xref: /freebsd/sys/kern/imgact_elf.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/pioctl.h>
54 #include <sys/proc.h>
55 #include <sys/procfs.h>
56 #include <sys/ptrace.h>
57 #include <sys/racct.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static boolean_t __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, uint32_t *fctl0);
102 static vm_prot_t __elfN(trans_prot)(Elf_Word);
103 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
104 
105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
106     "");
107 
108 #define	CORE_BUF_SIZE	(16 * 1024)
109 
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114 
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117     &elf_legacy_coredump, 0,
118     "include all and only RW pages in core dumps");
119 
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
123     defined(__riscv)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
131 
132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
133 int i386_read_exec = 0;
134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
135     "enable execution from readable segments");
136 #endif
137 
138 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW, 0,
139     "");
140 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
141 
142 static int __elfN(aslr_enabled) = 0;
143 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
144     &__elfN(aslr_enabled), 0,
145     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
146     ": enable address map randomization");
147 
148 static int __elfN(pie_aslr_enabled) = 0;
149 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
150     &__elfN(pie_aslr_enabled), 0,
151     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
152     ": enable address map randomization for PIE binaries");
153 
154 static int __elfN(aslr_honor_sbrk) = 1;
155 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
156     &__elfN(aslr_honor_sbrk), 0,
157     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
158 
159 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
160 
161 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
162 
163 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
164 
165 Elf_Brandnote __elfN(freebsd_brandnote) = {
166 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
167 	.hdr.n_descsz	= sizeof(int32_t),
168 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
169 	.vendor		= FREEBSD_ABI_VENDOR,
170 	.flags		= BN_TRANSLATE_OSREL,
171 	.trans_osrel	= __elfN(freebsd_trans_osrel)
172 };
173 
174 static bool
175 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
176 {
177 	uintptr_t p;
178 
179 	p = (uintptr_t)(note + 1);
180 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
181 	*osrel = *(const int32_t *)(p);
182 
183 	return (true);
184 }
185 
186 static const char GNU_ABI_VENDOR[] = "GNU";
187 static int GNU_KFREEBSD_ABI_DESC = 3;
188 
189 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
190 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
191 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
192 	.hdr.n_type	= 1,
193 	.vendor		= GNU_ABI_VENDOR,
194 	.flags		= BN_TRANSLATE_OSREL,
195 	.trans_osrel	= kfreebsd_trans_osrel
196 };
197 
198 static bool
199 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
200 {
201 	const Elf32_Word *desc;
202 	uintptr_t p;
203 
204 	p = (uintptr_t)(note + 1);
205 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
206 
207 	desc = (const Elf32_Word *)p;
208 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
209 		return (false);
210 
211 	/*
212 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
213 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
214 	 */
215 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
216 
217 	return (true);
218 }
219 
220 int
221 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
222 {
223 	int i;
224 
225 	for (i = 0; i < MAX_BRANDS; i++) {
226 		if (elf_brand_list[i] == NULL) {
227 			elf_brand_list[i] = entry;
228 			break;
229 		}
230 	}
231 	if (i == MAX_BRANDS) {
232 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
233 			__func__, entry);
234 		return (-1);
235 	}
236 	return (0);
237 }
238 
239 int
240 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
241 {
242 	int i;
243 
244 	for (i = 0; i < MAX_BRANDS; i++) {
245 		if (elf_brand_list[i] == entry) {
246 			elf_brand_list[i] = NULL;
247 			break;
248 		}
249 	}
250 	if (i == MAX_BRANDS)
251 		return (-1);
252 	return (0);
253 }
254 
255 int
256 __elfN(brand_inuse)(Elf_Brandinfo *entry)
257 {
258 	struct proc *p;
259 	int rval = FALSE;
260 
261 	sx_slock(&allproc_lock);
262 	FOREACH_PROC_IN_SYSTEM(p) {
263 		if (p->p_sysent == entry->sysvec) {
264 			rval = TRUE;
265 			break;
266 		}
267 	}
268 	sx_sunlock(&allproc_lock);
269 
270 	return (rval);
271 }
272 
273 static Elf_Brandinfo *
274 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
275     int32_t *osrel, uint32_t *fctl0)
276 {
277 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
278 	Elf_Brandinfo *bi, *bi_m;
279 	boolean_t ret;
280 	int i, interp_name_len;
281 
282 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
283 
284 	/*
285 	 * We support four types of branding -- (1) the ELF EI_OSABI field
286 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
287 	 * branding w/in the ELF header, (3) path of the `interp_path'
288 	 * field, and (4) the ".note.ABI-tag" ELF section.
289 	 */
290 
291 	/* Look for an ".note.ABI-tag" ELF section */
292 	bi_m = NULL;
293 	for (i = 0; i < MAX_BRANDS; i++) {
294 		bi = elf_brand_list[i];
295 		if (bi == NULL)
296 			continue;
297 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
298 			continue;
299 		if (hdr->e_machine == bi->machine && (bi->flags &
300 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
301 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
302 			    fctl0);
303 			/* Give brand a chance to veto check_note's guess */
304 			if (ret && bi->header_supported)
305 				ret = bi->header_supported(imgp);
306 			/*
307 			 * If note checker claimed the binary, but the
308 			 * interpreter path in the image does not
309 			 * match default one for the brand, try to
310 			 * search for other brands with the same
311 			 * interpreter.  Either there is better brand
312 			 * with the right interpreter, or, failing
313 			 * this, we return first brand which accepted
314 			 * our note and, optionally, header.
315 			 */
316 			if (ret && bi_m == NULL && interp != NULL &&
317 			    (bi->interp_path == NULL ||
318 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
319 			    strncmp(interp, bi->interp_path, interp_name_len)
320 			    != 0))) {
321 				bi_m = bi;
322 				ret = 0;
323 			}
324 			if (ret)
325 				return (bi);
326 		}
327 	}
328 	if (bi_m != NULL)
329 		return (bi_m);
330 
331 	/* If the executable has a brand, search for it in the brand list. */
332 	for (i = 0; i < MAX_BRANDS; i++) {
333 		bi = elf_brand_list[i];
334 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
335 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
336 			continue;
337 		if (hdr->e_machine == bi->machine &&
338 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
339 		    (bi->compat_3_brand != NULL &&
340 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
341 		    bi->compat_3_brand) == 0))) {
342 			/* Looks good, but give brand a chance to veto */
343 			if (bi->header_supported == NULL ||
344 			    bi->header_supported(imgp)) {
345 				/*
346 				 * Again, prefer strictly matching
347 				 * interpreter path.
348 				 */
349 				if (interp_name_len == 0 &&
350 				    bi->interp_path == NULL)
351 					return (bi);
352 				if (bi->interp_path != NULL &&
353 				    strlen(bi->interp_path) + 1 ==
354 				    interp_name_len && strncmp(interp,
355 				    bi->interp_path, interp_name_len) == 0)
356 					return (bi);
357 				if (bi_m == NULL)
358 					bi_m = bi;
359 			}
360 		}
361 	}
362 	if (bi_m != NULL)
363 		return (bi_m);
364 
365 	/* No known brand, see if the header is recognized by any brand */
366 	for (i = 0; i < MAX_BRANDS; i++) {
367 		bi = elf_brand_list[i];
368 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
369 		    bi->header_supported == NULL)
370 			continue;
371 		if (hdr->e_machine == bi->machine) {
372 			ret = bi->header_supported(imgp);
373 			if (ret)
374 				return (bi);
375 		}
376 	}
377 
378 	/* Lacking a known brand, search for a recognized interpreter. */
379 	if (interp != NULL) {
380 		for (i = 0; i < MAX_BRANDS; i++) {
381 			bi = elf_brand_list[i];
382 			if (bi == NULL || (bi->flags &
383 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
384 			    != 0)
385 				continue;
386 			if (hdr->e_machine == bi->machine &&
387 			    bi->interp_path != NULL &&
388 			    /* ELF image p_filesz includes terminating zero */
389 			    strlen(bi->interp_path) + 1 == interp_name_len &&
390 			    strncmp(interp, bi->interp_path, interp_name_len)
391 			    == 0 && (bi->header_supported == NULL ||
392 			    bi->header_supported(imgp)))
393 				return (bi);
394 		}
395 	}
396 
397 	/* Lacking a recognized interpreter, try the default brand */
398 	for (i = 0; i < MAX_BRANDS; i++) {
399 		bi = elf_brand_list[i];
400 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
401 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
402 			continue;
403 		if (hdr->e_machine == bi->machine &&
404 		    __elfN(fallback_brand) == bi->brand &&
405 		    (bi->header_supported == NULL ||
406 		    bi->header_supported(imgp)))
407 			return (bi);
408 	}
409 	return (NULL);
410 }
411 
412 static int
413 __elfN(check_header)(const Elf_Ehdr *hdr)
414 {
415 	Elf_Brandinfo *bi;
416 	int i;
417 
418 	if (!IS_ELF(*hdr) ||
419 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
420 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
421 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
422 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
423 	    hdr->e_version != ELF_TARG_VER)
424 		return (ENOEXEC);
425 
426 	/*
427 	 * Make sure we have at least one brand for this machine.
428 	 */
429 
430 	for (i = 0; i < MAX_BRANDS; i++) {
431 		bi = elf_brand_list[i];
432 		if (bi != NULL && bi->machine == hdr->e_machine)
433 			break;
434 	}
435 	if (i == MAX_BRANDS)
436 		return (ENOEXEC);
437 
438 	return (0);
439 }
440 
441 static int
442 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
443     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
444 {
445 	struct sf_buf *sf;
446 	int error;
447 	vm_offset_t off;
448 
449 	/*
450 	 * Create the page if it doesn't exist yet. Ignore errors.
451 	 */
452 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
453 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
454 
455 	/*
456 	 * Find the page from the underlying object.
