xref: /freebsd/sys/kern/imgact_elf.c (revision 643ac419fafba89f5adda0e0ea75b538727453fb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_capsicum.h"
38 
39 #include <sys/param.h>
40 #include <sys/capsicum.h>
41 #include <sys/compressor.h>
42 #include <sys/exec.h>
43 #include <sys/fcntl.h>
44 #include <sys/imgact.h>
45 #include <sys/imgact_elf.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/mman.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/ptrace.h>
56 #include <sys/racct.h>
57 #include <sys/reg.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sf_buf.h>
62 #include <sys/smp.h>
63 #include <sys/systm.h>
64 #include <sys/signalvar.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscall.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/vnode.h>
71 #include <sys/syslog.h>
72 #include <sys/eventhandler.h>
73 #include <sys/user.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/elf.h>
84 #include <machine/md_var.h>
85 
86 #define ELF_NOTE_ROUNDSIZE	4
87 #define OLD_EI_BRAND	8
88 
89 static int __elfN(check_header)(const Elf_Ehdr *hdr);
90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
91     const char *interp, int32_t *osrel, uint32_t *fctl0);
92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
93     u_long *entry);
94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
95     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot);
96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
98     int32_t *osrel);
99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
100 static bool __elfN(check_note)(struct image_params *imgp,
101     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
102     uint32_t *fctl0);
103 static vm_prot_t __elfN(trans_prot)(Elf_Word);
104 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
105 static size_t __elfN(prepare_register_notes)(struct thread *td,
106     struct note_info_list *list, struct thread *target_td);
107 
108 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
109     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
110     "");
111 
112 int __elfN(fallback_brand) = -1;
113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
114     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
115     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
116 
117 static int elf_legacy_coredump = 0;
118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
119     &elf_legacy_coredump, 0,
120     "include all and only RW pages in core dumps");
121 
122 int __elfN(nxstack) =
123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
124     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \
125     defined(__riscv)
126 	1;
127 #else
128 	0;
129 #endif
130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
131     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
132     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
133 
134 #if defined(__amd64__)
135 static int __elfN(vdso) = 1;
136 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
137     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
138     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
139 #else
140 static int __elfN(vdso) = 0;
141 #endif
142 
143 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
144 int i386_read_exec = 0;
145 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
146     "enable execution from readable segments");
147 #endif
148 
149 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
150 static int
151 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
152 {
153 	u_long val;
154 	int error;
155 
156 	val = __elfN(pie_base);
157 	error = sysctl_handle_long(oidp, &val, 0, req);
158 	if (error != 0 || req->newptr == NULL)
159 		return (error);
160 	if ((val & PAGE_MASK) != 0)
161 		return (EINVAL);
162 	__elfN(pie_base) = val;
163 	return (0);
164 }
165 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
166     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
167     sysctl_pie_base, "LU",
168     "PIE load base without randomization");
169 
170 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "");
173 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
174 
175 /*
176  * While for 64-bit machines ASLR works properly, there are
177  * still some problems when using 32-bit architectures. For this
178  * reason ASLR is only enabled by default when running native
179  * 64-bit non-PIE executables.
180  */
181 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
182 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
183     &__elfN(aslr_enabled), 0,
184     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
185     ": enable address map randomization");
186 
187 /*
188  * Enable ASLR only for 64-bit PIE binaries by default.
189  */
190 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
191 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
192     &__elfN(pie_aslr_enabled), 0,
193     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
194     ": enable address map randomization for PIE binaries");
195 
196 /*
197  * Sbrk is now deprecated and it can be assumed, that in most
198  * cases it will not be used anyway. This setting is valid only
199  * for the ASLR enabled and allows for utilizing the bss grow region.
200  */
201 static int __elfN(aslr_honor_sbrk) = 0;
202 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
203     &__elfN(aslr_honor_sbrk), 0,
204     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
205 
206 static int __elfN(aslr_stack) = 1;
207 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
208     &__elfN(aslr_stack), 0,
209     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
210     ": enable stack address randomization");
211 
212 static int __elfN(sigfastblock) = 1;
213 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
214     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
215     "enable sigfastblock for new processes");
216 
217 static bool __elfN(allow_wx) = true;
218 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
219     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
220     "Allow pages to be mapped simultaneously writable and executable");
221 
222 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
223 
224 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
225 
226 Elf_Brandnote __elfN(freebsd_brandnote) = {
227 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
228 	.hdr.n_descsz	= sizeof(int32_t),
229 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
230 	.vendor		= FREEBSD_ABI_VENDOR,
231 	.flags		= BN_TRANSLATE_OSREL,
232 	.trans_osrel	= __elfN(freebsd_trans_osrel)
233 };
234 
235 static bool
236 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
237 {
238 	uintptr_t p;
239 
240 	p = (uintptr_t)(note + 1);
241 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
242 	*osrel = *(const int32_t *)(p);
243 
244 	return (true);
245 }
246 
247 static const char GNU_ABI_VENDOR[] = "GNU";
248 static int GNU_KFREEBSD_ABI_DESC = 3;
249 
250 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
251 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
252 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
253 	.hdr.n_type	= 1,
254 	.vendor		= GNU_ABI_VENDOR,
255 	.flags		= BN_TRANSLATE_OSREL,
256 	.trans_osrel	= kfreebsd_trans_osrel
257 };
258 
259 static bool
260 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
261 {
262 	const Elf32_Word *desc;
263 	uintptr_t p;
264 
265 	p = (uintptr_t)(note + 1);
266 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
267 
268 	desc = (const Elf32_Word *)p;
269 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
270 		return (false);
271 
272 	/*
273 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
274 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
275 	 */
276 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
277 
278 	return (true);
279 }
280 
281 int
282 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
283 {
284 	int i;
285 
286 	for (i = 0; i < MAX_BRANDS; i++) {
287 		if (elf_brand_list[i] == NULL) {
288 			elf_brand_list[i] = entry;
289 			break;
290 		}
291 	}
292 	if (i == MAX_BRANDS) {
293 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
294 			__func__, entry);
295 		return (-1);
296 	}
297 	return (0);
298 }
299 
300 int
301 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
302 {
303 	int i;
304 
305 	for (i = 0; i < MAX_BRANDS; i++) {
306 		if (elf_brand_list[i] == entry) {
307 			elf_brand_list[i] = NULL;
308 			break;
309 		}
310 	}
311 	if (i == MAX_BRANDS)
312 		return (-1);
313 	return (0);
314 }
315 
316 bool
317 __elfN(brand_inuse)(Elf_Brandinfo *entry)
318 {
319 	struct proc *p;
320 	bool rval = false;
321 
322 	sx_slock(&allproc_lock);
323 	FOREACH_PROC_IN_SYSTEM(p) {
324 		if (p->p_sysent == entry->sysvec) {
325 			rval = true;
326 			break;
327 		}
328 	}
329 	sx_sunlock(&allproc_lock);
330 
331 	return (rval);
332 }
333 
334 static Elf_Brandinfo *
335 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
336     int32_t *osrel, uint32_t *fctl0)
337 {
338 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
339 	Elf_Brandinfo *bi, *bi_m;
340 	bool ret, has_fctl0;
341 	int i, interp_name_len;
342 
343 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
344 
345 	/*
346 	 * We support four types of branding -- (1) the ELF EI_OSABI field
347 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
348 	 * branding w/in the ELF header, (3) path of the `interp_path'
349 	 * field, and (4) the ".note.ABI-tag" ELF section.
