1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 S�ren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_core.h" 37 38 #include <sys/param.h> 39 #include <sys/capability.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/imgact.h> 43 #include <sys/imgact_elf.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mutex.h> 49 #include <sys/mman.h> 50 #include <sys/namei.h> 51 #include <sys/pioctl.h> 52 #include <sys/proc.h> 53 #include <sys/procfs.h> 54 #include <sys/racct.h> 55 #include <sys/resourcevar.h> 56 #include <sys/sf_buf.h> 57 #include <sys/smp.h> 58 #include <sys/systm.h> 59 #include <sys/signalvar.h> 60 #include <sys/stat.h> 61 #include <sys/sx.h> 62 #include <sys/syscall.h> 63 #include <sys/sysctl.h> 64 #include <sys/sysent.h> 65 #include <sys/vnode.h> 66 #include <sys/syslog.h> 67 #include <sys/eventhandler.h> 68 69 #include <net/zlib.h> 70 71 #include <vm/vm.h> 72 #include <vm/vm_kern.h> 73 #include <vm/vm_param.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_map.h> 76 #include <vm/vm_object.h> 77 #include <vm/vm_extern.h> 78 79 #include <machine/elf.h> 80 #include <machine/md_var.h> 81 82 #define OLD_EI_BRAND 8 83 84 static int __elfN(check_header)(const Elf_Ehdr *hdr); 85 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 86 const char *interp, int32_t *osrel); 87 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 88 u_long *entry, size_t pagesize); 89 static int __elfN(load_section)(struct vmspace *vmspace, vm_object_t object, 90 vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, 91 vm_prot_t prot, size_t pagesize); 92 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 93 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 94 int32_t *osrel); 95 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 96 static boolean_t __elfN(check_note)(struct image_params *imgp, 97 Elf_Brandnote *checknote, int32_t *osrel); 98 static vm_prot_t __elfN(trans_prot)(Elf_Word); 99 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 100 101 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 102 ""); 103 104 #ifdef COMPRESS_USER_CORES 105 static int compress_core(gzFile, char *, char *, unsigned int, 106 struct thread * td); 107 #define CORE_BUF_SIZE (16 * 1024) 108 #endif 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand", 115 &__elfN(fallback_brand)); 116 117 static int elf_legacy_coredump = 0; 118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 119 &elf_legacy_coredump, 0, ""); 120 121 static int __elfN(nxstack) = 0; 122 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 123 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 124 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 125 126 #if __ELF_WORD_SIZE == 32 127 #if defined(__amd64__) || defined(__ia64__) 128 int i386_read_exec = 0; 129 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 130 "enable execution from readable segments"); 131 #endif 132 #endif 133 134 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 135 136 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 137 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 138 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 139 140 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 141 142 Elf_Brandnote __elfN(freebsd_brandnote) = { 143 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 144 .hdr.n_descsz = sizeof(int32_t), 145 .hdr.n_type = 1, 146 .vendor = FREEBSD_ABI_VENDOR, 147 .flags = BN_TRANSLATE_OSREL, 148 .trans_osrel = __elfN(freebsd_trans_osrel) 149 }; 150 151 static boolean_t 152 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 153 { 154 uintptr_t p; 155 156 p = (uintptr_t)(note + 1); 157 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 158 *osrel = *(const int32_t *)(p); 159 160 return (TRUE); 161 } 162 163 static const char GNU_ABI_VENDOR[] = "GNU"; 164 static int GNU_KFREEBSD_ABI_DESC = 3; 165 166 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 167 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 168 .hdr.n_descsz = 16, /* XXX at least 16 */ 169 .hdr.n_type = 1, 170 .vendor = GNU_ABI_VENDOR, 171 .flags = BN_TRANSLATE_OSREL, 172 .trans_osrel = kfreebsd_trans_osrel 173 }; 174 175 static boolean_t 176 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 177 { 178 const Elf32_Word *desc; 179 uintptr_t p; 180 181 p = (uintptr_t)(note + 1); 182 p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); 183 184 desc = (const Elf32_Word *)p; 185 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 186 return (FALSE); 187 188 /* 189 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 190 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 191 */ 192 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 193 194 return (TRUE); 195 } 196 197 int 198 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 199 { 200 int i; 201 202 for (i = 0; i < MAX_BRANDS; i++) { 203 if (elf_brand_list[i] == NULL) { 204 elf_brand_list[i] = entry; 205 break; 206 } 207 } 208 if (i == MAX_BRANDS) { 209 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 210 __func__, entry); 211 return (-1); 212 } 213 return (0); 214 } 215 216 int 217 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 218 { 219 int i; 220 221 for (i = 0; i < MAX_BRANDS; i++) { 222 if (elf_brand_list[i] == entry) { 223 elf_brand_list[i] = NULL; 224 break; 225 } 226 } 227 if (i == MAX_BRANDS) 228 return (-1); 229 return (0); 230 } 231 232 int 233 __elfN(brand_inuse)(Elf_Brandinfo *entry) 234 { 235 struct proc *p; 236 int rval = FALSE; 237 238 sx_slock(&allproc_lock); 239 FOREACH_PROC_IN_SYSTEM(p) { 240 if (p->p_sysent == entry->sysvec) { 241 rval = TRUE; 242 break; 243 } 244 } 245 sx_sunlock(&allproc_lock); 246 247 return (rval); 248 } 249 250 static Elf_Brandinfo * 251 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 252 int32_t *osrel) 253 { 254 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 255 Elf_Brandinfo *bi; 256 boolean_t ret; 257 int i; 258 259 /* 260 * We support four types of branding -- (1) the ELF EI_OSABI field 261 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 262 * branding w/in the ELF header, (3) path of the `interp_path' 263 * field, and (4) the ".note.ABI-tag" ELF section. 