1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/reg.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static bool __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 102 uint32_t *fctl0); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 static size_t __elfN(prepare_register_notes)(struct thread *td, 106 struct note_info_list *list, struct thread *target_td); 107 108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 109 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 110 ""); 111 112 int __elfN(fallback_brand) = -1; 113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 114 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 115 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 116 117 static int elf_legacy_coredump = 0; 118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 119 &elf_legacy_coredump, 0, 120 "include all and only RW pages in core dumps"); 121 122 int __elfN(nxstack) = 123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 124 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 125 defined(__riscv) 126 1; 127 #else 128 0; 129 #endif 130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 131 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 132 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 133 134 #if defined(__amd64__) 135 static int __elfN(vdso) = 1; 136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 137 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0, 138 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading"); 139 #else 140 static int __elfN(vdso) = 0; 141 #endif 142 143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 144 int i386_read_exec = 0; 145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 146 "enable execution from readable segments"); 147 #endif 148 149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 150 static int 151 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 152 { 153 u_long val; 154 int error; 155 156 val = __elfN(pie_base); 157 error = sysctl_handle_long(oidp, &val, 0, req); 158 if (error != 0 || req->newptr == NULL) 159 return (error); 160 if ((val & PAGE_MASK) != 0) 161 return (EINVAL); 162 __elfN(pie_base) = val; 163 return (0); 164 } 165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 166 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 167 sysctl_pie_base, "LU", 168 "PIE load base without randomization"); 169 170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 171 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 172 ""); 173 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 174 175 /* 176 * While for 64-bit machines ASLR works properly, there are 177 * still some problems when using 32-bit architectures. For this 178 * reason ASLR is only enabled by default when running native 179 * 64-bit non-PIE executables. 180 */ 181 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 182 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 183 &__elfN(aslr_enabled), 0, 184 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 185 ": enable address map randomization"); 186 187 /* 188 * Enable ASLR only for 64-bit PIE binaries by default. 189 */ 190 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 191 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 192 &__elfN(pie_aslr_enabled), 0, 193 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 194 ": enable address map randomization for PIE binaries"); 195 196 /* 197 * Sbrk is now deprecated and it can be assumed, that in most 198 * cases it will not be used anyway. This setting is valid only 199 * for the ASLR enabled and allows for utilizing the bss grow region. 200 */ 201 static int __elfN(aslr_honor_sbrk) = 0; 202 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 203 &__elfN(aslr_honor_sbrk), 0, 204 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 205 206 static int __elfN(aslr_stack) = 1; 207 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN, 208 &__elfN(aslr_stack), 0, 209 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 210 ": enable stack address randomization"); 211 212 static int __elfN(sigfastblock) = 1; 213 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 214 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 215 "enable sigfastblock for new processes"); 216 217 static bool __elfN(allow_wx) = true; 218 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 219 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 220 "Allow pages to be mapped simultaneously writable and executable"); 221 222 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 223 224 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 225 226 Elf_Brandnote __elfN(freebsd_brandnote) = { 227 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 228 .hdr.n_descsz = sizeof(int32_t), 229 .hdr.n_type = NT_FREEBSD_ABI_TAG, 230 .vendor = FREEBSD_ABI_VENDOR, 231 .flags = BN_TRANSLATE_OSREL, 232 .trans_osrel = __elfN(freebsd_trans_osrel) 233 }; 234 235 static bool 236 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 237 { 238 uintptr_t p; 239 240 p = (uintptr_t)(note + 1); 241 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 242 *osrel = *(const int32_t *)(p); 243 244 return (true); 245 } 246 247 static const char GNU_ABI_VENDOR[] = "GNU"; 248 static int GNU_KFREEBSD_ABI_DESC = 3; 249 250 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 251 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 252 .hdr.n_descsz = 16, /* XXX at least 16 */ 253 .hdr.n_type = 1, 254 .vendor = GNU_ABI_VENDOR, 255 .flags = BN_TRANSLATE_OSREL, 256 .trans_osrel = kfreebsd_trans_osrel 257 }; 258 259 static bool 260 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 261 { 262 const Elf32_Word *desc; 263 uintptr_t p; 264 265 p = (uintptr_t)(note + 1); 266 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 267 268 desc = (const Elf32_Word *)p; 269 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 270 return (false); 271 272 /* 273 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 274 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 275 */ 276 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 277 278 return (true); 279 } 280 281 int 282 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 283 { 284 int i; 285 286 for (i = 0; i < MAX_BRANDS; i++) { 287 if (elf_brand_list[i] == NULL) { 288 elf_brand_list[i] = entry; 289 break; 290 } 291 } 292 if (i == MAX_BRANDS) { 293 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 294 __func__, entry); 295 return (-1); 296 } 297 return (0); 298 } 299 300 int 301 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 302 { 303 int i; 304 305 for (i = 0; i < MAX_BRANDS; i++) { 306 if (elf_brand_list[i] == entry) { 307 elf_brand_list[i] = NULL; 308 break; 309 } 310 } 311 if (i == MAX_BRANDS) 312 return (-1); 313 return (0); 314 } 315 316 bool 317 __elfN(brand_inuse)(Elf_Brandinfo *entry) 318 { 319 struct proc *p; 320 bool rval = false; 321 322 sx_slock(&allproc_lock); 323 FOREACH_PROC_IN_SYSTEM(p) { 324 if (p->p_sysent == entry->sysvec) { 325 rval = true; 326 break; 327 } 328 } 329 sx_sunlock(&allproc_lock); 330 331 return (rval); 332 } 333 334 static Elf_Brandinfo * 335 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 336 int32_t *osrel, uint32_t *fctl0) 337 { 338 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 339 Elf_Brandinfo *bi, *bi_m; 340 bool ret, has_fctl0; 341 int i, interp_name_len; 342 343 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 344 345 /* 346 * We support four types of branding -- (1) the ELF EI_OSABI field 347 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 348 * branding w/in the ELF header, (3) path of the `interp_path' 349 * field, and (4) the ".note.ABI-tag" ELF section. 350 */ 351 352 /* Look for an ".note.ABI-tag" ELF section */ 353 bi_m = NULL; 354 for (i = 0; i < MAX_BRANDS; i++) { 355 bi = elf_brand_list[i]; 356 if (bi == NULL) 357 continue; 358 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 359 continue; 360 if (hdr->e_machine == bi->machine && (bi->flags & 361 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 362 has_fctl0 = false; 363 *fctl0 = 0; 364 *osrel = 0; 365 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 366 &has_fctl0, fctl0); 367 /* Give brand a chance to veto check_note's guess */ 368 if (ret && bi->header_supported) { 369 ret = bi->header_supported(imgp, osrel, 370 has_fctl0 ? fctl0 : NULL); 371 } 372 /* 373 * If note checker claimed the binary, but the 374 * interpreter path in the image does not 375 * match default one for the brand, try to 376 * search for other brands with the same 377 * interpreter. Either there is better brand 378 * with the right interpreter, or, failing 379 * this, we return first brand which accepted 380 * our note and, optionally, header. 381 */ 382 if (ret && bi_m == NULL && interp != NULL && 383 (bi->interp_path == NULL || 384 (strlen(bi->interp_path) + 1 != interp_name_len || 385 strncmp(interp, bi->interp_path, interp_name_len) 386 != 0))) { 387 bi_m = bi; 388 ret = 0; 389 } 390 if (ret) 391 return (bi); 392 } 393 } 394 if (bi_m != NULL) 395 return (bi_m); 396 397 /* If the executable has a brand, search for it in the brand list. */ 398 for (i = 0; i < MAX_BRANDS; i++) { 399 bi = elf_brand_list[i]; 400 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 401 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 402 continue; 403 if (hdr->e_machine == bi->machine && 404 (hdr->e_ident[EI_OSABI] == bi->brand || 405 (bi->compat_3_brand != NULL && 406 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 407 bi->compat_3_brand) == 0))) { 408 /* Looks good, but give brand a chance to veto */ 409 if (bi->header_supported == NULL || 410 bi->header_supported(imgp, NULL, NULL)) { 411 /* 412 * Again, prefer strictly matching 413 * interpreter path. 414 */ 415 if (interp_name_len == 0 && 416 bi->interp_path == NULL) 417 return (bi); 418 if (bi->interp_path != NULL && 419 strlen(bi->interp_path) + 1 == 420 interp_name_len && strncmp(interp, 421 bi->interp_path, interp_name_len) == 0) 422 return (bi); 423 if (bi_m == NULL) 424 bi_m = bi; 425 } 426 } 427 } 428 if (bi_m != NULL) 429 return (bi_m); 430 431 /* No known brand, see if the header is recognized by any brand */ 432 for (i = 0; i < MAX_BRANDS; i++) { 433 bi = elf_brand_list[i]; 434 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 435 bi->header_supported == NULL) 436 continue; 