350 	 */
351 
352 	/* Look for an ".note.ABI-tag" ELF section */
353 	bi_m = NULL;
354 	for (i = 0; i < MAX_BRANDS; i++) {
355 		bi = elf_brand_list[i];
356 		if (bi == NULL)
357 			continue;
358 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
359 			continue;
360 		if (hdr->e_machine == bi->machine && (bi->flags &
361 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
362 			has_fctl0 = false;
363 			*fctl0 = 0;
364 			*osrel = 0;
365 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
366 			    &has_fctl0, fctl0);
367 			/* Give brand a chance to veto check_note's guess */
368 			if (ret && bi->header_supported) {
369 				ret = bi->header_supported(imgp, osrel,
370 				    has_fctl0 ? fctl0 : NULL);
371 			}
372 			/*
373 			 * If note checker claimed the binary, but the
374 			 * interpreter path in the image does not
375 			 * match default one for the brand, try to
376 			 * search for other brands with the same
377 			 * interpreter.  Either there is better brand
378 			 * with the right interpreter, or, failing
379 			 * this, we return first brand which accepted
380 			 * our note and, optionally, header.
381 			 */
382 			if (ret && bi_m == NULL && interp != NULL &&
383 			    (bi->interp_path == NULL ||
384 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
385 			    strncmp(interp, bi->interp_path, interp_name_len)
386 			    != 0))) {
387 				bi_m = bi;
388 				ret = 0;
389 			}
390 			if (ret)
391 				return (bi);
392 		}
393 	}
394 	if (bi_m != NULL)
395 		return (bi_m);
396 
397 	/* If the executable has a brand, search for it in the brand list. */
398 	for (i = 0; i < MAX_BRANDS; i++) {
399 		bi = elf_brand_list[i];
400 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
401 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
402 			continue;
403 		if (hdr->e_machine == bi->machine &&
404 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
405 		    (bi->compat_3_brand != NULL &&
406 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
407 		    bi->compat_3_brand) == 0))) {
408 			/* Looks good, but give brand a chance to veto */
409 			if (bi->header_supported == NULL ||
410 			    bi->header_supported(imgp, NULL, NULL)) {
411 				/*
412 				 * Again, prefer strictly matching
413 				 * interpreter path.
414 				 */
415 				if (interp_name_len == 0 &&
416 				    bi->interp_path == NULL)
417 					return (bi);
418 				if (bi->interp_path != NULL &&
419 				    strlen(bi->interp_path) + 1 ==
420 				    interp_name_len && strncmp(interp,
421 				    bi->interp_path, interp_name_len) == 0)
422 					return (bi);
423 				if (bi_m == NULL)
424 					bi_m = bi;
425 			}
426 		}
427 	}
428 	if (bi_m != NULL)
429 		return (bi_m);
430 
431 	/* No known brand, see if the header is recognized by any brand */
432 	for (i = 0; i < MAX_BRANDS; i++) {
433 		bi = elf_brand_list[i];
434 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
435 		    bi->header_supported == NULL)
436 			continue;
437 		if (hdr->e_machine == bi->machine) {
438 			ret = bi->header_supported(imgp, NULL, NULL);
439 			if (ret)
440 				return (bi);
441 		}
442 	}
443 
444 	/* Lacking a known brand, search for a recognized interpreter. */
445 	if (interp != NULL) {
446 		for (i = 0; i < MAX_BRANDS; i++) {
447 			bi = elf_brand_list[i];
448 			if (bi == NULL || (bi->flags &
449 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
450 			    != 0)
451 				continue;
452 			if (hdr->e_machine == bi->machine &&
453 			    bi->interp_path != NULL &&
454 			    /* ELF image p_filesz includes terminating zero */
455 			    strlen(bi->interp_path) + 1 == interp_name_len &&
456 			    strncmp(interp, bi->interp_path, interp_name_len)
457 			    == 0 && (bi->header_supported == NULL ||
458 			    bi->header_supported(imgp, NULL, NULL)))
459 				return (bi);
460 		}
461 	}
462 
463 	/* Lacking a recognized interpreter, try the default brand */
464 	for (i = 0; i < MAX_BRANDS; i++) {
465 		bi = elf_brand_list[i];
466 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
467 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
468 			continue;
469 		if (hdr->e_machine == bi->machine &&
470 		    __elfN(fallback_brand) == bi->brand &&
471 		    (bi->header_supported == NULL ||
472 		    bi->header_supported(imgp, NULL, NULL)))
473 			return (bi);
474 	}
475 	return (NULL);
476 }
477 
478 static bool
479 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
480 {
481 	return (hdr->e_phoff <= PAGE_SIZE &&
482 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
483 }
484 
485 static int
486 __elfN(check_header)(const Elf_Ehdr *hdr)
487 {
488 	Elf_Brandinfo *bi;
489 	int i;
490 
491 	if (!IS_ELF(*hdr) ||
492 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
493 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
494 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
495 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
496 	    hdr->e_version != ELF_TARG_VER)
497 		return (ENOEXEC);
498 
499 	/*
500 	 * Make sure we have at least one brand for this machine.
501 	 */
502 
503 	for (i = 0; i < MAX_BRANDS; i++) {
504 		bi = elf_brand_list[i];
505 		if (bi != NULL && bi->machine == hdr->e_machine)
506 			break;
507 	}
508 	if (i == MAX_BRANDS)
509 		return (ENOEXEC);
510 
511 	return (0);
512 }
513 
514 static int
515 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
516     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
517 {
518 	struct sf_buf *sf;
519 	int error;
520 	vm_offset_t off;
521 
522 	/*
523 	 * Create the page if it doesn't exist yet. Ignore errors.
524 	 */
525 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
526 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
527 
528 	/*
529 	 * Find the page from the underlying object.