264 */ 265 266 /* Look for an ".note.ABI-tag" ELF section */ 267 for (i = 0; i < MAX_BRANDS; i++) { 268 bi = elf_brand_list[i]; 269 if (bi == NULL) 270 continue; 271 if (hdr->e_machine == bi->machine && (bi->flags & 272 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 273 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 274 if (ret) 275 return (bi); 276 } 277 } 278 279 /* If the executable has a brand, search for it in the brand list. */ 280 for (i = 0; i < MAX_BRANDS; i++) { 281 bi = elf_brand_list[i]; 282 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 283 continue; 284 if (hdr->e_machine == bi->machine && 285 (hdr->e_ident[EI_OSABI] == bi->brand || 286 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 287 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 288 return (bi); 289 } 290 291 /* Lacking a known brand, search for a recognized interpreter. */ 292 if (interp != NULL) { 293 for (i = 0; i < MAX_BRANDS; i++) { 294 bi = elf_brand_list[i]; 295 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 296 continue; 297 if (hdr->e_machine == bi->machine && 298 strcmp(interp, bi->interp_path) == 0) 299 return (bi); 300 } 301 } 302 303 /* Lacking a recognized interpreter, try the default brand */ 304 for (i = 0; i < MAX_BRANDS; i++) { 305 bi = elf_brand_list[i]; 306 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 307 continue; 308 if (hdr->e_machine == bi->machine && 309 __elfN(fallback_brand) == bi->brand) 310 return (bi); 311 } 312 return (NULL); 313 } 314 315 static int 316 __elfN(check_header)(const Elf_Ehdr *hdr) 317 { 318 Elf_Brandinfo *bi; 319 int i; 320 321 if (!IS_ELF(*hdr) || 322 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 323 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 324 hdr->e_ident[EI_VERSION] != EV_CURRENT || 325 hdr->e_phentsize != sizeof(Elf_Phdr) || 326 hdr->e_version != ELF_TARG_VER) 327 return (ENOEXEC); 328 329 /* 330 * Make sure we have at least one brand for this machine. 331 */ 332 333 for (i = 0; i < MAX_BRANDS; i++) { 334 bi = elf_brand_list[i]; 335 if (bi != NULL && bi->machine == hdr->e_machine) 336 break; 337 } 338 if (i == MAX_BRANDS) 339 return (ENOEXEC); 340 341 return (0); 342 } 343 344 static int 345 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 346 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 347 { 348 struct sf_buf *sf; 349 int error; 350 vm_offset_t off; 351 352 /* 353 * Create the page if it doesn't exist yet. Ignore errors. 354 */ 355 vm_map_lock(map); 356 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 357 VM_PROT_ALL, VM_PROT_ALL, 0); 358 vm_map_unlock(map); 359 360 /* 361 * Find the page from the underlying object. 362 */ 363 if (object) { 364 sf = vm_imgact_map_page(object, offset); 365 if (sf == NULL) 366 return (KERN_FAILURE); 367 off = offset - trunc_page(offset); 368 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 369 end - start); 370 vm_imgact_unmap_page(sf); 371 if (error) { 372 return (KERN_FAILURE); 373 } 374 } 375 376 return (KERN_SUCCESS); 377 } 378 379 static int 380 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 381 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 382 { 383 struct sf_buf *sf; 384 vm_offset_t off; 385 vm_size_t sz; 386 int error, rv; 387 388 if (start != trunc_page(start)) { 389 rv = __elfN(map_partial)(map, object, offset, start, 390 round_page(start), prot); 391 if (rv) 392 return (rv); 393 offset += round_page(start) - start; 394 start = round_page(start); 395 } 396 if (end != round_page(end)) { 397 rv = __elfN(map_partial)(map, object, offset + 398 trunc_page(end) - start, trunc_page(end), end, prot); 399 if (rv) 400 return (rv); 401 end = trunc_page(end); 402 } 403 if (end > start) { 404 if (offset & PAGE_MASK) { 405 /* 406 * The mapping is not page aligned. This means we have 407 * to copy the data. Sigh. 408 */ 409 rv = vm_map_find(map, NULL, 0, &start, end - start, 410 FALSE, prot | VM_PROT_WRITE, VM_PROT_ALL, 0); 411 if (rv) 412 return (rv); 413 if (object == NULL) 414 return (KERN_SUCCESS); 415 for (; start < end; start += sz) { 416 sf = vm_imgact_map_page(object, offset); 417 if (sf == NULL) 418 return (KERN_FAILURE); 419 off = offset - trunc_page(offset); 420 sz = end - start; 421 if (sz > PAGE_SIZE - off) 422 sz = PAGE_SIZE - off; 423 error = copyout((caddr_t)sf_buf_kva(sf) + off, 424 (caddr_t)start, sz); 425 vm_imgact_unmap_page(sf); 426 if (error) { 427 return (KERN_FAILURE); 428 } 429 offset += sz; 430 } 431 rv = KERN_SUCCESS; 432 } else { 433 vm_object_reference(object); 434 vm_map_lock(map); 435 rv = vm_map_insert(map, object, offset, start, end, 436 prot, VM_PROT_ALL, cow); 437 vm_map_unlock(map); 438 if (rv != KERN_SUCCESS) 439 vm_object_deallocate(object); 440 } 441 return (rv); 442 } else { 443 return (KERN_SUCCESS); 444 } 445 } 446 447 static int 448 __elfN(load_section)(struct vmspace *vmspace, 449 vm_object_t object, vm_offset_t offset, 450 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 451 size_t pagesize) 452 { 453 struct sf_buf *sf; 454 size_t map_len; 455 vm_offset_t map_addr; 456 int error, rv, cow; 457 size_t copy_len; 458 vm_offset_t file_addr; 459 460 /* 461 * It's necessary to fail if the filsz + offset taken from the 462 * header is greater than the actual file pager object's size. 463 * If we were to allow this, then the vm_map_find() below would 464 * walk right off the end of the file object and into the ether. 465 * 466 * While I'm here, might as well check for something else that 467 * is invalid: filsz cannot be greater than memsz. 