1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/resourcevar.h> 58 #include <sys/rwlock.h> 59 #include <sys/sbuf.h> 60 #include <sys/sf_buf.h> 61 #include <sys/smp.h> 62 #include <sys/systm.h> 63 #include <sys/signalvar.h> 64 #include <sys/stat.h> 65 #include <sys/sx.h> 66 #include <sys/syscall.h> 67 #include <sys/sysctl.h> 68 #include <sys/sysent.h> 69 #include <sys/vnode.h> 70 #include <sys/syslog.h> 71 #include <sys/eventhandler.h> 72 #include <sys/user.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_kern.h> 76 #include <vm/vm_param.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_extern.h> 81 82 #include <machine/elf.h> 83 #include <machine/md_var.h> 84 85 #define ELF_NOTE_ROUNDSIZE 4 86 #define OLD_EI_BRAND 8 87 88 static int __elfN(check_header)(const Elf_Ehdr *hdr); 89 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 90 const char *interp, int32_t *osrel, uint32_t *fctl0); 91 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 92 u_long *entry); 93 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 94 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel, boolean_t *has_fctl0, 101 uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 106 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 107 ""); 108 109 #define CORE_BUF_SIZE (16 * 1024) 110 111 int __elfN(fallback_brand) = -1; 112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 113 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 114 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 115 116 static int elf_legacy_coredump = 0; 117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 118 &elf_legacy_coredump, 0, 119 "include all and only RW pages in core dumps"); 120 121 int __elfN(nxstack) = 122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 123 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 124 defined(__riscv) 125 1; 126 #else 127 0; 128 #endif 129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 132 133 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 134 int i386_read_exec = 0; 135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 136 "enable execution from readable segments"); 137 #endif 138 139 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 140 static int 141 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 142 { 143 u_long val; 144 int error; 145 146 val = __elfN(pie_base); 147 error = sysctl_handle_long(oidp, &val, 0, req); 148 if (error != 0 || req->newptr == NULL) 149 return (error); 150 if ((val & PAGE_MASK) != 0) 151 return (EINVAL); 152 __elfN(pie_base) = val; 153 return (0); 154 } 155 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 156 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 157 sysctl_pie_base, "LU", 158 "PIE load base without randomization"); 159 160 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 161 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 162 ""); 163 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 164 165 static int __elfN(aslr_enabled) = 0; 166 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 167 &__elfN(aslr_enabled), 0, 168 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 169 ": enable address map randomization"); 170 171 static int __elfN(pie_aslr_enabled) = 0; 172 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 173 &__elfN(pie_aslr_enabled), 0, 174 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 175 ": enable address map randomization for PIE binaries"); 176 177 static int __elfN(aslr_honor_sbrk) = 1; 178 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 179 &__elfN(aslr_honor_sbrk), 0, 180 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 181 182 static int __elfN(aslr_stack_gap) = 3; 183 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 184 &__elfN(aslr_stack_gap), 0, 185 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 186 ": maximum percentage of main stack to waste on a random gap"); 187 188 static int __elfN(sigfastblock) = 1; 189 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 190 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 191 "enable sigfastblock for new processes"); 192 193 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 194 195 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 196 197 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 198 199 Elf_Brandnote __elfN(freebsd_brandnote) = { 200 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 201 .hdr.n_descsz = sizeof(int32_t), 202 .hdr.n_type = NT_FREEBSD_ABI_TAG, 203 .vendor = FREEBSD_ABI_VENDOR, 204 .flags = BN_TRANSLATE_OSREL, 205 .trans_osrel = __elfN(freebsd_trans_osrel) 206 }; 207 208 static bool 209 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 210 { 211 uintptr_t p; 212 213 p = (uintptr_t)(note + 1); 214 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 215 *osrel = *(const int32_t *)(p); 216 217 return (true); 218 } 219 220 static const char GNU_ABI_VENDOR[] = "GNU"; 221 static int GNU_KFREEBSD_ABI_DESC = 3; 222 223 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 224 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 225 .hdr.n_descsz = 16, /* XXX at least 16 */ 226 .hdr.n_type = 1, 227 .vendor = GNU_ABI_VENDOR, 228 .flags = BN_TRANSLATE_OSREL, 229 .trans_osrel = kfreebsd_trans_osrel 230 }; 231 232 static bool 233 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 234 { 235 const Elf32_Word *desc; 236 uintptr_t p; 237 238 p = (uintptr_t)(note + 1); 239 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 240 241 desc = (const Elf32_Word *)p; 242 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 243 return (false); 244 245 /* 246 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 247 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 248 */ 249 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 250 251 return (true); 252 } 253 254 int 255 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 256 { 257 int i; 258 259 for (i = 0; i < MAX_BRANDS; i++) { 260 if (elf_brand_list[i] == NULL) { 261 elf_brand_list[i] = entry; 262 break; 263 } 264 } 265 if (i == MAX_BRANDS) { 266 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 267 __func__, entry); 268 return (-1); 269 } 270 return (0); 271 } 272 273 int 274 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 275 { 276 int i; 277 278 for (i = 0; i < MAX_BRANDS; i++) { 279 if (elf_brand_list[i] == entry) { 280 elf_brand_list[i] = NULL; 281 break; 282 } 283 } 284 if (i == MAX_BRANDS) 285 return (-1); 286 return (0); 287 } 288 289 int 290 __elfN(brand_inuse)(Elf_Brandinfo *entry) 291 { 292 struct proc *p; 293 int rval = FALSE; 294 295 sx_slock(&allproc_lock); 296 FOREACH_PROC_IN_SYSTEM(p) { 297 if (p->p_sysent == entry->sysvec) { 298 rval = TRUE; 299 break; 300 } 301 } 302 sx_sunlock(&allproc_lock); 303 304 return (rval); 305 } 306 307 static Elf_Brandinfo * 308 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 309 int32_t *osrel, uint32_t *fctl0) 310 { 311 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 312 Elf_Brandinfo *bi, *bi_m; 313 boolean_t ret, has_fctl0; 314 int i, interp_name_len; 315 316 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 317 318 /* 319 * We support four types of branding -- (1) the ELF EI_OSABI field 320 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 321 * branding w/in the ELF header, (3) path of the `interp_path' 322 * field, and (4) the ".note.ABI-tag" ELF section. 323 */ 324 325 /* Look for an ".note.ABI-tag" ELF section */ 326 bi_m = NULL; 327 for (i = 0; i < MAX_BRANDS; i++) { 328 bi = elf_brand_list[i]; 329 if (bi == NULL) 330 continue; 331 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 332 continue; 333 if (hdr->e_machine == bi->machine && (bi->flags & 334 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 335 has_fctl0 = false; 336 *fctl0 = 0; 337 *osrel = 0; 338 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 339 &has_fctl0, fctl0); 340 /* Give brand a chance to veto check_note's guess */ 341 if (ret && bi->header_supported) { 342 ret = bi->header_supported(imgp, osrel, 343 has_fctl0 ? fctl0 : NULL); 344 } 345 /* 346 * If note checker claimed the binary, but the 347 * interpreter path in the image does not 348 * match default one for the brand, try to 349 * search for other brands with the same 350 * interpreter. Either there is better brand 351 * with the right interpreter, or, failing 352 * this, we return first brand which accepted 353 * our note and, optionally, header. 354 */ 355 if (ret && bi_m == NULL && interp != NULL && 356 (bi->interp_path == NULL || 357 (strlen(bi->interp_path) + 1 != interp_name_len || 358 strncmp(interp, bi->interp_path, interp_name_len) 359 != 0))) { 360 bi_m = bi; 361 ret = 0; 362 } 363 if (ret) 364 return (bi); 365 } 366 } 367 if (bi_m != NULL) 368 return (bi_m); 369 370 /* If the executable has a brand, search for it in the brand list. */ 371 for (i = 0; i < MAX_BRANDS; i++) { 372 bi = elf_brand_list[i]; 373 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 374 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 375 continue; 376 if (hdr->e_machine == bi->machine && 377 (hdr->e_ident[EI_OSABI] == bi->brand || 378 (bi->compat_3_brand != NULL && 379 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 380 bi->compat_3_brand) == 0))) { 381 /* Looks good, but give brand a chance to veto */ 382 if (bi->header_supported == NULL || 383 bi->header_supported(imgp, NULL, NULL)) { 384 /* 385 * Again, prefer strictly matching 386 * interpreter path. 387 */ 388 if (interp_name_len == 0 && 389 bi->interp_path == NULL) 390 return (bi); 391 if (bi->interp_path != NULL && 392 strlen(bi->interp_path) + 1 == 393 interp_name_len && strncmp(interp, 394 bi->interp_path, interp_name_len) == 0) 395 return (bi); 396 if (bi_m == NULL) 397 bi_m = bi; 398 } 399 } 400 } 401 if (bi_m != NULL) 402 return (bi_m); 403 404 /* No known brand, see if the header is recognized by any brand */ 405 for (i = 0; i < MAX_BRANDS; i++) { 406 bi = elf_brand_list[i]; 407 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 408 bi->header_supported == NULL) 409 continue; 410 if (hdr->e_machine == bi->machine) { 411 ret = bi->header_supported(imgp, NULL, NULL); 412 if (ret) 413 return (bi); 414 } 415 } 416 417 /* Lacking a known brand, search for a recognized