530 	 */
531 	if (object != NULL) {
532 		sf = vm_imgact_map_page(object, offset);
533 		if (sf == NULL)
534 			return (KERN_FAILURE);
535 		off = offset - trunc_page(offset);
536 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
537 		    end - start);
538 		vm_imgact_unmap_page(sf);
539 		if (error != 0)
540 			return (KERN_FAILURE);
541 	}
542 
543 	return (KERN_SUCCESS);
544 }
545 
546 static int
547 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object,
548     vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot,
549     int cow)
550 {
551 	struct sf_buf *sf;
552 	vm_offset_t off;
553 	vm_size_t sz;
554 	int error, locked, rv;
555 
556 	if (start != trunc_page(start)) {
557 		rv = __elfN(map_partial)(map, object, offset, start,
558 		    round_page(start), prot);
559 		if (rv != KERN_SUCCESS)
560 			return (rv);
561 		offset += round_page(start) - start;
562 		start = round_page(start);
563 	}
564 	if (end != round_page(end)) {
565 		rv = __elfN(map_partial)(map, object, offset +
566 		    trunc_page(end) - start, trunc_page(end), end, prot);
567 		if (rv != KERN_SUCCESS)
568 			return (rv);
569 		end = trunc_page(end);
570 	}
571 	if (start >= end)
572 		return (KERN_SUCCESS);
573 	if ((offset & PAGE_MASK) != 0) {
574 		/*
575 		 * The mapping is not page aligned.  This means that we have
576 		 * to copy the data.
577 		 */
578 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
579 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
580 		if (rv != KERN_SUCCESS)
581 			return (rv);
582 		if (object == NULL)
583 			return (KERN_SUCCESS);
584 		for (; start < end; start += sz) {
585 			sf = vm_imgact_map_page(object, offset);
586 			if (sf == NULL)
587 				return (KERN_FAILURE);
588 			off = offset - trunc_page(offset);
589 			sz = end - start;
590 			if (sz > PAGE_SIZE - off)
591 				sz = PAGE_SIZE - off;
592 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
593 			    (caddr_t)start, sz);
594 			vm_imgact_unmap_page(sf);
595 			if (error != 0)
596 				return (KERN_FAILURE);
597 			offset += sz;
598 		}
599 	} else {
600 		vm_object_reference(object);
601 		rv = vm_map_fixed(map, object, offset, start, end - start,
602 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
603 		    (object != NULL ? MAP_VN_EXEC : 0));
604 		if (rv != KERN_SUCCESS) {
605 			locked = VOP_ISLOCKED(imgp->vp);
606 			VOP_UNLOCK(imgp->vp);
607 			vm_object_deallocate(object);
608 			vn_lock(imgp->vp, locked | LK_RETRY);
609 			return (rv);
610 		} else if (object != NULL) {
611 			MPASS(imgp->vp->v_object == object);
612 			VOP_SET_TEXT_CHECKED(imgp->vp);
613 		}
614 	}
615 	return (KERN_SUCCESS);
616 }
617 
618 static int
619 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset,
620     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
621 {
622 	struct sf_buf *sf;
623 	size_t map_len;
624 	vm_map_t map;
625 	vm_object_t object;
626 	vm_offset_t map_addr;
627 	int error, rv, cow;
628 	size_t copy_len;
629 	vm_ooffset_t file_addr;
630 
631 	/*
632 	 * It's necessary to fail if the filsz + offset taken from the
633 	 * header is greater than the actual file pager object's size.
634 	 * If we were to allow this, then the vm_map_find() below would
635 	 * walk right off the end of the file object and into the ether.
636 	 *
637 	 * While I'm here, might as well check for something else that
638 	 * is invalid: filsz cannot be greater than memsz.
639 	 */
640 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
641 	    filsz > memsz) {
642 		uprintf("elf_load_section: truncated ELF file\n");
643 		return (ENOEXEC);
644 	}
645 
646 	object = imgp->object;
647 	map = &imgp->proc->p_vmspace->vm_map;
648 	map_addr = trunc_page((vm_offset_t)vmaddr);
649 	file_addr = trunc_page(offset);
650 
651 	/*
652 	 * We have two choices.  We can either clear the data in the last page
653 	 * of an oversized mapping, or we can start the anon mapping a page
654 	 * early and copy the initialized data into that first page.  We
655 	 * choose the second.
656 	 */
657 	if (filsz == 0)
658 		map_len = 0;
659 	else if (memsz > filsz)
660 		map_len = trunc_page(offset + filsz) - file_addr;
661 	else
662 		map_len = round_page(offset + filsz) - file_addr;
663 
664 	if (map_len != 0) {
665 		/* cow flags: don't dump readonly sections in core */
666 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
667 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
668 
669 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
670 		    map_addr, map_addr + map_len, prot, cow);
671 		if (rv != KERN_SUCCESS)
672 			return (EINVAL);
673 
674 		/* we can stop now if we've covered it all */
675 		if (memsz == filsz)
676 			return (0);
677 	}
678 
679 	/*
680 	 * We have to get the remaining bit of the file into the first part
681 	 * of the oversized map segment.  This is normally because the .data
682 	 * segment in the file is extended to provide bss.  It's a neat idea
683 	 * to try and save a page, but it's a pain in the behind to implement.
684 	 */
685 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
686 	    filsz);
687 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
688 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
689 
690 	/* This had damn well better be true! */
691 	if (map_len != 0) {
692 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
693 		    map_addr + map_len, prot, 0);
694 		if (rv != KERN_SUCCESS)
695 			return (EINVAL);
696 	}
697 
698 	if (copy_len != 0) {
699 		sf = vm_imgact_map_page(object, offset + filsz);
700 		if (sf == NULL)
701 			return (EIO);
702 
703 		/* send the page fragment to user space */
704 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
705 		    copy_len);
706 		vm_imgact_unmap_page(sf);
707 		if (error != 0)
708 			return (error);
709 	}
710 
711 	/*
712 	 * Remove write access to the page if it was only granted by map_insert
713 	 * to allow copyout.
714 	 */
715 	if ((prot & VM_PROT_WRITE) == 0)
716 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
717 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
718 
719 	return (0);
720 }
721 
722 static int
723 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr,
724     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
725 {
726 	vm_prot_t prot;
727 	u_long base_addr;
728 	bool first;
729 	int error, i;
730 
731 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
732 
733 	base_addr = 0;
734 	first = true;
735 
736 	for (i = 0; i < hdr->e_phnum; i++) {
737 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
738 			continue;
739 
740 		/* Loadable segment */
741 		prot = __elfN(trans_prot)(phdr[i].p_flags);
742 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
743 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
744 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
745 		if (error != 0)
746 			return (error);
747 
748 		/*
749 		 * Establish the base address if this is the first segment.