468 */ 469 if ((off_t)filsz + offset > object->un_pager.vnp.vnp_size || 470 filsz > memsz) { 471 uprintf("elf_load_section: truncated ELF file\n"); 472 return (ENOEXEC); 473 } 474 475 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 476 file_addr = trunc_page_ps(offset, pagesize); 477 478 /* 479 * We have two choices. We can either clear the data in the last page 480 * of an oversized mapping, or we can start the anon mapping a page 481 * early and copy the initialized data into that first page. We 482 * choose the second.. 483 */ 484 if (memsz > filsz) 485 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 486 else 487 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 488 489 if (map_len != 0) { 490 /* cow flags: don't dump readonly sections in core */ 491 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 492 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 493 494 rv = __elfN(map_insert)(&vmspace->vm_map, 495 object, 496 file_addr, /* file offset */ 497 map_addr, /* virtual start */ 498 map_addr + map_len,/* virtual end */ 499 prot, 500 cow); 501 if (rv != KERN_SUCCESS) 502 return (EINVAL); 503 504 /* we can stop now if we've covered it all */ 505 if (memsz == filsz) { 506 return (0); 507 } 508 } 509 510 511 /* 512 * We have to get the remaining bit of the file into the first part 513 * of the oversized map segment. This is normally because the .data 514 * segment in the file is extended to provide bss. It's a neat idea 515 * to try and save a page, but it's a pain in the behind to implement. 516 */ 517 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 518 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 519 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 520 map_addr; 521 522 /* This had damn well better be true! */ 523 if (map_len != 0) { 524 rv = __elfN(map_insert)(&vmspace->vm_map, NULL, 0, map_addr, 525 map_addr + map_len, VM_PROT_ALL, 0); 526 if (rv != KERN_SUCCESS) { 527 return (EINVAL); 528 } 529 } 530 531 if (copy_len != 0) { 532 vm_offset_t off; 533 534 sf = vm_imgact_map_page(object, offset + filsz); 535 if (sf == NULL) 536 return (EIO); 537 538 /* send the page fragment to user space */ 539 off = trunc_page_ps(offset + filsz, pagesize) - 540 trunc_page(offset + filsz); 541 error = copyout((caddr_t)sf_buf_kva(sf) + off, 542 (caddr_t)map_addr, copy_len); 543 vm_imgact_unmap_page(sf); 544 if (error) { 545 return (error); 546 } 547 } 548 549 /* 550 * set it to the specified protection. 551 * XXX had better undo the damage from pasting over the cracks here! 552 */ 553 vm_map_protect(&vmspace->vm_map, trunc_page(map_addr), 554 round_page(map_addr + map_len), prot, FALSE); 555 556 return (0); 557 } 558 559 /* 560 * Load the file "file" into memory. It may be either a shared object 561 * or an executable. 562 * 563 * The "addr" reference parameter is in/out. On entry, it specifies 564 * the address where a shared object should be loaded. If the file is 565 * an executable, this value is ignored. On exit, "addr" specifies 566 * where the file was actually loaded. 567 * 568 * The "entry" reference parameter is out only. On exit, it specifies 569 * the entry point for the loaded file. 570 */ 571 static int 572 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 573 u_long *entry, size_t pagesize) 574 { 575 struct { 576 struct nameidata nd; 577 struct vattr attr; 578 struct image_params image_params; 579 } *tempdata; 580 const Elf_Ehdr *hdr = NULL; 581 const Elf_Phdr *phdr = NULL; 582 struct nameidata *nd; 583 struct vmspace *vmspace = p->p_vmspace; 584 struct vattr *attr; 585 struct image_params *imgp; 586 vm_prot_t prot; 587 u_long rbase; 588 u_long base_addr = 0; 589 int vfslocked, error, i, numsegs; 590 591 #ifdef CAPABILITY_MODE 592 /* 593 * XXXJA: This check can go away once we are sufficiently confident 594 * that the checks in namei() are correct. 595 */ 596 if (IN_CAPABILITY_MODE(curthread)) 597 return (ECAPMODE); 598 #endif 599 600 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 601 nd = &tempdata->nd; 602 attr = &tempdata->attr; 603 imgp = &tempdata->image_params; 604 605 /* 606 * Initialize part of the common data 607 */ 608 imgp->proc = p; 609 imgp->attr = attr; 610 imgp->firstpage = NULL; 611 imgp->image_header = NULL; 612 imgp->object = NULL; 613 imgp->execlabel = NULL; 614 615 NDINIT(nd, LOOKUP, MPSAFE|LOCKLEAF|FOLLOW, UIO_SYSSPACE, file, 616 curthread); 617 vfslocked = 0; 618 if ((error = namei(nd)) != 0) { 619 nd->ni_vp = NULL; 620 goto fail; 621 } 622 vfslocked = NDHASGIANT(nd); 623 NDFREE(nd, NDF_ONLY_PNBUF); 624 imgp->vp = nd->ni_vp; 625 626 /* 627 * Check permissions, modes, uid, etc on the file, and "open" it. 628 */ 629 error = exec_check_permissions(imgp); 630 if (error) 631 goto fail; 632 633 error = exec_map_first_page(imgp); 634 if (error) 635 goto fail; 636 637 /* 638 * Also make certain that the interpreter stays the same, so set 639 * its VV_TEXT flag, too. 640 */ 641 nd->ni_vp->v_vflag |= VV_TEXT; 642 643 imgp->object = nd->ni_vp->v_object; 644 645 hdr = (const Elf_Ehdr *)imgp->image_header; 646 if ((error = __elfN(check_header)(hdr)) != 0) 647 goto fail; 648 if (hdr->e_type == ET_DYN) 649 rbase = *addr; 650 else if (hdr->e_type == ET_EXEC) 651 rbase = 0; 652 else { 653 error = ENOEXEC; 654 goto fail; 655 } 656 657 /* Only support headers that fit within first page for now */ 658 /* (multiplication of two Elf_Half fields will not overflow) */ 659 if ((hdr->e_phoff > PAGE_SIZE) || 660 (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) { 661 error = ENOEXEC; 662 goto fail; 663 } 664 665 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 666 if (!aligned(phdr, Elf_Addr)) { 667 error = ENOEXEC; 668 goto fail; 669 } 670 671 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 672 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 673 /* Loadable segment */ 674 prot = __elfN(trans_prot)(phdr[i].p_flags); 675 if ((error = __elfN(load_section)(vmspace, 676 imgp->object, phdr[i].p_offset, 677 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 678 phdr[i].p_memsz, phdr[i].p_filesz, prot, 679 pagesize)) != 0) 680 goto fail; 681 /* 682 * Establish the base address if this is the 683 * first segment. 