457 	 */
458 	if (object != NULL) {
459 		sf = vm_imgact_map_page(object, offset);
460 		if (sf == NULL)
461 			return (KERN_FAILURE);
462 		off = offset - trunc_page(offset);
463 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
464 		    end - start);
465 		vm_imgact_unmap_page(sf);
466 		if (error != 0)
467 			return (KERN_FAILURE);
468 	}
469 
470 	return (KERN_SUCCESS);
471 }
472 
473 static int
474 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
475     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
476     int cow)
477 {
478 	struct sf_buf *sf;
479 	vm_offset_t off;
480 	vm_size_t sz;
481 	int error, locked, rv;
482 
483 	if (start != trunc_page(start)) {
484 		rv = __elfN(map_partial)(map, object, offset, start,
485 		    round_page(start), prot);
486 		if (rv != KERN_SUCCESS)
487 			return (rv);
488 		offset += round_page(start) - start;
489 		start = round_page(start);
490 	}
491 	if (end != round_page(end)) {
492 		rv = __elfN(map_partial)(map, object, offset +
493 		    trunc_page(end) - start, trunc_page(end), end, prot);
494 		if (rv != KERN_SUCCESS)
495 			return (rv);
496 		end = trunc_page(end);
497 	}
498 	if (start >= end)
499 		return (KERN_SUCCESS);
500 	if ((offset & PAGE_MASK) != 0) {
501 		/*
502 		 * The mapping is not page aligned.  This means that we have
503 		 * to copy the data.
504 		 */
505 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
506 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
507 		if (rv != KERN_SUCCESS)
508 			return (rv);
509 		if (object == NULL)
510 			return (KERN_SUCCESS);
511 		for (; start < end; start += sz) {
512 			sf = vm_imgact_map_page(object, offset);
513 			if (sf == NULL)
514 				return (KERN_FAILURE);
515 			off = offset - trunc_page(offset);
516 			sz = end - start;
517 			if (sz > PAGE_SIZE - off)
518 				sz = PAGE_SIZE - off;
519 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
520 			    (caddr_t)start, sz);
521 			vm_imgact_unmap_page(sf);
522 			if (error != 0)
523 				return (KERN_FAILURE);
524 			offset += sz;
525 		}
526 	} else {
527 		vm_object_reference(object);
528 		rv = vm_map_fixed(map, object, offset, start, end - start,
529 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
530 		    (object != NULL ? MAP_VN_EXEC : 0));
531 		if (rv != KERN_SUCCESS) {
532 			locked = VOP_ISLOCKED(imgp->vp);
533 			VOP_UNLOCK(imgp->vp, 0);
534 			vm_object_deallocate(object);
535 			vn_lock(imgp->vp, locked | LK_RETRY);
536 			return (rv);
537 		} else if (object != NULL) {
538 			MPASS(imgp->vp->v_object == object);
539 			VOP_SET_TEXT_CHECKED(imgp->vp);
540 		}
541 	}
542 	return (KERN_SUCCESS);
543 }
544 
545 static int
546 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
547     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
548 {
549 	struct sf_buf *sf;
550 	size_t map_len;
551 	vm_map_t map;
552 	vm_object_t object;
553 	vm_offset_t off, map_addr;
554 	int error, rv, cow;
555 	size_t copy_len;
556 	vm_ooffset_t file_addr;
557 
558 	/*
559 	 * It's necessary to fail if the filsz + offset taken from the
560 	 * header is greater than the actual file pager object's size.
561 	 * If we were to allow this, then the vm_map_find() below would
562 	 * walk right off the end of the file object and into the ether.
563 	 *
564 	 * While I'm here, might as well check for something else that
565 	 * is invalid: filsz cannot be greater than memsz.
566 	 */
567 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
568 	    filsz > memsz) {
569 		uprintf("elf_load_section: truncated ELF file\n");
570 		return (ENOEXEC);
571 	}
572 
573 	object = imgp->object;
574 	map = &imgp->proc->p_vmspace->vm_map;
575 	map_addr = trunc_page((vm_offset_t)vmaddr);
576 	file_addr = trunc_page(offset);
577 
578 	/*
579 	 * We have two choices.  We can either clear the data in the last page
580 	 * of an oversized mapping, or we can start the anon mapping a page
581 	 * early and copy the initialized data into that first page.  We
582 	 * choose the second.
583 	 */
584 	if (filsz == 0)
585 		map_len = 0;
586 	else if (memsz > filsz)
587 		map_len = trunc_page(offset + filsz) - file_addr;
588 	else
589 		map_len = round_page(offset + filsz) - file_addr;
590 
591 	if (map_len != 0) {
592 		/* cow flags: don't dump readonly sections in core */
593 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
594 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
595 
596 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
597 		    map_addr, map_addr + map_len, prot, cow);
598 		if (rv != KERN_SUCCESS)
599 			return (EINVAL);
600 
601 		/* we can stop now if we've covered it all */
602 		if (memsz == filsz)
603 			return (0);
604 	}
605 
606 
607 	/*
608 	 * We have to get the remaining bit of the file into the first part
609 	 * of the oversized map segment.  This is normally because the .data
610 	 * segment in the file is extended to provide bss.  It's a neat idea
611 	 * to try and save a page, but it's a pain in the behind to implement.
612 	 */
613 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
614 	    filsz);
615 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
616 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
617 
618 	/* This had damn well better be true! */
619 	if (map_len != 0) {
620 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
621 		    map_addr + map_len, prot, 0);
622 		if (rv != KERN_SUCCESS)
623 			return (EINVAL);
624 	}
625 
626 	if (copy_len != 0) {
627 		sf = vm_imgact_map_page(object, offset + filsz);
628 		if (sf == NULL)
629 			return (EIO);
630 
631 		/* send the page fragment to user space */
632 		off = trunc_page(offset + filsz) - trunc_page(offset + filsz);
633 		error = copyout((caddr_t)sf_buf_kva(sf) + off,
634 		    (caddr_t)map_addr, copy_len);
635 		vm_imgact_unmap_page(sf);
636 		if (error != 0)
637 			return (error);
638 	}
639 
640 	/*
641 	 * Remove write access to the page if it was only granted by map_insert
642 	 * to allow copyout.
643 	 */
644 	if ((prot & VM_PROT_WRITE) == 0)
645 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
646 		    map_len), prot, FALSE);
647 
648 	return (0);
649 }
650 
651 static int
652 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
653     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
654 {
655 	vm_prot_t prot;
656 	u_long base_addr;
657 	bool first;
658 	int error, i;
659 
660 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
661 
662 	base_addr = 0;
663 	first = true;
664 
665 	for (i = 0; i < hdr->e_phnum; i++) {
666 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
667 			continue;
668 
669 		/* Loadable segment */
670 		prot = __elfN(trans_prot)(phdr[i].p_flags);
671 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
672 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
673 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
674 		if (error != 0)
675 			return (error);
676 
677 		/*
678 		 * Establish the base address if this is the first segment.
679 		 */
680 		if (first) {
681   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
682 			first = false;
683 		}
684 	}
685 
686 	if (base_addrp != NULL)
687 		*base_addrp = base_addr;
688 
689 	return (0);
690 }
691 
692 /*
693  * Load the file "file" into memory.  It may be either a shared object
694  * or an executable.
695  *
696  * The "addr" reference parameter is in/out.  On entry, it specifies
697  * the address where a shared object should be loaded.  If the file is
698  * an executable, this value is ignored.  On exit, "addr" specifies
699  * where the file was actually loaded.
700  *
701  * The "entry" reference parameter is out only.  On exit, it specifies
702  * the entry point for the loaded file.
703  */
704 static int
705 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
706 	u_long *entry)
707 {
708 	struct {
709 		struct nameidata nd;
710 		struct vattr attr;
711 		struct image_params image_params;
712 	} *tempdata;
713 	const Elf_Ehdr *hdr = NULL;
714 	const Elf_Phdr *phdr = NULL;
715 	struct nameidata *nd;
716 	struct vattr *attr;
717 	struct image_params *imgp;
718 	u_long rbase;
719 	u_long base_addr = 0;
720 	int error;
721 
722 #ifdef CAPABILITY_MODE
723 	/*
724 	 * XXXJA: This check can go away once we are sufficiently confident
725 	 * that the checks in namei() are correct.
726 	 */
727 	if (IN_CAPABILITY_MODE(curthread))
728 		return (ECAPMODE);
729 #endif
730 
731 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
732 	nd = &tempdata->nd;
733 	attr = &tempdata->attr;
734 	imgp = &tempdata->image_params;
735 
736 	/*
737 	 * Initialize part of the common data
738 	 */
739 	imgp->proc = p;
740 	imgp->attr = attr;
741 	imgp->firstpage = NULL;
742 	imgp->image_header = NULL;
743 	imgp->object = NULL;
744 	imgp->execlabel = NULL;
745 
746 	NDINIT(nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, UIO_SYSSPACE, file,
747 	    curthread);
748 	if ((error = namei(nd)) != 0) {
749 		nd->ni_vp = NULL;
750 		goto fail;
751 	}
752 	NDFREE(nd, NDF_ONLY_PNBUF);
753 	imgp->vp = nd->ni_vp;
754 
755 	/*
756 	 * Check permissions, modes, uid, etc on the file, and "open" it.