750 		 */
751 		if (first) {
752   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
753 			first = false;
754 		}
755 	}
756 
757 	if (base_addrp != NULL)
758 		*base_addrp = base_addr;
759 
760 	return (0);
761 }
762 
763 /*
764  * Load the file "file" into memory.  It may be either a shared object
765  * or an executable.
766  *
767  * The "addr" reference parameter is in/out.  On entry, it specifies
768  * the address where a shared object should be loaded.  If the file is
769  * an executable, this value is ignored.  On exit, "addr" specifies
770  * where the file was actually loaded.
771  *
772  * The "entry" reference parameter is out only.  On exit, it specifies
773  * the entry point for the loaded file.
774  */
775 static int
776 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
777 	u_long *entry)
778 {
779 	struct {
780 		struct nameidata nd;
781 		struct vattr attr;
782 		struct image_params image_params;
783 	} *tempdata;
784 	const Elf_Ehdr *hdr = NULL;
785 	const Elf_Phdr *phdr = NULL;
786 	struct nameidata *nd;
787 	struct vattr *attr;
788 	struct image_params *imgp;
789 	u_long rbase;
790 	u_long base_addr = 0;
791 	int error;
792 
793 #ifdef CAPABILITY_MODE
794 	/*
795 	 * XXXJA: This check can go away once we are sufficiently confident
796 	 * that the checks in namei() are correct.
797 	 */
798 	if (IN_CAPABILITY_MODE(curthread))
799 		return (ECAPMODE);
800 #endif
801 
802 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
803 	nd = &tempdata->nd;
804 	attr = &tempdata->attr;
805 	imgp = &tempdata->image_params;
806 
807 	/*
808 	 * Initialize part of the common data
809 	 */
810 	imgp->proc = p;
811 	imgp->attr = attr;
812 
813 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
814 	    UIO_SYSSPACE, file);
815 	if ((error = namei(nd)) != 0) {
816 		nd->ni_vp = NULL;
817 		goto fail;
818 	}
819 	NDFREE_PNBUF(nd);
820 	imgp->vp = nd->ni_vp;
821 
822 	/*
823 	 * Check permissions, modes, uid, etc on the file, and "open" it.
824 	 */
825 	error = exec_check_permissions(imgp);
826 	if (error)
827 		goto fail;
828 
829 	error = exec_map_first_page(imgp);
830 	if (error)
831 		goto fail;
832 
833 	imgp->object = nd->ni_vp->v_object;
834 
835 	hdr = (const Elf_Ehdr *)imgp->image_header;
836 	if ((error = __elfN(check_header)(hdr)) != 0)
837 		goto fail;
838 	if (hdr->e_type == ET_DYN)
839 		rbase = *addr;
840 	else if (hdr->e_type == ET_EXEC)
841 		rbase = 0;
842 	else {
843 		error = ENOEXEC;
844 		goto fail;
845 	}
846 
847 	/* Only support headers that fit within first page for now      */
848 	if (!__elfN(phdr_in_zero_page)(hdr)) {
849 		error = ENOEXEC;
850 		goto fail;
851 	}
852 
853 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
854 	if (!aligned(phdr, Elf_Addr)) {
855 		error = ENOEXEC;
856 		goto fail;
857 	}
858 
859 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
860 	if (error != 0)
861 		goto fail;
862 
863 	*addr = base_addr;
864 	*entry = (unsigned long)hdr->e_entry + rbase;
865 
866 fail:
867 	if (imgp->firstpage)
868 		exec_unmap_first_page(imgp);
869 
870 	if (nd->ni_vp) {
871 		if (imgp->textset)
872 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
873 		vput(nd->ni_vp);
874 	}
875 	free(tempdata, M_TEMP);
876 
877 	return (error);
878 }
879 
880 /*
881  * Select randomized valid address in the map map, between minv and
882  * maxv, with specified alignment.  The [minv, maxv) range must belong
883  * to the map.  Note that function only allocates the address, it is
884  * up to caller to clamp maxv in a way that the final allocation
885  * length fit into the map.
886  *
887  * Result is returned in *resp, error code indicates that arguments
888  * did not pass sanity checks for overflow and range correctness.
889  */
890 static int
891 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
892     u_int align, u_long *resp)
893 {
894 	u_long rbase, res;
895 
896 	MPASS(vm_map_min(map) <= minv);
897 
898 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
899 		uprintf("Invalid ELF segments layout\n");
900 		return (ENOEXEC);
901 	}
902 
903 	arc4rand(&rbase, sizeof(rbase), 0);
904 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
905 	res &= ~((u_long)align - 1);
906 	if (res >= maxv)
907 		res -= align;
908 
909 	KASSERT(res >= minv,
910 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
911 	    res, minv, maxv, rbase));
912 	KASSERT(res < maxv,
913 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
914 	    res, maxv, minv, rbase));
915 
916 	*resp = res;
917 	return (0);
918 }
919 
920 static int
921 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
922     const Elf_Phdr *phdr, u_long et_dyn_addr)
923 {
924 	struct vmspace *vmspace;
925 	const char *err_str;
926 	u_long text_size, data_size, total_size, text_addr, data_addr;
927 	u_long seg_size, seg_addr;
928 	int i;
929 
930 	err_str = NULL;
931 	text_size = data_size = total_size = text_addr = data_addr = 0;
932 
933 	for (i = 0; i < hdr->e_phnum; i++) {
934 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
935 			continue;
936 
937 		seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
938 		seg_size = round_page(phdr[i].p_memsz +
939 		    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
940 
941 		/*
942 		 * Make the largest executable segment the official
943 		 * text segment and all others data.
944 		 *
945 		 * Note that obreak() assumes that data_addr + data_size == end
946 		 * of data load area, and the ELF file format expects segments
947 		 * to be sorted by address.  If multiple data segments exist,
948 		 * the last one will be used.
949 		 */
950 
951 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
952 			text_size = seg_size;
953 			text_addr = seg_addr;
954 		} else {
955 			data_size = seg_size;
956 			data_addr = seg_addr;
957 		}
958 		total_size += seg_size;
959 	}
960 
961 	if (data_addr == 0 && data_size == 0) {
962 		data_addr = text_addr;
963 		data_size = text_size;
964 	}
965 
966 	/*
967 	 * Check limits.  It should be safe to check the
968 	 * limits after loading the segments since we do
969 	 * not actually fault in all the segments pages.