684 */ 685 if (numsegs == 0) 686 base_addr = trunc_page(phdr[i].p_vaddr + 687 rbase); 688 numsegs++; 689 } 690 } 691 *addr = base_addr; 692 *entry = (unsigned long)hdr->e_entry + rbase; 693 694 fail: 695 if (imgp->firstpage) 696 exec_unmap_first_page(imgp); 697 698 if (nd->ni_vp) 699 vput(nd->ni_vp); 700 701 VFS_UNLOCK_GIANT(vfslocked); 702 free(tempdata, M_TEMP); 703 704 return (error); 705 } 706 707 static int 708 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 709 { 710 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 711 const Elf_Phdr *phdr; 712 Elf_Auxargs *elf_auxargs; 713 struct vmspace *vmspace; 714 vm_prot_t prot; 715 u_long text_size = 0, data_size = 0, total_size = 0; 716 u_long text_addr = 0, data_addr = 0; 717 u_long seg_size, seg_addr; 718 u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; 719 int32_t osrel = 0; 720 int error = 0, i, n; 721 const char *interp = NULL, *newinterp = NULL; 722 Elf_Brandinfo *brand_info; 723 char *path; 724 struct sysentvec *sv; 725 726 /* 727 * Do we have a valid ELF header ? 728 * 729 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 730 * if particular brand doesn't support it. 731 */ 732 if (__elfN(check_header)(hdr) != 0 || 733 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 734 return (-1); 735 736 /* 737 * From here on down, we return an errno, not -1, as we've 738 * detected an ELF file. 739 */ 740 741 if ((hdr->e_phoff > PAGE_SIZE) || 742 (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) { 743 /* Only support headers in first page for now */ 744 return (ENOEXEC); 745 } 746 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 747 if (!aligned(phdr, Elf_Addr)) 748 return (ENOEXEC); 749 n = 0; 750 baddr = 0; 751 for (i = 0; i < hdr->e_phnum; i++) { 752 switch (phdr[i].p_type) { 753 case PT_LOAD: 754 if (n == 0) 755 baddr = phdr[i].p_vaddr; 756 n++; 757 break; 758 case PT_INTERP: 759 /* Path to interpreter */ 760 if (phdr[i].p_filesz > MAXPATHLEN || 761 phdr[i].p_offset + phdr[i].p_filesz > PAGE_SIZE) 762 return (ENOEXEC); 763 interp = imgp->image_header + phdr[i].p_offset; 764 break; 765 case PT_GNU_STACK: 766 if (__elfN(nxstack)) 767 imgp->stack_prot = 768 __elfN(trans_prot)(phdr[i].p_flags); 769 break; 770 } 771 } 772 773 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel); 774 if (brand_info == NULL) { 775 uprintf("ELF binary type \"%u\" not known.\n", 776 hdr->e_ident[EI_OSABI]); 777 return (ENOEXEC); 778 } 779 if (hdr->e_type == ET_DYN) { 780 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) 781 return (ENOEXEC); 782 /* 783 * Honour the base load address from the dso if it is 784 * non-zero for some reason. 785 */ 786 if (baddr == 0) 787 et_dyn_addr = ET_DYN_LOAD_ADDR; 788 else 789 et_dyn_addr = 0; 790 } else 791 et_dyn_addr = 0; 792 sv = brand_info->sysvec; 793 if (interp != NULL && brand_info->interp_newpath != NULL) 794 newinterp = brand_info->interp_newpath; 795 796 /* 797 * Avoid a possible deadlock if the current address space is destroyed 798 * and that address space maps the locked vnode. In the common case, 799 * the locked vnode's v_usecount is decremented but remains greater 800 * than zero. Consequently, the vnode lock is not needed by vrele(). 801 * However, in cases where the vnode lock is external, such as nullfs, 802 * v_usecount may become zero. 803 */ 804 VOP_UNLOCK(imgp->vp, 0); 805 806 error = exec_new_vmspace(imgp, sv); 807 imgp->proc->p_sysent = sv; 808 809 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 810 if (error) 811 return (error); 812 813 vmspace = imgp->proc->p_vmspace; 814 815 for (i = 0; i < hdr->e_phnum; i++) { 816 switch (phdr[i].p_type) { 817 case PT_LOAD: /* Loadable segment */ 818 if (phdr[i].p_memsz == 0) 819 break; 820 prot = __elfN(trans_prot)(phdr[i].p_flags); 821 822 #if defined(__ia64__) && __ELF_WORD_SIZE == 32 && defined(IA32_ME_HARDER) 823 /* 824 * Some x86 binaries assume read == executable, 825 * notably the M3 runtime and therefore cvsup 826 */ 827 if (prot & VM_PROT_READ) 828 prot |= VM_PROT_EXECUTE; 829 #endif 830 831 if ((error = __elfN(load_section)(vmspace, 832 imgp->object, phdr[i].p_offset, 833 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 834 phdr[i].p_memsz, phdr[i].p_filesz, prot, 835 sv->sv_pagesize)) != 0) 836 return (error); 837 838 /* 839 * If this segment contains the program headers, 840 * remember their virtual address for the AT_PHDR 841 * aux entry. Static binaries don't usually include 842 * a PT_PHDR entry. 843 */ 844 if (phdr[i].p_offset == 0 && 845 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 846 <= phdr[i].p_filesz) 847 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 848 et_dyn_addr; 849 850 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 851 seg_size = round_page(phdr[i].p_memsz + 852 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 853 854 /* 855 * Make the largest executable segment the official 856 * text segment and all others data. 857 * 858 * Note that obreak() assumes that data_addr + 859 * data_size == end of data load area, and the ELF 860 * file format expects segments to be sorted by 861 * address. If multiple data segments exist, the 862 * last one will be used. 863 */ 864 865 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 866 text_size = seg_size; 867 text_addr = seg_addr; 868 } else { 869 data_size = seg_size; 870 data_addr = seg_addr; 871 } 872 total_size += seg_size; 873 break; 874 case PT_PHDR: /* Program header table info */ 875 proghdr = phdr[i].p_vaddr + et_dyn_addr; 876 break; 877 default: 878 break; 879 } 880 } 881 882 if (data_addr == 0 && data_size == 0) { 883 data_addr = text_addr; 884 data_size = text_size; 885 } 886 887 entry = (u_long)hdr->e_entry + et_dyn_addr; 888 889 /* 890 * Check limits. It should be safe to check the 891 * limits after loading the segments since we do 892 * not actually fault in all the segments pages. 