757 	 */
758 	error = exec_check_permissions(imgp);
759 	if (error)
760 		goto fail;
761 
762 	error = exec_map_first_page(imgp);
763 	if (error)
764 		goto fail;
765 
766 	imgp->object = nd->ni_vp->v_object;
767 
768 	hdr = (const Elf_Ehdr *)imgp->image_header;
769 	if ((error = __elfN(check_header)(hdr)) != 0)
770 		goto fail;
771 	if (hdr->e_type == ET_DYN)
772 		rbase = *addr;
773 	else if (hdr->e_type == ET_EXEC)
774 		rbase = 0;
775 	else {
776 		error = ENOEXEC;
777 		goto fail;
778 	}
779 
780 	/* Only support headers that fit within first page for now      */
781 	if ((hdr->e_phoff > PAGE_SIZE) ||
782 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
783 		error = ENOEXEC;
784 		goto fail;
785 	}
786 
787 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
788 	if (!aligned(phdr, Elf_Addr)) {
789 		error = ENOEXEC;
790 		goto fail;
791 	}
792 
793 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
794 	if (error != 0)
795 		goto fail;
796 
797 	*addr = base_addr;
798 	*entry = (unsigned long)hdr->e_entry + rbase;
799 
800 fail:
801 	if (imgp->firstpage)
802 		exec_unmap_first_page(imgp);
803 
804 	if (nd->ni_vp) {
805 		if (imgp->textset)
806 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
807 		vput(nd->ni_vp);
808 	}
809 	free(tempdata, M_TEMP);
810 
811 	return (error);
812 }
813 
814 static u_long
815 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv,
816     u_int align)
817 {
818 	u_long rbase, res;
819 
820 	MPASS(vm_map_min(map) <= minv);
821 	MPASS(maxv <= vm_map_max(map));
822 	MPASS(minv < maxv);
823 	MPASS(minv + align < maxv);
824 	arc4rand(&rbase, sizeof(rbase), 0);
825 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
826 	res &= ~((u_long)align - 1);
827 	if (res >= maxv)
828 		res -= align;
829 	KASSERT(res >= minv,
830 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
831 	    res, minv, maxv, rbase));
832 	KASSERT(res < maxv,
833 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
834 	    res, maxv, minv, rbase));
835 	return (res);
836 }
837 
838 static int
839 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
840     const Elf_Phdr *phdr, u_long et_dyn_addr)
841 {
842 	struct vmspace *vmspace;
843 	const char *err_str;
844 	u_long text_size, data_size, total_size, text_addr, data_addr;
845 	u_long seg_size, seg_addr;
846 	int i;
847 
848 	err_str = NULL;
849 	text_size = data_size = total_size = text_addr = data_addr = 0;
850 
851 	for (i = 0; i < hdr->e_phnum; i++) {
852 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
853 			continue;
854 
855 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
856 		seg_size = round_page(phdr[i].p_memsz +
857 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
858 
859 		/*
860 		 * Make the largest executable segment the official
861 		 * text segment and all others data.
862 		 *
863 		 * Note that obreak() assumes that data_addr + data_size == end
864 		 * of data load area, and the ELF file format expects segments
865 		 * to be sorted by address.  If multiple data segments exist,
866 		 * the last one will be used.
867 		 */
868 
869 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
870 			text_size = seg_size;
871 			text_addr = seg_addr;
872 		} else {
873 			data_size = seg_size;
874 			data_addr = seg_addr;
875 		}
876 		total_size += seg_size;
877 	}
878 
879 	if (data_addr == 0 && data_size == 0) {
880 		data_addr = text_addr;
881 		data_size = text_size;
882 	}
883 
884 	/*
885 	 * Check limits.  It should be safe to check the
886 	 * limits after loading the segments since we do
887 	 * not actually fault in all the segments pages.
888 	 */
889 	PROC_LOCK(imgp->proc);
890 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
891 		err_str = "Data segment size exceeds process limit";
892 	else if (text_size > maxtsiz)
893 		err_str = "Text segment size exceeds system limit";
894 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
895 		err_str = "Total segment size exceeds process limit";
896 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
897 		err_str = "Data segment size exceeds resource limit";
898 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
899 		err_str = "Total segment size exceeds resource limit";
900 	PROC_UNLOCK(imgp->proc);
901 	if (err_str != NULL) {
902 		uprintf("%s\n", err_str);
903 		return (ENOMEM);
904 	}
905 
906 	vmspace = imgp->proc->p_vmspace;
907 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
908 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
909 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
910 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
911 
912 	return (0);
913 }
914 
915 static int
916 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
917     char **interpp, bool *free_interpp)
918 {
919 	struct thread *td;
920 	char *interp;
921 	int error, interp_name_len;
922 
923 	KASSERT(phdr->p_type == PT_INTERP,
924 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
925 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
926 
927 	td = curthread;
928 
929 	/* Path to interpreter */
930 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
931 		uprintf("Invalid PT_INTERP\n");
932 		return (ENOEXEC);
933 	}
934 
935 	interp_name_len = phdr->p_filesz;
936 	if (phdr->p_offset > PAGE_SIZE ||
937 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
938 		/*
939 		 * The vnode lock might be needed by the pagedaemon to
940 		 * clean pages owned by the vnode.  Do not allow sleep
941 		 * waiting for memory with the vnode locked, instead
942 		 * try non-sleepable allocation first, and if it
943 		 * fails, go to the slow path were we drop the lock
944 		 * and do M_WAITOK.  A text reference prevents
945 		 * modifications to the vnode content.
946 		 */
947 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
948 		if (interp == NULL) {
949 			VOP_UNLOCK(imgp->vp, 0);
950 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
951 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
952 		}
953 
954 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
955 		    interp_name_len, phdr->p_offset,
956 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
957 		    NOCRED, NULL, td);
958 		if (error != 0) {
959 			free(interp, M_TEMP);
960 			uprintf("i/o error PT_INTERP %d\n", error);
961 			return (error);
962 		}
963 		interp[interp_name_len] = '\0';
964 
965 		*interpp = interp;
966 		*free_interpp = true;
967 		return (0);
968 	}
969 
970 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
971 	if (interp[interp_name_len - 1] != '\0') {
972 		uprintf("Invalid PT_INTERP\n");
973 		return (ENOEXEC);
974 	}
975 
976 	*interpp = interp;
977 	*free_interpp = false;
978 	return (0);
979 }
980 
981 static int
982 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
983     const char *interp, u_long *addr, u_long *entry)
984 {
985 	char *path;
986 	int error;
987 
988 	if (brand_info->emul_path != NULL &&
989 	    brand_info->emul_path[0] != '\0') {
990 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
991 		snprintf(path, MAXPATHLEN, "%s%s",
992 		    brand_info->emul_path, interp);
993 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
994 		free(path, M_TEMP);
995 		if (error == 0)
996 			return (0);
997 	}
998 
999 	if (brand_info->interp_newpath != NULL &&
1000 	    (brand_info->interp_path == NULL ||
1001 	    strcmp(interp, brand_info->interp_path) == 0)) {
1002 		error = __elfN(load_file)(imgp->proc,
1003 		    brand_info->interp_newpath, addr, entry);
1004 		if (error == 0)
1005 			return (0);
1006 	}
1007 
1008 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1009 	if (error == 0)
1010 		return (0);
1011 
1012 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1013 	return (error);
1014 }
1015 
1016 /*
1017  * Impossible et_dyn_addr initial value indicating that the real base
1018  * must be calculated later with some randomization applied.
1019  */
1020 #define	ET_DYN_ADDR_RAND	1
1021 
1022 static int
1023 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1024 {
1025 	struct thread *td;
1026 	const Elf_Ehdr *hdr;
1027 	const Elf_Phdr *phdr;
1028 	Elf_Auxargs *elf_auxargs;
1029 	struct vmspace *vmspace;
1030 	vm_map_t map;
1031 	char *interp;
1032 	Elf_Brandinfo *brand_info;
1033 	struct sysentvec *sv;
1034 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1035 	u_long maxalign, mapsz, maxv, maxv1;
1036 	uint32_t fctl0;
1037 	int32_t osrel;
1038 	bool free_interp;
1039 	int error, i, n;
1040 
1041 	hdr = (const Elf_Ehdr *)imgp->image_header;
1042 
1043 	/*
1044 	 * Do we have a valid ELF header ?
1045 	 *
1046 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1047 	 * if particular brand doesn't support it.
1048 	 */
1049 	if (__elfN(check_header)(hdr) != 0 ||
1050 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1051 		return (-1);
1052 
1053 	/*
1054 	 * From here on down, we return an errno, not -1, as we've
1055 	 * detected an ELF file.
1056 	 */
1057 
1058 	if ((hdr->e_phoff > PAGE_SIZE) ||
1059 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
1060 		/* Only support headers in first page for now */
1061 		uprintf("Program headers not in the first page\n");
1062 		return (ENOEXEC);
1063 	}
1064 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1065 	if (!aligned(phdr, Elf_Addr)) {
1066 		uprintf("Unaligned program headers\n");
1067 		return (ENOEXEC);
1068 	}
1069 
1070 	n = error = 0;
1071 	baddr = 0;
1072 	osrel = 0;
1073 	fctl0 = 0;
1074 	entry = proghdr = 0;
1075 	interp = NULL;
1076 	free_interp = false;
1077 	td = curthread;
1078 	maxalign = PAGE_SIZE;
1079 	mapsz = 0;
1080 
1081 	for (i = 0; i < hdr->e_phnum; i++) {
1082 		switch (phdr[i].p_type) {
1083 		case PT_LOAD:
1084 			if (n == 0)
1085 				baddr = phdr[i].p_vaddr;
1086 			if (phdr[i].p_align > maxalign)
1087 				maxalign = phdr[i].p_align;
1088 			mapsz += phdr[i].p_memsz;
1089 			n++;
1090 
1091 			/*
1092 			 * If this segment contains the program headers,
1093 			 * remember their virtual address for the AT_PHDR
1094 			 * aux entry. Static binaries don't usually include
1095 			 * a PT_PHDR entry.
1096 			 */
1097 			if (phdr[i].p_offset == 0 &&
1098 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
1099 				<= phdr[i].p_filesz)
1100 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1101 			break;
1102 		case PT_INTERP:
1103 			/* Path to interpreter */
1104 			if (interp != NULL) {
1105 				uprintf("Multiple PT_INTERP headers\n");
1106 				error = ENOEXEC;
1107 				goto ret;
1108 			}
1109 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1110 			    &free_interp);
1111 			if (error != 0)
1112 				goto ret;
1113 			break;
1114 		case PT_GNU_STACK:
1115 			if (__elfN(nxstack))
1116 				imgp->stack_prot =
1117 				    __elfN(trans_prot)(phdr[i].p_flags);
1118 			imgp->stack_sz = phdr[i].p_memsz;
1119 			break;
1120 		case PT_PHDR: 	/* Program header table info */
1121 			proghdr = phdr[i].p_vaddr;
1122 			break;
1123 		}
1124 	}
1125 
1126 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1127 	if (brand_info == NULL) {
1128 		uprintf("ELF binary type \"%u\" not known.\n",
1129 		    hdr->e_ident[EI_OSABI]);
1130 		error = ENOEXEC;
1131 		goto ret;
1132 	}
1133 	sv = brand_info->sysvec;
1134 	et_dyn_addr = 0;
1135 	if (hdr->e_type == ET_DYN) {
1136 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1137 			uprintf("Cannot execute shared object\n");
1138 			error = ENOEXEC;
1139 			goto ret;
1140 		}
1141 		/*
1142 		 * Honour the base load address from the dso if it is
1143 		 * non-zero for some reason.