437 if (hdr->e_machine == bi->machine) { 438 ret = bi->header_supported(imgp, NULL, NULL); 439 if (ret) 440 return (bi); 441 } 442 } 443 444 /* Lacking a known brand, search for a recognized interpreter. */ 445 if (interp != NULL) { 446 for (i = 0; i < MAX_BRANDS; i++) { 447 bi = elf_brand_list[i]; 448 if (bi == NULL || (bi->flags & 449 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 450 != 0) 451 continue; 452 if (hdr->e_machine == bi->machine && 453 bi->interp_path != NULL && 454 /* ELF image p_filesz includes terminating zero */ 455 strlen(bi->interp_path) + 1 == interp_name_len && 456 strncmp(interp, bi->interp_path, interp_name_len) 457 == 0 && (bi->header_supported == NULL || 458 bi->header_supported(imgp, NULL, NULL))) 459 return (bi); 460 } 461 } 462 463 /* Lacking a recognized interpreter, try the default brand */ 464 for (i = 0; i < MAX_BRANDS; i++) { 465 bi = elf_brand_list[i]; 466 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 467 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 468 continue; 469 if (hdr->e_machine == bi->machine && 470 __elfN(fallback_brand) == bi->brand && 471 (bi->header_supported == NULL || 472 bi->header_supported(imgp, NULL, NULL))) 473 return (bi); 474 } 475 return (NULL); 476 } 477 478 static bool 479 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 480 { 481 return (hdr->e_phoff <= PAGE_SIZE && 482 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 483 } 484 485 static int 486 __elfN(check_header)(const Elf_Ehdr *hdr) 487 { 488 Elf_Brandinfo *bi; 489 int i; 490 491 if (!IS_ELF(*hdr) || 492 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 493 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 494 hdr->e_ident[EI_VERSION] != EV_CURRENT || 495 hdr->e_phentsize != sizeof(Elf_Phdr) || 496 hdr->e_version != ELF_TARG_VER) 497 return (ENOEXEC); 498 499 /* 500 * Make sure we have at least one brand for this machine. 501 */ 502 503 for (i = 0; i < MAX_BRANDS; i++) { 504 bi = elf_brand_list[i]; 505 if (bi != NULL && bi->machine == hdr->e_machine) 506 break; 507 } 508 if (i == MAX_BRANDS) 509 return (ENOEXEC); 510 511 return (0); 512 } 513 514 static int 515 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 516 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 517 { 518 struct sf_buf *sf; 519 int error; 520 vm_offset_t off; 521 522 /* 523 * Create the page if it doesn't exist yet. Ignore errors. 524 */ 525 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 526 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 527 528 /* 529 * Find the page from the underlying object. 530 */ 531 if (object != NULL) { 532 sf = vm_imgact_map_page(object, offset); 533 if (sf == NULL) 534 return (KERN_FAILURE); 535 off = offset - trunc_page(offset); 536 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 537 end - start); 538 vm_imgact_unmap_page(sf); 539 if (error != 0) 540 return (KERN_FAILURE); 541 } 542 543 return (KERN_SUCCESS); 544 } 545 546 static int 547 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 548 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 549 int cow) 550 { 551 struct sf_buf *sf; 552 vm_offset_t off; 553 vm_size_t sz; 554 int error, locked, rv; 555 556 if (start != trunc_page(start)) { 557 rv = __elfN(map_partial)(map, object, offset, start, 558 round_page(start), prot); 559 if (rv != KERN_SUCCESS) 560 return (rv); 561 offset += round_page(start) - start; 562 start = round_page(start); 563 } 564 if (end != round_page(end)) { 565 rv = __elfN(map_partial)(map, object, offset + 566 trunc_page(end) - start, trunc_page(end), end, prot); 567 if (rv != KERN_SUCCESS) 568 return (rv); 569 end = trunc_page(end); 570 } 571 if (start >= end) 572 return (KERN_SUCCESS); 573 if ((offset & PAGE_MASK) != 0) { 574 /* 575 * The mapping is not page aligned. This means that we have 576 * to copy the data. 577 */ 578 rv = vm_map_fixed(map, NULL, 0, start, end - start, 579 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 580 if (rv != KERN_SUCCESS) 581 return (rv); 582 if (object == NULL) 583 return (KERN_SUCCESS); 584 for (; start < end; start += sz) { 585 sf = vm_imgact_map_page(object, offset); 586 if (sf == NULL) 587 return (KERN_FAILURE); 588 off = offset - trunc_page(offset); 589 sz = end - start; 590 if (sz > PAGE_SIZE - off) 591 sz = PAGE_SIZE - off; 592 error = copyout((caddr_t)sf_buf_kva(sf) + off, 593 (caddr_t)start, sz); 594 vm_imgact_unmap_page(sf); 595 if (error != 0) 596 return (KERN_FAILURE); 597 offset += sz; 598 } 599 } else { 600 vm_object_reference(object); 601 rv = vm_map_fixed(map, object, offset, start, end - start, 602 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 603 (object != NULL ? MAP_VN_EXEC : 0)); 604 if (rv != KERN_SUCCESS) { 605 locked = VOP_ISLOCKED(imgp->vp); 606 VOP_UNLOCK(imgp->vp); 607 vm_object_deallocate(object); 608 vn_lock(imgp->vp, locked | LK_RETRY); 609 return (rv); 610 } else if (object != NULL) { 611 MPASS(imgp->vp->v_object == object); 612 VOP_SET_TEXT_CHECKED(imgp->vp); 613 } 614 } 615 return (KERN_SUCCESS); 616 } 617 618 static int 619 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 620 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 621 { 622 struct sf_buf *sf; 623 size_t map_len; 624 vm_map_t map; 625 vm_object_t object; 626 vm_offset_t map_addr; 627 int error, rv, cow; 628 size_t copy_len; 629 vm_ooffset_t file_addr; 630 631 /* 632 * It's necessary to fail if the filsz + offset taken from the 633 * header is greater than the actual file pager object's size. 634 * If we were to allow this, then the vm_map_find() below would 635 * walk right off the end of the file object and into the ether. 636 * 637 * While I'm here, might as well check for something else that 638 * is invalid: filsz cannot be greater than memsz. 639 */ 640 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 641 filsz > memsz) { 642 uprintf("elf_load_section: truncated ELF file\n"); 643 return (ENOEXEC); 644 } 645 646 object = imgp->object; 647 map = &imgp->proc->p_vmspace->vm_map; 648 map_addr = trunc_page((vm_offset_t)vmaddr); 649 file_addr = trunc_page(offset); 650 651 /* 652 * We have two choices. We can either clear the data in the last page 653 * of an oversized mapping, or we can start the anon mapping a page 654 * early and copy the initialized data into that first page. We 655 * choose the second. 656 */ 657 if (filsz == 0) 658 map_len = 0; 659 else if (memsz > filsz) 660 map_len = trunc_page(offset + filsz) - file_addr; 661 else 662 map_len = round_page(offset + filsz) - file_addr; 663 664 if (map_len != 0) { 665 /* cow flags: don't dump readonly sections in core */ 666 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 667 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 668 669 rv = __elfN(map_insert)(imgp, map, object, file_addr, 670 map_addr, map_addr + map_len, prot, cow); 671 if (rv != KERN_SUCCESS) 672 return (EINVAL); 673 674 /* we can stop now if we've covered it all */ 675 if (memsz == filsz) 676 return (0); 677 } 678 679 /* 680 * We have to get the remaining bit of the file into the first part 681 * of the oversized map segment. This is normally because the .data 682 * segment in the file is extended to provide bss. It's a neat idea 683 * to try and save a page, but it's a pain in the behind to implement. 684 */ 685 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 686 filsz); 687 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 688 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 689 690 /* This had damn well better be true! */ 691 if (map_len != 0) { 692 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 693 map_addr + map_len, prot, 0); 694 if (rv != KERN_SUCCESS) 695 return (EINVAL); 696 } 697 698 if (copy_len != 0) { 699 sf = vm_imgact_map_page(object, offset + filsz); 700 if (sf == NULL) 701 return (EIO); 702 703 /* send the page fragment to user space */ 704 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 705 copy_len); 706 vm_imgact_unmap_page(sf); 707 if (error != 0) 708 return (error); 709 } 710 711 /* 712 * Remove write access to the page if it was only granted by map_insert 713 * to allow copyout. 714 */ 715 if ((prot & VM_PROT_WRITE) == 0) 716 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 717 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 718 719 return (0); 720 } 721 722 static int 723 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 724 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 725 { 726 vm_prot_t prot; 727 u_long base_addr; 728 bool first; 729 int error, i; 730 731 ASSERT_VOP_LOCKED(imgp->vp, __func__); 732 733 base_addr = 0; 734 first = true; 735 736 for (i = 0; i < hdr->e_phnum; i++) { 737 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 738 continue; 739 740 /* Loadable segment */ 741 prot = __elfN(trans_prot)(phdr[i].p_flags); 742 error = __elfN(load_section)(imgp, phdr[i].p_offset, 743 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 744 phdr[i].p_memsz, phdr[i].p_filesz, prot); 745 if (error != 0) 746 return (error); 747 748 /* 749 * Establish the base address if this is the first segment. 750 */ 751 if (first) { 752 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 753 first = false; 754 } 755 } 756 757 if (base_addrp != NULL) 758 *base_addrp = base_addr; 759 760 return (0); 761 } 762 763 /* 764 * Load the file "file" into memory. It may be either a shared object 765 * or an executable. 766 * 767 * The "addr" reference parameter is in/out. On entry, it specifies 768 * the address where a shared object should be loaded. If the file is 769 * an executable, this value is ignored. On exit, "addr" specifies 770 * where the file was actually loaded. 771 * 772 * The "entry" reference parameter is out only. On exit, it specifies 773 * the entry point for the loaded file. 774 */ 775 static int 776 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 777 u_long *entry) 778 { 779 struct { 780 struct nameidata nd; 781 struct vattr attr; 782 struct image_params image_params; 783 } *tempdata; 784 const Elf_Ehdr *hdr = NULL; 785 const Elf_Phdr *phdr = NULL; 786 struct nameidata *nd; 787 struct vattr *attr; 788 struct image_params *imgp; 789 u_long rbase; 790 u_long base_addr = 0; 791 int error; 792 793 #ifdef CAPABILITY_MODE 794 /* 795 * XXXJA: This check can go away once we are sufficiently confident 796 * that the checks in namei() are correct. 