893 */ 894 PROC_LOCK(imgp->proc); 895 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 896 text_size > maxtsiz || 897 total_size > lim_cur(imgp->proc, RLIMIT_VMEM) || 898 racct_set(imgp->proc, RACCT_DATA, data_size) != 0 || 899 racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) { 900 PROC_UNLOCK(imgp->proc); 901 return (ENOMEM); 902 } 903 904 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 905 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 906 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 907 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 908 909 /* 910 * We load the dynamic linker where a userland call 911 * to mmap(0, ...) would put it. The rationale behind this 912 * calculation is that it leaves room for the heap to grow to 913 * its maximum allowed size. 914 */ 915 addr = round_page((vm_offset_t)imgp->proc->p_vmspace->vm_daddr + 916 lim_max(imgp->proc, RLIMIT_DATA)); 917 PROC_UNLOCK(imgp->proc); 918 919 imgp->entry_addr = entry; 920 921 if (interp != NULL) { 922 int have_interp = FALSE; 923 VOP_UNLOCK(imgp->vp, 0); 924 if (brand_info->emul_path != NULL && 925 brand_info->emul_path[0] != '\0') { 926 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 927 snprintf(path, MAXPATHLEN, "%s%s", 928 brand_info->emul_path, interp); 929 error = __elfN(load_file)(imgp->proc, path, &addr, 930 &imgp->entry_addr, sv->sv_pagesize); 931 free(path, M_TEMP); 932 if (error == 0) 933 have_interp = TRUE; 934 } 935 if (!have_interp && newinterp != NULL) { 936 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 937 &imgp->entry_addr, sv->sv_pagesize); 938 if (error == 0) 939 have_interp = TRUE; 940 } 941 if (!have_interp) { 942 error = __elfN(load_file)(imgp->proc, interp, &addr, 943 &imgp->entry_addr, sv->sv_pagesize); 944 } 945 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 946 if (error != 0) { 947 uprintf("ELF interpreter %s not found\n", interp); 948 return (error); 949 } 950 } else 951 addr = et_dyn_addr; 952 953 /* 954 * Construct auxargs table (used by the fixup routine) 955 */ 956 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 957 elf_auxargs->execfd = -1; 958 elf_auxargs->phdr = proghdr; 959 elf_auxargs->phent = hdr->e_phentsize; 960 elf_auxargs->phnum = hdr->e_phnum; 961 elf_auxargs->pagesz = PAGE_SIZE; 962 elf_auxargs->base = addr; 963 elf_auxargs->flags = 0; 964 elf_auxargs->entry = entry; 965 966 imgp->auxargs = elf_auxargs; 967 imgp->interpreted = 0; 968 imgp->reloc_base = addr; 969 imgp->proc->p_osrel = osrel; 970 971 return (error); 972 } 973 974 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 975 976 int 977 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 978 { 979 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 980 Elf_Addr *base; 981 Elf_Addr *pos; 982 983 base = (Elf_Addr *)*stack_base; 984 pos = base + (imgp->args->argc + imgp->args->envc + 2); 985 986 if (args->execfd != -1) 987 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 988 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 989 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 990 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 991 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 992 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 993 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 994 AUXARGS_ENTRY(pos, AT_BASE, args->base); 995 if (imgp->execpathp != 0) 996 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 997 AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate); 998 if (imgp->canary != 0) { 999 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1000 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1001 } 1002 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1003 if (imgp->pagesizes != 0) { 1004 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1005 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1006 } 1007 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1008 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1009 imgp->sysent->sv_stackprot); 1010 AUXARGS_ENTRY(pos, AT_NULL, 0); 1011 1012 free(imgp->auxargs, M_TEMP); 1013 imgp->auxargs = NULL; 1014 1015 base--; 1016 suword(base, (long)imgp->args->argc); 1017 *stack_base = (register_t *)base; 1018 return (0); 1019 } 1020 1021 /* 1022 * Code for generating ELF core dumps. 1023 */ 1024 1025 typedef void (*segment_callback)(vm_map_entry_t, void *); 1026 1027 /* Closure for cb_put_phdr(). */ 1028 struct phdr_closure { 1029 Elf_Phdr *phdr; /* Program header to fill in */ 1030 Elf_Off offset; /* Offset of segment in core file */ 1031 }; 1032 1033 /* Closure for cb_size_segment(). */ 1034 struct sseg_closure { 1035 int count; /* Count of writable segments. */ 1036 size_t size; /* Total size of all writable segments. */ 1037 }; 1038 1039 static void cb_put_phdr(vm_map_entry_t, void *); 1040 static void cb_size_segment(vm_map_entry_t, void *); 1041 static void each_writable_segment(struct thread *, segment_callback, void *); 1042 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *, 1043 int, void *, size_t, gzFile); 1044 static void __elfN(puthdr)(struct thread *, void *, size_t *, int); 1045 static void __elfN(putnote)(void *, size_t *, const char *, int, 1046 const void *, size_t); 1047 1048 #ifdef COMPRESS_USER_CORES 1049 extern int compress_user_cores; 1050 extern int compress_user_cores_gzlevel; 1051 #endif 1052 1053 static int 1054 core_output(struct vnode *vp, void *base, size_t len, off_t offset, 1055 struct ucred *active_cred, struct ucred *file_cred, 1056 struct thread *td, char *core_buf, gzFile gzfile) { 1057 1058 int error; 1059 if (gzfile) { 1060 #ifdef COMPRESS_USER_CORES 1061 error = compress_core(gzfile, base, core_buf, len, td); 1062 #else 1063 panic("shouldn't be here"); 1064 #endif 1065 } else { 1066 error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset, 1067 UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred, 1068 NULL, td); 1069 } 1070 return (error); 1071 } 1072 1073 int 1074 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1075 { 1076 struct ucred *cred = td->td_ucred; 1077 int error = 0; 1078 struct