1144 		 */
1145 		if (baddr == 0) {
1146 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1147 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1148 				et_dyn_addr = ET_DYN_LOAD_ADDR;
1149 			else if ((__elfN(pie_aslr_enabled) &&
1150 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1151 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1152 				et_dyn_addr = ET_DYN_ADDR_RAND;
1153 			else
1154 				et_dyn_addr = ET_DYN_LOAD_ADDR;
1155 		}
1156 	}
1157 
1158 	/*
1159 	 * Avoid a possible deadlock if the current address space is destroyed
1160 	 * and that address space maps the locked vnode.  In the common case,
1161 	 * the locked vnode's v_usecount is decremented but remains greater
1162 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1163 	 * However, in cases where the vnode lock is external, such as nullfs,
1164 	 * v_usecount may become zero.
1165 	 *
1166 	 * The VV_TEXT flag prevents modifications to the executable while
1167 	 * the vnode is unlocked.
1168 	 */
1169 	VOP_UNLOCK(imgp->vp, 0);
1170 
1171 	/*
1172 	 * Decide whether to enable randomization of user mappings.
1173 	 * First, reset user preferences for the setid binaries.
1174 	 * Then, account for the support of the randomization by the
1175 	 * ABI, by user preferences, and make special treatment for
1176 	 * PIE binaries.
1177 	 */
1178 	if (imgp->credential_setid) {
1179 		PROC_LOCK(imgp->proc);
1180 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
1181 		PROC_UNLOCK(imgp->proc);
1182 	}
1183 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1184 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1185 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1186 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1187 		    ("et_dyn_addr == RAND and !ASLR"));
1188 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1189 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1190 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1191 		imgp->map_flags |= MAP_ASLR;
1192 		/*
1193 		 * If user does not care about sbrk, utilize the bss
1194 		 * grow region for mappings as well.  We can select
1195 		 * the base for the image anywere and still not suffer
1196 		 * from the fragmentation.
1197 		 */
1198 		if (!__elfN(aslr_honor_sbrk) ||
1199 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1200 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1201 	}
1202 
1203 	error = exec_new_vmspace(imgp, sv);
1204 	vmspace = imgp->proc->p_vmspace;
1205 	map = &vmspace->vm_map;
1206 
1207 	imgp->proc->p_sysent = sv;
1208 
1209 	maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK);
1210 	if (et_dyn_addr == ET_DYN_ADDR_RAND) {
1211 		KASSERT((map->flags & MAP_ASLR) != 0,
1212 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1213 		et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map,
1214 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1215 		    /* reserve half of the address space to interpreter */
1216 		    maxv / 2, 1UL << flsl(maxalign));
1217 	}
1218 
1219 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1220 	if (error != 0)
1221 		goto ret;
1222 
1223 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1224 	if (error != 0)
1225 		goto ret;
1226 
1227 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1228 	if (error != 0)
1229 		goto ret;
1230 
1231 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1232 
1233 	/*
1234 	 * We load the dynamic linker where a userland call
1235 	 * to mmap(0, ...) would put it.  The rationale behind this
1236 	 * calculation is that it leaves room for the heap to grow to
1237 	 * its maximum allowed size.
1238 	 */
1239 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1240 	    RLIMIT_DATA));
1241 	if ((map->flags & MAP_ASLR) != 0) {
1242 		maxv1 = maxv / 2 + addr / 2;
1243 		MPASS(maxv1 >= addr);	/* No overflow */
1244 		map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1245 		    MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]);
1246 	} else {
1247 		map->anon_loc = addr;
1248 	}
1249 
1250 	imgp->entry_addr = entry;
1251 
1252 	if (interp != NULL) {
1253 		VOP_UNLOCK(imgp->vp, 0);
1254 		if ((map->flags & MAP_ASLR) != 0) {
1255 			/* Assume that interpeter fits into 1/4 of AS */
1256 			maxv1 = maxv / 2 + addr / 2;
1257 			MPASS(maxv1 >= addr);	/* No overflow */
1258 			addr = __CONCAT(rnd_, __elfN(base))(map, addr,
1259 			    maxv1, PAGE_SIZE);
1260 		}
1261 		error = __elfN(load_interp)(imgp, brand_info, interp, &addr,
1262 		    &imgp->entry_addr);
1263 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1264 		if (error != 0)
1265 			goto ret;
1266 	} else
1267 		addr = et_dyn_addr;
1268 
1269 	/*
1270 	 * Construct auxargs table (used by the fixup routine)
1271 	 */
1272 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1273 	if (elf_auxargs == NULL) {
1274 		VOP_UNLOCK(imgp->vp, 0);
1275 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1276 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1277 	}
1278 	elf_auxargs->execfd = -1;
1279 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1280 	elf_auxargs->phent = hdr->e_phentsize;
1281 	elf_auxargs->phnum = hdr->e_phnum;
1282 	elf_auxargs->pagesz = PAGE_SIZE;
1283 	elf_auxargs->base = addr;
1284 	elf_auxargs->flags = 0;
1285 	elf_auxargs->entry = entry;
1286 	elf_auxargs->hdr_eflags = hdr->e_flags;
1287 
1288 	imgp->auxargs = elf_auxargs;
1289 	imgp->interpreted = 0;
1290 	imgp->reloc_base = addr;
1291 	imgp->proc->p_osrel = osrel;
1292 	imgp->proc->p_fctl0 = fctl0;
1293 	imgp->proc->p_elf_machine = hdr->e_machine;
1294 	imgp->proc->p_elf_flags = hdr->e_flags;
1295 
1296 ret:
1297 	if (free_interp)
1298 		free(interp, M_TEMP);
1299 	return (error);
1300 }
1301 
1302 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1303 
1304 int
1305 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
1306 {
1307 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1308 	Elf_Auxinfo *argarray, *pos;
1309 	Elf_Addr *base, *auxbase;
1310 	int error;
1311 
1312 	base = (Elf_Addr *)*stack_base;
1313 	auxbase = base + imgp->args->argc + 1 + imgp->args->envc + 1;
1314 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1315 	    M_WAITOK | M_ZERO);
1316 
1317 	if (args->execfd != -1)
1318 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1319 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1320 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1321 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1322 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1323 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1324 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1325 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1326 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1327 	if (imgp->execpathp != 0)
1328 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1329 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1330 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1331 	if (imgp->canary != 0) {
1332 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1333 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1334 	}
1335 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1336 	if (imgp->pagesizes != 0) {
1337 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1338 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1339 	}
1340 	if (imgp->sysent->sv_timekeep_base != 0) {
1341 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1342 		    imgp->sysent->sv_timekeep_base);
1343 	}
1344 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1345 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1346 	    imgp->sysent->sv_stackprot);
1347 	if (imgp->sysent->sv_hwcap != NULL)
1348 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1349 	if (imgp->sysent->sv_hwcap2 != NULL)
1350 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1351 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1352 
1353 	free(imgp->auxargs, M_TEMP);
1354 	imgp->auxargs = NULL;
1355 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1356 
1357 	error = copyout(argarray, auxbase, sizeof(*argarray) * AT_COUNT);
1358 	free(argarray, M_TEMP);
1359 	if (error != 0)
1360 		return (error);
1361 
1362 	base--;
1363 	if (suword(base, imgp->args->argc) == -1)
1364 		return (EFAULT);
1365 	*stack_base = (register_t *)base;
1366 	return (0);
1367 }
1368 
1369 /*
1370  * Code for generating ELF core dumps.
1371  */
1372 
1373 typedef void (*segment_callback)(vm_map_entry_t, void *);
1374 
1375 /* Closure for cb_put_phdr(). */
1376 struct phdr_closure {
1377 	Elf_Phdr *phdr;		/* Program header to fill in */
1378 	Elf_Off offset;		/* Offset of segment in core file */
1379 };
1380 
1381 /* Closure for cb_size_segment(). */
1382 struct sseg_closure {
1383 	int count;		/* Count of writable segments. */
1384 	size_t size;		/* Total size of all writable segments. */
1385 };
1386 
1387 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1388 
1389 struct note_info {
1390 	int		type;		/* Note type. */
1391 	outfunc_t 	outfunc; 	/* Output function. */
1392 	void		*outarg;	/* Argument for the output function. */
1393 	size_t		outsize;	/* Output size. */
1394 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1395 };
1396 
1397 TAILQ_HEAD(note_info_list, note_info);
1398 
1399 /* Coredump output parameters. */
1400 struct coredump_params {
1401 	off_t		offset;
1402 	struct ucred	*active_cred;
1403 	struct ucred	*file_cred;
1404 	struct thread	*td;
1405 	struct vnode	*vp;
1406 	struct compressor *comp;
1407 };
1408 
1409 extern int compress_user_cores;
1410 extern int compress_user_cores_level;
1411 
1412 static void cb_put_phdr(vm_map_entry_t, void *);
1413 static void cb_size_segment(vm_map_entry_t, void *);
1414 static int core_write(struct coredump_params *, const void *, size_t, off_t,
1415     enum uio_seg);
1416 static void each_dumpable_segment(struct thread *, segment_callback, void *);
1417 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1418     struct note_info_list *, size_t);
1419 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1420     size_t *);
1421 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1422 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1423 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1424 static int sbuf_drain_core_output(void *, const char *, int);
1425 
1426 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1427 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1428 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1429 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1430 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1431 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *);
1432 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1433 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1434 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1435 static void note_procstat_files(void *, struct sbuf *, size_t *);
1436 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1437 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1438 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1439 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1440 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1441 
1442 /*
1443  * Write out a core segment to the compression stream.