interpreter. */ 418 if (interp != NULL) { 419 for (i = 0; i < MAX_BRANDS; i++) { 420 bi = elf_brand_list[i]; 421 if (bi == NULL || (bi->flags & 422 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 423 != 0) 424 continue; 425 if (hdr->e_machine == bi->machine && 426 bi->interp_path != NULL && 427 /* ELF image p_filesz includes terminating zero */ 428 strlen(bi->interp_path) + 1 == interp_name_len && 429 strncmp(interp, bi->interp_path, interp_name_len) 430 == 0 && (bi->header_supported == NULL || 431 bi->header_supported(imgp, NULL, NULL))) 432 return (bi); 433 } 434 } 435 436 /* Lacking a recognized interpreter, try the default brand */ 437 for (i = 0; i < MAX_BRANDS; i++) { 438 bi = elf_brand_list[i]; 439 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 440 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 441 continue; 442 if (hdr->e_machine == bi->machine && 443 __elfN(fallback_brand) == bi->brand && 444 (bi->header_supported == NULL || 445 bi->header_supported(imgp, NULL, NULL))) 446 return (bi); 447 } 448 return (NULL); 449 } 450 451 static bool 452 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 453 { 454 return (hdr->e_phoff <= PAGE_SIZE && 455 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 456 } 457 458 static int 459 __elfN(check_header)(const Elf_Ehdr *hdr) 460 { 461 Elf_Brandinfo *bi; 462 int i; 463 464 if (!IS_ELF(*hdr) || 465 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 466 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 467 hdr->e_ident[EI_VERSION] != EV_CURRENT || 468 hdr->e_phentsize != sizeof(Elf_Phdr) || 469 hdr->e_version != ELF_TARG_VER) 470 return (ENOEXEC); 471 472 /* 473 * Make sure we have at least one brand for this machine. 474 */ 475 476 for (i = 0; i < MAX_BRANDS; i++) { 477 bi = elf_brand_list[i]; 478 if (bi != NULL && bi->machine == hdr->e_machine) 479 break; 480 } 481 if (i == MAX_BRANDS) 482 return (ENOEXEC); 483 484 return (0); 485 } 486 487 static int 488 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 489 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 490 { 491 struct sf_buf *sf; 492 int error; 493 vm_offset_t off; 494 495 /* 496 * Create the page if it doesn't exist yet. Ignore errors. 497 */ 498 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 499 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 500 501 /* 502 * Find the page from the underlying object. 503 */ 504 if (object != NULL) { 505 sf = vm_imgact_map_page(object, offset); 506 if (sf == NULL) 507 return (KERN_FAILURE); 508 off = offset - trunc_page(offset); 509 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 510 end - start); 511 vm_imgact_unmap_page(sf); 512 if (error != 0) 513 return (KERN_FAILURE); 514 } 515 516 return (KERN_SUCCESS); 517 } 518 519 static int 520 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 521 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 522 int cow) 523 { 524 struct sf_buf *sf; 525 vm_offset_t off; 526 vm_size_t sz; 527 int error, locked, rv; 528 529 if (start != trunc_page(start)) { 530 rv = __elfN(map_partial)(map, object, offset, start, 531 round_page(start), prot); 532 if (rv != KERN_SUCCESS) 533 return (rv); 534 offset += round_page(start) - start; 535 start = round_page(start); 536 } 537 if (end != round_page(end)) { 538 rv = __elfN(map_partial)(map, object, offset + 539 trunc_page(end) - start, trunc_page(end), end, prot); 540 if (rv != KERN_SUCCESS) 541 return (rv); 542 end = trunc_page(end); 543 } 544 if (start >= end) 545 return (KERN_SUCCESS); 546 if ((offset & PAGE_MASK) != 0) { 547 /* 548 * The mapping is not page aligned. This means that we have 549 * to copy the data. 550 */ 551 rv = vm_map_fixed(map, NULL, 0, start, end - start, 552 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 553 if (rv != KERN_SUCCESS) 554 return (rv); 555 if (object == NULL) 556 return (KERN_SUCCESS); 557 for (; start < end; start += sz) { 558 sf = vm_imgact_map_page(object, offset); 559 if (sf == NULL) 560 return (KERN_FAILURE); 561 off = offset - trunc_page(offset); 562 sz = end - start; 563 if (sz > PAGE_SIZE - off) 564 sz = PAGE_SIZE - off; 565 error = copyout((caddr_t)sf_buf_kva(sf) + off, 566 (caddr_t)start, sz); 567 vm_imgact_unmap_page(sf); 568 if (error != 0) 569 return (KERN_FAILURE); 570 offset += sz; 571 } 572 } else { 573 vm_object_reference(object); 574 rv = vm_map_fixed(map, object, offset, start, end - start, 575 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 576 (object != NULL ? MAP_VN_EXEC : 0)); 577 if (rv != KERN_SUCCESS) { 578 locked = VOP_ISLOCKED(imgp->vp); 579 VOP_UNLOCK(imgp->vp); 580 vm_object_deallocate(object); 581 vn_lock(imgp->vp, locked | LK_RETRY); 582 return (rv); 583 } else if (object != NULL) { 584 MPASS(imgp->vp->v_object == object); 585 VOP_SET_TEXT_CHECKED(imgp->vp); 586 } 587 } 588 return (KERN_SUCCESS); 589 } 590 591 static int 592 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 593 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 594 { 595 struct sf_buf *sf; 596 size_t map_len; 597 vm_map_t map; 598 vm_object_t object; 599 vm_offset_t map_addr; 600 int error, rv, cow; 601 size_t copy_len; 602 vm_ooffset_t file_addr; 603 604 /* 605 * It's necessary to fail if the filsz + offset taken from the 606 * header is greater than the actual file pager object's size. 607 * If we were to allow this, then the vm_map_find() below would 608 * walk right off the end of the file object and into the ether. 609 * 610 * While I'm here, might as well check for something else that 611 * is invalid: filsz cannot be greater than memsz. 612 */ 613 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 614 filsz > memsz) { 615 uprintf("elf_load_section: truncated ELF file\n"); 616 return (ENOEXEC); 617 } 618 619 object = imgp->object; 620 map = &imgp->proc->p_vmspace->vm_map; 621 map_addr = trunc_page((vm_offset_t)vmaddr); 622 file_addr = trunc_page(offset); 623 624 /* 625 * We have two choices. We can either clear the data in the last page 626 * of an oversized mapping, or we can start the anon mapping a page 627 * early and copy the initialized data into that first page. We 628 * choose the second. 629 */ 630 if (filsz == 0) 631 map_len = 0; 632 else if (memsz > filsz) 633 map_len = trunc_page(offset + filsz) - file_addr; 634 else 635 map_len = round_page(offset + filsz) - file_addr; 636 637 if (map_len != 0) { 638 /* cow flags: don't dump readonly sections in core */ 639 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 640 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 641 642 rv = __elfN(map_insert)(imgp, map, object, file_addr, 643 map_addr, map_addr + map_len, prot, cow); 644 if (rv != KERN_SUCCESS) 645 return (EINVAL); 646 647 /* we can stop now if we've covered it all */ 648 if (memsz == filsz) 649 return (0); 650 } 651 652 /* 653 * We have to get the remaining bit of the file into the first part 654 * of the oversized map segment. This is normally because the .data 655 * segment in the file is extended to provide bss. It's a neat idea 656 * to try and save a page, but it's a pain in the behind to implement. 657 */ 658 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 659 filsz); 660 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 661 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 662 663 /* This had damn well better be true! */ 664 if (map_len != 0) { 665 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 666 map_addr + map_len, prot, 0); 667 if (rv != KERN_SUCCESS) 668 return (EINVAL); 669 } 670 671 if (copy_len != 0) { 672 sf = vm_imgact_map_page(object, offset + filsz); 673 if (sf == NULL) 674 return (EIO); 675 676 /* send the page fragment to user space */ 677 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 678 copy_len); 679 vm_imgact_unmap_page(sf); 680 if (error != 0) 681 return (error); 682 } 683 684 /* 685 * Remove write access to the page if it was only granted by map_insert 686 * to allow copyout. 687 */ 688 if ((prot & VM_PROT_WRITE) == 0) 689 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 690 map_len), prot, FALSE); 691 692 return (0); 693 } 694 695 static int 696 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 697 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 698 { 699 vm_prot_t prot; 700 u_long base_addr; 701 bool first; 702 int error, i; 703 704 ASSERT_VOP_LOCKED(imgp->vp, __func__); 705 706 base_addr = 0; 707 first = true; 708 709 for (i = 0; i < hdr->e_phnum; i++) { 710 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 711 continue; 712 713 /* Loadable segment */ 714 prot = __elfN(trans_prot)(phdr[i].p_flags); 715 error = __elfN(load_section)(imgp, phdr[i].p_offset, 716 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 717 phdr[i].p_memsz, phdr[i].p_filesz, prot); 718 if (error != 0) 719 return (error); 720 721 /* 722 * Establish the base address if this is the first segment. 723 */ 724 if (first) { 725 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 726 first = false; 727 } 728 } 729 730 if (base_addrp != NULL) 731 *base_addrp = base_addr; 732 733 return (0); 734 } 735 736 /* 737 * Load the file "file" into memory. It may be either a shared object 738 * or an executable. 739 * 740 * The "addr" reference parameter is in/out. On entry, it specifies 741 * the address where a shared object should be loaded. If the file is 742 * an executable, this value is ignored. On exit, "addr" specifies 743 * where the file was actually loaded. 744 * 745 * The "entry" reference parameter is out only. On exit, it specifies 746 * the entry point for the loaded file. 747 */ 748 static int 749 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 750 u_long *entry) 751 { 752 struct { 753 struct nameidata nd; 754 struct vattr attr; 755 struct image_params image_params; 756 } *tempdata; 757 const Elf_Ehdr *hdr = NULL; 758 const Elf_Phdr *phdr = NULL; 759 struct nameidata *nd; 760 struct vattr *attr; 761 struct image_params *imgp; 762 u_long rbase; 763 u_long base_addr = 0; 764 int error; 765 766 #ifdef CAPABILITY_MODE 767 /* 768 * XXXJA: This check can go away once we are sufficiently confident 769 * that the checks in namei() are correct. 