797 */ 798 if (IN_CAPABILITY_MODE(curthread)) 799 return (ECAPMODE); 800 #endif 801 802 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 803 nd = &tempdata->nd; 804 attr = &tempdata->attr; 805 imgp = &tempdata->image_params; 806 807 /* 808 * Initialize part of the common data 809 */ 810 imgp->proc = p; 811 imgp->attr = attr; 812 813 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 814 UIO_SYSSPACE, file); 815 if ((error = namei(nd)) != 0) { 816 nd->ni_vp = NULL; 817 goto fail; 818 } 819 NDFREE_PNBUF(nd); 820 imgp->vp = nd->ni_vp; 821 822 /* 823 * Check permissions, modes, uid, etc on the file, and "open" it. 824 */ 825 error = exec_check_permissions(imgp); 826 if (error) 827 goto fail; 828 829 error = exec_map_first_page(imgp); 830 if (error) 831 goto fail; 832 833 imgp->object = nd->ni_vp->v_object; 834 835 hdr = (const Elf_Ehdr *)imgp->image_header; 836 if ((error = __elfN(check_header)(hdr)) != 0) 837 goto fail; 838 if (hdr->e_type == ET_DYN) 839 rbase = *addr; 840 else if (hdr->e_type == ET_EXEC) 841 rbase = 0; 842 else { 843 error = ENOEXEC; 844 goto fail; 845 } 846 847 /* Only support headers that fit within first page for now */ 848 if (!__elfN(phdr_in_zero_page)(hdr)) { 849 error = ENOEXEC; 850 goto fail; 851 } 852 853 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 854 if (!aligned(phdr, Elf_Addr)) { 855 error = ENOEXEC; 856 goto fail; 857 } 858 859 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 860 if (error != 0) 861 goto fail; 862 863 *addr = base_addr; 864 *entry = (unsigned long)hdr->e_entry + rbase; 865 866 fail: 867 if (imgp->firstpage) 868 exec_unmap_first_page(imgp); 869 870 if (nd->ni_vp) { 871 if (imgp->textset) 872 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 873 vput(nd->ni_vp); 874 } 875 free(tempdata, M_TEMP); 876 877 return (error); 878 } 879 880 /* 881 * Select randomized valid address in the map map, between minv and 882 * maxv, with specified alignment. The [minv, maxv) range must belong 883 * to the map. Note that function only allocates the address, it is 884 * up to caller to clamp maxv in a way that the final allocation 885 * length fit into the map. 886 * 887 * Result is returned in *resp, error code indicates that arguments 888 * did not pass sanity checks for overflow and range correctness. 889 */ 890 static int 891 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv, 892 u_int align, u_long *resp) 893 { 894 u_long rbase, res; 895 896 MPASS(vm_map_min(map) <= minv); 897 898 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) { 899 uprintf("Invalid ELF segments layout\n"); 900 return (ENOEXEC); 901 } 902 903 arc4rand(&rbase, sizeof(rbase), 0); 904 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 905 res &= ~((u_long)align - 1); 906 if (res >= maxv) 907 res -= align; 908 909 KASSERT(res >= minv, 910 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 911 res, minv, maxv, rbase)); 912 KASSERT(res < maxv, 913 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 914 res, maxv, minv, rbase)); 915 916 *resp = res; 917 return (0); 918 } 919 920 static int 921 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 922 const Elf_Phdr *phdr, u_long et_dyn_addr) 923 { 924 struct vmspace *vmspace; 925 const char *err_str; 926 u_long text_size, data_size, total_size, text_addr, data_addr; 927 u_long seg_size, seg_addr; 928 int i; 929 930 err_str = NULL; 931 text_size = data_size = total_size = text_addr = data_addr = 0; 932 933 for (i = 0; i < hdr->e_phnum; i++) { 934 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 935 continue; 936 937 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 938 seg_size = round_page(phdr[i].p_memsz + 939 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 940 941 /* 942 * Make the largest executable segment the official 943 * text segment and all others data. 944 * 945 * Note that obreak() assumes that data_addr + data_size == end 946 * of data load area, and the ELF file format expects segments 947 * to be sorted by address. If multiple data segments exist, 948 * the last one will be used. 949 */ 950 951 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 952 text_size = seg_size; 953 text_addr = seg_addr; 954 } else { 955 data_size = seg_size; 956 data_addr = seg_addr; 957 } 958 total_size += seg_size; 959 } 960 961 if (data_addr == 0 && data_size == 0) { 962 data_addr = text_addr; 963 data_size = text_size; 964 } 965 966 /* 967 * Check limits. It should be safe to check the 968 * limits after loading the segments since we do 969 * not actually fault in all the segments pages. 970 */ 971 PROC_LOCK(imgp->proc); 972 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 973 err_str = "Data segment size exceeds process limit"; 974 else if (text_size > maxtsiz) 975 err_str = "Text segment size exceeds system limit"; 976 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 977 err_str = "Total segment size exceeds process limit"; 978 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 979 err_str = "Data segment size exceeds resource limit"; 980 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 981 err_str = "Total segment size exceeds resource limit"; 982 PROC_UNLOCK(imgp->proc); 983 if (err_str != NULL) { 984 uprintf("%s\n", err_str); 985 return (ENOMEM); 986 } 987 988 vmspace = imgp->proc->p_vmspace; 989 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 990 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 991 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 992 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 993 994 return (0); 995 } 996 997 static int 998 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 999 char **interpp, bool *free_interpp) 1000 { 1001 struct thread *td; 1002 char *interp; 1003 int error, interp_name_len; 1004 1005 KASSERT(phdr->p_type == PT_INTERP, 1006 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 1007 ASSERT_VOP_LOCKED(imgp->vp, __func__); 1008 1009 td = curthread; 1010 1011 /* Path to interpreter */ 1012 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 1013 uprintf("Invalid PT_INTERP\n"); 1014 return (ENOEXEC); 1015 } 1016 1017 interp_name_len = phdr->p_filesz; 1018 if (phdr->p_offset > PAGE_SIZE || 1019 interp_name_len > PAGE_SIZE - phdr->p_offset) { 1020 /* 1021 * The vnode lock might be needed by the pagedaemon to 1022 * clean pages owned by the vnode. Do not allow sleep 1023 * waiting for memory with the vnode locked, instead 1024 * try non-sleepable allocation first, and if it 1025 * fails, go to the slow path were we drop the lock 1026 * and do M_WAITOK. A text reference prevents 1027 * modifications to the vnode content. 1028 */ 1029 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1030 if (interp == NULL) { 1031 VOP_UNLOCK(imgp->vp); 1032 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1033 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1034 } 1035 1036 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1037 interp_name_len, phdr->p_offset, 1038 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1039 NOCRED, NULL, td); 1040 if (error != 0) { 1041 free(interp, M_TEMP); 1042 uprintf("i/o error PT_INTERP %d\n", error); 1043 return (error); 1044 } 1045 interp[interp_name_len] = '\0'; 1046 1047 *interpp = interp; 1048 *free_interpp = true; 1049 return (0); 1050 } 1051 1052 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1053 if (interp[interp_name_len - 1] != '\0') { 1054 uprintf("Invalid PT_INTERP\n"); 1055 return (ENOEXEC); 1056 } 1057 1058 *interpp = interp; 1059 *free_interpp = false; 1060 return (0); 1061 } 1062 1063 static int 1064 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1065 const char *interp, u_long *addr, u_long *entry) 1066 { 1067 char *path; 1068 int error; 1069 1070 if (brand_info->emul_path != NULL && 1071 brand_info->emul_path[0] != '\0') { 1072 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1073 snprintf(path, MAXPATHLEN, "%s%s", 1074 brand_info->emul_path, interp); 1075 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1076 free(path, M_TEMP); 1077 if (error == 0) 1078 return (0); 1079 } 1080 1081 if (brand_info->interp_newpath != NULL && 1082 (brand_info->interp_path == NULL || 1083 strcmp(interp, brand_info->interp_path) == 0)) { 1084 error = __elfN(load_file)(imgp->proc, 1085 brand_info->interp_newpath, addr, entry); 1086 if (error == 0) 1087 return (0); 1088 } 1089 1090 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1091 if (error == 0) 1092 return (0); 1093 1094 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1095 return (error); 1096 } 1097 1098 /* 1099 * Impossible et_dyn_addr initial value indicating that the real base 1100 * must be calculated later with some randomization applied. 1101 */ 1102 #define ET_DYN_ADDR_RAND 1 1103 1104 static int 1105 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1106 { 1107 struct thread *td; 1108 const Elf_Ehdr *hdr; 1109 const Elf_Phdr *phdr; 1110 Elf_Auxargs *elf_auxargs; 1111 struct vmspace *vmspace; 1112 vm_map_t map; 1113 char *interp; 1114 Elf_Brandinfo *brand_info; 1115 struct sysentvec *sv; 1116 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1117 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc; 1118 uint32_t fctl0; 1119 int32_t osrel; 1120 bool free_interp; 1121 int error, i, n; 1122 1123 hdr = (const Elf_Ehdr *)imgp->image_header; 1124 1125 /* 1126 * Do we have a valid ELF header ? 1127 * 1128 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1129 * if particular brand doesn't support it. 1130 */ 1131 if (__elfN(check_header)(hdr) != 0 || 1132 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1133 return (-1); 1134 1135 /* 1136 * From here on down, we return an errno, not -1, as we've 1137 * detected an ELF file. 1138 */ 1139 1140 if (!__elfN(phdr_in_zero_page)(hdr)) { 1141 uprintf("Program headers not in the first page\n"); 1142 return (ENOEXEC); 1143 } 1144 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1145 if (!aligned(phdr, Elf_Addr)) { 1146 uprintf("Unaligned program headers\n"); 1147 return (ENOEXEC); 1148 } 1149 1150 n = error = 0; 1151 baddr = 0; 1152 osrel = 0; 1153 fctl0 = 0; 1154 entry = proghdr = 0; 1155 interp = NULL; 1156 free_interp = false; 1157 td = curthread; 1158 1159 /* 1160 * Somewhat arbitrary, limit accepted max alignment for the 1161 * loadable segment to the max supported superpage size. Too 1162 * large alignment requests are not useful and are indicators 1163 * of corrupted or outright malicious binary. 