1444  */
1445 static int
1446 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1447 {
1448 	u_int chunk_len;
1449 	int error;
1450 
1451 	while (len > 0) {
1452 		chunk_len = MIN(len, CORE_BUF_SIZE);
1453 
1454 		/*
1455 		 * We can get EFAULT error here.
1456 		 * In that case zero out the current chunk of the segment.
1457 		 */
1458 		error = copyin(base, buf, chunk_len);
1459 		if (error != 0)
1460 			bzero(buf, chunk_len);
1461 		error = compressor_write(p->comp, buf, chunk_len);
1462 		if (error != 0)
1463 			break;
1464 		base += chunk_len;
1465 		len -= chunk_len;
1466 	}
1467 	return (error);
1468 }
1469 
1470 static int
1471 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1472 {
1473 
1474 	return (core_write((struct coredump_params *)arg, base, len, offset,
1475 	    UIO_SYSSPACE));
1476 }
1477 
1478 static int
1479 core_write(struct coredump_params *p, const void *base, size_t len,
1480     off_t offset, enum uio_seg seg)
1481 {
1482 
1483 	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1484 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1485 	    p->active_cred, p->file_cred, NULL, p->td));
1486 }
1487 
1488 static int
1489 core_output(void *base, size_t len, off_t offset, struct coredump_params *p,
1490     void *tmpbuf)
1491 {
1492 	int error;
1493 
1494 	if (p->comp != NULL)
1495 		return (compress_chunk(p, base, tmpbuf, len));
1496 
1497 	/*
1498 	 * EFAULT is a non-fatal error that we can get, for example,
1499 	 * if the segment is backed by a file but extends beyond its
1500 	 * end.
1501 	 */
1502 	error = core_write(p, base, len, offset, UIO_USERSPACE);
1503 	if (error == EFAULT) {
1504 		log(LOG_WARNING, "Failed to fully fault in a core file segment "
1505 		    "at VA %p with size 0x%zx to be written at offset 0x%jx "
1506 		    "for process %s\n", base, len, offset, curproc->p_comm);
1507 
1508 		/*
1509 		 * Write a "real" zero byte at the end of the target region
1510 		 * in the case this is the last segment.
1511 		 * The intermediate space will be implicitly zero-filled.
1512 		 */
1513 		error = core_write(p, zero_region, 1, offset + len - 1,
1514 		    UIO_SYSSPACE);
1515 	}
1516 	return (error);
1517 }
1518 
1519 /*
1520  * Drain into a core file.
1521  */
1522 static int
1523 sbuf_drain_core_output(void *arg, const char *data, int len)
1524 {
1525 	struct coredump_params *p;
1526 	int error, locked;
1527 
1528 	p = (struct coredump_params *)arg;
1529 
1530 	/*
1531 	 * Some kern_proc out routines that print to this sbuf may
1532 	 * call us with the process lock held. Draining with the
1533 	 * non-sleepable lock held is unsafe. The lock is needed for
1534 	 * those routines when dumping a live process. In our case we
1535 	 * can safely release the lock before draining and acquire
1536 	 * again after.
1537 	 */
1538 	locked = PROC_LOCKED(p->td->td_proc);
1539 	if (locked)
1540 		PROC_UNLOCK(p->td->td_proc);
1541 	if (p->comp != NULL)
1542 		error = compressor_write(p->comp, __DECONST(char *, data), len);
1543 	else
1544 		error = core_write(p, __DECONST(void *, data), len, p->offset,
1545 		    UIO_SYSSPACE);
1546 	if (locked)
1547 		PROC_LOCK(p->td->td_proc);
1548 	if (error != 0)
1549 		return (-error);
1550 	p->offset += len;
1551 	return (len);
1552 }
1553 
1554 int
1555 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1556 {
1557 	struct ucred *cred = td->td_ucred;
1558 	int error = 0;
1559 	struct sseg_closure seginfo;
1560 	struct note_info_list notelst;
1561 	struct coredump_params params;
1562 	struct note_info *ninfo;
1563 	void *hdr, *tmpbuf;
1564 	size_t hdrsize, notesz, coresize;
1565 
1566 	hdr = NULL;
1567 	tmpbuf = NULL;
1568 	TAILQ_INIT(&notelst);
1569 
1570 	/* Size the program segments. */
1571 	seginfo.count = 0;
1572 	seginfo.size = 0;
1573 	each_dumpable_segment(td, cb_size_segment, &seginfo);
1574 
1575 	/*
1576 	 * Collect info about the core file header area.
1577 	 */
1578 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1579 	if (seginfo.count + 1 >= PN_XNUM)
1580 		hdrsize += sizeof(Elf_Shdr);
1581 	__elfN(prepare_notes)(td, &notelst, &notesz);
1582 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1583 
1584 	/* Set up core dump parameters. */
1585 	params.offset = 0;
1586 	params.active_cred = cred;
1587 	params.file_cred = NOCRED;
1588 	params.td = td;
1589 	params.vp = vp;
1590 	params.comp = NULL;
1591 
1592 #ifdef RACCT
1593 	if (racct_enable) {
1594 		PROC_LOCK(td->td_proc);
1595 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1596 		PROC_UNLOCK(td->td_proc);
1597 		if (error != 0) {
1598 			error = EFAULT;
1599 			goto done;
1600 		}
1601 	}
1602 #endif
1603 	if (coresize >= limit) {
1604 		error = EFAULT;
1605 		goto done;
1606 	}
1607 
1608 	/* Create a compression stream if necessary. */
1609 	if (compress_user_cores != 0) {
1610 		params.comp = compressor_init(core_compressed_write,
1611 		    compress_user_cores, CORE_BUF_SIZE,
1612 		    compress_user_cores_level, &params);
1613 		if (params.comp == NULL) {
1614 			error = EFAULT;
1615 			goto done;
1616 		}
1617 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1618         }
1619 
1620 	/*
1621 	 * Allocate memory for building the header, fill it up,
1622 	 * and write it out following the notes.
1623 	 */
1624 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1625 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1626 	    notesz);
1627 
1628 	/* Write the contents of all of the writable segments. */
1629 	if (error == 0) {
1630 		Elf_Phdr *php;
1631 		off_t offset;
1632 		int i;
1633 
1634 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1635 		offset = round_page(hdrsize + notesz);
1636 		for (i = 0; i < seginfo.count; i++) {
1637 			error = core_output((caddr_t)(uintptr_t)php->p_vaddr,
1638 			    php->p_filesz, offset, &params, tmpbuf);
1639 			if (error != 0)
1640 				break;
1641 			offset += php->p_filesz;
1642 			php++;
1643 		}
1644 		if (error == 0 && params.comp != NULL)
1645 			error = compressor_flush(params.comp);
1646 	}
1647 	if (error) {
1648 		log(LOG_WARNING,
1649 		    "Failed to write core file for process %s (error %d)\n",
1650 		    curproc->p_comm, error);
1651 	}
1652 
1653 done:
1654 	free(tmpbuf, M_TEMP);
1655 	if (params.comp != NULL)
1656 		compressor_fini(params.comp);
1657 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1658 		TAILQ_REMOVE(&notelst, ninfo, link);
1659 		free(ninfo, M_TEMP);
1660 	}
1661 	if (hdr != NULL)
1662 		free(hdr, M_TEMP);
1663 
1664 	return (error);
1665 }
1666 
1667 /*
1668  * A callback for each_dumpable_segment() to write out the segment's
1669  * program header entry.
1670  */
1671 static void
1672 cb_put_phdr(vm_map_entry_t entry, void *closure)
1673 {
1674 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1675 	Elf_Phdr *phdr = phc->phdr;
1676 
1677 	phc->offset = round_page(phc->offset);
1678 
1679 	phdr->p_type = PT_LOAD;
1680 	phdr->p_offset = phc->offset;
1681 	phdr->p_vaddr = entry->start;
1682 	phdr->p_paddr = 0;
1683 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1684 	phdr->p_align = PAGE_SIZE;
1685 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1686 
1687 	phc->offset += phdr->p_filesz;
1688 	phc->phdr++;
1689 }
1690 
1691 /*
1692  * A callback for each_dumpable_segment() to gather information about
1693  * the number of segments and their total size.
1694  */
1695 static void
1696 cb_size_segment(vm_map_entry_t entry, void *closure)
1697 {
1698 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1699 
1700 	ssc->count++;
1701 	ssc->size += entry->end - entry->start;
1702 }
1703 
1704 /*
1705  * For each writable segment in the process's memory map, call the given
1706  * function with a pointer to the map entry and some arbitrary
1707  * caller-supplied data.
1708  */
1709 static void
1710 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
1711 {
1712 	struct proc *p = td->td_proc;
1713 	vm_map_t map = &p->p_vmspace->vm_map;
1714 	vm_map_entry_t entry;
1715 	vm_object_t backing_object, object;
1716 	boolean_t ignore_entry;
1717 
1718 	vm_map_lock_read(map);
1719 	for (entry = map->header.next; entry != &map->header;
1720 	    entry = entry->next) {
1721 		/*
1722 		 * Don't dump inaccessible mappings, deal with legacy
1723 		 * coredump mode.
1724 		 *
1725 		 * Note that read-only segments related to the elf binary
1726 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1727 		 * need to arbitrarily ignore such segments.
1728 		 */
1729 		if (elf_legacy_coredump) {
1730 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1731 				continue;
1732 		} else {
1733 			if ((entry->protection & VM_PROT_ALL) == 0)
1734 				continue;
1735 		}
1736 
1737 		/*
1738 		 * Dont include memory segment in the coredump if
1739 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1740 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1741 		 * kernel map).