770 */ 771 if (IN_CAPABILITY_MODE(curthread)) 772 return (ECAPMODE); 773 #endif 774 775 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 776 nd = &tempdata->nd; 777 attr = &tempdata->attr; 778 imgp = &tempdata->image_params; 779 780 /* 781 * Initialize part of the common data 782 */ 783 imgp->proc = p; 784 imgp->attr = attr; 785 786 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 787 UIO_SYSSPACE, file, curthread); 788 if ((error = namei(nd)) != 0) { 789 nd->ni_vp = NULL; 790 goto fail; 791 } 792 NDFREE(nd, NDF_ONLY_PNBUF); 793 imgp->vp = nd->ni_vp; 794 795 /* 796 * Check permissions, modes, uid, etc on the file, and "open" it. 797 */ 798 error = exec_check_permissions(imgp); 799 if (error) 800 goto fail; 801 802 error = exec_map_first_page(imgp); 803 if (error) 804 goto fail; 805 806 imgp->object = nd->ni_vp->v_object; 807 808 hdr = (const Elf_Ehdr *)imgp->image_header; 809 if ((error = __elfN(check_header)(hdr)) != 0) 810 goto fail; 811 if (hdr->e_type == ET_DYN) 812 rbase = *addr; 813 else if (hdr->e_type == ET_EXEC) 814 rbase = 0; 815 else { 816 error = ENOEXEC; 817 goto fail; 818 } 819 820 /* Only support headers that fit within first page for now */ 821 if (!__elfN(phdr_in_zero_page)(hdr)) { 822 error = ENOEXEC; 823 goto fail; 824 } 825 826 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 827 if (!aligned(phdr, Elf_Addr)) { 828 error = ENOEXEC; 829 goto fail; 830 } 831 832 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 833 if (error != 0) 834 goto fail; 835 836 *addr = base_addr; 837 *entry = (unsigned long)hdr->e_entry + rbase; 838 839 fail: 840 if (imgp->firstpage) 841 exec_unmap_first_page(imgp); 842 843 if (nd->ni_vp) { 844 if (imgp->textset) 845 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 846 vput(nd->ni_vp); 847 } 848 free(tempdata, M_TEMP); 849 850 return (error); 851 } 852 853 static u_long 854 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 855 u_int align) 856 { 857 u_long rbase, res; 858 859 MPASS(vm_map_min(map) <= minv); 860 MPASS(maxv <= vm_map_max(map)); 861 MPASS(minv < maxv); 862 MPASS(minv + align < maxv); 863 arc4rand(&rbase, sizeof(rbase), 0); 864 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 865 res &= ~((u_long)align - 1); 866 if (res >= maxv) 867 res -= align; 868 KASSERT(res >= minv, 869 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 870 res, minv, maxv, rbase)); 871 KASSERT(res < maxv, 872 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 873 res, maxv, minv, rbase)); 874 return (res); 875 } 876 877 static int 878 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 879 const Elf_Phdr *phdr, u_long et_dyn_addr) 880 { 881 struct vmspace *vmspace; 882 const char *err_str; 883 u_long text_size, data_size, total_size, text_addr, data_addr; 884 u_long seg_size, seg_addr; 885 int i; 886 887 err_str = NULL; 888 text_size = data_size = total_size = text_addr = data_addr = 0; 889 890 for (i = 0; i < hdr->e_phnum; i++) { 891 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 892 continue; 893 894 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 895 seg_size = round_page(phdr[i].p_memsz + 896 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 897 898 /* 899 * Make the largest executable segment the official 900 * text segment and all others data. 901 * 902 * Note that obreak() assumes that data_addr + data_size == end 903 * of data load area, and the ELF file format expects segments 904 * to be sorted by address. If multiple data segments exist, 905 * the last one will be used. 906 */ 907 908 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 909 text_size = seg_size; 910 text_addr = seg_addr; 911 } else { 912 data_size = seg_size; 913 data_addr = seg_addr; 914 } 915 total_size += seg_size; 916 } 917 918 if (data_addr == 0 && data_size == 0) { 919 data_addr = text_addr; 920 data_size = text_size; 921 } 922 923 /* 924 * Check limits. It should be safe to check the 925 * limits after loading the segments since we do 926 * not actually fault in all the segments pages. 927 */ 928 PROC_LOCK(imgp->proc); 929 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 930 err_str = "Data segment size exceeds process limit"; 931 else if (text_size > maxtsiz) 932 err_str = "Text segment size exceeds system limit"; 933 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 934 err_str = "Total segment size exceeds process limit"; 935 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 936 err_str = "Data segment size exceeds resource limit"; 937 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 938 err_str = "Total segment size exceeds resource limit"; 939 PROC_UNLOCK(imgp->proc); 940 if (err_str != NULL) { 941 uprintf("%s\n", err_str); 942 return (ENOMEM); 943 } 944 945 vmspace = imgp->proc->p_vmspace; 946 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 947 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 948 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 949 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 950 951 return (0); 952 } 953 954 static int 955 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 956 char **interpp, bool *free_interpp) 957 { 958 struct thread *td; 959 char *interp; 960 int error, interp_name_len; 961 962 KASSERT(phdr->p_type == PT_INTERP, 963 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 964 ASSERT_VOP_LOCKED(imgp->vp, __func__); 965 966 td = curthread; 967 968 /* Path to interpreter */ 969 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 970 uprintf("Invalid PT_INTERP\n"); 971 return (ENOEXEC); 972 } 973 974 interp_name_len = phdr->p_filesz; 975 if (phdr->p_offset > PAGE_SIZE || 976 interp_name_len > PAGE_SIZE - phdr->p_offset) { 977 /* 978 * The vnode lock might be needed by the pagedaemon to 979 * clean pages owned by the vnode. Do not allow sleep 980 * waiting for memory with the vnode locked, instead 981 * try non-sleepable allocation first, and if it 982 * fails, go to the slow path were we drop the lock 983 * and do M_WAITOK. A text reference prevents 984 * modifications to the vnode content. 985 */ 986 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 987 if (interp == NULL) { 988 VOP_UNLOCK(imgp->vp); 989 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 990 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 991 } 992 993 error = vn_rdwr(UIO_READ, imgp->vp, interp, 994 interp_name_len, phdr->p_offset, 995 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 996 NOCRED, NULL, td); 997 if (error != 0) { 998 free(interp, M_TEMP); 999 uprintf("i/o error PT_INTERP %d\n", error); 1000 return (error); 1001 } 1002 interp[interp_name_len] = '\0'; 1003 1004 *interpp = interp; 1005 *free_interpp = true; 1006 return (0); 1007 } 1008 1009 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1010 if (interp[interp_name_len - 1] != '\0') { 1011 uprintf("Invalid PT_INTERP\n"); 1012 return (ENOEXEC); 1013 } 1014 1015 *interpp = interp; 1016 *free_interpp = false; 1017 return (0); 1018 } 1019 1020 static int 1021 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1022 const char *interp, u_long *addr, u_long *entry) 1023 { 1024 char *path; 1025 int error; 1026 1027 if (brand_info->emul_path != NULL && 1028 brand_info->emul_path[0] != '\0') { 1029 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1030 snprintf(path, MAXPATHLEN, "%s%s", 1031 brand_info->emul_path, interp); 1032 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1033 free(path, M_TEMP); 1034 if (error == 0) 1035 return (0); 1036 } 1037 1038 if (brand_info->interp_newpath != NULL && 1039 (brand_info->interp_path == NULL || 1040 strcmp(interp, brand_info->interp_path) == 0)) { 1041 error = __elfN(load_file)(imgp->proc, 1042 brand_info->interp_newpath, addr, entry); 1043 if (error == 0) 1044 return (0); 1045 } 1046 1047 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1048 if (error == 0) 1049 return (0); 1050 1051 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1052 return (error); 1053 } 1054 1055 /* 1056 * Impossible et_dyn_addr initial value indicating that the real base 1057 * must be calculated later with some randomization applied. 1058 */ 1059 #define ET_DYN_ADDR_RAND 1 1060 1061 static int 1062 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1063 { 1064 struct thread *td; 1065 const Elf_Ehdr *hdr; 1066 const Elf_Phdr *phdr; 1067 Elf_Auxargs *elf_auxargs; 1068 struct vmspace *vmspace; 1069 vm_map_t map; 1070 char *interp; 1071 Elf_Brandinfo *brand_info; 1072 struct sysentvec *sv; 1073 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1074 u_long maxalign, mapsz, maxv, maxv1; 1075 uint32_t fctl0; 1076 int32_t osrel; 1077 bool free_interp; 1078 int error, i, n; 1079 1080 hdr = (const Elf_Ehdr *)imgp->image_header; 1081 1082 /* 1083 * Do we have a valid ELF header ? 1084 * 1085 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1086 * if particular brand doesn't support it. 1087 */ 1088 if (__elfN(check_header)(hdr) != 0 || 1089 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1090 return (-1); 1091 1092 /* 1093 * From here on down, we return an errno, not -1, as we've 1094 * detected an ELF file. 1095 */ 1096 1097 if (!__elfN(phdr_in_zero_page)(hdr)) { 1098 uprintf("Program headers not in the first page\n"); 1099 return (ENOEXEC); 1100 } 1101 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1102 if (!aligned(phdr, Elf_Addr)) { 1103 uprintf("Unaligned program headers\n"); 1104 return (ENOEXEC); 1105 } 1106 1107 n = error = 0; 1108 baddr = 0; 1109 osrel = 0; 1110 fctl0 = 0; 1111 entry = proghdr = 0; 1112 interp = NULL; 1113 free_interp = false; 1114 td = curthread; 1115 maxalign = PAGE_SIZE; 1116 mapsz = 0; 1117 1118 for (i = 0; i < hdr->e_phnum; i++) { 1119 switch (phdr[i].p_type) { 1120 case PT_LOAD: 1121 if (n == 0) 1122 baddr = phdr[i].p_vaddr; 1123 if (phdr[i].p_align > maxalign) 1124 maxalign = phdr[i].p_align; 1125 mapsz += phdr[i].p_memsz; 1126 n++; 1127 1128 /* 1129 * If this segment contains the program headers, 1130 * remember their virtual address for the AT_PHDR 1131 * aux entry. Static binaries don't usually include 1132 * a PT_PHDR entry. 