1164 */ 1165 maxalign = PAGE_SIZE; 1166 maxsalign = PAGE_SIZE * 1024; 1167 for (i = MAXPAGESIZES - 1; i > 0; i--) { 1168 if (pagesizes[i] > maxsalign) 1169 maxsalign = pagesizes[i]; 1170 } 1171 1172 mapsz = 0; 1173 1174 for (i = 0; i < hdr->e_phnum; i++) { 1175 switch (phdr[i].p_type) { 1176 case PT_LOAD: 1177 if (n == 0) 1178 baddr = phdr[i].p_vaddr; 1179 if (!powerof2(phdr[i].p_align) || 1180 phdr[i].p_align > maxsalign) { 1181 uprintf("Invalid segment alignment\n"); 1182 error = ENOEXEC; 1183 goto ret; 1184 } 1185 if (phdr[i].p_align > maxalign) 1186 maxalign = phdr[i].p_align; 1187 if (mapsz + phdr[i].p_memsz < mapsz) { 1188 uprintf("Mapsize overflow\n"); 1189 error = ENOEXEC; 1190 goto ret; 1191 } 1192 mapsz += phdr[i].p_memsz; 1193 n++; 1194 1195 /* 1196 * If this segment contains the program headers, 1197 * remember their virtual address for the AT_PHDR 1198 * aux entry. Static binaries don't usually include 1199 * a PT_PHDR entry. 1200 */ 1201 if (phdr[i].p_offset == 0 && 1202 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= 1203 phdr[i].p_filesz) 1204 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1205 break; 1206 case PT_INTERP: 1207 /* Path to interpreter */ 1208 if (interp != NULL) { 1209 uprintf("Multiple PT_INTERP headers\n"); 1210 error = ENOEXEC; 1211 goto ret; 1212 } 1213 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1214 &free_interp); 1215 if (error != 0) 1216 goto ret; 1217 break; 1218 case PT_GNU_STACK: 1219 if (__elfN(nxstack)) 1220 imgp->stack_prot = 1221 __elfN(trans_prot)(phdr[i].p_flags); 1222 imgp->stack_sz = phdr[i].p_memsz; 1223 break; 1224 case PT_PHDR: /* Program header table info */ 1225 proghdr = phdr[i].p_vaddr; 1226 break; 1227 } 1228 } 1229 1230 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1231 if (brand_info == NULL) { 1232 uprintf("ELF binary type \"%u\" not known.\n", 1233 hdr->e_ident[EI_OSABI]); 1234 error = ENOEXEC; 1235 goto ret; 1236 } 1237 sv = brand_info->sysvec; 1238 et_dyn_addr = 0; 1239 if (hdr->e_type == ET_DYN) { 1240 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1241 uprintf("Cannot execute shared object\n"); 1242 error = ENOEXEC; 1243 goto ret; 1244 } 1245 /* 1246 * Honour the base load address from the dso if it is 1247 * non-zero for some reason. 1248 */ 1249 if (baddr == 0) { 1250 if ((sv->sv_flags & SV_ASLR) == 0 || 1251 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1252 et_dyn_addr = __elfN(pie_base); 1253 else if ((__elfN(pie_aslr_enabled) && 1254 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1255 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1256 et_dyn_addr = ET_DYN_ADDR_RAND; 1257 else 1258 et_dyn_addr = __elfN(pie_base); 1259 } 1260 } 1261 1262 /* 1263 * Avoid a possible deadlock if the current address space is destroyed 1264 * and that address space maps the locked vnode. In the common case, 1265 * the locked vnode's v_usecount is decremented but remains greater 1266 * than zero. Consequently, the vnode lock is not needed by vrele(). 1267 * However, in cases where the vnode lock is external, such as nullfs, 1268 * v_usecount may become zero. 1269 * 1270 * The VV_TEXT flag prevents modifications to the executable while 1271 * the vnode is unlocked. 1272 */ 1273 VOP_UNLOCK(imgp->vp); 1274 1275 /* 1276 * Decide whether to enable randomization of user mappings. 1277 * First, reset user preferences for the setid binaries. 1278 * Then, account for the support of the randomization by the 1279 * ABI, by user preferences, and make special treatment for 1280 * PIE binaries. 1281 */ 1282 if (imgp->credential_setid) { 1283 PROC_LOCK(imgp->proc); 1284 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1285 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1286 PROC_UNLOCK(imgp->proc); 1287 } 1288 if ((sv->sv_flags & SV_ASLR) == 0 || 1289 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1290 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1291 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1292 ("et_dyn_addr == RAND and !ASLR")); 1293 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1294 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1295 et_dyn_addr == ET_DYN_ADDR_RAND) { 1296 imgp->map_flags |= MAP_ASLR; 1297 /* 1298 * If user does not care about sbrk, utilize the bss 1299 * grow region for mappings as well. We can select 1300 * the base for the image anywere and still not suffer 1301 * from the fragmentation. 1302 */ 1303 if (!__elfN(aslr_honor_sbrk) || 1304 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1305 imgp->map_flags |= MAP_ASLR_IGNSTART; 1306 if (__elfN(aslr_stack)) 1307 imgp->map_flags |= MAP_ASLR_STACK; 1308 } 1309 1310 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1311 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1312 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1313 imgp->map_flags |= MAP_WXORX; 1314 1315 error = exec_new_vmspace(imgp, sv); 1316 1317 imgp->proc->p_sysent = sv; 1318 imgp->proc->p_elf_brandinfo = brand_info; 1319 1320 vmspace = imgp->proc->p_vmspace; 1321 map = &vmspace->vm_map; 1322 maxv = sv->sv_usrstack; 1323 if ((imgp->map_flags & MAP_ASLR_STACK) == 0) 1324 maxv -= lim_max(td, RLIMIT_STACK); 1325 if (error == 0 && mapsz >= maxv - vm_map_min(map)) { 1326 uprintf("Excessive mapping size\n"); 1327 error = ENOEXEC; 1328 } 1329 1330 if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) { 1331 KASSERT((map->flags & MAP_ASLR) != 0, 1332 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1333 error = __CONCAT(rnd_, __elfN(base))(map, 1334 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1335 /* reserve half of the address space to interpreter */ 1336 maxv / 2, maxalign, &et_dyn_addr); 1337 } 1338 1339 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1340 if (error != 0) 1341 goto ret; 1342 1343 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1344 if (error != 0) 1345 goto ret; 1346 1347 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1348 if (error != 0) 1349 goto ret; 1350 1351 /* 1352 * We load the dynamic linker where a userland call 1353 * to mmap(0, ...) would put it. The rationale behind this 1354 * calculation is that it leaves room for the heap to grow to 1355 * its maximum allowed size. 1356 */ 1357 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1358 RLIMIT_DATA)); 1359 if ((map->flags & MAP_ASLR) != 0) { 1360 maxv1 = maxv / 2 + addr / 2; 1361 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1362 (MAXPAGESIZES > 1 && pagesizes[1] != 0) ? 1363 pagesizes[1] : pagesizes[0], &anon_loc); 1364 if (error != 0) 1365 goto ret; 1366 map->anon_loc = anon_loc; 1367 } else { 1368 map->anon_loc = addr; 1369 } 1370 1371 entry = (u_long)hdr->e_entry + et_dyn_addr; 1372 imgp->entry_addr = entry; 1373 1374 if (interp != NULL) { 1375 VOP_UNLOCK(imgp->vp); 1376 if ((map->flags & MAP_ASLR) != 0) { 1377 /* Assume that interpreter fits into 1/4 of AS */ 1378 maxv1 = maxv / 2 + addr / 2; 1379 error = __CONCAT(rnd_, __elfN(base))(map, addr, 1380 maxv1, PAGE_SIZE, &addr); 1381 } 1382 if (error == 0) { 1383 error = __elfN(load_interp)(imgp, brand_info, interp, 1384 &addr, &imgp->entry_addr); 1385 } 1386 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1387 if (error != 0) 1388 goto ret; 1389 } else 1390 addr = et_dyn_addr; 1391 1392 error = exec_map_stack(imgp); 1393 if (error != 0) 1394 goto ret; 1395 1396 /* 1397 * Construct auxargs table (used by the copyout_auxargs routine) 1398 */ 1399 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1400 if (elf_auxargs == NULL) { 1401 VOP_UNLOCK(imgp->vp); 1402 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1403 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1404 } 1405 elf_auxargs->execfd = -1; 1406 elf_auxargs->phdr = proghdr + et_dyn_addr; 1407 elf_auxargs->phent = hdr->e_phentsize; 1408 elf_auxargs->phnum = hdr->e_phnum; 1409 elf_auxargs->pagesz = PAGE_SIZE; 1410 elf_auxargs->base = addr; 1411 elf_auxargs->flags = 0; 1412 elf_auxargs->entry = entry; 1413 elf_auxargs->hdr_eflags = hdr->e_flags; 1414 1415 imgp->auxargs = elf_auxargs; 1416 imgp->interpreted = 0; 1417 imgp->reloc_base = addr; 1418 imgp->proc->p_osrel = osrel; 1419 imgp->proc->p_fctl0 = fctl0; 1420 imgp->proc->p_elf_flags = hdr->e_flags; 1421 1422 ret: 1423 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock"); 1424 if (free_interp) 1425 free(interp, M_TEMP); 1426 return (error); 1427 } 1428 1429 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1430 1431 int 1432 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1433 { 1434 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1435 Elf_Auxinfo *argarray, *pos; 1436 int error; 1437 1438 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1439 M_WAITOK | M_ZERO); 1440 1441 if (args->execfd != -1) 1442 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1443 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1444 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1445 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1446 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1447 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1448 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1449 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1450 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1451 if (imgp->execpathp != 0) 1452 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1453 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1454 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1455 if (imgp->canary != 0) { 1456 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1457 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1458 } 1459 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1460 if (imgp->pagesizes != 0) { 1461 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1462 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1463 } 1464 if (imgp->sysent->sv_timekeep_base != 0) { 1465 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1466 imgp->sysent->sv_timekeep_base); 1467 } 1468 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1469 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1470 imgp->sysent->sv_stackprot); 1471 if (imgp->sysent->sv_hwcap != NULL) 1472 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1473 if (imgp->sysent->sv_hwcap2 != NULL) 1474 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1475 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1476 ELF_BSDF_SIGFASTBLK : 0); 1477 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1478 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1479 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1480 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1481 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1482 if (imgp->sysent->sv_fxrng_gen_base != 0) 1483 AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base); 1484 if (imgp->sysent->sv_vdso_base != 0 && __elfN(vdso) != 0) 1485 AUXARGS_ENTRY(pos, AT_KPRELOAD, imgp->sysent->sv_vdso_base); 1486 AUXARGS_ENTRY(pos, AT_NULL, 0); 1487 1488 free(imgp->auxargs, M_TEMP); 1489 imgp->auxargs = NULL; 1490 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1491 1492 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1493 free(argarray, M_TEMP); 1494 return (error); 1495 } 1496 1497 int 1498 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1499 { 1500 Elf_Addr *base; 1501 1502 base = (Elf_Addr *)*stack_base; 1503 base--; 1504 if (elf_suword(base, imgp->args->argc) == -1) 1505 return (EFAULT); 1506 *stack_base = (uintptr_t)base; 1507 return (0); 1508 } 1509 1510 /* 1511 * Code for generating ELF core dumps. 