970 	 */
971 	PROC_LOCK(imgp->proc);
972 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
973 		err_str = "Data segment size exceeds process limit";
974 	else if (text_size > maxtsiz)
975 		err_str = "Text segment size exceeds system limit";
976 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
977 		err_str = "Total segment size exceeds process limit";
978 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
979 		err_str = "Data segment size exceeds resource limit";
980 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
981 		err_str = "Total segment size exceeds resource limit";
982 	PROC_UNLOCK(imgp->proc);
983 	if (err_str != NULL) {
984 		uprintf("%s\n", err_str);
985 		return (ENOMEM);
986 	}
987 
988 	vmspace = imgp->proc->p_vmspace;
989 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
990 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
991 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
992 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
993 
994 	return (0);
995 }
996 
997 static int
998 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
999     char **interpp, bool *free_interpp)
1000 {
1001 	struct thread *td;
1002 	char *interp;
1003 	int error, interp_name_len;
1004 
1005 	KASSERT(phdr->p_type == PT_INTERP,
1006 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1007 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1008 
1009 	td = curthread;
1010 
1011 	/* Path to interpreter */
1012 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1013 		uprintf("Invalid PT_INTERP\n");
1014 		return (ENOEXEC);
1015 	}
1016 
1017 	interp_name_len = phdr->p_filesz;
1018 	if (phdr->p_offset > PAGE_SIZE ||
1019 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1020 		/*
1021 		 * The vnode lock might be needed by the pagedaemon to
1022 		 * clean pages owned by the vnode.  Do not allow sleep
1023 		 * waiting for memory with the vnode locked, instead
1024 		 * try non-sleepable allocation first, and if it
1025 		 * fails, go to the slow path were we drop the lock
1026 		 * and do M_WAITOK.  A text reference prevents
1027 		 * modifications to the vnode content.
1028 		 */
1029 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1030 		if (interp == NULL) {
1031 			VOP_UNLOCK(imgp->vp);
1032 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1033 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1034 		}
1035 
1036 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1037 		    interp_name_len, phdr->p_offset,
1038 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1039 		    NOCRED, NULL, td);
1040 		if (error != 0) {
1041 			free(interp, M_TEMP);
1042 			uprintf("i/o error PT_INTERP %d\n", error);
1043 			return (error);
1044 		}
1045 		interp[interp_name_len] = '\0';
1046 
1047 		*interpp = interp;
1048 		*free_interpp = true;
1049 		return (0);
1050 	}
1051 
1052 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1053 	if (interp[interp_name_len - 1] != '\0') {
1054 		uprintf("Invalid PT_INTERP\n");
1055 		return (ENOEXEC);
1056 	}
1057 
1058 	*interpp = interp;
1059 	*free_interpp = false;
1060 	return (0);
1061 }
1062 
1063 static int
1064 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1065     const char *interp, u_long *addr, u_long *entry)
1066 {
1067 	char *path;
1068 	int error;
1069 
1070 	if (brand_info->emul_path != NULL &&
1071 	    brand_info->emul_path[0] != '\0') {
1072 		path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1073 		snprintf(path, MAXPATHLEN, "%s%s",
1074 		    brand_info->emul_path, interp);
1075 		error = __elfN(load_file)(imgp->proc, path, addr, entry);
1076 		free(path, M_TEMP);
1077 		if (error == 0)
1078 			return (0);
1079 	}
1080 
1081 	if (brand_info->interp_newpath != NULL &&
1082 	    (brand_info->interp_path == NULL ||
1083 	    strcmp(interp, brand_info->interp_path) == 0)) {
1084 		error = __elfN(load_file)(imgp->proc,
1085 		    brand_info->interp_newpath, addr, entry);
1086 		if (error == 0)
1087 			return (0);
1088 	}
1089 
1090 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1091 	if (error == 0)
1092 		return (0);
1093 
1094 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1095 	return (error);
1096 }
1097 
1098 /*
1099  * Impossible et_dyn_addr initial value indicating that the real base
1100  * must be calculated later with some randomization applied.
1101  */
1102 #define	ET_DYN_ADDR_RAND	1
1103 
1104 static int
1105 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1106 {
1107 	struct thread *td;
1108 	const Elf_Ehdr *hdr;
1109 	const Elf_Phdr *phdr;
1110 	Elf_Auxargs *elf_auxargs;
1111 	struct vmspace *vmspace;
1112 	vm_map_t map;
1113 	char *interp;
1114 	Elf_Brandinfo *brand_info;
1115 	struct sysentvec *sv;
1116 	u_long addr, baddr, et_dyn_addr, entry, proghdr;
1117 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1118 	uint32_t fctl0;
1119 	int32_t osrel;
1120 	bool free_interp;
1121 	int error, i, n;
1122 
1123 	hdr = (const Elf_Ehdr *)imgp->image_header;
1124 
1125 	/*
1126 	 * Do we have a valid ELF header ?
1127 	 *
1128 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1129 	 * if particular brand doesn't support it.
1130 	 */
1131 	if (__elfN(check_header)(hdr) != 0 ||
1132 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1133 		return (-1);
1134 
1135 	/*
1136 	 * From here on down, we return an errno, not -1, as we've
1137 	 * detected an ELF file.
1138 	 */
1139 
1140 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1141 		uprintf("Program headers not in the first page\n");
1142 		return (ENOEXEC);
1143 	}
1144 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1145 	if (!aligned(phdr, Elf_Addr)) {
1146 		uprintf("Unaligned program headers\n");
1147 		return (ENOEXEC);
1148 	}
1149 
1150 	n = error = 0;
1151 	baddr = 0;
1152 	osrel = 0;
1153 	fctl0 = 0;
1154 	entry = proghdr = 0;
1155 	interp = NULL;
1156 	free_interp = false;
1157 	td = curthread;
1158 
1159 	/*
1160 	 * Somewhat arbitrary, limit accepted max alignment for the
1161 	 * loadable segment to the max supported superpage size. Too
1162 	 * large alignment requests are not useful and are indicators
1163 	 * of corrupted or outright malicious binary.
1164 	 */
1165 	maxalign = PAGE_SIZE;
1166 	maxsalign = PAGE_SIZE * 1024;
1167 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1168 		if (pagesizes[i] > maxsalign)
1169 			maxsalign = pagesizes[i];
1170 	}
1171 
1172 	mapsz = 0;
1173 
1174 	for (i = 0; i < hdr->e_phnum; i++) {
1175 		switch (phdr[i].p_type) {
1176 		case PT_LOAD:
1177 			if (n == 0)
1178 				baddr = phdr[i].p_vaddr;
1179 			if (!powerof2(phdr[i].p_align) ||
1180 			    phdr[i].p_align > maxsalign) {
1181 				uprintf("Invalid segment alignment\n");
1182 				error = ENOEXEC;
1183 				goto ret;
1184 			}
1185 			if (phdr[i].p_align > maxalign)
1186 				maxalign = phdr[i].p_align;
1187 			if (mapsz + phdr[i].p_memsz < mapsz) {
1188 				uprintf("Mapsize overflow\n");
1189 				error = ENOEXEC;
1190 				goto ret;
1191 			}
1192 			mapsz += phdr[i].p_memsz;
1193 			n++;
1194 
1195 			/*
1196 			 * If this segment contains the program headers,
1197 			 * remember their virtual address for the AT_PHDR
1198 			 * aux entry. Static binaries don't usually include
1199 			 * a PT_PHDR entry.