1133 */ 1134 if (phdr[i].p_offset == 0 && 1135 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1136 <= phdr[i].p_filesz) 1137 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1138 break; 1139 case PT_INTERP: 1140 /* Path to interpreter */ 1141 if (interp != NULL) { 1142 uprintf("Multiple PT_INTERP headers\n"); 1143 error = ENOEXEC; 1144 goto ret; 1145 } 1146 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1147 &free_interp); 1148 if (error != 0) 1149 goto ret; 1150 break; 1151 case PT_GNU_STACK: 1152 if (__elfN(nxstack)) 1153 imgp->stack_prot = 1154 __elfN(trans_prot)(phdr[i].p_flags); 1155 imgp->stack_sz = phdr[i].p_memsz; 1156 break; 1157 case PT_PHDR: /* Program header table info */ 1158 proghdr = phdr[i].p_vaddr; 1159 break; 1160 } 1161 } 1162 1163 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1164 if (brand_info == NULL) { 1165 uprintf("ELF binary type \"%u\" not known.\n", 1166 hdr->e_ident[EI_OSABI]); 1167 error = ENOEXEC; 1168 goto ret; 1169 } 1170 sv = brand_info->sysvec; 1171 et_dyn_addr = 0; 1172 if (hdr->e_type == ET_DYN) { 1173 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1174 uprintf("Cannot execute shared object\n"); 1175 error = ENOEXEC; 1176 goto ret; 1177 } 1178 /* 1179 * Honour the base load address from the dso if it is 1180 * non-zero for some reason. 1181 */ 1182 if (baddr == 0) { 1183 if ((sv->sv_flags & SV_ASLR) == 0 || 1184 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1185 et_dyn_addr = __elfN(pie_base); 1186 else if ((__elfN(pie_aslr_enabled) && 1187 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1188 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1189 et_dyn_addr = ET_DYN_ADDR_RAND; 1190 else 1191 et_dyn_addr = __elfN(pie_base); 1192 } 1193 } 1194 1195 /* 1196 * Avoid a possible deadlock if the current address space is destroyed 1197 * and that address space maps the locked vnode. In the common case, 1198 * the locked vnode's v_usecount is decremented but remains greater 1199 * than zero. Consequently, the vnode lock is not needed by vrele(). 1200 * However, in cases where the vnode lock is external, such as nullfs, 1201 * v_usecount may become zero. 1202 * 1203 * The VV_TEXT flag prevents modifications to the executable while 1204 * the vnode is unlocked. 1205 */ 1206 VOP_UNLOCK(imgp->vp); 1207 1208 /* 1209 * Decide whether to enable randomization of user mappings. 1210 * First, reset user preferences for the setid binaries. 1211 * Then, account for the support of the randomization by the 1212 * ABI, by user preferences, and make special treatment for 1213 * PIE binaries. 1214 */ 1215 if (imgp->credential_setid) { 1216 PROC_LOCK(imgp->proc); 1217 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1218 PROC_UNLOCK(imgp->proc); 1219 } 1220 if ((sv->sv_flags & SV_ASLR) == 0 || 1221 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1222 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1223 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1224 ("et_dyn_addr == RAND and !ASLR")); 1225 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1226 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1227 et_dyn_addr == ET_DYN_ADDR_RAND) { 1228 imgp->map_flags |= MAP_ASLR; 1229 /* 1230 * If user does not care about sbrk, utilize the bss 1231 * grow region for mappings as well. We can select 1232 * the base for the image anywere and still not suffer 1233 * from the fragmentation. 1234 */ 1235 if (!__elfN(aslr_honor_sbrk) || 1236 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1237 imgp->map_flags |= MAP_ASLR_IGNSTART; 1238 } 1239 1240 error = exec_new_vmspace(imgp, sv); 1241 vmspace = imgp->proc->p_vmspace; 1242 map = &vmspace->vm_map; 1243 1244 imgp->proc->p_sysent = sv; 1245 1246 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1247 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1248 KASSERT((map->flags & MAP_ASLR) != 0, 1249 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1250 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1251 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1252 /* reserve half of the address space to interpreter */ 1253 maxv / 2, 1UL << flsl(maxalign)); 1254 } 1255 1256 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1257 if (error != 0) 1258 goto ret; 1259 1260 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1261 if (error != 0) 1262 goto ret; 1263 1264 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1265 if (error != 0) 1266 goto ret; 1267 1268 entry = (u_long)hdr->e_entry + et_dyn_addr; 1269 1270 /* 1271 * We load the dynamic linker where a userland call 1272 * to mmap(0, ...) would put it. The rationale behind this 1273 * calculation is that it leaves room for the heap to grow to 1274 * its maximum allowed size. 1275 */ 1276 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1277 RLIMIT_DATA)); 1278 if ((map->flags & MAP_ASLR) != 0) { 1279 maxv1 = maxv / 2 + addr / 2; 1280 MPASS(maxv1 >= addr); /* No overflow */ 1281 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1282 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1283 } else { 1284 map->anon_loc = addr; 1285 } 1286 1287 imgp->entry_addr = entry; 1288 1289 if (interp != NULL) { 1290 VOP_UNLOCK(imgp->vp); 1291 if ((map->flags & MAP_ASLR) != 0) { 1292 /* Assume that interpeter fits into 1/4 of AS */ 1293 maxv1 = maxv / 2 + addr / 2; 1294 MPASS(maxv1 >= addr); /* No overflow */ 1295 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1296 maxv1, PAGE_SIZE); 1297 } 1298 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1299 &imgp->entry_addr); 1300 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1301 if (error != 0) 1302 goto ret; 1303 } else 1304 addr = et_dyn_addr; 1305 1306 /* 1307 * Construct auxargs table (used by the copyout_auxargs routine) 1308 */ 1309 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1310 if (elf_auxargs == NULL) { 1311 VOP_UNLOCK(imgp->vp); 1312 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1313 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1314 } 1315 elf_auxargs->execfd = -1; 1316 elf_auxargs->phdr = proghdr + et_dyn_addr; 1317 elf_auxargs->phent = hdr->e_phentsize; 1318 elf_auxargs->phnum = hdr->e_phnum; 1319 elf_auxargs->pagesz = PAGE_SIZE; 1320 elf_auxargs->base = addr; 1321 elf_auxargs->flags = 0; 1322 elf_auxargs->entry = entry; 1323 elf_auxargs->hdr_eflags = hdr->e_flags; 1324 1325 imgp->auxargs = elf_auxargs; 1326 imgp->interpreted = 0; 1327 imgp->reloc_base = addr; 1328 imgp->proc->p_osrel = osrel; 1329 imgp->proc->p_fctl0 = fctl0; 1330 imgp->proc->p_elf_machine = hdr->e_machine; 1331 imgp->proc->p_elf_flags = hdr->e_flags; 1332 1333 ret: 1334 if (free_interp) 1335 free(interp, M_TEMP); 1336 return (error); 1337 } 1338 1339 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1340 1341 int 1342 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1343 { 1344 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1345 Elf_Auxinfo *argarray, *pos; 1346 int error; 1347 1348 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1349 M_WAITOK | M_ZERO); 1350 1351 if (args->execfd != -1) 1352 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1353 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1354 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1355 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1356 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1357 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1358 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1359 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1360 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1361 if (imgp->execpathp != 0) 1362 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1363 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1364 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1365 if (imgp->canary != 0) { 1366 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1367 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1368 } 1369 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1370 if (imgp->pagesizes != 0) { 1371 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1372 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1373 } 1374 if (imgp->sysent->sv_timekeep_base != 0) { 1375 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1376 imgp->sysent->sv_timekeep_base); 1377 } 1378 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1379 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1380 imgp->sysent->sv_stackprot); 1381 if (imgp->sysent->sv_hwcap != NULL) 1382 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1383 if (imgp->sysent->sv_hwcap2 != NULL) 1384 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1385 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1386 ELF_BSDF_SIGFASTBLK : 0); 1387 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1388 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1389 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1390 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1391 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1392 AUXARGS_ENTRY(pos, AT_NULL, 0); 1393 1394 free(imgp->auxargs, M_TEMP); 1395 imgp->auxargs = NULL; 1396 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1397 1398 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1399 free(argarray, M_TEMP); 1400 return (error); 1401 } 1402 1403 int 1404 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1405 { 1406 Elf_Addr *base; 1407 1408 base = (Elf_Addr *)*stack_base; 1409 base--; 1410 if (suword(base, imgp->args->argc) == -1) 1411 return (EFAULT); 1412 *stack_base = (uintptr_t)base; 1413 return (0); 1414 } 1415 1416 /* 1417 * Code for generating ELF core dumps. 