1742 		 */
1743 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1744 			continue;
1745 
1746 		if ((object = entry->object.vm_object) == NULL)
1747 			continue;
1748 
1749 		/* Ignore memory-mapped devices and such things. */
1750 		VM_OBJECT_RLOCK(object);
1751 		while ((backing_object = object->backing_object) != NULL) {
1752 			VM_OBJECT_RLOCK(backing_object);
1753 			VM_OBJECT_RUNLOCK(object);
1754 			object = backing_object;
1755 		}
1756 		ignore_entry = object->type != OBJT_DEFAULT &&
1757 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1758 		    object->type != OBJT_PHYS;
1759 		VM_OBJECT_RUNLOCK(object);
1760 		if (ignore_entry)
1761 			continue;
1762 
1763 		(*func)(entry, closure);
1764 	}
1765 	vm_map_unlock_read(map);
1766 }
1767 
1768 /*
1769  * Write the core file header to the file, including padding up to
1770  * the page boundary.
1771  */
1772 static int
1773 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1774     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
1775 {
1776 	struct note_info *ninfo;
1777 	struct sbuf *sb;
1778 	int error;
1779 
1780 	/* Fill in the header. */
1781 	bzero(hdr, hdrsize);
1782 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
1783 
1784 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1785 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1786 	sbuf_start_section(sb, NULL);
1787 	sbuf_bcat(sb, hdr, hdrsize);
1788 	TAILQ_FOREACH(ninfo, notelst, link)
1789 	    __elfN(putnote)(ninfo, sb);
1790 	/* Align up to a page boundary for the program segments. */
1791 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1792 	error = sbuf_finish(sb);
1793 	sbuf_delete(sb);
1794 
1795 	return (error);
1796 }
1797 
1798 static void
1799 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1800     size_t *sizep)
1801 {
1802 	struct proc *p;
1803 	struct thread *thr;
1804 	size_t size;
1805 
1806 	p = td->td_proc;
1807 	size = 0;
1808 
1809 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1810 
1811 	/*
1812 	 * To have the debugger select the right thread (LWP) as the initial
1813 	 * thread, we dump the state of the thread passed to us in td first.
1814 	 * This is the thread that causes the core dump and thus likely to
1815 	 * be the right thread one wants to have selected in the debugger.
1816 	 */
1817 	thr = td;
1818 	while (thr != NULL) {
1819 		size += register_note(list, NT_PRSTATUS,
1820 		    __elfN(note_prstatus), thr);
1821 		size += register_note(list, NT_FPREGSET,
1822 		    __elfN(note_fpregset), thr);
1823 		size += register_note(list, NT_THRMISC,
1824 		    __elfN(note_thrmisc), thr);
1825 		size += register_note(list, NT_PTLWPINFO,
1826 		    __elfN(note_ptlwpinfo), thr);
1827 		size += register_note(list, -1,
1828 		    __elfN(note_threadmd), thr);
1829 
1830 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1831 		    TAILQ_NEXT(thr, td_plist);
1832 		if (thr == td)
1833 			thr = TAILQ_NEXT(thr, td_plist);
1834 	}
1835 
1836 	size += register_note(list, NT_PROCSTAT_PROC,
1837 	    __elfN(note_procstat_proc), p);
1838 	size += register_note(list, NT_PROCSTAT_FILES,
1839 	    note_procstat_files, p);
1840 	size += register_note(list, NT_PROCSTAT_VMMAP,
1841 	    note_procstat_vmmap, p);
1842 	size += register_note(list, NT_PROCSTAT_GROUPS,
1843 	    note_procstat_groups, p);
1844 	size += register_note(list, NT_PROCSTAT_UMASK,
1845 	    note_procstat_umask, p);
1846 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1847 	    note_procstat_rlimit, p);
1848 	size += register_note(list, NT_PROCSTAT_OSREL,
1849 	    note_procstat_osrel, p);
1850 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1851 	    __elfN(note_procstat_psstrings), p);
1852 	size += register_note(list, NT_PROCSTAT_AUXV,
1853 	    __elfN(note_procstat_auxv), p);
1854 
1855 	*sizep = size;
1856 }
1857 
1858 static void
1859 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1860     size_t notesz)
1861 {
1862 	Elf_Ehdr *ehdr;
1863 	Elf_Phdr *phdr;
1864 	Elf_Shdr *shdr;
1865 	struct phdr_closure phc;
1866 
1867 	ehdr = (Elf_Ehdr *)hdr;
1868 
1869 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1870 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1871 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1872 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1873 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1874 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1875 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1876 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1877 	ehdr->e_ident[EI_ABIVERSION] = 0;
1878 	ehdr->e_ident[EI_PAD] = 0;
1879 	ehdr->e_type = ET_CORE;
1880 	ehdr->e_machine = td->td_proc->p_elf_machine;
1881 	ehdr->e_version = EV_CURRENT;
1882 	ehdr->e_entry = 0;
1883 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1884 	ehdr->e_flags = td->td_proc->p_elf_flags;
1885 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1886 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1887 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1888 	ehdr->e_shstrndx = SHN_UNDEF;
1889 	if (numsegs + 1 < PN_XNUM) {
1890 		ehdr->e_phnum = numsegs + 1;
1891 		ehdr->e_shnum = 0;
1892 	} else {
1893 		ehdr->e_phnum = PN_XNUM;
1894 		ehdr->e_shnum = 1;
1895 
1896 		ehdr->e_shoff = ehdr->e_phoff +
1897 		    (numsegs + 1) * ehdr->e_phentsize;
1898 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1899 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1900 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1901 
1902 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1903 		memset(shdr, 0, sizeof(*shdr));
1904 		/*
1905 		 * A special first section is used to hold large segment and
1906 		 * section counts.  This was proposed by Sun Microsystems in
1907 		 * Solaris and has been adopted by Linux; the standard ELF
1908 		 * tools are already familiar with the technique.
1909 		 *
1910 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1911 		 * (or 12-7 depending on the version of the document) for more
1912 		 * details.
1913 		 */
1914 		shdr->sh_type = SHT_NULL;
1915 		shdr->sh_size = ehdr->e_shnum;
1916 		shdr->sh_link = ehdr->e_shstrndx;
1917 		shdr->sh_info = numsegs + 1;
1918 	}
1919 
1920 	/*
1921 	 * Fill in the program header entries.
1922 	 */
1923 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1924 
1925 	/* The note segement. */
1926 	phdr->p_type = PT_NOTE;
1927 	phdr->p_offset = hdrsize;
1928 	phdr->p_vaddr = 0;
1929 	phdr->p_paddr = 0;
1930 	phdr->p_filesz = notesz;
1931 	phdr->p_memsz = 0;
1932 	phdr->p_flags = PF_R;
1933 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1934 	phdr++;
1935 
1936 	/* All the writable segments from the program. */
1937 	phc.phdr = phdr;
1938 	phc.offset = round_page(hdrsize + notesz);
1939 	each_dumpable_segment(td, cb_put_phdr, &phc);
1940 }
1941 
1942 static size_t
1943 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1944 {
1945 	struct note_info *ninfo;
1946 	size_t size, notesize;
1947 
1948 	size = 0;
1949 	out(arg, NULL, &size);
1950 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1951 	ninfo->type = type;
1952 	ninfo->outfunc = out;
1953 	ninfo->outarg = arg;
1954 	ninfo->outsize = size;
1955 	TAILQ_INSERT_TAIL(list, ninfo, link);
1956 
1957 	if (type == -1)
1958 		return (size);
1959 
1960 	notesize = sizeof(Elf_Note) +		/* note header */
1961 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1962 						/* note name */
1963 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1964 
1965 	return (notesize);
1966 }
1967 
1968 static size_t
1969 append_note_data(const void *src, void *dst, size_t len)
1970 {
1971 	size_t padded_len;
1972 
1973 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1974 	if (dst != NULL) {
1975 		bcopy(src, dst, len);
1976 		bzero((char *)dst + len, padded_len - len);
1977 	}
1978 	return (padded_len);
1979 }
1980 
1981 size_t
1982 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
1983 {
1984 	Elf_Note *note;
1985 	char *buf;
1986 	size_t notesize;
1987 
1988 	buf = dst;
1989 	if (buf != NULL) {
1990 		note = (Elf_Note *)buf;
1991 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1992 		note->n_descsz = size;
1993 		note->n_type = type;
1994 		buf += sizeof(*note);
1995 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
1996 		    sizeof(FREEBSD_ABI_VENDOR));
1997 		append_note_data(src, buf, size);
1998 		if (descp != NULL)
1999 			*descp = buf;
2000 	}
2001 
2002 	notesize = sizeof(Elf_Note) +		/* note header */
2003 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2004 						/* note name */
2005 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2006 
2007 	return (notesize);
2008 }
2009 
2010 static void
2011 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
2012 {
2013 	Elf_Note note;
2014 	ssize_t old_len, sect_len;
2015 	size_t new_len, descsz, i;
2016 
2017 	if (ninfo->type == -1) {
2018 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2019 		return;
2020 	}
2021 
2022 	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2023 	note.n_descsz = ninfo->outsize;
2024 	note.n_type = ninfo->type;
2025 
2026 	sbuf_bcat(sb, &note, sizeof(note));
2027 	sbuf_start_section(sb, &old_len);
2028 	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
2029 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2030 	if (note.n_descsz == 0)
2031 		return;
2032 	sbuf_start_section(sb, &old_len);
2033 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2034 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2035 	if (sect_len < 0)
2036 		return;
2037 
2038 	new_len = (size_t)sect_len;
2039 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2040 	if (new_len < descsz) {
2041 		/*
2042 		 * It is expected that individual note emitters will correctly
2043 		 * predict their expected output size and fill up to that size
2044 		 * themselves, padding in a format-specific way if needed.
2045 		 * However, in case they don't, just do it here with zeros.
2046 		 */
2047 		for (i = 0; i < descsz - new_len; i++)
2048 			sbuf_putc(sb, 0);
2049 	} else if (new_len > descsz) {
2050 		/*
2051 		 * We can't always truncate sb -- we may have drained some
2052 		 * of it already.
2053 		 */
2054 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2055 		    "read it (%zu > %zu).  Since it is longer than "
2056 		    "expected, this coredump's notes are corrupt.  THIS "
2057 		    "IS A BUG in the note_procstat routine for type %u.\n",
2058 		    __func__, (unsigned)note.n_type, new_len, descsz,
2059 		    (unsigned)note.n_type));
2060 	}
2061 }
2062 
2063 /*
2064  * Miscellaneous note out functions.