1200 			 */
1201 			if (phdr[i].p_offset == 0 &&
1202 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1203 			    phdr[i].p_filesz)
1204 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1205 			break;
1206 		case PT_INTERP:
1207 			/* Path to interpreter */
1208 			if (interp != NULL) {
1209 				uprintf("Multiple PT_INTERP headers\n");
1210 				error = ENOEXEC;
1211 				goto ret;
1212 			}
1213 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1214 			    &free_interp);
1215 			if (error != 0)
1216 				goto ret;
1217 			break;
1218 		case PT_GNU_STACK:
1219 			if (__elfN(nxstack))
1220 				imgp->stack_prot =
1221 				    __elfN(trans_prot)(phdr[i].p_flags);
1222 			imgp->stack_sz = phdr[i].p_memsz;
1223 			break;
1224 		case PT_PHDR: 	/* Program header table info */
1225 			proghdr = phdr[i].p_vaddr;
1226 			break;
1227 		}
1228 	}
1229 
1230 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1231 	if (brand_info == NULL) {
1232 		uprintf("ELF binary type \"%u\" not known.\n",
1233 		    hdr->e_ident[EI_OSABI]);
1234 		error = ENOEXEC;
1235 		goto ret;
1236 	}
1237 	sv = brand_info->sysvec;
1238 	et_dyn_addr = 0;
1239 	if (hdr->e_type == ET_DYN) {
1240 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1241 			uprintf("Cannot execute shared object\n");
1242 			error = ENOEXEC;
1243 			goto ret;
1244 		}
1245 		/*
1246 		 * Honour the base load address from the dso if it is
1247 		 * non-zero for some reason.
1248 		 */
1249 		if (baddr == 0) {
1250 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1251 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1252 				et_dyn_addr = __elfN(pie_base);
1253 			else if ((__elfN(pie_aslr_enabled) &&
1254 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1255 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1256 				et_dyn_addr = ET_DYN_ADDR_RAND;
1257 			else
1258 				et_dyn_addr = __elfN(pie_base);
1259 		}
1260 	}
1261 
1262 	/*
1263 	 * Avoid a possible deadlock if the current address space is destroyed
1264 	 * and that address space maps the locked vnode.  In the common case,
1265 	 * the locked vnode's v_usecount is decremented but remains greater
1266 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1267 	 * However, in cases where the vnode lock is external, such as nullfs,
1268 	 * v_usecount may become zero.
1269 	 *
1270 	 * The VV_TEXT flag prevents modifications to the executable while
1271 	 * the vnode is unlocked.
1272 	 */
1273 	VOP_UNLOCK(imgp->vp);
1274 
1275 	/*
1276 	 * Decide whether to enable randomization of user mappings.
1277 	 * First, reset user preferences for the setid binaries.
1278 	 * Then, account for the support of the randomization by the
1279 	 * ABI, by user preferences, and make special treatment for
1280 	 * PIE binaries.
1281 	 */
1282 	if (imgp->credential_setid) {
1283 		PROC_LOCK(imgp->proc);
1284 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1285 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1286 		PROC_UNLOCK(imgp->proc);
1287 	}
1288 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1289 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1290 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1291 		KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND,
1292 		    ("et_dyn_addr == RAND and !ASLR"));
1293 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1294 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1295 	    et_dyn_addr == ET_DYN_ADDR_RAND) {
1296 		imgp->map_flags |= MAP_ASLR;
1297 		/*
1298 		 * If user does not care about sbrk, utilize the bss
1299 		 * grow region for mappings as well.  We can select
1300 		 * the base for the image anywere and still not suffer
1301 		 * from the fragmentation.
1302 		 */
1303 		if (!__elfN(aslr_honor_sbrk) ||
1304 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1305 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1306 		if (__elfN(aslr_stack))
1307 			imgp->map_flags |= MAP_ASLR_STACK;
1308 	}
1309 
1310 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1311 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1312 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1313 		imgp->map_flags |= MAP_WXORX;
1314 
1315 	error = exec_new_vmspace(imgp, sv);
1316 
1317 	imgp->proc->p_sysent = sv;
1318 	imgp->proc->p_elf_brandinfo = brand_info;
1319 
1320 	vmspace = imgp->proc->p_vmspace;
1321 	map = &vmspace->vm_map;
1322 	maxv = sv->sv_usrstack;
1323 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1324 		maxv -= lim_max(td, RLIMIT_STACK);
1325 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1326 		uprintf("Excessive mapping size\n");
1327 		error = ENOEXEC;
1328 	}
1329 
1330 	if (error == 0 && et_dyn_addr == ET_DYN_ADDR_RAND) {
1331 		KASSERT((map->flags & MAP_ASLR) != 0,
1332 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1333 		error = __CONCAT(rnd_, __elfN(base))(map,
1334 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1335 		    /* reserve half of the address space to interpreter */
1336 		    maxv / 2, maxalign, &et_dyn_addr);
1337 	}
1338 
1339 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1340 	if (error != 0)
1341 		goto ret;
1342 
1343 	error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL);
1344 	if (error != 0)
1345 		goto ret;
1346 
1347 	error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr);
1348 	if (error != 0)
1349 		goto ret;
1350 
1351 	/*
1352 	 * We load the dynamic linker where a userland call
1353 	 * to mmap(0, ...) would put it.  The rationale behind this
1354 	 * calculation is that it leaves room for the heap to grow to
1355 	 * its maximum allowed size.
1356 	 */
1357 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1358 	    RLIMIT_DATA));
1359 	if ((map->flags & MAP_ASLR) != 0) {
1360 		maxv1 = maxv / 2 + addr / 2;
1361 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1362 		    (MAXPAGESIZES > 1 && pagesizes[1] != 0) ?