1418 */ 1419 1420 typedef void (*segment_callback)(vm_map_entry_t, void *); 1421 1422 /* Closure for cb_put_phdr(). */ 1423 struct phdr_closure { 1424 Elf_Phdr *phdr; /* Program header to fill in */ 1425 Elf_Off offset; /* Offset of segment in core file */ 1426 }; 1427 1428 /* Closure for cb_size_segment(). */ 1429 struct sseg_closure { 1430 int count; /* Count of writable segments. */ 1431 size_t size; /* Total size of all writable segments. */ 1432 }; 1433 1434 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1435 1436 struct note_info { 1437 int type; /* Note type. */ 1438 outfunc_t outfunc; /* Output function. */ 1439 void *outarg; /* Argument for the output function. */ 1440 size_t outsize; /* Output size. */ 1441 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1442 }; 1443 1444 TAILQ_HEAD(note_info_list, note_info); 1445 1446 /* Coredump output parameters. */ 1447 struct coredump_params { 1448 off_t offset; 1449 struct ucred *active_cred; 1450 struct ucred *file_cred; 1451 struct thread *td; 1452 struct vnode *vp; 1453 struct compressor *comp; 1454 }; 1455 1456 extern int compress_user_cores; 1457 extern int compress_user_cores_level; 1458 1459 static void cb_put_phdr(vm_map_entry_t, void *); 1460 static void cb_size_segment(vm_map_entry_t, void *); 1461 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1462 enum uio_seg, size_t *); 1463 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1464 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1465 struct note_info_list *, size_t); 1466 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1467 size_t *); 1468 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1469 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1470 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1471 static int sbuf_drain_core_output(void *, const char *, int); 1472 1473 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1474 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1475 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1476 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1477 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1478 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1479 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1480 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1481 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1482 static void note_procstat_files(void *, struct sbuf *, size_t *); 1483 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1484 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1485 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1486 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1487 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1488 1489 /* 1490 * Write out a core segment to the compression stream. 1491 */ 1492 static int 1493 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1494 { 1495 u_int chunk_len; 1496 int error; 1497 1498 while (len > 0) { 1499 chunk_len = MIN(len, CORE_BUF_SIZE); 1500 1501 /* 1502 * We can get EFAULT error here. 1503 * In that case zero out the current chunk of the segment. 1504 */ 1505 error = copyin(base, buf, chunk_len); 1506 if (error != 0) 1507 bzero(buf, chunk_len); 1508 error = compressor_write(p->comp, buf, chunk_len); 1509 if (error != 0) 1510 break; 1511 base += chunk_len; 1512 len -= chunk_len; 1513 } 1514 return (error); 1515 } 1516 1517 static int 1518 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1519 { 1520 1521 return (core_write((struct coredump_params *)arg, base, len, offset, 1522 UIO_SYSSPACE, NULL)); 1523 } 1524 1525 static int 1526 core_write(struct coredump_params *p, const void *base, size_t len, 1527 off_t offset, enum uio_seg seg, size_t *resid) 1528 { 1529 1530 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1531 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1532 p->active_cred, p->file_cred, resid, p->td)); 1533 } 1534 1535 static int 1536 core_output(char *base, size_t len, off_t offset, struct coredump_params *p, 1537 void *tmpbuf) 1538 { 1539 vm_map_t map; 1540 struct mount *mp; 1541 size_t resid, runlen; 1542 int error; 1543 bool success; 1544 1545 KASSERT((uintptr_t)base % PAGE_SIZE == 0, 1546 ("%s: user address %#lx is not page-aligned", 1547 __func__, (uintptr_t)base)); 1548 1549 if (p->comp != NULL) 1550 return (compress_chunk(p, base, tmpbuf, len)); 1551 1552 map = &p->td->td_proc->p_vmspace->vm_map; 1553 for (; len > 0; base += runlen, offset += runlen, len -= runlen) { 1554 /* 1555 * Attempt to page in all virtual pages in the range. If a 1556 * virtual page is not backed by the pager, it is represented as 1557 * a hole in the file. This can occur with zero-filled 1558 * anonymous memory or truncated files, for example. 1559 */ 1560 for (runlen = 0; runlen < len; runlen += PAGE_SIZE) { 1561 error = vm_fault(map, (uintptr_t)base + runlen, 1562 VM_PROT_READ, VM_FAULT_NOFILL, NULL); 1563 if (runlen == 0) 1564 success = error == KERN_SUCCESS; 1565 else if ((error == KERN_SUCCESS) != success) 1566 break; 1567 } 1568 1569 if (success) { 1570 error = core_write(p, base, runlen, offset, 1571 UIO_USERSPACE, &resid); 1572 if (error != 0) { 1573 if (error != EFAULT) 1574 break; 1575 1576 /* 1577 * EFAULT may be returned if the user mapping 1578 * could not be accessed, e.g., because a mapped 1579 * file has been truncated. Skip the page if no 1580 * progress was made, to protect against a 1581 * hypothetical scenario where vm_fault() was 1582 * successful but core_write() returns EFAULT 1583 * anyway. 1584 */ 1585 runlen -= resid; 1586 if (runlen == 0) { 1587 success = false; 1588 runlen = PAGE_SIZE; 1589 } 1590 } 1591 } 1592 if (!success) { 1593 error = vn_start_write(p->vp, &mp, V_WAIT); 1594 if (error != 0) 1595 break; 1596 vn_lock(p->vp, LK_EXCLUSIVE | LK_RETRY); 1597 error = vn_truncate_locked(p->vp, offset + runlen, 1598 false, p->td->td_ucred); 1599 VOP_UNLOCK(p->vp); 1600 vn_finished_write(mp); 1601 if (error != 0) 1602 break; 1603 } 1604 } 1605 return (error); 1606 } 1607 1608 /* 1609 * Drain into a core file. 1610 */ 1611 static int 1612 sbuf_drain_core_output(void *arg, const char *data, int len) 1613 { 1614 struct coredump_params *p; 1615 int error, locked; 1616 1617 p = (struct coredump_params *)arg; 1618 1619 /* 1620 * Some kern_proc out routines that print to this sbuf may 1621 * call us with the process lock held. Draining with the 1622 * non-sleepable lock held is unsafe. The lock is needed for 1623 * those routines when dumping a live process. In our case we 1624 * can safely release the lock before draining and acquire 1625 * again after. 1626 */ 1627 locked = PROC_LOCKED(p->td->td_proc); 1628 if (locked) 1629 PROC_UNLOCK(p->td->td_proc); 1630 if (p->comp != NULL) 1631 error = compressor_write(p->comp, __DECONST(char *, data), len); 1632 else 1633 error = core_write(p, __DECONST(void *, data), len, p->offset, 1634 UIO_SYSSPACE, NULL); 1635 if (locked) 1636 PROC_LOCK(p->td->td_proc); 1637 if (error != 0) 1638 return (-error); 1639 p->offset += len; 1640 return (len); 1641 } 1642 1643 int 1644 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1645 { 1646 struct ucred *cred = td->td_ucred; 1647 int error = 0; 1648 struct sseg_closure seginfo; 1649 struct note_info_list notelst; 1650 struct coredump_params params; 1651 struct note_info *ninfo; 1652 void *hdr, *tmpbuf; 1653 size_t hdrsize, notesz, coresize; 1654 1655 hdr = NULL; 1656 tmpbuf = NULL; 1657 TAILQ_INIT(¬elst); 1658 1659 /* Size the program segments. */ 1660 seginfo.count = 0; 1661 seginfo.size = 0; 1662 each_dumpable_segment(td, cb_size_segment, &seginfo); 1663 1664 /* 1665 * Collect info about the core file header area. 1666 */ 1667 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1668 if (seginfo.count + 1 >= PN_XNUM) 1669 hdrsize += sizeof(Elf_Shdr); 1670 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1671 coresize = round_page(hdrsize + notesz) + seginfo.size; 1672 1673 /* Set up core dump parameters. */ 1674 params.offset = 0; 1675 params.active_cred = cred; 1676 params.file_cred = NOCRED; 1677 params.td = td; 1678 params.vp = vp; 1679 params.comp = NULL; 1680 1681 #ifdef RACCT 1682 if (racct_enable) { 1683 PROC_LOCK(td->td_proc); 1684 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1685 PROC_UNLOCK(td->td_proc); 1686 if (error != 0) { 1687 error = EFAULT; 1688 goto done; 1689 } 1690 } 1691 #endif 1692 if (coresize >= limit) { 1693 error = EFAULT; 1694 goto done; 1695 } 1696 1697 /* Create a compression stream if necessary. */ 1698 if (compress_user_cores != 0) { 1699 params.comp = compressor_init(core_compressed_write, 1700 compress_user_cores, CORE_BUF_SIZE, 1701 compress_user_cores_level, ¶ms); 1702 if (params.comp == NULL) { 1703 error = EFAULT; 1704 goto done; 1705 } 1706 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1707 } 1708 1709 /* 1710 * Allocate memory for building the header, fill it up, 1711 * and write it out following the notes. 1712 */ 1713 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1714 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1715 notesz); 1716 1717 /* Write the contents of all of the writable segments. */ 1718 if (error == 0) { 1719 Elf_Phdr *php; 1720 off_t offset; 1721 int i; 1722 1723 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1724 offset = round_page(hdrsize + notesz); 1725 for (i = 0; i < seginfo.count; i++) { 1726 error = core_output((char *)(uintptr_t)php->p_vaddr, 1727 php->p_filesz, offset, ¶ms, tmpbuf); 1728 if (error != 0) 1729 break; 1730 offset += php->p_filesz; 1731 php++; 1732 } 1733 if (error == 0 && params.comp != NULL) 1734 error = compressor_flush(params.comp); 1735 } 1736 if (error) { 1737 log(LOG_WARNING, 1738 "Failed to write core file for process %s (error %d)\n", 1739 curproc->p_comm, error); 1740 } 1741 1742 done: 1743 free(tmpbuf, M_TEMP); 1744 if (params.comp != NULL) 1745 compressor_fini(params.comp); 1746 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1747 TAILQ_REMOVE(¬elst, ninfo, link); 1748 free(ninfo, M_TEMP); 1749 } 1750 if (hdr != NULL) 1751 free(hdr, M_TEMP); 1752 1753 return (error); 1754 } 1755 1756 /* 1757 * A callback for each_dumpable_segment() to write out the segment's 1758 * program header entry. 