sseg_closure seginfo; 1079 void *hdr; 1080 size_t hdrsize; 1081 1082 gzFile gzfile = Z_NULL; 1083 char *core_buf = NULL; 1084 #ifdef COMPRESS_USER_CORES 1085 char gzopen_flags[8]; 1086 char *p; 1087 int doing_compress = flags & IMGACT_CORE_COMPRESS; 1088 #endif 1089 1090 hdr = NULL; 1091 1092 #ifdef COMPRESS_USER_CORES 1093 if (doing_compress) { 1094 p = gzopen_flags; 1095 *p++ = 'w'; 1096 if (compress_user_cores_gzlevel >= 0 && 1097 compress_user_cores_gzlevel <= 9) 1098 *p++ = '0' + compress_user_cores_gzlevel; 1099 *p = 0; 1100 gzfile = gz_open("", gzopen_flags, vp); 1101 if (gzfile == Z_NULL) { 1102 error = EFAULT; 1103 goto done; 1104 } 1105 core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1106 if (!core_buf) { 1107 error = ENOMEM; 1108 goto done; 1109 } 1110 } 1111 #endif 1112 1113 /* Size the program segments. */ 1114 seginfo.count = 0; 1115 seginfo.size = 0; 1116 each_writable_segment(td, cb_size_segment, &seginfo); 1117 1118 /* 1119 * Calculate the size of the core file header area by making 1120 * a dry run of generating it. Nothing is written, but the 1121 * size is calculated. 1122 */ 1123 hdrsize = 0; 1124 __elfN(puthdr)(td, (void *)NULL, &hdrsize, seginfo.count); 1125 1126 #ifdef RACCT 1127 PROC_LOCK(td->td_proc); 1128 error = racct_add(td->td_proc, RACCT_CORE, hdrsize + seginfo.size); 1129 PROC_UNLOCK(td->td_proc); 1130 if (error != 0) { 1131 error = EFAULT; 1132 goto done; 1133 } 1134 #endif 1135 if (hdrsize + seginfo.size >= limit) { 1136 error = EFAULT; 1137 goto done; 1138 } 1139 1140 /* 1141 * Allocate memory for building the header, fill it up, 1142 * and write it out. 1143 */ 1144 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1145 if (hdr == NULL) { 1146 error = EINVAL; 1147 goto done; 1148 } 1149 error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize, 1150 gzfile); 1151 1152 /* Write the contents of all of the writable segments. */ 1153 if (error == 0) { 1154 Elf_Phdr *php; 1155 off_t offset; 1156 int i; 1157 1158 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1159 offset = hdrsize; 1160 for (i = 0; i < seginfo.count; i++) { 1161 error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr, 1162 php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile); 1163 if (error != 0) 1164 break; 1165 offset += php->p_filesz; 1166 php++; 1167 } 1168 } 1169 if (error) { 1170 log(LOG_WARNING, 1171 "Failed to write core file for process %s (error %d)\n", 1172 curproc->p_comm, error); 1173 } 1174 1175 done: 1176 #ifdef COMPRESS_USER_CORES 1177 if (core_buf) 1178 free(core_buf, M_TEMP); 1179 if (gzfile) 1180 gzclose(gzfile); 1181 #endif 1182 1183 free(hdr, M_TEMP); 1184 1185 return (error); 1186 } 1187 1188 /* 1189 * A callback for each_writable_segment() to write out the segment's 1190 * program header entry. 1191 */ 1192 static void 1193 cb_put_phdr(entry, closure) 1194 vm_map_entry_t entry; 1195 void *closure; 1196 { 1197 struct phdr_closure *phc = (struct phdr_closure *)closure; 1198 Elf_Phdr *phdr = phc->phdr; 1199 1200 phc->offset = round_page(phc->offset); 1201 1202 phdr->p_type = PT_LOAD; 1203 phdr->p_offset = phc->offset; 1204 phdr->p_vaddr = entry->start; 1205 phdr->p_paddr = 0; 1206 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1207 phdr->p_align = PAGE_SIZE; 1208 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1209 1210 phc->offset += phdr->p_filesz; 1211 phc->phdr++; 1212 } 1213 1214 /* 1215 * A callback for each_writable_segment() to gather information about 1216 * the number of segments and their total size. 1217 */ 1218 static void 1219 cb_size_segment(entry, closure) 1220 vm_map_entry_t entry; 1221 void *closure; 1222 { 1223 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1224 1225 ssc->count++; 1226 ssc->size += entry->end - entry->start; 1227 } 1228 1229 /* 1230 * For each writable segment in the process's memory map, call the given 1231 * function with a pointer to the map entry and some arbitrary 1232 * caller-supplied data. 1233 */ 1234 static void 1235 each_writable_segment(td, func, closure) 1236 struct thread *td; 1237 segment_callback func; 1238 void *closure; 1239 { 1240 struct proc *p = td->td_proc; 1241 vm_map_t map = &p->p_vmspace->vm_map; 1242 vm_map_entry_t entry; 1243 vm_object_t backing_object, object; 1244 boolean_t ignore_entry; 1245 1246 vm_map_lock_read(map); 1247 for (entry = map->header.next; entry != &map->header; 1248 entry = entry->next) { 1249 /* 1250 * Don't dump inaccessible mappings, deal with legacy 1251 * coredump mode. 1252 * 1253 * Note that read-only segments related to the elf binary 1254 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1255 * need to arbitrarily ignore such segments. 1256 */ 1257 if (elf_legacy_coredump) { 1258 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1259 continue; 1260 } else { 1261 if ((entry->protection & VM_PROT_ALL) == 0) 1262 continue; 1263 } 1264 1265 /* 1266 * Dont include memory segment in the coredump if 1267 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1268 * madvise(2). Do not dump submaps (i.e. parts of the 1269 * kernel map). 1270 */ 1271 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1272 continue; 1273 1274 if ((object = entry->object.vm_object) == NULL) 1275 continue; 1276 1277 /* Ignore memory-mapped devices and such things. */ 1278 VM_OBJECT_LOCK(object); 1279 while ((backing_object = object->backing_object) != NULL) { 1280 VM_OBJECT_LOCK(backing_object); 1281 VM_OBJECT_UNLOCK(object); 1282 object = backing_object; 1283 } 1284 ignore_entry = object->type != OBJT_DEFAULT && 1285 object->type != OBJT_SWAP && object->type != OBJT_VNODE; 1286 VM_OBJECT_UNLOCK(object); 1287 if (ignore_entry) 1288 continue; 1289 1290 (*func)(entry, closure); 1291 } 1292 vm_map_unlock_read(map); 1293 } 1294 1295 /* 1296 * Write the core file header to the file, including padding up to 1297 * the page boundary. 