1363 		    pagesizes[1] : pagesizes[0], &anon_loc);
1364 		if (error != 0)
1365 			goto ret;
1366 		map->anon_loc = anon_loc;
1367 	} else {
1368 		map->anon_loc = addr;
1369 	}
1370 
1371 	entry = (u_long)hdr->e_entry + et_dyn_addr;
1372 	imgp->entry_addr = entry;
1373 
1374 	if (interp != NULL) {
1375 		VOP_UNLOCK(imgp->vp);
1376 		if ((map->flags & MAP_ASLR) != 0) {
1377 			/* Assume that interpreter fits into 1/4 of AS */
1378 			maxv1 = maxv / 2 + addr / 2;
1379 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1380 			    maxv1, PAGE_SIZE, &addr);
1381 		}
1382 		if (error == 0) {
1383 			error = __elfN(load_interp)(imgp, brand_info, interp,
1384 			    &addr, &imgp->entry_addr);
1385 		}
1386 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1387 		if (error != 0)
1388 			goto ret;
1389 	} else
1390 		addr = et_dyn_addr;
1391 
1392 	error = exec_map_stack(imgp);
1393 	if (error != 0)
1394 		goto ret;
1395 
1396 	/*
1397 	 * Construct auxargs table (used by the copyout_auxargs routine)
1398 	 */
1399 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1400 	if (elf_auxargs == NULL) {
1401 		VOP_UNLOCK(imgp->vp);
1402 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1403 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1404 	}
1405 	elf_auxargs->execfd = -1;
1406 	elf_auxargs->phdr = proghdr + et_dyn_addr;
1407 	elf_auxargs->phent = hdr->e_phentsize;
1408 	elf_auxargs->phnum = hdr->e_phnum;
1409 	elf_auxargs->pagesz = PAGE_SIZE;
1410 	elf_auxargs->base = addr;
1411 	elf_auxargs->flags = 0;
1412 	elf_auxargs->entry = entry;
1413 	elf_auxargs->hdr_eflags = hdr->e_flags;
1414 
1415 	imgp->auxargs = elf_auxargs;
1416 	imgp->interpreted = 0;
1417 	imgp->reloc_base = addr;
1418 	imgp->proc->p_osrel = osrel;
1419 	imgp->proc->p_fctl0 = fctl0;
1420 	imgp->proc->p_elf_flags = hdr->e_flags;
1421 
1422 ret:
1423 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1424 	if (free_interp)
1425 		free(interp, M_TEMP);
1426 	return (error);
1427 }
1428 
1429 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1430 
1431 int
1432 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1433 {
1434 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1435 	Elf_Auxinfo *argarray, *pos;
1436 	int error;
1437 
1438 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1439 	    M_WAITOK | M_ZERO);
1440 
1441 	if (args->execfd != -1)
1442 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1443 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1444 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1445 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1446 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1447 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1448 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1449 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1450 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1451 	if (imgp->execpathp != 0)
1452 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1453 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1454 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1455 	if (imgp->canary != 0) {
1456 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1457 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1458 	}
1459 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1460 	if (imgp->pagesizes != 0) {
1461 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1462 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1463 	}
1464 	if (imgp->sysent->sv_timekeep_base != 0) {
1465 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1466 		    imgp->sysent->sv_timekeep_base);
1467 	}
1468 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1469 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1470 	    imgp->sysent->sv_stackprot);
1471 	if (imgp->sysent->sv_hwcap != NULL)
1472 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1473 	if (imgp->sysent->sv_hwcap2 != NULL)
1474 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1475 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ?
1476 	    ELF_BSDF_SIGFASTBLK : 0);
1477 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1478 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1479 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1480 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1481 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1482 	if (imgp->sysent->sv_fxrng_gen_base != 0)
1483 		AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base);
1484 	if (imgp->sysent->sv_vdso_base != 0 && __elfN(vdso) != 0)
1485 		AUXARGS_ENTRY(pos, AT_KPRELOAD, imgp->sysent->sv_vdso_base);
1486 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1487 
1488 	free(imgp->auxargs, M_TEMP);
1489 	imgp->auxargs = NULL;
1490 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1491 
1492 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1493 	free(argarray, M_TEMP);
1494 	return (error);
1495 }
1496 
1497 int
1498 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1499 {
1500 	Elf_Addr *base;
1501 
1502 	base = (Elf_Addr *)*stack_base;
1503 	base--;
1504 	if (elf_suword(base, imgp->args->argc) == -1)
1505 		return (EFAULT);
1506 	*stack_base = (uintptr_t)base;
1507 	return (0);
1508 }
1509 
1510 /*
1511  * Code for generating ELF core dumps.
1512  */
1513 
1514 typedef void (*segment_callback)(vm_map_entry_t, void *);
1515 
1516 /* Closure for cb_put_phdr(). */
1517 struct phdr_closure {
1518 	Elf_Phdr *phdr;		/* Program header to fill in */
1519 	Elf_Off offset;		/* Offset of segment in core file */
1520 };
1521 
1522 struct note_info {
1523 	int		type;		/* Note type. */
1524 	struct regset	*regset;	/* Register set. */
1525 	outfunc_t 	outfunc; 	/* Output function. */
1526 	void		*outarg;	/* Argument for the output function. */
1527 	size_t		outsize;	/* Output size. */
1528 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1529 };
1530 
1531 TAILQ_HEAD(note_info_list, note_info);
1532 
1533 extern int compress_user_cores;
1534 extern int compress_user_cores_level;
1535 
1536 static void cb_put_phdr(vm_map_entry_t, void *);
1537 static void cb_size_segment(vm_map_entry_t, void *);
1538 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1539     int);
1540 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1541     struct note_info_list *, size_t, int);
1542 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1543 
1544 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1545 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1546 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1547 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1548 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1549 static void note_procstat_files(void *, struct sbuf *, size_t *);
1550 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1551 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1552 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1553 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1554 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1555 
1556 static int
1557 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1558 {
1559 
1560 	return (core_write((struct coredump_params *)arg, base, len, offset,
1561 	    UIO_SYSSPACE, NULL));
1562 }
1563 
1564 int
1565 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1566 {
1567 	struct ucred *cred = td->td_ucred;
1568 	int compm, error = 0;
1569 	struct sseg_closure seginfo;
1570 	struct note_info_list notelst;
1571 	struct coredump_params params;
1572 	struct note_info *ninfo;
1573 	void *hdr, *tmpbuf;
1574 	size_t hdrsize, notesz, coresize;
1575 
1576 	hdr = NULL;
1577 	tmpbuf = NULL;
1578 	TAILQ_INIT(&notelst);
1579 
1580 	/* Size the program segments. */
1581 	__elfN(size_segments)(td, &seginfo, flags);
1582 
1583 	/*
1584 	 * Collect info about the core file header area.