1512 */ 1513 1514 typedef void (*segment_callback)(vm_map_entry_t, void *); 1515 1516 /* Closure for cb_put_phdr(). */ 1517 struct phdr_closure { 1518 Elf_Phdr *phdr; /* Program header to fill in */ 1519 Elf_Off offset; /* Offset of segment in core file */ 1520 }; 1521 1522 struct note_info { 1523 int type; /* Note type. */ 1524 struct regset *regset; /* Register set. */ 1525 outfunc_t outfunc; /* Output function. */ 1526 void *outarg; /* Argument for the output function. */ 1527 size_t outsize; /* Output size. */ 1528 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1529 }; 1530 1531 TAILQ_HEAD(note_info_list, note_info); 1532 1533 extern int compress_user_cores; 1534 extern int compress_user_cores_level; 1535 1536 static void cb_put_phdr(vm_map_entry_t, void *); 1537 static void cb_size_segment(vm_map_entry_t, void *); 1538 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1539 int); 1540 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1541 struct note_info_list *, size_t, int); 1542 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1543 1544 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1545 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1546 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1547 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1548 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1549 static void note_procstat_files(void *, struct sbuf *, size_t *); 1550 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1551 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1552 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1553 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1554 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1555 1556 static int 1557 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1558 { 1559 1560 return (core_write((struct coredump_params *)arg, base, len, offset, 1561 UIO_SYSSPACE, NULL)); 1562 } 1563 1564 int 1565 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1566 { 1567 struct ucred *cred = td->td_ucred; 1568 int compm, error = 0; 1569 struct sseg_closure seginfo; 1570 struct note_info_list notelst; 1571 struct coredump_params params; 1572 struct note_info *ninfo; 1573 void *hdr, *tmpbuf; 1574 size_t hdrsize, notesz, coresize; 1575 1576 hdr = NULL; 1577 tmpbuf = NULL; 1578 TAILQ_INIT(¬elst); 1579 1580 /* Size the program segments. */ 1581 __elfN(size_segments)(td, &seginfo, flags); 1582 1583 /* 1584 * Collect info about the core file header area. 1585 */ 1586 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1587 if (seginfo.count + 1 >= PN_XNUM) 1588 hdrsize += sizeof(Elf_Shdr); 1589 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1590 coresize = round_page(hdrsize + notesz) + seginfo.size; 1591 1592 /* Set up core dump parameters. */ 1593 params.offset = 0; 1594 params.active_cred = cred; 1595 params.file_cred = NOCRED; 1596 params.td = td; 1597 params.vp = vp; 1598 params.comp = NULL; 1599 1600 #ifdef RACCT 1601 if (racct_enable) { 1602 PROC_LOCK(td->td_proc); 1603 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1604 PROC_UNLOCK(td->td_proc); 1605 if (error != 0) { 1606 error = EFAULT; 1607 goto done; 1608 } 1609 } 1610 #endif 1611 if (coresize >= limit) { 1612 error = EFAULT; 1613 goto done; 1614 } 1615 1616 /* Create a compression stream if necessary. */ 1617 compm = compress_user_cores; 1618 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1619 compm == 0) 1620 compm = COMPRESS_GZIP; 1621 if (compm != 0) { 1622 params.comp = compressor_init(core_compressed_write, 1623 compm, CORE_BUF_SIZE, 1624 compress_user_cores_level, ¶ms); 1625 if (params.comp == NULL) { 1626 error = EFAULT; 1627 goto done; 1628 } 1629 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1630 } 1631 1632 /* 1633 * Allocate memory for building the header, fill it up, 1634 * and write it out following the notes. 1635 */ 1636 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1637 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1638 notesz, flags); 1639 1640 /* Write the contents of all of the writable segments. */ 1641 if (error == 0) { 1642 Elf_Phdr *php; 1643 off_t offset; 1644 int i; 1645 1646 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1647 offset = round_page(hdrsize + notesz); 1648 for (i = 0; i < seginfo.count; i++) { 1649 error = core_output((char *)(uintptr_t)php->p_vaddr, 1650 php->p_filesz, offset, ¶ms, tmpbuf); 1651 if (error != 0) 1652 break; 1653 offset += php->p_filesz; 1654 php++; 1655 } 1656 if (error == 0 && params.comp != NULL) 1657 error = compressor_flush(params.comp); 1658 } 1659 if (error) { 1660 log(LOG_WARNING, 1661 "Failed to write core file for process %s (error %d)\n", 1662 curproc->p_comm, error); 1663 } 1664 1665 done: 1666 free(tmpbuf, M_TEMP); 1667 if (params.comp != NULL) 1668 compressor_fini(params.comp); 1669 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1670 TAILQ_REMOVE(¬elst, ninfo, link); 1671 free(ninfo, M_TEMP); 1672 } 1673 if (hdr != NULL) 1674 free(hdr, M_TEMP); 1675 1676 return (error); 1677 } 1678 1679 /* 1680 * A callback for each_dumpable_segment() to write out the segment's 1681 * program header entry. 1682 */ 1683 static void 1684 cb_put_phdr(vm_map_entry_t entry, void *closure) 1685 { 1686 struct phdr_closure *phc = (struct phdr_closure *)closure; 1687 Elf_Phdr *phdr = phc->phdr; 1688 1689 phc->offset = round_page(phc->offset); 1690 1691 phdr->p_type = PT_LOAD; 1692 phdr->p_offset = phc->offset; 1693 phdr->p_vaddr = entry->start; 1694 phdr->p_paddr = 0; 1695 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1696 phdr->p_align = PAGE_SIZE; 1697 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1698 1699 phc->offset += phdr->p_filesz; 1700 phc->phdr++; 1701 } 1702 1703 /* 1704 * A callback for each_dumpable_segment() to gather information about 1705 * the number of segments and their total size. 1706 */ 1707 static void 1708 cb_size_segment(vm_map_entry_t entry, void *closure) 1709 { 1710 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1711 1712 ssc->count++; 1713 ssc->size += entry->end - entry->start; 1714 } 1715 1716 void 1717 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1718 int flags) 1719 { 1720 seginfo->count = 0; 1721 seginfo->size = 0; 1722 1723 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1724 } 1725 1726 /* 1727 * For each writable segment in the process's memory map, call the given 1728 * function with a pointer to the map entry and some arbitrary 1729 * caller-supplied data. 1730 */ 1731 static void 1732 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1733 int flags) 1734 { 1735 struct proc *p = td->td_proc; 1736 vm_map_t map = &p->p_vmspace->vm_map; 1737 vm_map_entry_t entry; 1738 vm_object_t backing_object, object; 1739 bool ignore_entry; 1740 1741 vm_map_lock_read(map); 1742 VM_MAP_ENTRY_FOREACH(entry, map) { 1743 /* 1744 * Don't dump inaccessible mappings, deal with legacy 1745 * coredump mode. 1746 * 1747 * Note that read-only segments related to the elf binary 1748 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1749 * need to arbitrarily ignore such segments. 1750 */ 1751 if ((flags & SVC_ALL) == 0) { 1752 if (elf_legacy_coredump) { 1753 if ((entry->protection & VM_PROT_RW) != 1754 VM_PROT_RW) 1755 continue; 1756 } else { 1757 if ((entry->protection & VM_PROT_ALL) == 0) 1758 continue; 1759 } 1760 } 1761 1762 /* 1763 * Dont include memory segment in the coredump if 1764 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1765 * madvise(2). Do not dump submaps (i.e. parts of the 1766 * kernel map). 1767 */ 1768 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1769 continue; 1770 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1771 (flags & SVC_ALL) == 0) 1772 continue; 1773 if ((object = entry->object.vm_object) == NULL) 1774 continue; 1775 1776 /* Ignore memory-mapped devices and such things. */ 1777 VM_OBJECT_RLOCK(object); 1778 while ((backing_object = object->backing_object) != NULL) { 1779 VM_OBJECT_RLOCK(backing_object); 1780 VM_OBJECT_RUNLOCK(object); 1781 object = backing_object; 1782 } 1783 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1784 VM_OBJECT_RUNLOCK(object); 1785 if (ignore_entry) 1786 continue; 1787 1788 (*func)(entry, closure); 1789 } 1790 vm_map_unlock_read(map); 1791 } 1792 1793 /* 1794 * Write the core file header to the file, including padding up to 1795 * the page boundary. 1796 */ 1797 static int 1798 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1799 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1800 int flags) 1801 { 1802 struct note_info *ninfo; 1803 struct sbuf *sb; 1804 int error; 1805 1806 /* Fill in the header. */ 1807 bzero(hdr, hdrsize); 1808 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1809 1810 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1811 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1812 sbuf_start_section(sb, NULL); 1813 sbuf_bcat(sb, hdr, hdrsize); 1814 TAILQ_FOREACH(ninfo, notelst, link) 1815 __elfN(putnote)(p->td, ninfo, sb); 1816 /* Align up to a page boundary for the program segments. */ 1817 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1818 error = sbuf_finish(sb); 1819 sbuf_delete(sb); 1820 1821 return (error); 1822 } 1823 1824 void 1825 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1826 size_t *sizep) 1827 { 1828 struct proc *p; 1829 struct thread *thr; 1830 size_t size; 1831 1832 p = td->td_proc; 1833 size = 0; 1834 1835 size += __elfN(register_note)(td, list, NT_PRPSINFO, 1836 __elfN(note_prpsinfo), p); 1837 1838 /* 1839 * To have the debugger select the right thread (LWP) as the initial 1840 * thread, we dump the state of the thread passed to us in td first. 