2065  */
2066 
2067 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2068 #include <compat/freebsd32/freebsd32.h>
2069 #include <compat/freebsd32/freebsd32_signal.h>
2070 
2071 typedef struct prstatus32 elf_prstatus_t;
2072 typedef struct prpsinfo32 elf_prpsinfo_t;
2073 typedef struct fpreg32 elf_prfpregset_t;
2074 typedef struct fpreg32 elf_fpregset_t;
2075 typedef struct reg32 elf_gregset_t;
2076 typedef struct thrmisc32 elf_thrmisc_t;
2077 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2078 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2079 typedef uint32_t elf_ps_strings_t;
2080 #else
2081 typedef prstatus_t elf_prstatus_t;
2082 typedef prpsinfo_t elf_prpsinfo_t;
2083 typedef prfpregset_t elf_prfpregset_t;
2084 typedef prfpregset_t elf_fpregset_t;
2085 typedef gregset_t elf_gregset_t;
2086 typedef thrmisc_t elf_thrmisc_t;
2087 #define ELF_KERN_PROC_MASK	0
2088 typedef struct kinfo_proc elf_kinfo_proc_t;
2089 typedef vm_offset_t elf_ps_strings_t;
2090 #endif
2091 
2092 static void
2093 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2094 {
2095 	struct sbuf sbarg;
2096 	size_t len;
2097 	char *cp, *end;
2098 	struct proc *p;
2099 	elf_prpsinfo_t *psinfo;
2100 	int error;
2101 
2102 	p = (struct proc *)arg;
2103 	if (sb != NULL) {
2104 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2105 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2106 		psinfo->pr_version = PRPSINFO_VERSION;
2107 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2108 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2109 		PROC_LOCK(p);
2110 		if (p->p_args != NULL) {
2111 			len = sizeof(psinfo->pr_psargs) - 1;
2112 			if (len > p->p_args->ar_length)
2113 				len = p->p_args->ar_length;
2114 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2115 			PROC_UNLOCK(p);
2116 			error = 0;
2117 		} else {
2118 			_PHOLD(p);
2119 			PROC_UNLOCK(p);
2120 			sbuf_new(&sbarg, psinfo->pr_psargs,
2121 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2122 			error = proc_getargv(curthread, p, &sbarg);
2123 			PRELE(p);
2124 			if (sbuf_finish(&sbarg) == 0)
2125 				len = sbuf_len(&sbarg) - 1;
2126 			else
2127 				len = sizeof(psinfo->pr_psargs) - 1;
2128 			sbuf_delete(&sbarg);
2129 		}
2130 		if (error || len == 0)
2131 			strlcpy(psinfo->pr_psargs, p->p_comm,
2132 			    sizeof(psinfo->pr_psargs));
2133 		else {
2134 			KASSERT(len < sizeof(psinfo->pr_psargs),
2135 			    ("len is too long: %zu vs %zu", len,
2136 			    sizeof(psinfo->pr_psargs)));
2137 			cp = psinfo->pr_psargs;
2138 			end = cp + len - 1;
2139 			for (;;) {
2140 				cp = memchr(cp, '\0', end - cp);
2141 				if (cp == NULL)
2142 					break;
2143 				*cp = ' ';
2144 			}
2145 		}
2146 		psinfo->pr_pid = p->p_pid;
2147 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2148 		free(psinfo, M_TEMP);
2149 	}
2150 	*sizep = sizeof(*psinfo);
2151 }
2152 
2153 static void
2154 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
2155 {
2156 	struct thread *td;
2157 	elf_prstatus_t *status;
2158 
2159 	td = (struct thread *)arg;
2160 	if (sb != NULL) {
2161 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
2162 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
2163 		status->pr_version = PRSTATUS_VERSION;
2164 		status->pr_statussz = sizeof(elf_prstatus_t);
2165 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2166 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2167 		status->pr_osreldate = osreldate;
2168 		status->pr_cursig = td->td_proc->p_sig;
2169 		status->pr_pid = td->td_tid;
2170 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2171 		fill_regs32(td, &status->pr_reg);
2172 #else
2173 		fill_regs(td, &status->pr_reg);
2174 #endif
2175 		sbuf_bcat(sb, status, sizeof(*status));
2176 		free(status, M_TEMP);
2177 	}
2178 	*sizep = sizeof(*status);
2179 }
2180 
2181 static void
2182 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
2183 {
2184 	struct thread *td;
2185 	elf_prfpregset_t *fpregset;
2186 
2187 	td = (struct thread *)arg;
2188 	if (sb != NULL) {
2189 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
2190 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
2191 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2192 		fill_fpregs32(td, fpregset);
2193 #else
2194 		fill_fpregs(td, fpregset);
2195 #endif
2196 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
2197 		free(fpregset, M_TEMP);
2198 	}
2199 	*sizep = sizeof(*fpregset);
2200 }
2201 
2202 static void
2203 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
2204 {
2205 	struct thread *td;
2206 	elf_thrmisc_t thrmisc;
2207 
2208 	td = (struct thread *)arg;
2209 	if (sb != NULL) {
2210 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
2211 		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
2212 		strcpy(thrmisc.pr_tname, td->td_name);
2213 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
2214 	}
2215 	*sizep = sizeof(thrmisc);
2216 }
2217 
2218 static void
2219 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2220 {
2221 	struct thread *td;
2222 	size_t size;
2223 	int structsize;
2224 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2225 	struct ptrace_lwpinfo32 pl;
2226 #else
2227 	struct ptrace_lwpinfo pl;
2228 #endif
2229 
2230 	td = (struct thread *)arg;
2231 	size = sizeof(structsize) + sizeof(pl);
2232 	if (sb != NULL) {
2233 		KASSERT(*sizep == size, ("invalid size"));
2234 		structsize = sizeof(pl);
2235 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2236 		bzero(&pl, sizeof(pl));
2237 		pl.pl_lwpid = td->td_tid;
2238 		pl.pl_event = PL_EVENT_NONE;
2239 		pl.pl_sigmask = td->td_sigmask;
2240 		pl.pl_siglist = td->td_siglist;
2241 		if (td->td_si.si_signo != 0) {
2242 			pl.pl_event = PL_EVENT_SIGNAL;
2243 			pl.pl_flags |= PL_FLAG_SI;
2244 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2245 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2246 #else
2247 			pl.pl_siginfo = td->td_si;
2248 #endif
2249 		}
2250 		strcpy(pl.pl_tdname, td->td_name);
2251 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2252 		sbuf_bcat(sb, &pl, sizeof(pl));
2253 	}
2254 	*sizep = size;
2255 }
2256 
2257 /*
2258  * Allow for MD specific notes, as well as any MD
2259  * specific preparations for writing MI notes.
2260  */
2261 static void
2262 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2263 {
2264 	struct thread *td;
2265 	void *buf;
2266 	size_t size;
2267 
2268 	td = (struct thread *)arg;
2269 	size = *sizep;
2270 	if (size != 0 && sb != NULL)
2271 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2272 	else
2273 		buf = NULL;
2274 	size = 0;
2275 	__elfN(dump_thread)(td, buf, &size);
2276 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2277 	if (size != 0 && sb != NULL)
2278 		sbuf_bcat(sb, buf, size);
2279 	free(buf, M_TEMP);
2280 	*sizep = size;
2281 }
2282 
2283 #ifdef KINFO_PROC_SIZE
2284 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2285 #endif
2286 
2287 static void
2288 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2289 {
2290 	struct proc *p;
2291 	size_t size;
2292 	int structsize;
2293 
2294 	p = (struct proc *)arg;
2295 	size = sizeof(structsize) + p->p_numthreads *
2296 	    sizeof(elf_kinfo_proc_t);
2297 
2298 	if (sb != NULL) {
2299 		KASSERT(*sizep == size, ("invalid size"));
2300 		structsize = sizeof(elf_kinfo_proc_t);
2301 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2302 		PROC_LOCK(p);
2303 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2304 	}
2305 	*sizep = size;
2306 }
2307 
2308 #ifdef KINFO_FILE_SIZE
2309 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2310 #endif
2311 
2312 static void
2313 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2314 {
2315 	struct proc *p;
2316 	size_t size, sect_sz, i;
2317 	ssize_t start_len, sect_len;
2318 	int structsize, filedesc_flags;
2319 
2320 	if (coredump_pack_fileinfo)
2321 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2322 	else
2323 		filedesc_flags = 0;
2324 
2325 	p = (struct proc *)arg;
2326 	structsize = sizeof(struct kinfo_file);
2327 	if (sb == NULL) {
2328 		size = 0;
2329 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2330 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2331 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2332 		PROC_LOCK(p);
2333 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2334 		sbuf_finish(sb);
2335 		sbuf_delete(sb);
2336 		*sizep = size;
2337 	} else {
2338 		sbuf_start_section(sb, &start_len);
2339 
2340 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2341 		PROC_LOCK(p);
2342 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2343 		    filedesc_flags);
2344 
2345 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2346 		if (sect_len < 0)
2347 			return;
2348 		sect_sz = sect_len;
2349 
2350 		KASSERT(sect_sz <= *sizep,
2351 		    ("kern_proc_filedesc_out did not respect maxlen; "
2352 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2353 		     sect_sz - sizeof(structsize)));
2354 
2355 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2356 			sbuf_putc(sb, 0);
2357 	}
2358 }
2359 
2360 #ifdef KINFO_VMENTRY_SIZE
2361 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2362 #endif
2363 
2364 static void
2365 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2366 {
2367 	struct proc *p;
2368 	size_t size;
2369 	int structsize, vmmap_flags;
2370 
2371 	if (coredump_pack_vmmapinfo)
2372 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2373 	else
2374 		vmmap_flags = 0;
2375 
2376 	p = (struct proc *)arg;
2377 	structsize = sizeof(struct kinfo_vmentry);
2378 	if (sb == NULL) {
2379 		size = 0;
2380 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2381 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2382 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2383 		PROC_LOCK(p);
2384 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2385 		sbuf_finish(sb);
2386 		sbuf_delete(sb);