1759 */ 1760 static void 1761 cb_put_phdr(vm_map_entry_t entry, void *closure) 1762 { 1763 struct phdr_closure *phc = (struct phdr_closure *)closure; 1764 Elf_Phdr *phdr = phc->phdr; 1765 1766 phc->offset = round_page(phc->offset); 1767 1768 phdr->p_type = PT_LOAD; 1769 phdr->p_offset = phc->offset; 1770 phdr->p_vaddr = entry->start; 1771 phdr->p_paddr = 0; 1772 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1773 phdr->p_align = PAGE_SIZE; 1774 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1775 1776 phc->offset += phdr->p_filesz; 1777 phc->phdr++; 1778 } 1779 1780 /* 1781 * A callback for each_dumpable_segment() to gather information about 1782 * the number of segments and their total size. 1783 */ 1784 static void 1785 cb_size_segment(vm_map_entry_t entry, void *closure) 1786 { 1787 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1788 1789 ssc->count++; 1790 ssc->size += entry->end - entry->start; 1791 } 1792 1793 /* 1794 * For each writable segment in the process's memory map, call the given 1795 * function with a pointer to the map entry and some arbitrary 1796 * caller-supplied data. 1797 */ 1798 static void 1799 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1800 { 1801 struct proc *p = td->td_proc; 1802 vm_map_t map = &p->p_vmspace->vm_map; 1803 vm_map_entry_t entry; 1804 vm_object_t backing_object, object; 1805 bool ignore_entry; 1806 1807 vm_map_lock_read(map); 1808 VM_MAP_ENTRY_FOREACH(entry, map) { 1809 /* 1810 * Don't dump inaccessible mappings, deal with legacy 1811 * coredump mode. 1812 * 1813 * Note that read-only segments related to the elf binary 1814 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1815 * need to arbitrarily ignore such segments. 1816 */ 1817 if (elf_legacy_coredump) { 1818 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1819 continue; 1820 } else { 1821 if ((entry->protection & VM_PROT_ALL) == 0) 1822 continue; 1823 } 1824 1825 /* 1826 * Dont include memory segment in the coredump if 1827 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1828 * madvise(2). Do not dump submaps (i.e. parts of the 1829 * kernel map). 1830 */ 1831 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1832 continue; 1833 1834 if ((object = entry->object.vm_object) == NULL) 1835 continue; 1836 1837 /* Ignore memory-mapped devices and such things. */ 1838 VM_OBJECT_RLOCK(object); 1839 while ((backing_object = object->backing_object) != NULL) { 1840 VM_OBJECT_RLOCK(backing_object); 1841 VM_OBJECT_RUNLOCK(object); 1842 object = backing_object; 1843 } 1844 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1845 VM_OBJECT_RUNLOCK(object); 1846 if (ignore_entry) 1847 continue; 1848 1849 (*func)(entry, closure); 1850 } 1851 vm_map_unlock_read(map); 1852 } 1853 1854 /* 1855 * Write the core file header to the file, including padding up to 1856 * the page boundary. 1857 */ 1858 static int 1859 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1860 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1861 { 1862 struct note_info *ninfo; 1863 struct sbuf *sb; 1864 int error; 1865 1866 /* Fill in the header. */ 1867 bzero(hdr, hdrsize); 1868 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1869 1870 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1871 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1872 sbuf_start_section(sb, NULL); 1873 sbuf_bcat(sb, hdr, hdrsize); 1874 TAILQ_FOREACH(ninfo, notelst, link) 1875 __elfN(putnote)(ninfo, sb); 1876 /* Align up to a page boundary for the program segments. */ 1877 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1878 error = sbuf_finish(sb); 1879 sbuf_delete(sb); 1880 1881 return (error); 1882 } 1883 1884 static void 1885 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1886 size_t *sizep) 1887 { 1888 struct proc *p; 1889 struct thread *thr; 1890 size_t size; 1891 1892 p = td->td_proc; 1893 size = 0; 1894 1895 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1896 1897 /* 1898 * To have the debugger select the right thread (LWP) as the initial 1899 * thread, we dump the state of the thread passed to us in td first. 1900 * This is the thread that causes the core dump and thus likely to 1901 * be the right thread one wants to have selected in the debugger. 1902 */ 1903 thr = td; 1904 while (thr != NULL) { 1905 size += register_note(list, NT_PRSTATUS, 1906 __elfN(note_prstatus), thr); 1907 size += register_note(list, NT_FPREGSET, 1908 __elfN(note_fpregset), thr); 1909 size += register_note(list, NT_THRMISC, 1910 __elfN(note_thrmisc), thr); 1911 size += register_note(list, NT_PTLWPINFO, 1912 __elfN(note_ptlwpinfo), thr); 1913 size += register_note(list, -1, 1914 __elfN(note_threadmd), thr); 1915 1916 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1917 TAILQ_NEXT(thr, td_plist); 1918 if (thr == td) 1919 thr = TAILQ_NEXT(thr, td_plist); 1920 } 1921 1922 size += register_note(list, NT_PROCSTAT_PROC, 1923 __elfN(note_procstat_proc), p); 1924 size += register_note(list, NT_PROCSTAT_FILES, 1925 note_procstat_files, p); 1926 size += register_note(list, NT_PROCSTAT_VMMAP, 1927 note_procstat_vmmap, p); 1928 size += register_note(list, NT_PROCSTAT_GROUPS, 1929 note_procstat_groups, p); 1930 size += register_note(list, NT_PROCSTAT_UMASK, 1931 note_procstat_umask, p); 1932 size += register_note(list, NT_PROCSTAT_RLIMIT, 1933 note_procstat_rlimit, p); 1934 size += register_note(list, NT_PROCSTAT_OSREL, 1935 note_procstat_osrel, p); 1936 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1937 __elfN(note_procstat_psstrings), p); 1938 size += register_note(list, NT_PROCSTAT_AUXV, 1939 __elfN(note_procstat_auxv), p); 1940 1941 *sizep = size; 1942 } 1943 1944 static void 1945 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1946 size_t notesz) 1947 { 1948 Elf_Ehdr *ehdr; 1949 Elf_Phdr *phdr; 1950 Elf_Shdr *shdr; 1951 struct phdr_closure phc; 1952 1953 ehdr = (Elf_Ehdr *)hdr; 1954 1955 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1956 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1957 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1958 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1959 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1960 ehdr->e_ident[EI_DATA] = ELF_DATA; 1961 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1962 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1963 ehdr->e_ident[EI_ABIVERSION] = 0; 1964 ehdr->e_ident[EI_PAD] = 0; 1965 ehdr->e_type = ET_CORE; 1966 ehdr->e_machine = td->td_proc->p_elf_machine; 1967 ehdr->e_version = EV_CURRENT; 1968 ehdr->e_entry = 0; 1969 ehdr->e_phoff = sizeof(Elf_Ehdr); 1970 ehdr->e_flags = td->td_proc->p_elf_flags; 1971 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1972 ehdr->e_phentsize = sizeof(Elf_Phdr); 1973 ehdr->e_shentsize = sizeof(Elf_Shdr); 1974 ehdr->e_shstrndx = SHN_UNDEF; 1975 if (numsegs + 1 < PN_XNUM) { 1976 ehdr->e_phnum = numsegs + 1; 1977 ehdr->e_shnum = 0; 1978 } else { 1979 ehdr->e_phnum = PN_XNUM; 1980 ehdr->e_shnum = 1; 1981 1982 ehdr->e_shoff = ehdr->e_phoff + 1983 (numsegs + 1) * ehdr->e_phentsize; 1984 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1985 ("e_shoff: %zu, hdrsize - shdr: %zu", 1986 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1987 1988 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1989 memset(shdr, 0, sizeof(*shdr)); 1990 /* 1991 * A special first section is used to hold large segment and 1992 * section counts. This was proposed by Sun Microsystems in 1993 * Solaris and has been adopted by Linux; the standard ELF 1994 * tools are already familiar with the technique. 1995 * 1996 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1997 * (or 12-7 depending on the version of the document) for more 1998 * details. 1999 */ 2000 shdr->sh_type = SHT_NULL; 2001 shdr->sh_size = ehdr->e_shnum; 2002 shdr->sh_link = ehdr->e_shstrndx; 2003 shdr->sh_info = numsegs + 1; 2004 } 2005 2006 /* 2007 * Fill in the program header entries. 2008 */ 2009 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 2010 2011 /* The note segement. */ 2012 phdr->p_type = PT_NOTE; 2013 phdr->p_offset = hdrsize; 2014 phdr->p_vaddr = 0; 2015 phdr->p_paddr = 0; 2016 phdr->p_filesz = notesz; 2017 phdr->p_memsz = 0; 2018 phdr->p_flags = PF_R; 2019 phdr->p_align = ELF_NOTE_ROUNDSIZE; 2020 phdr++; 2021 2022 /* All the writable segments from the program. */ 2023 phc.phdr = phdr; 2024 phc.offset = round_page(hdrsize + notesz); 2025 each_dumpable_segment(td, cb_put_phdr, &phc); 2026 } 2027 2028 static size_t 2029 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 2030 { 2031 struct note_info *ninfo; 2032 size_t size, notesize; 2033 2034 size = 0; 2035 out(arg, NULL, &size); 2036 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2037 ninfo->type = type; 2038 ninfo->outfunc = out; 2039 ninfo->outarg = arg; 2040 ninfo->outsize = size; 2041 TAILQ_INSERT_TAIL(list, ninfo, link); 2042 2043 if (type == -1) 2044 return (size); 2045 2046 notesize = sizeof(Elf_Note) + /* note header */ 2047 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2048 /* note name */ 2049 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2050 2051 return (notesize); 2052 } 2053 2054 static size_t 2055 append_note_data(const void *src, void *dst, size_t len) 2056 { 2057 size_t padded_len; 2058 2059 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2060 if (dst != NULL) { 2061 bcopy(src, dst, len); 2062 bzero((char *)dst + len, padded_len - len); 2063 } 2064 return (padded_len); 2065 } 2066 2067 size_t 2068 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2069 { 2070 Elf_Note *note; 2071 char *buf; 2072 size_t notesize; 2073 2074 buf = dst; 2075 if (buf != NULL) { 2076 note = (Elf_Note *)buf; 2077 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2078 note->n_descsz = size; 2079 note->n_type = type; 2080 buf += sizeof(*note); 2081 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2082 sizeof(FREEBSD_ABI_VENDOR)); 2083 append_note_data(src, buf, size); 2084 if (descp != NULL) 2085 *descp = buf; 2086 } 2087 2088 notesize = sizeof(Elf_Note) + /* note header */ 2089 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2090 /* note name */ 2091 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2092 2093 return (notesize); 2094 } 2095 2096 static void 2097 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2098 { 2099 Elf_Note note; 2100 ssize_t old_len, sect_len; 2101 size_t new_len, descsz, i; 2102 2103 if (ninfo->type == -1) { 2104 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2105 return; 2106 } 2107 2108 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2109 note.n_descsz = ninfo->outsize; 2110 note.n_type = ninfo->type; 2111 2112 sbuf_bcat(sb, ¬e, sizeof(note)); 2113 sbuf_start_section(sb, &old_len); 2114 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2115 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2116 if (note.n_descsz == 0) 2117 return; 2118 sbuf_start_section(sb, &old_len); 2119 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2120 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2121 if (sect_len < 0) 2122 return; 2123 2124 new_len = (size_t)sect_len; 2125 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2126 if (new_len < descsz) { 2127 /* 2128 * It is expected that individual note emitters will correctly 2129 * predict their expected output size and fill up to that size 2130 * themselves, padding in a format-specific way if needed. 