1841 * This is the thread that causes the core dump and thus likely to 1842 * be the right thread one wants to have selected in the debugger. 1843 */ 1844 thr = td; 1845 while (thr != NULL) { 1846 size += __elfN(prepare_register_notes)(td, list, thr); 1847 size += __elfN(register_note)(td, list, -1, 1848 __elfN(note_threadmd), thr); 1849 1850 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1851 TAILQ_NEXT(thr, td_plist); 1852 if (thr == td) 1853 thr = TAILQ_NEXT(thr, td_plist); 1854 } 1855 1856 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1857 __elfN(note_procstat_proc), p); 1858 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1859 note_procstat_files, p); 1860 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1861 note_procstat_vmmap, p); 1862 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1863 note_procstat_groups, p); 1864 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1865 note_procstat_umask, p); 1866 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1867 note_procstat_rlimit, p); 1868 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1869 note_procstat_osrel, p); 1870 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1871 __elfN(note_procstat_psstrings), p); 1872 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1873 __elfN(note_procstat_auxv), p); 1874 1875 *sizep = size; 1876 } 1877 1878 void 1879 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1880 size_t notesz, int flags) 1881 { 1882 Elf_Ehdr *ehdr; 1883 Elf_Phdr *phdr; 1884 Elf_Shdr *shdr; 1885 struct phdr_closure phc; 1886 Elf_Brandinfo *bi; 1887 1888 ehdr = (Elf_Ehdr *)hdr; 1889 bi = td->td_proc->p_elf_brandinfo; 1890 1891 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1892 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1893 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1894 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1895 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1896 ehdr->e_ident[EI_DATA] = ELF_DATA; 1897 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1898 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1899 ehdr->e_ident[EI_ABIVERSION] = 0; 1900 ehdr->e_ident[EI_PAD] = 0; 1901 ehdr->e_type = ET_CORE; 1902 ehdr->e_machine = bi->machine; 1903 ehdr->e_version = EV_CURRENT; 1904 ehdr->e_entry = 0; 1905 ehdr->e_phoff = sizeof(Elf_Ehdr); 1906 ehdr->e_flags = td->td_proc->p_elf_flags; 1907 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1908 ehdr->e_phentsize = sizeof(Elf_Phdr); 1909 ehdr->e_shentsize = sizeof(Elf_Shdr); 1910 ehdr->e_shstrndx = SHN_UNDEF; 1911 if (numsegs + 1 < PN_XNUM) { 1912 ehdr->e_phnum = numsegs + 1; 1913 ehdr->e_shnum = 0; 1914 } else { 1915 ehdr->e_phnum = PN_XNUM; 1916 ehdr->e_shnum = 1; 1917 1918 ehdr->e_shoff = ehdr->e_phoff + 1919 (numsegs + 1) * ehdr->e_phentsize; 1920 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1921 ("e_shoff: %zu, hdrsize - shdr: %zu", 1922 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1923 1924 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1925 memset(shdr, 0, sizeof(*shdr)); 1926 /* 1927 * A special first section is used to hold large segment and 1928 * section counts. This was proposed by Sun Microsystems in 1929 * Solaris and has been adopted by Linux; the standard ELF 1930 * tools are already familiar with the technique. 1931 * 1932 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1933 * (or 12-7 depending on the version of the document) for more 1934 * details. 1935 */ 1936 shdr->sh_type = SHT_NULL; 1937 shdr->sh_size = ehdr->e_shnum; 1938 shdr->sh_link = ehdr->e_shstrndx; 1939 shdr->sh_info = numsegs + 1; 1940 } 1941 1942 /* 1943 * Fill in the program header entries. 1944 */ 1945 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1946 1947 /* The note segement. */ 1948 phdr->p_type = PT_NOTE; 1949 phdr->p_offset = hdrsize; 1950 phdr->p_vaddr = 0; 1951 phdr->p_paddr = 0; 1952 phdr->p_filesz = notesz; 1953 phdr->p_memsz = 0; 1954 phdr->p_flags = PF_R; 1955 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1956 phdr++; 1957 1958 /* All the writable segments from the program. */ 1959 phc.phdr = phdr; 1960 phc.offset = round_page(hdrsize + notesz); 1961 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1962 } 1963 1964 static size_t 1965 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list, 1966 struct regset *regset, struct thread *target_td) 1967 { 1968 const struct sysentvec *sv; 1969 struct note_info *ninfo; 1970 size_t size, notesize; 1971 1972 size = 0; 1973 if (!regset->get(regset, target_td, NULL, &size) || size == 0) 1974 return (0); 1975 1976 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1977 ninfo->type = regset->note; 1978 ninfo->regset = regset; 1979 ninfo->outarg = target_td; 1980 ninfo->outsize = size; 1981 TAILQ_INSERT_TAIL(list, ninfo, link); 1982 1983 sv = td->td_proc->p_sysent; 1984 notesize = sizeof(Elf_Note) + /* note header */ 1985 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 1986 /* note name */ 1987 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1988 1989 return (notesize); 1990 } 1991 1992 size_t 1993 __elfN(register_note)(struct thread *td, struct note_info_list *list, 1994 int type, outfunc_t out, void *arg) 1995 { 1996 const struct sysentvec *sv; 1997 struct note_info *ninfo; 1998 size_t size, notesize; 1999 2000 sv = td->td_proc->p_sysent; 2001 size = 0; 2002 out(arg, NULL, &size); 2003 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2004 ninfo->type = type; 2005 ninfo->outfunc = out; 2006 ninfo->outarg = arg; 2007 ninfo->outsize = size; 2008 TAILQ_INSERT_TAIL(list, ninfo, link); 2009 2010 if (type == -1) 2011 return (size); 2012 2013 notesize = sizeof(Elf_Note) + /* note header */ 2014 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2015 /* note name */ 2016 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2017 2018 return (notesize); 2019 } 2020 2021 static size_t 2022 append_note_data(const void *src, void *dst, size_t len) 2023 { 2024 size_t padded_len; 2025 2026 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2027 if (dst != NULL) { 2028 bcopy(src, dst, len); 2029 bzero((char *)dst + len, padded_len - len); 2030 } 2031 return (padded_len); 2032 } 2033 2034 size_t 2035 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2036 { 2037 Elf_Note *note; 2038 char *buf; 2039 size_t notesize; 2040 2041 buf = dst; 2042 if (buf != NULL) { 2043 note = (Elf_Note *)buf; 2044 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2045 note->n_descsz = size; 2046 note->n_type = type; 2047 buf += sizeof(*note); 2048 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2049 sizeof(FREEBSD_ABI_VENDOR)); 2050 append_note_data(src, buf, size); 2051 if (descp != NULL) 2052 *descp = buf; 2053 } 2054 2055 notesize = sizeof(Elf_Note) + /* note header */ 2056 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2057 /* note name */ 2058 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2059 2060 return (notesize); 2061 } 2062 2063 static void 2064 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 2065 { 2066 Elf_Note note; 2067 const struct sysentvec *sv; 2068 ssize_t old_len, sect_len; 2069 size_t new_len, descsz, i; 2070 2071 if (ninfo->type == -1) { 2072 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2073 return; 2074 } 2075 2076 sv = td->td_proc->p_sysent; 2077 2078 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 2079 note.n_descsz = ninfo->outsize; 2080 note.n_type = ninfo->type; 2081 2082 sbuf_bcat(sb, ¬e, sizeof(note)); 2083 sbuf_start_section(sb, &old_len); 2084 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 2085 strlen(sv->sv_elf_core_abi_vendor) + 1); 2086 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2087 if (note.n_descsz == 0) 2088 return; 2089 sbuf_start_section(sb, &old_len); 2090 if (ninfo->regset != NULL) { 2091 struct regset *regset = ninfo->regset; 2092 void *buf; 2093 2094 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK); 2095 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize); 2096 sbuf_bcat(sb, buf, ninfo->outsize); 2097 free(buf, M_TEMP); 2098 } else 2099 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2100 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2101 if (sect_len < 0) 2102 return; 2103 2104 new_len = (size_t)sect_len; 2105 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2106 if (new_len < descsz) { 2107 /* 2108 * It is expected that individual note emitters will correctly 2109 * predict their expected output size and fill up to that size 2110 * themselves, padding in a format-specific way if needed. 2111 * However, in case they don't, just do it here with zeros. 2112 */ 2113 for (i = 0; i < descsz - new_len; i++) 2114 sbuf_putc(sb, 0); 2115 } else if (new_len > descsz) { 2116 /* 2117 * We can't always truncate sb -- we may have drained some 2118 * of it already. 2119 */ 2120 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2121 "read it (%zu > %zu). Since it is longer than " 2122 "expected, this coredump's notes are corrupt. THIS " 2123 "IS A BUG in the note_procstat routine for type %u.\n", 2124 __func__, (unsigned)note.n_type, new_len, descsz, 2125 (unsigned)note.n_type)); 2126 } 2127 } 2128 2129 /* 2130 * Miscellaneous note out functions. 