 2050 p = (struct proc *)arg; 2051 size = sizeof(structsize) + sizeof(p->p_osrel); 2052 if (sb != NULL) { 2053 KASSERT(*sizep == size, ("invalid size")); 2054 structsize = sizeof(p->p_osrel); 2055 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2056 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2057 } 2058 *sizep = size; 2059 } 2060 2061 static void 2062 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2063 { 2064 struct proc *p; 2065 elf_ps_strings_t ps_strings; 2066 size_t size; 2067 int structsize; 2068 2069 p = (struct proc *)arg; 2070 size = sizeof(structsize) + sizeof(ps_strings); 2071 if (sb != NULL) { 2072 KASSERT(*sizep == size, ("invalid size")); 2073 structsize = sizeof(ps_strings); 2074 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2075 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2076 #else 2077 ps_strings = p->p_sysent->sv_psstrings; 2078 #endif 2079 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2080 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2081 } 2082 *sizep = size; 2083 } 2084 2085 static void 2086 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2087 { 2088 struct proc *p; 2089 size_t size; 2090 int structsize; 2091 2092 p = (struct proc *)arg; 2093 if (sb == NULL) { 2094 size = 0; 2095 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2096 sbuf_set_drain(sb, sbuf_drain_count, &size); 2097 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2098 PHOLD(p); 2099 proc_getauxv(curthread, p, sb); 2100 PRELE(p); 2101 sbuf_finish(sb); 2102 sbuf_delete(sb); 2103 *sizep = size; 2104 } else { 2105 structsize = sizeof(Elf_Auxinfo); 2106 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2107 PHOLD(p); 2108 proc_getauxv(curthread, p, sb); 2109 PRELE(p); 2110 } 2111 } 2112 2113 static boolean_t 2114 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2115 int32_t *osrel, const Elf_Phdr *pnote) 2116 { 2117 const Elf_Note *note, *note0, *note_end; 2118 const char *note_name; 2119 int i; 2120 2121 if (pnote == NULL || pnote->p_offset > PAGE_SIZE || 2122 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) 2123 return (FALSE); 2124 2125 note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); 2126 note_end = (const Elf_Note *)(imgp->image_header + 2127 pnote->p_offset + pnote->p_filesz); 2128 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2129 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2130 (const char *)note < sizeof(Elf_Note)) 2131 return (FALSE); 2132 if (note->n_namesz != checknote->hdr.n_namesz || 2133 note->n_descsz != checknote->hdr.n_descsz || 2134 note->n_type != checknote->hdr.n_type) 2135 goto nextnote; 2136 note_name = (const char *)(note + 1); 2137 if (note_name + checknote->hdr.n_namesz >= 2138 (const char *)note_end || strncmp(checknote->vendor, 2139 note_name, checknote->hdr.n_namesz) != 0) 2140 goto nextnote; 2141 2142 /* 2143 * Fetch the osreldate for binary 2144 * from the ELF OSABI-note if necessary. 2145 */ 2146 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2147 checknote->trans_osrel != NULL) 2148 return (checknote->trans_osrel(note, osrel)); 2149 return (TRUE); 2150 2151 nextnote: 2152 note = (const Elf_Note *)((const char *)(note + 1) + 2153 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2154 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2155 } 2156 2157 return (FALSE); 2158 } 2159 2160 /* 2161 * Try to find the appropriate ABI-note section for checknote, 2162 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2163 * first page of the image is searched, the same as for headers. 2164 */ 2165 static boolean_t 2166 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2167 int32_t *osrel) 2168 { 2169 const Elf_Phdr *phdr; 2170 const Elf_Ehdr *hdr; 2171 int i; 2172 2173 hdr = (const Elf_Ehdr *)imgp->image_header; 2174 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2175 2176 for (i = 0; i < hdr->e_phnum; i++) { 2177 if (phdr[i].p_type == PT_NOTE && 2178 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2179 return (TRUE); 2180 } 2181 return (FALSE); 2182 2183 } 2184 2185 /* 2186 * Tell kern_execve.c about it, with a little help from the linker. 2187 */ 2188 static struct execsw __elfN(execsw) = { 2189 __CONCAT(exec_, __elfN(imgact)), 2190 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2191 }; 2192 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2193 2194 static vm_prot_t 2195 __elfN(trans_prot)(Elf_Word flags) 2196 { 2197 vm_prot_t prot; 2198 2199 prot = 0; 2200 if (flags & PF_X) 2201 prot |= VM_PROT_EXECUTE; 2202 if (flags & PF_W) 2203 prot |= VM_PROT_WRITE; 2204 if (flags & PF_R) 2205 prot |= VM_PROT_READ; 2206 #if __ELF_WORD_SIZE == 32 2207 #if defined(__amd64__) 2208 if (i386_read_exec && (flags & PF_R)) 2209 prot |= VM_PROT_EXECUTE; 2210 #endif 2211 #endif 2212 return (prot); 2213 } 2214 2215 static Elf_Word 2216 __elfN(untrans_prot)(vm_prot_t prot) 2217 { 2218 Elf_Word flags; 2219 2220 flags = 0; 2221 if (prot & VM_PROT_EXECUTE) 2222 flags |= PF_X; 2223 if (prot & VM_PROT_READ) 2224 flags |= PF_R; 2225 if (prot & VM_PROT_WRITE) 2226 flags |= PF_W; 2227 return (flags); 2228 } 2229