2131 * However, in case they don't, just do it here with zeros. 2132 */ 2133 for (i = 0; i < descsz - new_len; i++) 2134 sbuf_putc(sb, 0); 2135 } else if (new_len > descsz) { 2136 /* 2137 * We can't always truncate sb -- we may have drained some 2138 * of it already. 2139 */ 2140 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2141 "read it (%zu > %zu). Since it is longer than " 2142 "expected, this coredump's notes are corrupt. THIS " 2143 "IS A BUG in the note_procstat routine for type %u.\n", 2144 __func__, (unsigned)note.n_type, new_len, descsz, 2145 (unsigned)note.n_type)); 2146 } 2147 } 2148 2149 /* 2150 * Miscellaneous note out functions. 2151 */ 2152 2153 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2154 #include <compat/freebsd32/freebsd32.h> 2155 #include <compat/freebsd32/freebsd32_signal.h> 2156 2157 typedef struct prstatus32 elf_prstatus_t; 2158 typedef struct prpsinfo32 elf_prpsinfo_t; 2159 typedef struct fpreg32 elf_prfpregset_t; 2160 typedef struct fpreg32 elf_fpregset_t; 2161 typedef struct reg32 elf_gregset_t; 2162 typedef struct thrmisc32 elf_thrmisc_t; 2163 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2164 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2165 typedef uint32_t elf_ps_strings_t; 2166 #else 2167 typedef prstatus_t elf_prstatus_t; 2168 typedef prpsinfo_t elf_prpsinfo_t; 2169 typedef prfpregset_t elf_prfpregset_t; 2170 typedef prfpregset_t elf_fpregset_t; 2171 typedef gregset_t elf_gregset_t; 2172 typedef thrmisc_t elf_thrmisc_t; 2173 #define ELF_KERN_PROC_MASK 0 2174 typedef struct kinfo_proc elf_kinfo_proc_t; 2175 typedef vm_offset_t elf_ps_strings_t; 2176 #endif 2177 2178 static void 2179 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2180 { 2181 struct sbuf sbarg; 2182 size_t len; 2183 char *cp, *end; 2184 struct proc *p; 2185 elf_prpsinfo_t *psinfo; 2186 int error; 2187 2188 p = (struct proc *)arg; 2189 if (sb != NULL) { 2190 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2191 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2192 psinfo->pr_version = PRPSINFO_VERSION; 2193 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2194 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2195 PROC_LOCK(p); 2196 if (p->p_args != NULL) { 2197 len = sizeof(psinfo->pr_psargs) - 1; 2198 if (len > p->p_args->ar_length) 2199 len = p->p_args->ar_length; 2200 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2201 PROC_UNLOCK(p); 2202 error = 0; 2203 } else { 2204 _PHOLD(p); 2205 PROC_UNLOCK(p); 2206 sbuf_new(&sbarg, psinfo->pr_psargs, 2207 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2208 error = proc_getargv(curthread, p, &sbarg); 2209 PRELE(p); 2210 if (sbuf_finish(&sbarg) == 0) 2211 len = sbuf_len(&sbarg) - 1; 2212 else 2213 len = sizeof(psinfo->pr_psargs) - 1; 2214 sbuf_delete(&sbarg); 2215 } 2216 if (error || len == 0) 2217 strlcpy(psinfo->pr_psargs, p->p_comm, 2218 sizeof(psinfo->pr_psargs)); 2219 else { 2220 KASSERT(len < sizeof(psinfo->pr_psargs), 2221 ("len is too long: %zu vs %zu", len, 2222 sizeof(psinfo->pr_psargs))); 2223 cp = psinfo->pr_psargs; 2224 end = cp + len - 1; 2225 for (;;) { 2226 cp = memchr(cp, '\0', end - cp); 2227 if (cp == NULL) 2228 break; 2229 *cp = ' '; 2230 } 2231 } 2232 psinfo->pr_pid = p->p_pid; 2233 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2234 free(psinfo, M_TEMP); 2235 } 2236 *sizep = sizeof(*psinfo); 2237 } 2238 2239 static void 2240 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2241 { 2242 struct thread *td; 2243 elf_prstatus_t *status; 2244 2245 td = (struct thread *)arg; 2246 if (sb != NULL) { 2247 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2248 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2249 status->pr_version = PRSTATUS_VERSION; 2250 status->pr_statussz = sizeof(elf_prstatus_t); 2251 status->pr_gregsetsz = sizeof(elf_gregset_t); 2252 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2253 status->pr_osreldate = osreldate; 2254 status->pr_cursig = td->td_proc->p_sig; 2255 status->pr_pid = td->td_tid; 2256 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2257 fill_regs32(td, &status->pr_reg); 2258 #else 2259 fill_regs(td, &status->pr_reg); 2260 #endif 2261 sbuf_bcat(sb, status, sizeof(*status)); 2262 free(status, M_TEMP); 2263 } 2264 *sizep = sizeof(*status); 2265 } 2266 2267 static void 2268 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2269 { 2270 struct thread *td; 2271 elf_prfpregset_t *fpregset; 2272 2273 td = (struct thread *)arg; 2274 if (sb != NULL) { 2275 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2276 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2277 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2278 fill_fpregs32(td, fpregset); 2279 #else 2280 fill_fpregs(td, fpregset); 2281 #endif 2282 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2283 free(fpregset, M_TEMP); 2284 } 2285 *sizep = sizeof(*fpregset); 2286 } 2287 2288 static void 2289 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2290 { 2291 struct thread *td; 2292 elf_thrmisc_t thrmisc; 2293 2294 td = (struct thread *)arg; 2295 if (sb != NULL) { 2296 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2297 bzero(&thrmisc, sizeof(thrmisc)); 2298 strcpy(thrmisc.pr_tname, td->td_name); 2299 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2300 } 2301 *sizep = sizeof(thrmisc); 2302 } 2303 2304 static void 2305 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2306 { 2307 struct thread *td; 2308 size_t size; 2309 int structsize; 2310 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2311 struct ptrace_lwpinfo32 pl; 2312 #else 2313 struct ptrace_lwpinfo pl; 2314 #endif 2315 2316 td = (struct thread *)arg; 2317 size = sizeof(structsize) + sizeof(pl); 2318 if (sb != NULL) { 2319 KASSERT(*sizep == size, ("invalid size")); 2320 structsize = sizeof(pl); 2321 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2322 bzero(&pl, sizeof(pl)); 2323 pl.pl_lwpid = td->td_tid; 2324 pl.pl_event = PL_EVENT_NONE; 2325 pl.pl_sigmask = td->td_sigmask; 2326 pl.pl_siglist = td->td_siglist; 2327 if (td->td_si.si_signo != 0) { 2328 pl.pl_event = PL_EVENT_SIGNAL; 2329 pl.pl_flags |= PL_FLAG_SI; 2330 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2331 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2332 #else 2333 pl.pl_siginfo = td->td_si; 2334 #endif 2335 } 2336 strcpy(pl.pl_tdname, td->td_name); 2337 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2338 sbuf_bcat(sb, &pl, sizeof(pl)); 2339 } 2340 *sizep = size; 2341 } 2342 2343 /* 2344 * Allow for MD specific notes, as well as any MD 2345 * specific preparations for writing MI notes. 2346 */ 2347 static void 2348 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2349 { 2350 struct thread *td; 2351 void *buf; 2352 size_t size; 2353 2354 td = (struct thread *)arg; 2355 size = *sizep; 2356 if (size != 0 && sb != NULL) 2357 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2358 else 2359 buf = NULL; 2360 size = 0; 2361 __elfN(dump_thread)(td, buf, &size); 2362 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2363 if (size != 0 && sb != NULL) 2364 sbuf_bcat(sb, buf, size); 2365 free(buf, M_TEMP); 2366 *sizep = size; 2367 } 2368 2369 #ifdef KINFO_PROC_SIZE 2370 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2371 #endif 2372 2373 static void 2374 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2375 { 2376 struct proc *p; 2377 size_t size; 2378 int structsize; 2379 2380 p = (struct proc *)arg; 2381 size = sizeof(structsize) + p->p_numthreads * 2382 sizeof(elf_kinfo_proc_t); 2383 2384 if (sb != NULL) { 2385 KASSERT(*sizep == size, ("invalid size")); 2386 structsize = sizeof(elf_kinfo_proc_t); 2387 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2388 PROC_LOCK(p); 2389 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2390 } 2391 *sizep = size; 2392 } 2393 2394 #ifdef KINFO_FILE_SIZE 2395 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2396 #endif 2397 2398 static void 2399 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2400 { 2401 struct proc *p; 2402 size_t size, sect_sz, i; 2403 ssize_t start_len, sect_len; 2404 int structsize, filedesc_flags; 2405 2406 if (coredump_pack_fileinfo) 2407 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2408 else 2409 filedesc_flags = 0; 2410 2411 p = (struct proc *)arg; 2412 structsize = sizeof(struct kinfo_file); 2413 if (sb == NULL) { 2414 size = 0; 2415 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2416 sbuf_set_drain(sb, sbuf_count_drain, &size); 2417 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2418 PROC_LOCK(p); 2419 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2420 sbuf_finish(sb); 2421 sbuf_delete(sb); 2422 *sizep = size; 2423 } else { 2424 sbuf_start_section(sb, &start_len); 2425 2426 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2427 PROC_LOCK(p); 2428 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2429 filedesc_flags); 2430 2431 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2432 if (sect_len < 0) 2433 return; 2434 sect_sz = sect_len; 2435 2436 KASSERT(sect_sz <= *sizep, 2437 ("kern_proc_filedesc_out did not respect maxlen; " 2438 "requested %zu, got %zu", *sizep - sizeof(structsize), 2439 sect_sz - sizeof(structsize))); 2440 2441 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2442 sbuf_putc(sb, 0); 2443 } 2444 } 2445 2446 #ifdef KINFO_VMENTRY_SIZE 2447 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2448 #endif 2449 2450 static void 2451 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2452 { 2453 struct proc *p; 2454 size_t size; 2455 int structsize, vmmap_flags; 2456 2457 if (coredump_pack_vmmapinfo) 2458 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2459 else 2460 vmmap_flags = 0; 2461 2462 p = (struct proc *)arg; 2463 structsize = sizeof(struct kinfo_vmentry); 2464 if (sb == NULL) { 2465 size = 0; 2466 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2467 sbuf_set_drain(sb, sbuf_count_drain, &size); 