2131 */ 2132 2133 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2134 #include <compat/freebsd32/freebsd32.h> 2135 #include <compat/freebsd32/freebsd32_signal.h> 2136 2137 typedef struct prstatus32 elf_prstatus_t; 2138 typedef struct prpsinfo32 elf_prpsinfo_t; 2139 typedef struct fpreg32 elf_prfpregset_t; 2140 typedef struct fpreg32 elf_fpregset_t; 2141 typedef struct reg32 elf_gregset_t; 2142 typedef struct thrmisc32 elf_thrmisc_t; 2143 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t; 2144 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2145 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2146 typedef uint32_t elf_ps_strings_t; 2147 #else 2148 typedef prstatus_t elf_prstatus_t; 2149 typedef prpsinfo_t elf_prpsinfo_t; 2150 typedef prfpregset_t elf_prfpregset_t; 2151 typedef prfpregset_t elf_fpregset_t; 2152 typedef gregset_t elf_gregset_t; 2153 typedef thrmisc_t elf_thrmisc_t; 2154 typedef struct ptrace_lwpinfo elf_lwpinfo_t; 2155 #define ELF_KERN_PROC_MASK 0 2156 typedef struct kinfo_proc elf_kinfo_proc_t; 2157 typedef vm_offset_t elf_ps_strings_t; 2158 #endif 2159 2160 static void 2161 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2162 { 2163 struct sbuf sbarg; 2164 size_t len; 2165 char *cp, *end; 2166 struct proc *p; 2167 elf_prpsinfo_t *psinfo; 2168 int error; 2169 2170 p = arg; 2171 if (sb != NULL) { 2172 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2173 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2174 psinfo->pr_version = PRPSINFO_VERSION; 2175 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2176 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2177 PROC_LOCK(p); 2178 if (p->p_args != NULL) { 2179 len = sizeof(psinfo->pr_psargs) - 1; 2180 if (len > p->p_args->ar_length) 2181 len = p->p_args->ar_length; 2182 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2183 PROC_UNLOCK(p); 2184 error = 0; 2185 } else { 2186 _PHOLD(p); 2187 PROC_UNLOCK(p); 2188 sbuf_new(&sbarg, psinfo->pr_psargs, 2189 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2190 error = proc_getargv(curthread, p, &sbarg); 2191 PRELE(p); 2192 if (sbuf_finish(&sbarg) == 0) 2193 len = sbuf_len(&sbarg) - 1; 2194 else 2195 len = sizeof(psinfo->pr_psargs) - 1; 2196 sbuf_delete(&sbarg); 2197 } 2198 if (error || len == 0) 2199 strlcpy(psinfo->pr_psargs, p->p_comm, 2200 sizeof(psinfo->pr_psargs)); 2201 else { 2202 KASSERT(len < sizeof(psinfo->pr_psargs), 2203 ("len is too long: %zu vs %zu", len, 2204 sizeof(psinfo->pr_psargs))); 2205 cp = psinfo->pr_psargs; 2206 end = cp + len - 1; 2207 for (;;) { 2208 cp = memchr(cp, '\0', end - cp); 2209 if (cp == NULL) 2210 break; 2211 *cp = ' '; 2212 } 2213 } 2214 psinfo->pr_pid = p->p_pid; 2215 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2216 free(psinfo, M_TEMP); 2217 } 2218 *sizep = sizeof(*psinfo); 2219 } 2220 2221 static bool 2222 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf, 2223 size_t *sizep) 2224 { 2225 elf_prstatus_t *status; 2226 2227 if (buf != NULL) { 2228 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2229 __func__)); 2230 status = buf; 2231 memset(status, 0, *sizep); 2232 status->pr_version = PRSTATUS_VERSION; 2233 status->pr_statussz = sizeof(elf_prstatus_t); 2234 status->pr_gregsetsz = sizeof(elf_gregset_t); 2235 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2236 status->pr_osreldate = osreldate; 2237 status->pr_cursig = td->td_proc->p_sig; 2238 status->pr_pid = td->td_tid; 2239 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2240 fill_regs32(td, &status->pr_reg); 2241 #else 2242 fill_regs(td, &status->pr_reg); 2243 #endif 2244 } 2245 *sizep = sizeof(*status); 2246 return (true); 2247 } 2248 2249 static bool 2250 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf, 2251 size_t size) 2252 { 2253 elf_prstatus_t *status; 2254 2255 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__)); 2256 status = buf; 2257 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2258 set_regs32(td, &status->pr_reg); 2259 #else 2260 set_regs(td, &status->pr_reg); 2261 #endif 2262 return (true); 2263 } 2264 2265 static struct regset __elfN(regset_prstatus) = { 2266 .note = NT_PRSTATUS, 2267 .size = sizeof(elf_prstatus_t), 2268 .get = __elfN(get_prstatus), 2269 .set = __elfN(set_prstatus), 2270 }; 2271 ELF_REGSET(__elfN(regset_prstatus)); 2272 2273 static bool 2274 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf, 2275 size_t *sizep) 2276 { 2277 elf_prfpregset_t *fpregset; 2278 2279 if (buf != NULL) { 2280 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size", 2281 __func__)); 2282 fpregset = buf; 2283 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2284 fill_fpregs32(td, fpregset); 2285 #else 2286 fill_fpregs(td, fpregset); 2287 #endif 2288 } 2289 *sizep = sizeof(*fpregset); 2290 return (true); 2291 } 2292 2293 static bool 2294 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf, 2295 size_t size) 2296 { 2297 elf_prfpregset_t *fpregset; 2298 2299 fpregset = buf; 2300 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__)); 2301 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2302 set_fpregs32(td, fpregset); 2303 #else 2304 set_fpregs(td, fpregset); 2305 #endif 2306 return (true); 2307 } 2308 2309 static struct regset __elfN(regset_fpregset) = { 2310 .note = NT_FPREGSET, 2311 .size = sizeof(elf_prfpregset_t), 2312 .get = __elfN(get_fpregset), 2313 .set = __elfN(set_fpregset), 2314 }; 2315 ELF_REGSET(__elfN(regset_fpregset)); 2316 2317 static bool 2318 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf, 2319 size_t *sizep) 2320 { 2321 elf_thrmisc_t *thrmisc; 2322 2323 if (buf != NULL) { 2324 KASSERT(*sizep == sizeof(*thrmisc), 2325 ("%s: invalid size", __func__)); 2326 thrmisc = buf; 2327 bzero(thrmisc, sizeof(*thrmisc)); 2328 strcpy(thrmisc->pr_tname, td->td_name); 2329 } 2330 *sizep = sizeof(*thrmisc); 2331 return (true); 2332 } 2333 2334 static struct regset __elfN(regset_thrmisc) = { 2335 .note = NT_THRMISC, 2336 .size = sizeof(elf_thrmisc_t), 2337 .get = __elfN(get_thrmisc), 2338 }; 2339 ELF_REGSET(__elfN(regset_thrmisc)); 2340 2341 static bool 2342 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf, 2343 size_t *sizep) 2344 { 2345 elf_lwpinfo_t pl; 2346 size_t size; 2347 int structsize; 2348 2349 size = sizeof(structsize) + sizeof(pl); 2350 if (buf != NULL) { 2351 KASSERT(*sizep == size, ("%s: invalid size", __func__)); 2352 structsize = sizeof(pl); 2353 memcpy(buf, &structsize, sizeof(structsize)); 2354 bzero(&pl, sizeof(pl)); 2355 pl.pl_lwpid = td->td_tid; 2356 pl.pl_event = PL_EVENT_NONE; 2357 pl.pl_sigmask = td->td_sigmask; 2358 pl.pl_siglist = td->td_siglist; 2359 if (td->td_si.si_signo != 0) { 2360 pl.pl_event = PL_EVENT_SIGNAL; 2361 pl.pl_flags |= PL_FLAG_SI; 2362 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2363 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2364 #else 2365 pl.pl_siginfo = td->td_si; 2366 #endif 2367 } 2368 strcpy(pl.pl_tdname, td->td_name); 2369 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2370 memcpy((int *)buf + 1, &pl, sizeof(pl)); 2371 } 2372 *sizep = size; 2373 return (true); 2374 } 2375 2376 static struct regset __elfN(regset_lwpinfo) = { 2377 .note = NT_PTLWPINFO, 2378 .size = sizeof(int) + sizeof(elf_lwpinfo_t), 2379 .get = __elfN(get_lwpinfo), 2380 }; 2381 ELF_REGSET(__elfN(regset_lwpinfo)); 2382 2383 static size_t 2384 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list, 2385 struct thread *target_td) 2386 { 2387 struct sysentvec *sv = td->td_proc->p_sysent; 2388 struct regset **regsetp, **regset_end, *regset; 2389 size_t size; 2390 2391 size = 0; 2392 2393 /* NT_PRSTATUS must be the first register set note. */ 2394 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus), 2395 target_td); 2396 2397 regsetp = sv->sv_regset_begin; 2398 if (regsetp == NULL) { 2399 /* XXX: This shouldn't be true for any FreeBSD ABIs. */ 2400 size += __elfN(register_regset_note)(td, list, 2401 &__elfN(regset_fpregset), target_td); 2402 return (size); 2403 } 2404 regset_end = sv->sv_regset_end; 2405 MPASS(regset_end != NULL); 2406 for (; regsetp < regset_end; regsetp++) { 2407 regset = *regsetp; 2408 if (regset->note == NT_PRSTATUS) 2409 continue; 2410 size += __elfN(register_regset_note)(td, list, regset, 2411 target_td); 2412 } 2413 return (size); 2414 } 2415 2416 /* 2417 * Allow for MD specific notes, as well as any MD 2418 * specific preparations for writing MI notes. 2419 */ 2420 static void 2421 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2422 { 2423 struct thread *td; 2424 void *buf; 2425 size_t size; 2426 2427 td = (struct thread *)arg; 2428 size = *sizep; 2429 if (size != 0 && sb != NULL) 2430 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2431 else 2432 buf = NULL; 2433 size = 0; 2434 __elfN(dump_thread)(td, buf, &size); 2435 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2436 if (size != 0 && sb != NULL) 2437 sbuf_bcat(sb, buf, size); 2438 free(buf, M_TEMP); 2439 *sizep = size; 2440 } 2441 2442 #ifdef KINFO_PROC_SIZE 2443 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2444 #endif 2445 2446 static void 2447 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2448 { 2449 struct proc *p; 2450 size_t size; 2451 int structsize; 2452 2453 p = arg; 2454 size = sizeof(structsize) + p->p_numthreads * 2455 sizeof(elf_kinfo_proc_t); 2456 2457 if (sb != NULL) { 2458 KASSERT(*sizep == size, ("invalid size")); 2459 structsize = sizeof(elf_kinfo_proc_t); 2460 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2461 sx_slock(&proctree_lock); 2462 PROC_LOCK(p); 2463 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2464 sx_sunlock(&proctree_lock); 2465 } 2466 *sizep = size; 2467 } 2468 2469 #ifdef KINFO_FILE_SIZE 2470 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2471 #endif 2472 2473 static void 2474 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2475 { 2476 struct proc *p; 2477 size_t size, sect_sz, i; 2478 ssize_t start_len, sect_len; 2479 int structsize, filedesc_flags; 2480 2481 if (coredump_pack_fileinfo) 2482 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2483 else 2484 filedesc_flags = 0; 2485 2486 p = arg; 2487 structsize = sizeof(struct kinfo_file); 2488 if (sb == NULL) { 2489 size = 0; 2490 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2491 sbuf_set_drain(sb, sbuf_count_drain, &size); 2492 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2493 PROC_LOCK(p); 2494 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2495 sbuf_finish(sb); 2496 sbuf_delete(sb); 2497 *sizep = size; 2498 } else { 2499 sbuf_start_section(sb, &start_len); 2500 2501 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2502 PROC_LOCK(p); 2503 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2504 filedesc_flags); 2505 2506 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2507 if (sect_len < 0) 2508 return; 2509 sect_sz = sect_len; 2510 2511 KASSERT(sect_sz <= *sizep, 2512 ("kern_proc_filedesc_out did not respect maxlen; " 2513 "requested %zu, got %zu", *sizep - sizeof(structsize), 2514 