1298 */ 1299 static int 1300 __elfN(corehdr)(td, vp, cred, numsegs, hdr, hdrsize, gzfile) 1301 struct thread *td; 1302 struct vnode *vp; 1303 struct ucred *cred; 1304 int numsegs; 1305 size_t hdrsize; 1306 void *hdr; 1307 gzFile gzfile; 1308 { 1309 size_t off; 1310 1311 /* Fill in the header. */ 1312 bzero(hdr, hdrsize); 1313 off = 0; 1314 __elfN(puthdr)(td, hdr, &off, numsegs); 1315 1316 if (!gzfile) { 1317 /* Write it to the core file. */ 1318 return (vn_rdwr_inchunks(UIO_WRITE, vp, hdr, hdrsize, (off_t)0, 1319 UIO_SYSSPACE, IO_UNIT | IO_DIRECT, cred, NOCRED, NULL, 1320 td)); 1321 } else { 1322 #ifdef COMPRESS_USER_CORES 1323 if (gzwrite(gzfile, hdr, hdrsize) != hdrsize) { 1324 log(LOG_WARNING, 1325 "Failed to compress core file header for process" 1326 " %s.\n", curproc->p_comm); 1327 return (EFAULT); 1328 } 1329 else { 1330 return (0); 1331 } 1332 #else 1333 panic("shouldn't be here"); 1334 #endif 1335 } 1336 } 1337 1338 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1339 #include <compat/freebsd32/freebsd32.h> 1340 1341 typedef struct prstatus32 elf_prstatus_t; 1342 typedef struct prpsinfo32 elf_prpsinfo_t; 1343 typedef struct fpreg32 elf_prfpregset_t; 1344 typedef struct fpreg32 elf_fpregset_t; 1345 typedef struct reg32 elf_gregset_t; 1346 typedef struct thrmisc32 elf_thrmisc_t; 1347 #else 1348 typedef prstatus_t elf_prstatus_t; 1349 typedef prpsinfo_t elf_prpsinfo_t; 1350 typedef prfpregset_t elf_prfpregset_t; 1351 typedef prfpregset_t elf_fpregset_t; 1352 typedef gregset_t elf_gregset_t; 1353 typedef thrmisc_t elf_thrmisc_t; 1354 #endif 1355 1356 static void 1357 __elfN(puthdr)(struct thread *td, void *dst, size_t *off, int numsegs) 1358 { 1359 struct { 1360 elf_prstatus_t status; 1361 elf_prfpregset_t fpregset; 1362 elf_prpsinfo_t psinfo; 1363 elf_thrmisc_t thrmisc; 1364 } *tempdata; 1365 elf_prstatus_t *status; 1366 elf_prfpregset_t *fpregset; 1367 elf_prpsinfo_t *psinfo; 1368 elf_thrmisc_t *thrmisc; 1369 struct proc *p; 1370 struct thread *thr; 1371 size_t ehoff, noteoff, notesz, phoff; 1372 1373 p = td->td_proc; 1374 1375 ehoff = *off; 1376 *off += sizeof(Elf_Ehdr); 1377 1378 phoff = *off; 1379 *off += (numsegs + 1) * sizeof(Elf_Phdr); 1380 1381 noteoff = *off; 1382 /* 1383 * Don't allocate space for the notes if we're just calculating 1384 * the size of the header. We also don't collect the data. 1385 */ 1386 if (dst != NULL) { 1387 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_ZERO|M_WAITOK); 1388 status = &tempdata->status; 1389 fpregset = &tempdata->fpregset; 1390 psinfo = &tempdata->psinfo; 1391 thrmisc = &tempdata->thrmisc; 1392 } else { 1393 tempdata = NULL; 1394 status = NULL; 1395 fpregset = NULL; 1396 psinfo = NULL; 1397 thrmisc = NULL; 1398 } 1399 1400 if (dst != NULL) { 1401 psinfo->pr_version = PRPSINFO_VERSION; 1402 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1403 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1404 /* 1405 * XXX - We don't fill in the command line arguments properly 1406 * yet. 1407 */ 1408 strlcpy(psinfo->pr_psargs, p->p_comm, 1409 sizeof(psinfo->pr_psargs)); 1410 } 1411 __elfN(putnote)(dst, off, "FreeBSD", NT_PRPSINFO, psinfo, 1412 sizeof *psinfo); 1413 1414 /* 1415 * To have the debugger select the right thread (LWP) as the initial 1416 * thread, we dump the state of the thread passed to us in td first. 1417 * This is the thread that causes the core dump and thus likely to 1418 * be the right thread one wants to have selected in the debugger. 1419 */ 1420 thr = td; 1421 while (thr != NULL) { 1422 if (dst != NULL) { 1423 status->pr_version = PRSTATUS_VERSION; 1424 status->pr_statussz = sizeof(elf_prstatus_t); 1425 status->pr_gregsetsz = sizeof(elf_gregset_t); 1426 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1427 status->pr_osreldate = osreldate; 1428 status->pr_cursig = p->p_sig; 1429 status->pr_pid = thr->td_tid; 1430 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1431 fill_regs32(thr, &status->pr_reg); 1432 fill_fpregs32(thr, fpregset); 1433 #else 1434 fill_regs(thr, &status->pr_reg); 1435 fill_fpregs(thr, fpregset); 1436 #endif 1437 memset(&thrmisc->_pad, 0, sizeof (thrmisc->_pad)); 1438 strcpy(thrmisc->pr_tname, thr->td_name); 1439 } 1440 __elfN(putnote)(dst, off, "FreeBSD", NT_PRSTATUS, status, 1441 sizeof *status); 1442 __elfN(putnote)(dst, off, "FreeBSD", NT_FPREGSET, fpregset, 1443 sizeof *fpregset); 1444 __elfN(putnote)(dst, off, "FreeBSD", NT_THRMISC, thrmisc, 1445 sizeof *thrmisc); 1446 /* 1447 * Allow for MD specific notes, as well as any MD 1448 * specific preparations for writing MI notes. 1449 */ 1450 __elfN(dump_thread)(thr, dst, off); 1451 1452 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1453 TAILQ_NEXT(thr, td_plist); 1454 if (thr == td) 1455 thr = TAILQ_NEXT(thr, td_plist); 1456 } 1457 1458 notesz = *off - noteoff; 1459 1460 if (dst != NULL) 1461 free(tempdata, M_TEMP); 1462 1463 /* Align up to a page boundary for the program segments. */ 1464 *off = round_page(*off); 1465 1466 if (dst != NULL) { 1467 Elf_Ehdr *ehdr; 1468 Elf_Phdr *phdr; 1469 struct phdr_closure phc; 1470 1471 /* 1472 * Fill in the ELF header. 1473 */ 1474 ehdr = (Elf_Ehdr *)((char *)dst + ehoff); 1475 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1476 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1477 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1478 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1479 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1480 ehdr->e_ident[EI_DATA] = ELF_DATA; 1481 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1482 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1483 ehdr->e_ident[EI_ABIVERSION] = 0; 1484 ehdr->e_ident[EI_PAD] = 0; 1485 ehdr->e_type = ET_CORE; 1486 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1487 ehdr->e_machine = ELF_ARCH32; 1488 #else 1489 ehdr->e_machine = ELF_ARCH; 1490 #endif 1491 ehdr->e_version = EV_CURRENT; 1492 ehdr->e_entry = 0; 1493 ehdr->e_phoff = phoff; 1494 ehdr->e_flags = 0; 1495 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1496 ehdr->e_phentsize = sizeof(Elf_Phdr); 1497 ehdr->e_phnum = numsegs + 1; 1498 ehdr->e_shentsize = sizeof(Elf_Shdr); 1499 ehdr->e_shnum = 0; 1500 ehdr->e_shstrndx = SHN_UNDEF; 1501 1502 /* 1503 * Fill in the program header entries. 