2468 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2469 PROC_LOCK(p); 2470 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2471 sbuf_finish(sb); 2472 sbuf_delete(sb); 2473 *sizep = size; 2474 } else { 2475 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2476 PROC_LOCK(p); 2477 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2478 vmmap_flags); 2479 } 2480 } 2481 2482 static void 2483 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2484 { 2485 struct proc *p; 2486 size_t size; 2487 int structsize; 2488 2489 p = (struct proc *)arg; 2490 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2491 if (sb != NULL) { 2492 KASSERT(*sizep == size, ("invalid size")); 2493 structsize = sizeof(gid_t); 2494 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2495 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2496 sizeof(gid_t)); 2497 } 2498 *sizep = size; 2499 } 2500 2501 static void 2502 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2503 { 2504 struct proc *p; 2505 size_t size; 2506 int structsize; 2507 2508 p = (struct proc *)arg; 2509 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2510 if (sb != NULL) { 2511 KASSERT(*sizep == size, ("invalid size")); 2512 structsize = sizeof(p->p_fd->fd_cmask); 2513 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2514 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2515 } 2516 *sizep = size; 2517 } 2518 2519 static void 2520 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2521 { 2522 struct proc *p; 2523 struct rlimit rlim[RLIM_NLIMITS]; 2524 size_t size; 2525 int structsize, i; 2526 2527 p = (struct proc *)arg; 2528 size = sizeof(structsize) + sizeof(rlim); 2529 if (sb != NULL) { 2530 KASSERT(*sizep == size, ("invalid size")); 2531 structsize = sizeof(rlim); 2532 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2533 PROC_LOCK(p); 2534 for (i = 0; i < RLIM_NLIMITS; i++) 2535 lim_rlimit_proc(p, i, &rlim[i]); 2536 PROC_UNLOCK(p); 2537 sbuf_bcat(sb, rlim, sizeof(rlim)); 2538 } 2539 *sizep = size; 2540 } 2541 2542 static void 2543 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2544 { 2545 struct proc *p; 2546 size_t size; 2547 int structsize; 2548 2549 p = (struct proc *)arg; 2550 size = sizeof(structsize) + sizeof(p->p_osrel); 2551 if (sb != NULL) { 2552 KASSERT(*sizep == size, ("invalid size")); 2553 structsize = sizeof(p->p_osrel); 2554 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2555 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2556 } 2557 *sizep = size; 2558 } 2559 2560 static void 2561 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2562 { 2563 struct proc *p; 2564 elf_ps_strings_t ps_strings; 2565 size_t size; 2566 int structsize; 2567 2568 p = (struct proc *)arg; 2569 size = sizeof(structsize) + sizeof(ps_strings); 2570 if (sb != NULL) { 2571 KASSERT(*sizep == size, ("invalid size")); 2572 structsize = sizeof(ps_strings); 2573 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2574 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2575 #else 2576 ps_strings = p->p_sysent->sv_psstrings; 2577 #endif 2578 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2579 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2580 } 2581 *sizep = size; 2582 } 2583 2584 static void 2585 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2586 { 2587 struct proc *p; 2588 size_t size; 2589 int structsize; 2590 2591 p = (struct proc *)arg; 2592 if (sb == NULL) { 2593 size = 0; 2594 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2595 sbuf_set_drain(sb, sbuf_count_drain, &size); 2596 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2597 PHOLD(p); 2598 proc_getauxv(curthread, p, sb); 2599 PRELE(p); 2600 sbuf_finish(sb); 2601 sbuf_delete(sb); 2602 *sizep = size; 2603 } else { 2604 structsize = sizeof(Elf_Auxinfo); 2605 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2606 PHOLD(p); 2607 proc_getauxv(curthread, p, sb); 2608 PRELE(p); 2609 } 2610 } 2611 2612 static boolean_t 2613 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2614 const char *note_vendor, const Elf_Phdr *pnote, 2615 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2616 { 2617 const Elf_Note *note, *note0, *note_end; 2618 const char *note_name; 2619 char *buf; 2620 int i, error; 2621 boolean_t res; 2622 2623 /* We need some limit, might as well use PAGE_SIZE. */ 2624 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2625 return (FALSE); 2626 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2627 if (pnote->p_offset > PAGE_SIZE || 2628 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2629 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2630 if (buf == NULL) { 2631 VOP_UNLOCK(imgp->vp); 2632 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2633 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2634 } 2635 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2636 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2637 curthread->td_ucred, NOCRED, NULL, curthread); 2638 if (error != 0) { 2639 uprintf("i/o error PT_NOTE\n"); 2640 goto retf; 2641 } 2642 note = note0 = (const Elf_Note *)buf; 2643 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2644 } else { 2645 note = note0 = (const Elf_Note *)(imgp->image_header + 2646 pnote->p_offset); 2647 note_end = (const Elf_Note *)(imgp->image_header + 2648 pnote->p_offset + pnote->p_filesz); 2649 buf = NULL; 2650 } 2651 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2652 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2653 (const char *)note < sizeof(Elf_Note)) { 2654 goto retf; 2655 } 2656 if (note->n_namesz != checknote->n_namesz || 2657 note->n_descsz != checknote->n_descsz || 2658 note->n_type != checknote->n_type) 2659 goto nextnote; 2660 note_name = (const char *)(note + 1); 2661 if (note_name + checknote->n_namesz >= 2662 (const char *)note_end || strncmp(note_vendor, 2663 note_name, checknote->n_namesz) != 0) 2664 goto nextnote; 2665 2666 if (cb(note, cb_arg, &res)) 2667 goto ret; 2668 nextnote: 2669 note = (const Elf_Note *)((const char *)(note + 1) + 2670 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2671 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2672 } 2673 retf: 2674 res = FALSE; 2675 ret: 2676 free(buf, M_TEMP); 2677 return (res); 2678 } 2679 2680 struct brandnote_cb_arg { 2681 Elf_Brandnote *brandnote; 2682 int32_t *osrel; 2683 }; 2684 2685 static boolean_t 2686 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2687 { 2688 struct brandnote_cb_arg *arg; 2689 2690 arg = arg0; 2691 2692 /* 2693 * Fetch the osreldate for binary from the ELF OSABI-note if 2694 * necessary. 2695 */ 2696 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2697 arg->brandnote->trans_osrel != NULL ? 2698 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2699 2700 return (TRUE); 2701 } 2702 2703 static Elf_Note fctl_note = { 2704 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2705 .n_descsz = sizeof(uint32_t), 2706 .n_type = NT_FREEBSD_FEATURE_CTL, 2707 }; 2708 2709 struct fctl_cb_arg { 2710 boolean_t *has_fctl0; 2711 uint32_t *fctl0; 2712 }; 2713 2714 static boolean_t 2715 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2716 { 2717 struct fctl_cb_arg *arg; 2718 const Elf32_Word *desc; 2719 uintptr_t p; 2720 2721 arg = arg0; 2722 p = (uintptr_t)(note + 1); 2723 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2724 desc = (const Elf32_Word *)p; 2725 *arg->has_fctl0 = TRUE; 2726 *arg->fctl0 = desc[0]; 2727 return (TRUE); 2728 } 2729 2730 /* 2731 * Try to find the appropriate ABI-note section for checknote, fetch 2732 * the osreldate and feature control flags for binary from the ELF 2733 * OSABI-note. Only the first page of the image is searched, the same 2734 * as for headers. 2735 */ 2736 static boolean_t 2737 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2738 int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0) 2739 { 2740 const Elf_Phdr *phdr; 2741 const Elf_Ehdr *hdr; 2742 struct brandnote_cb_arg b_arg; 2743 struct fctl_cb_arg f_arg; 2744 int i, j; 2745 2746 hdr = (const Elf_Ehdr *)imgp->image_header; 2747 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2748 b_arg.brandnote = brandnote; 2749 b_arg.osrel = osrel; 2750 f_arg.has_fctl0 = has_fctl0; 2751 f_arg.fctl0 = fctl0; 2752 2753 for (i = 0; i < hdr->e_phnum; i++) { 2754 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2755 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2756 &b_arg)) { 2757 for (j = 0; j < hdr->e_phnum; j++) { 2758 if (phdr[j].p_type == PT_NOTE && 2759 __elfN(parse_notes)(imgp, &fctl_note, 2760 FREEBSD_ABI_VENDOR, &phdr[j], 2761 note_fctl_cb, &f_arg)) 2762 break; 2763 } 2764 return (TRUE); 2765 } 2766 } 2767 return (FALSE); 2768 2769 } 2770 2771 /* 2772 * Tell kern_execve.c about it, with a little help from the linker. 2773 */ 2774 static struct execsw __elfN(execsw) = { 2775 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2776 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2777 }; 2778 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2779 2780 static vm_prot_t 2781 __elfN(trans_prot)(Elf_Word flags) 2782 { 2783 vm_prot_t prot; 2784 2785 prot = 0; 2786 if (flags & PF_X) 2787 prot |= VM_PROT_EXECUTE; 2788 if (flags & PF_W) 2789 prot |= VM_PROT_WRITE; 2790 if (flags & PF_R) 2791 prot |= VM_PROT_READ; 2792 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2793 if (i386_read_exec && (flags & PF_R)) 2794 prot |= VM_PROT_EXECUTE; 2795 #endif 2796 return (prot); 2797 } 2798 2799 static Elf_Word 2800 __elfN(untrans_prot)(vm_prot_t prot) 2801 { 2802 Elf_Word flags; 2803 2804 flags = 0; 2805 if (prot & VM_PROT_EXECUTE) 2806 flags |= PF_X; 2807 if (prot & VM_PROT_READ) 2808 flags |= PF_R; 2809 if (prot & VM_PROT_WRITE) 2810 flags |= PF_W; 2811 return (flags); 2812 } 2813 2814 void 2815 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) 2816 { 2817 uintptr_t range, rbase, gap; 2818 int pct; 2819 2820 if ((imgp->map_flags & MAP_ASLR) == 0) 2821 return; 2822 pct = __elfN(aslr_stack_gap); 2823 if (pct == 0) 2824 return; 2825 if (pct > 50) 2826 pct = 50; 2827 range = imgp->eff_stack_sz * pct / 100; 2828 arc4rand(&rbase, sizeof(rbase), 0); 2829 gap = rbase % range; 2830 gap &= ~(sizeof(u_long) - 1); 2831 *stack_base -= gap; 2832 } 2833