sect_sz - sizeof(structsize))); 2515 2516 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2517 sbuf_putc(sb, 0); 2518 } 2519 } 2520 2521 #ifdef KINFO_VMENTRY_SIZE 2522 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2523 #endif 2524 2525 static void 2526 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2527 { 2528 struct proc *p; 2529 size_t size; 2530 int structsize, vmmap_flags; 2531 2532 if (coredump_pack_vmmapinfo) 2533 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2534 else 2535 vmmap_flags = 0; 2536 2537 p = arg; 2538 structsize = sizeof(struct kinfo_vmentry); 2539 if (sb == NULL) { 2540 size = 0; 2541 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2542 sbuf_set_drain(sb, sbuf_count_drain, &size); 2543 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2544 PROC_LOCK(p); 2545 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2546 sbuf_finish(sb); 2547 sbuf_delete(sb); 2548 *sizep = size; 2549 } else { 2550 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2551 PROC_LOCK(p); 2552 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2553 vmmap_flags); 2554 } 2555 } 2556 2557 static void 2558 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2559 { 2560 struct proc *p; 2561 size_t size; 2562 int structsize; 2563 2564 p = arg; 2565 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2566 if (sb != NULL) { 2567 KASSERT(*sizep == size, ("invalid size")); 2568 structsize = sizeof(gid_t); 2569 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2570 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2571 sizeof(gid_t)); 2572 } 2573 *sizep = size; 2574 } 2575 2576 static void 2577 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2578 { 2579 struct proc *p; 2580 size_t size; 2581 int structsize; 2582 2583 p = arg; 2584 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2585 if (sb != NULL) { 2586 KASSERT(*sizep == size, ("invalid size")); 2587 structsize = sizeof(p->p_pd->pd_cmask); 2588 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2589 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2590 } 2591 *sizep = size; 2592 } 2593 2594 static void 2595 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2596 { 2597 struct proc *p; 2598 struct rlimit rlim[RLIM_NLIMITS]; 2599 size_t size; 2600 int structsize, i; 2601 2602 p = arg; 2603 size = sizeof(structsize) + sizeof(rlim); 2604 if (sb != NULL) { 2605 KASSERT(*sizep == size, ("invalid size")); 2606 structsize = sizeof(rlim); 2607 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2608 PROC_LOCK(p); 2609 for (i = 0; i < RLIM_NLIMITS; i++) 2610 lim_rlimit_proc(p, i, &rlim[i]); 2611 PROC_UNLOCK(p); 2612 sbuf_bcat(sb, rlim, sizeof(rlim)); 2613 } 2614 *sizep = size; 2615 } 2616 2617 static void 2618 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2619 { 2620 struct proc *p; 2621 size_t size; 2622 int structsize; 2623 2624 p = arg; 2625 size = sizeof(structsize) + sizeof(p->p_osrel); 2626 if (sb != NULL) { 2627 KASSERT(*sizep == size, ("invalid size")); 2628 structsize = sizeof(p->p_osrel); 2629 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2630 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2631 } 2632 *sizep = size; 2633 } 2634 2635 static void 2636 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2637 { 2638 struct proc *p; 2639 elf_ps_strings_t ps_strings; 2640 size_t size; 2641 int structsize; 2642 2643 p = arg; 2644 size = sizeof(structsize) + sizeof(ps_strings); 2645 if (sb != NULL) { 2646 KASSERT(*sizep == size, ("invalid size")); 2647 structsize = sizeof(ps_strings); 2648 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2649 ps_strings = PTROUT(PROC_PS_STRINGS(p)); 2650 #else 2651 ps_strings = PROC_PS_STRINGS(p); 2652 #endif 2653 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2654 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2655 } 2656 *sizep = size; 2657 } 2658 2659 static void 2660 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2661 { 2662 struct proc *p; 2663 size_t size; 2664 int structsize; 2665 2666 p = arg; 2667 if (sb == NULL) { 2668 size = 0; 2669 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2670 SBUF_FIXEDLEN); 2671 sbuf_set_drain(sb, sbuf_count_drain, &size); 2672 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2673 PHOLD(p); 2674 proc_getauxv(curthread, p, sb); 2675 PRELE(p); 2676 sbuf_finish(sb); 2677 sbuf_delete(sb); 2678 *sizep = size; 2679 } else { 2680 structsize = sizeof(Elf_Auxinfo); 2681 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2682 PHOLD(p); 2683 proc_getauxv(curthread, p, sb); 2684 PRELE(p); 2685 } 2686 } 2687 2688 static bool 2689 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2690 const char *note_vendor, const Elf_Phdr *pnote, 2691 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2692 { 2693 const Elf_Note *note, *note0, *note_end; 2694 const char *note_name; 2695 char *buf; 2696 int i, error; 2697 bool res; 2698 2699 /* We need some limit, might as well use PAGE_SIZE. */ 2700 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2701 return (false); 2702 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2703 if (pnote->p_offset > PAGE_SIZE || 2704 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2705 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2706 if (buf == NULL) { 2707 VOP_UNLOCK(imgp->vp); 2708 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2709 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2710 } 2711 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2712 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2713 curthread->td_ucred, NOCRED, NULL, curthread); 2714 if (error != 0) { 2715 uprintf("i/o error PT_NOTE\n"); 2716 goto retf; 2717 } 2718 note = note0 = (const Elf_Note *)buf; 2719 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2720 } else { 2721 note = note0 = (const Elf_Note *)(imgp->image_header + 2722 pnote->p_offset); 2723 note_end = (const Elf_Note *)(imgp->image_header + 2724 pnote->p_offset + pnote->p_filesz); 2725 buf = NULL; 2726 } 2727 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2728 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2729 (const char *)note < sizeof(Elf_Note)) { 2730 goto retf; 2731 } 2732 if (note->n_namesz != checknote->n_namesz || 2733 note->n_descsz != checknote->n_descsz || 2734 note->n_type != checknote->n_type) 2735 goto nextnote; 2736 note_name = (const char *)(note + 1); 2737 if (note_name + checknote->n_namesz >= 2738 (const char *)note_end || strncmp(note_vendor, 2739 note_name, checknote->n_namesz) != 0) 2740 goto nextnote; 2741 2742 if (cb(note, cb_arg, &res)) 2743 goto ret; 2744 nextnote: 2745 note = (const Elf_Note *)((const char *)(note + 1) + 2746 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2747 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2748 } 2749 retf: 2750 res = false; 2751 ret: 2752 free(buf, M_TEMP); 2753 return (res); 2754 } 2755 2756 struct brandnote_cb_arg { 2757 Elf_Brandnote *brandnote; 2758 int32_t *osrel; 2759 }; 2760 2761 static bool 2762 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2763 { 2764 struct brandnote_cb_arg *arg; 2765 2766 arg = arg0; 2767 2768 /* 2769 * Fetch the osreldate for binary from the ELF OSABI-note if 2770 * necessary. 2771 */ 2772 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2773 arg->brandnote->trans_osrel != NULL ? 2774 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2775 2776 return (true); 2777 } 2778 2779 static Elf_Note fctl_note = { 2780 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2781 .n_descsz = sizeof(uint32_t), 2782 .n_type = NT_FREEBSD_FEATURE_CTL, 2783 }; 2784 2785 struct fctl_cb_arg { 2786 bool *has_fctl0; 2787 uint32_t *fctl0; 2788 }; 2789 2790 static bool 2791 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2792 { 2793 struct fctl_cb_arg *arg; 2794 const Elf32_Word *desc; 2795 uintptr_t p; 2796 2797 arg = arg0; 2798 p = (uintptr_t)(note + 1); 2799 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2800 desc = (const Elf32_Word *)p; 2801 *arg->has_fctl0 = true; 2802 *arg->fctl0 = desc[0]; 2803 *res = true; 2804 return (true); 2805 } 2806 2807 /* 2808 * Try to find the appropriate ABI-note section for checknote, fetch 2809 * the osreldate and feature control flags for binary from the ELF 2810 * OSABI-note. Only the first page of the image is searched, the same 2811 * as for headers. 2812 */ 2813 static bool 2814 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2815 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2816 { 2817 const Elf_Phdr *phdr; 2818 const Elf_Ehdr *hdr; 2819 struct brandnote_cb_arg b_arg; 2820 struct fctl_cb_arg f_arg; 2821 int i, j; 2822 2823 hdr = (const Elf_Ehdr *)imgp->image_header; 2824 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2825 b_arg.brandnote = brandnote; 2826 b_arg.osrel = osrel; 2827 f_arg.has_fctl0 = has_fctl0; 2828 f_arg.fctl0 = fctl0; 2829 2830 for (i = 0; i < hdr->e_phnum; i++) { 2831 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2832 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2833 &b_arg)) { 2834 for (j = 0; j < hdr->e_phnum; j++) { 2835 if (phdr[j].p_type == PT_NOTE && 2836 __elfN(parse_notes)(imgp, &fctl_note, 2837 FREEBSD_ABI_VENDOR, &phdr[j], 2838 note_fctl_cb, &f_arg)) 2839 break; 2840 } 2841 return (true); 2842 } 2843 } 2844 return (false); 2845 2846 } 2847 2848 /* 2849 * Tell kern_execve.c about it, with a little help from the linker. 2850 */ 2851 static struct execsw __elfN(execsw) = { 2852 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2853 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2854 }; 2855 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2856 2857 static vm_prot_t 2858 __elfN(trans_prot)(Elf_Word flags) 2859 { 2860 vm_prot_t prot; 2861 2862 prot = 0; 2863 if (flags & PF_X) 2864 prot |= VM_PROT_EXECUTE; 2865 if (flags & PF_W) 2866 prot |= VM_PROT_WRITE; 2867 if (flags & PF_R) 2868 prot |= VM_PROT_READ; 2869 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2870 if (i386_read_exec && (flags & PF_R)) 2871 prot |= VM_PROT_EXECUTE; 2872 #endif 2873 return (prot); 2874 } 2875 2876 static Elf_Word 2877 __elfN(untrans_prot)(vm_prot_t prot) 2878 { 2879 Elf_Word flags; 2880 2881 flags = 0; 2882 if (prot & VM_PROT_EXECUTE) 2883 flags |= PF_X; 2884 if (prot & VM_PROT_READ) 2885 flags |= PF_R; 2886 if (prot & VM_PROT_WRITE) 2887 flags |= PF_W; 2888 return (flags); 2889 } 2890