1504 */ 1505 phdr = (Elf_Phdr *)((char *)dst + phoff); 1506 1507 /* The note segement. */ 1508 phdr->p_type = PT_NOTE; 1509 phdr->p_offset = noteoff; 1510 phdr->p_vaddr = 0; 1511 phdr->p_paddr = 0; 1512 phdr->p_filesz = notesz; 1513 phdr->p_memsz = 0; 1514 phdr->p_flags = 0; 1515 phdr->p_align = 0; 1516 phdr++; 1517 1518 /* All the writable segments from the program. */ 1519 phc.phdr = phdr; 1520 phc.offset = *off; 1521 each_writable_segment(td, cb_put_phdr, &phc); 1522 } 1523 } 1524 1525 static void 1526 __elfN(putnote)(void *dst, size_t *off, const char *name, int type, 1527 const void *desc, size_t descsz) 1528 { 1529 Elf_Note note; 1530 1531 note.n_namesz = strlen(name) + 1; 1532 note.n_descsz = descsz; 1533 note.n_type = type; 1534 if (dst != NULL) 1535 bcopy(¬e, (char *)dst + *off, sizeof note); 1536 *off += sizeof note; 1537 if (dst != NULL) 1538 bcopy(name, (char *)dst + *off, note.n_namesz); 1539 *off += roundup2(note.n_namesz, sizeof(Elf_Size)); 1540 if (dst != NULL) 1541 bcopy(desc, (char *)dst + *off, note.n_descsz); 1542 *off += roundup2(note.n_descsz, sizeof(Elf_Size)); 1543 } 1544 1545 /* 1546 * Try to find the appropriate ABI-note section for checknote, 1547 * fetch the osreldate for binary from the ELF OSABI-note. Only the 1548 * first page of the image is searched, the same as for headers. 1549 */ 1550 static boolean_t 1551 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 1552 int32_t *osrel) 1553 { 1554 const Elf_Note *note, *note0, *note_end; 1555 const Elf_Phdr *phdr, *pnote; 1556 const Elf_Ehdr *hdr; 1557 const char *note_name; 1558 int i; 1559 1560 pnote = NULL; 1561 hdr = (const Elf_Ehdr *)imgp->image_header; 1562 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1563 1564 for (i = 0; i < hdr->e_phnum; i++) { 1565 if (phdr[i].p_type == PT_NOTE) { 1566 pnote = &phdr[i]; 1567 break; 1568 } 1569 } 1570 1571 if (pnote == NULL || pnote->p_offset >= PAGE_SIZE || 1572 pnote->p_offset + pnote->p_filesz >= PAGE_SIZE) 1573 return (FALSE); 1574 1575 note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); 1576 note_end = (const Elf_Note *)(imgp->image_header + 1577 pnote->p_offset + pnote->p_filesz); 1578 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 1579 if (!aligned(note, Elf32_Addr)) 1580 return (FALSE); 1581 if (note->n_namesz != checknote->hdr.n_namesz || 1582 note->n_descsz != checknote->hdr.n_descsz || 1583 note->n_type != checknote->hdr.n_type) 1584 goto nextnote; 1585 note_name = (const char *)(note + 1); 1586 if (strncmp(checknote->vendor, note_name, 1587 checknote->hdr.n_namesz) != 0) 1588 goto nextnote; 1589 1590 /* 1591 * Fetch the osreldate for binary 1592 * from the ELF OSABI-note if necessary. 1593 */ 1594 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 1595 checknote->trans_osrel != NULL) 1596 return (checknote->trans_osrel(note, osrel)); 1597 return (TRUE); 1598 1599 nextnote: 1600 note = (const Elf_Note *)((const char *)(note + 1) + 1601 roundup2(note->n_namesz, sizeof(Elf32_Addr)) + 1602 roundup2(note->n_descsz, sizeof(Elf32_Addr))); 1603 } 1604 1605 return (FALSE); 1606 } 1607 1608 /* 1609 * Tell kern_execve.c about it, with a little help from the linker. 1610 */ 1611 static struct execsw __elfN(execsw) = { 1612 __CONCAT(exec_, __elfN(imgact)), 1613 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 1614 }; 1615 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 1616 1617 #ifdef COMPRESS_USER_CORES 1618 /* 1619 * Compress and write out a core segment for a user process. 1620 * 1621 * 'inbuf' is the starting address of a VM segment in the process' address 1622 * space that is to be compressed and written out to the core file. 'dest_buf' 1623 * is a buffer in the kernel's address space. The segment is copied from 1624 * 'inbuf' to 'dest_buf' first before being processed by the compression 1625 * routine gzwrite(). This copying is necessary because the content of the VM 1626 * segment may change between the compression pass and the crc-computation pass 1627 * in gzwrite(). This is because realtime threads may preempt the UNIX kernel. 1628 */ 1629 static int 1630 compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len, 1631 struct thread *td) 1632 { 1633 int len_compressed; 1634 int error = 0; 1635 unsigned int chunk_len; 1636 1637 while (len) { 1638 chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len; 1639 copyin(inbuf, dest_buf, chunk_len); 1640 len_compressed = gzwrite(file, dest_buf, chunk_len); 1641 1642 EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed); 1643 1644 if ((unsigned int)len_compressed != chunk_len) { 1645 log(LOG_WARNING, 1646 "compress_core: length mismatch (0x%x returned, " 1647 "0x%x expected)\n", len_compressed, chunk_len); 1648 EVENTHANDLER_INVOKE(app_coredump_error, td, 1649 "compress_core: length mismatch %x -> %x", 1650 chunk_len, len_compressed); 1651 error = EFAULT; 1652 break; 1653 } 1654 inbuf += chunk_len; 1655 len -= chunk_len; 1656 maybe_yield(); 1657 } 1658 1659 return (error); 1660 } 1661 #endif /* COMPRESS_USER_CORES */ 1662 1663 static vm_prot_t 1664 __elfN(trans_prot)(Elf_Word flags) 1665 { 1666 vm_prot_t prot; 1667 1668 prot = 0; 1669 if (flags & PF_X) 1670 prot |= VM_PROT_EXECUTE; 1671 if (flags & PF_W) 1672 prot |= VM_PROT_WRITE; 1673 if (flags & PF_R) 1674 prot |= VM_PROT_READ; 1675 #if __ELF_WORD_SIZE == 32 1676 #if defined(__amd64__) || defined(__ia64__) 1677 if (i386_read_exec && (flags & PF_R)) 1678 prot |= VM_PROT_EXECUTE; 1679 #endif 1680 #endif 1681 return (prot); 1682 } 1683 1684 static Elf_Word 1685 __elfN(untrans_prot)(vm_prot_t prot) 1686 { 1687 Elf_Word flags; 1688 1689 flags = 0; 1690 if (prot & VM_PROT_EXECUTE) 1691 flags |= PF_X; 1692 if (prot & VM_PROT_READ) 1693 flags |= PF_R; 1694 if (prot & VM_PROT_WRITE) 1695 flags |= PF_W; 1696 return (flags); 1697 } 1698