2387 		*sizep = size;
2388 	} else {
2389 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2390 		PROC_LOCK(p);
2391 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2392 		    vmmap_flags);
2393 	}
2394 }
2395 
2396 static void
2397 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2398 {
2399 	struct proc *p;
2400 	size_t size;
2401 	int structsize;
2402 
2403 	p = (struct proc *)arg;
2404 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2405 	if (sb != NULL) {
2406 		KASSERT(*sizep == size, ("invalid size"));
2407 		structsize = sizeof(gid_t);
2408 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2409 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2410 		    sizeof(gid_t));
2411 	}
2412 	*sizep = size;
2413 }
2414 
2415 static void
2416 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2417 {
2418 	struct proc *p;
2419 	size_t size;
2420 	int structsize;
2421 
2422 	p = (struct proc *)arg;
2423 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2424 	if (sb != NULL) {
2425 		KASSERT(*sizep == size, ("invalid size"));
2426 		structsize = sizeof(p->p_fd->fd_cmask);
2427 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2428 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2429 	}
2430 	*sizep = size;
2431 }
2432 
2433 static void
2434 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2435 {
2436 	struct proc *p;
2437 	struct rlimit rlim[RLIM_NLIMITS];
2438 	size_t size;
2439 	int structsize, i;
2440 
2441 	p = (struct proc *)arg;
2442 	size = sizeof(structsize) + sizeof(rlim);
2443 	if (sb != NULL) {
2444 		KASSERT(*sizep == size, ("invalid size"));
2445 		structsize = sizeof(rlim);
2446 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2447 		PROC_LOCK(p);
2448 		for (i = 0; i < RLIM_NLIMITS; i++)
2449 			lim_rlimit_proc(p, i, &rlim[i]);
2450 		PROC_UNLOCK(p);
2451 		sbuf_bcat(sb, rlim, sizeof(rlim));
2452 	}
2453 	*sizep = size;
2454 }
2455 
2456 static void
2457 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2458 {
2459 	struct proc *p;
2460 	size_t size;
2461 	int structsize;
2462 
2463 	p = (struct proc *)arg;
2464 	size = sizeof(structsize) + sizeof(p->p_osrel);
2465 	if (sb != NULL) {
2466 		KASSERT(*sizep == size, ("invalid size"));
2467 		structsize = sizeof(p->p_osrel);
2468 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2469 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2470 	}
2471 	*sizep = size;
2472 }
2473 
2474 static void
2475 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2476 {
2477 	struct proc *p;
2478 	elf_ps_strings_t ps_strings;
2479 	size_t size;
2480 	int structsize;
2481 
2482 	p = (struct proc *)arg;
2483 	size = sizeof(structsize) + sizeof(ps_strings);
2484 	if (sb != NULL) {
2485 		KASSERT(*sizep == size, ("invalid size"));
2486 		structsize = sizeof(ps_strings);
2487 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2488 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2489 #else
2490 		ps_strings = p->p_sysent->sv_psstrings;
2491 #endif
2492 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2493 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2494 	}
2495 	*sizep = size;
2496 }
2497 
2498 static void
2499 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2500 {
2501 	struct proc *p;
2502 	size_t size;
2503 	int structsize;
2504 
2505 	p = (struct proc *)arg;
2506 	if (sb == NULL) {
2507 		size = 0;
2508 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2509 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2510 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2511 		PHOLD(p);
2512 		proc_getauxv(curthread, p, sb);
2513 		PRELE(p);
2514 		sbuf_finish(sb);
2515 		sbuf_delete(sb);
2516 		*sizep = size;
2517 	} else {
2518 		structsize = sizeof(Elf_Auxinfo);
2519 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2520 		PHOLD(p);
2521 		proc_getauxv(curthread, p, sb);
2522 		PRELE(p);
2523 	}
2524 }
2525 
2526 static boolean_t
2527 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2528     const char *note_vendor, const Elf_Phdr *pnote,
2529     boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg)
2530 {
2531 	const Elf_Note *note, *note0, *note_end;
2532 	const char *note_name;
2533 	char *buf;
2534 	int i, error;
2535 	boolean_t res;
2536 
2537 	/* We need some limit, might as well use PAGE_SIZE. */
2538 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2539 		return (FALSE);
2540 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2541 	if (pnote->p_offset > PAGE_SIZE ||
2542 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2543 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2544 		if (buf == NULL) {
2545 			VOP_UNLOCK(imgp->vp, 0);
2546 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2547 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2548 		}
2549 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2550 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2551 		    curthread->td_ucred, NOCRED, NULL, curthread);
2552 		if (error != 0) {
2553 			uprintf("i/o error PT_NOTE\n");
2554 			goto retf;
2555 		}
2556 		note = note0 = (const Elf_Note *)buf;
2557 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2558 	} else {
2559 		note = note0 = (const Elf_Note *)(imgp->image_header +
2560 		    pnote->p_offset);
2561 		note_end = (const Elf_Note *)(imgp->image_header +
2562 		    pnote->p_offset + pnote->p_filesz);
2563 		buf = NULL;
2564 	}
2565 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2566 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2567 		    (const char *)note < sizeof(Elf_Note)) {
2568 			goto retf;
2569 		}
2570 		if (note->n_namesz != checknote->n_namesz ||
2571 		    note->n_descsz != checknote->n_descsz ||
2572 		    note->n_type != checknote->n_type)
2573 			goto nextnote;
2574 		note_name = (const char *)(note + 1);
2575 		if (note_name + checknote->n_namesz >=
2576 		    (const char *)note_end || strncmp(note_vendor,
2577 		    note_name, checknote->n_namesz) != 0)
2578 			goto nextnote;
2579 
2580 		if (cb(note, cb_arg, &res))
2581 			goto ret;
2582 nextnote:
2583 		note = (const Elf_Note *)((const char *)(note + 1) +
2584 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2585 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2586 	}
2587 retf:
2588 	res = FALSE;
2589 ret:
2590 	free(buf, M_TEMP);
2591 	return (res);
2592 }
2593 
2594 struct brandnote_cb_arg {
2595 	Elf_Brandnote *brandnote;
2596 	int32_t *osrel;
2597 };
2598 
2599 static boolean_t
2600 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2601 {
2602 	struct brandnote_cb_arg *arg;
2603 
2604 	arg = arg0;
2605 
2606 	/*
2607 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2608 	 * necessary.
2609 	 */
2610 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2611 	    arg->brandnote->trans_osrel != NULL ?
2612 	    arg->brandnote->trans_osrel(note, arg->osrel) : TRUE;
2613 
2614 	return (TRUE);
2615 }
2616 
2617 static Elf_Note fctl_note = {
2618 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2619 	.n_descsz = sizeof(uint32_t),
2620 	.n_type = NT_FREEBSD_FEATURE_CTL,
2621 };
2622 
2623 struct fctl_cb_arg {
2624 	uint32_t *fctl0;
2625 };
2626 
2627 static boolean_t
2628 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res)
2629 {
2630 	struct fctl_cb_arg *arg;
2631 	const Elf32_Word *desc;
2632 	uintptr_t p;
2633 
2634 	arg = arg0;
2635 	p = (uintptr_t)(note + 1);
2636 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2637 	desc = (const Elf32_Word *)p;
2638 	*arg->fctl0 = desc[0];
2639 	return (TRUE);
2640 }
2641 
2642 /*
2643  * Try to find the appropriate ABI-note section for checknote, fetch
2644  * the osreldate and feature control flags for binary from the ELF
2645  * OSABI-note.  Only the first page of the image is searched, the same
2646  * as for headers.
2647  */
2648 static boolean_t
2649 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2650     int32_t *osrel, uint32_t *fctl0)
2651 {
2652 	const Elf_Phdr *phdr;
2653 	const Elf_Ehdr *hdr;
2654 	struct brandnote_cb_arg b_arg;
2655 	struct fctl_cb_arg f_arg;
2656 	int i, j;
2657 
2658 	hdr = (const Elf_Ehdr *)imgp->image_header;
2659 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2660 	b_arg.brandnote = brandnote;
2661 	b_arg.osrel = osrel;
2662 	f_arg.fctl0 = fctl0;
2663 
2664 	for (i = 0; i < hdr->e_phnum; i++) {
2665 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2666 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2667 		    &b_arg)) {
2668 			for (j = 0; j < hdr->e_phnum; j++) {
2669 				if (phdr[j].p_type == PT_NOTE &&
2670 				    __elfN(parse_notes)(imgp, &fctl_note,
2671 				    FREEBSD_ABI_VENDOR, &phdr[j],
2672 				    note_fctl_cb, &f_arg))
2673 					break;
2674 			}
2675 			return (TRUE);
2676 		}
2677 	}
2678 	return (FALSE);
2679 
2680 }
2681 
2682 /*
2683  * Tell kern_execve.c about it, with a little help from the linker.
2684  */
2685 static struct execsw __elfN(execsw) = {
2686 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2687 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2688 };
2689 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2690 
2691 static vm_prot_t
2692 __elfN(trans_prot)(Elf_Word flags)
2693 {
2694 	vm_prot_t prot;
2695 
2696 	prot = 0;
2697 	if (flags & PF_X)
2698 		prot |= VM_PROT_EXECUTE;
2699 	if (flags & PF_W)
2700 		prot |= VM_PROT_WRITE;
2701 	if (flags & PF_R)
2702 		prot |= VM_PROT_READ;
2703 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2704 	if (i386_read_exec && (flags & PF_R))
2705 		prot |= VM_PROT_EXECUTE;
2706 #endif
2707 	return (prot);
2708 }
2709 
2710 static Elf_Word
2711 __elfN(untrans_prot)(vm_prot_t prot)
2712 {
2713 	Elf_Word flags;
2714 
2715 	flags = 0;
2716 	if (prot & VM_PROT_EXECUTE)
2717 		flags |= PF_X;
2718 	if (prot & VM_PROT_READ)
2719 		flags |= PF_R;
2720 	if (prot & VM_PROT_WRITE)
2721 		flags |= PF_W;
2722 	return (flags);
2723 }
2724