1585 	 */
1586 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1587 	if (seginfo.count + 1 >= PN_XNUM)
1588 		hdrsize += sizeof(Elf_Shdr);
1589 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1590 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1591 
1592 	/* Set up core dump parameters. */
1593 	params.offset = 0;
1594 	params.active_cred = cred;
1595 	params.file_cred = NOCRED;
1596 	params.td = td;
1597 	params.vp = vp;
1598 	params.comp = NULL;
1599 
1600 #ifdef RACCT
1601 	if (racct_enable) {
1602 		PROC_LOCK(td->td_proc);
1603 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1604 		PROC_UNLOCK(td->td_proc);
1605 		if (error != 0) {
1606 			error = EFAULT;
1607 			goto done;
1608 		}
1609 	}
1610 #endif
1611 	if (coresize >= limit) {
1612 		error = EFAULT;
1613 		goto done;
1614 	}
1615 
1616 	/* Create a compression stream if necessary. */
1617 	compm = compress_user_cores;
1618 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1619 	    compm == 0)
1620 		compm = COMPRESS_GZIP;
1621 	if (compm != 0) {
1622 		params.comp = compressor_init(core_compressed_write,
1623 		    compm, CORE_BUF_SIZE,
1624 		    compress_user_cores_level, &params);
1625 		if (params.comp == NULL) {
1626 			error = EFAULT;
1627 			goto done;
1628 		}
1629 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1630         }
1631 
1632 	/*
1633 	 * Allocate memory for building the header, fill it up,
1634 	 * and write it out following the notes.
1635 	 */
1636 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1637 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1638 	    notesz, flags);
1639 
1640 	/* Write the contents of all of the writable segments. */
1641 	if (error == 0) {
1642 		Elf_Phdr *php;
1643 		off_t offset;
1644 		int i;
1645 
1646 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1647 		offset = round_page(hdrsize + notesz);
1648 		for (i = 0; i < seginfo.count; i++) {
1649 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1650 			    php->p_filesz, offset, &params, tmpbuf);
1651 			if (error != 0)
1652 				break;
1653 			offset += php->p_filesz;
1654 			php++;
1655 		}
1656 		if (error == 0 && params.comp != NULL)
1657 			error = compressor_flush(params.comp);
1658 	}
1659 	if (error) {
1660 		log(LOG_WARNING,
1661 		    "Failed to write core file for process %s (error %d)\n",
1662 		    curproc->p_comm, error);
1663 	}
1664 
1665 done:
1666 	free(tmpbuf, M_TEMP);
1667 	if (params.comp != NULL)
1668 		compressor_fini(params.comp);
1669 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1670 		TAILQ_REMOVE(&notelst, ninfo, link);
1671 		free(ninfo, M_TEMP);
1672 	}
1673 	if (hdr != NULL)
1674 		free(hdr, M_TEMP);
1675 
1676 	return (error);
1677 }
1678 
1679 /*
1680  * A callback for each_dumpable_segment() to write out the segment's
1681  * program header entry.
1682  */
1683 static void
1684 cb_put_phdr(vm_map_entry_t entry, void *closure)
1685 {
1686 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1687 	Elf_Phdr *phdr = phc->phdr;
1688 
1689 	phc->offset = round_page(phc->offset);
1690 
1691 	phdr->p_type = PT_LOAD;
1692 	phdr->p_offset = phc->offset;
1693 	phdr->p_vaddr = entry->start;
1694 	phdr->p_paddr = 0;
1695 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1696 	phdr->p_align = PAGE_SIZE;
1697 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1698 
1699 	phc->offset += phdr->p_filesz;
1700 	phc->phdr++;
1701 }
1702 
1703 /*
1704  * A callback for each_dumpable_segment() to gather information about
1705  * the number of segments and their total size.
1706  */
1707 static void
1708 cb_size_segment(vm_map_entry_t entry, void *closure)
1709 {
1710 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1711 
1712 	ssc->count++;
1713 	ssc->size += entry->end - entry->start;
1714 }
1715 
1716 void
1717 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1718     int flags)
1719 {
1720 	seginfo->count = 0;
1721 	seginfo->size = 0;
1722 
1723 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1724 }
1725 
1726 /*
1727  * For each writable segment in the process's memory map, call the given
1728  * function with a pointer to the map entry and some arbitrary
1729  * caller-supplied data.
1730  */
1731 static void
1732 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1733     int flags)
1734 {
1735 	struct proc *p = td->td_proc;
1736 	vm_map_t map = &p->p_vmspace->vm_map;
1737 	vm_map_entry_t entry;
1738 	vm_object_t backing_object, object;
1739 	bool ignore_entry;
1740 
1741 	vm_map_lock_read(map);
1742 	VM_MAP_ENTRY_FOREACH(entry, map) {
1743 		/*
1744 		 * Don't dump inaccessible mappings, deal with legacy
1745 		 * coredump mode.
1746 		 *
1747 		 * Note that read-only segments related to the elf binary
1748 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1749 		 * need to arbitrarily ignore such segments.
1750 		 */
1751 		if ((flags & SVC_ALL) == 0) {
1752 			if (elf_legacy_coredump) {
1753 				if ((entry->protection & VM_PROT_RW) !=
1754 				    VM_PROT_RW)
1755 					continue;
1756 			} else {
1757 				if ((entry->protection & VM_PROT_ALL) == 0)
1758 					continue;
1759 			}
1760 		}
1761 
1762 		/*
1763 		 * Dont include memory segment in the coredump if
1764 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1765 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1766 		 * kernel map).
1767 		 */
1768 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1769 			continue;
1770 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1771 		    (flags & SVC_ALL) == 0)
1772 			continue;
1773 		if ((object = entry->object.vm_object) == NULL)
1774 			continue;
1775 
1776 		/* Ignore memory-mapped devices and such things. */
1777 		VM_OBJECT_RLOCK(object);
1778 		while ((backing_object = object->backing_object) != NULL) {
1779 			VM_OBJECT_RLOCK(backing_object);
1780 			VM_OBJECT_RUNLOCK(object);
1781 			object = backing_object;
1782 		}
1783 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1784 		VM_OBJECT_RUNLOCK(object);
1785 		if (ignore_entry)
1786 			continue;
1787 
1788 		(*func)(entry, closure);
1789 	}
1790 	vm_map_unlock_read(map);
1791 }
1792 
1793 /*
1794  * Write the core file header to the file, including padding up to
1795  * the page boundary.
1796  */
1797 static int
1798 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1799     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1800     int flags)
1801 {
1802 	struct note_info *ninfo;
1803 	struct sbuf *sb;
1804 	int error;
1805 
1806 	/* Fill in the header. */
1807 	bzero(hdr, hdrsize);
1808 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1809 
1810 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1811 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1812 	sbuf_start_section(sb, NULL);
1813 	sbuf_bcat(sb, hdr, hdrsize);
1814 	TAILQ_FOREACH(ninfo, notelst, link)
1815 	    __elfN(putnote)(p->td, ninfo, sb);
1816 	/* Align up to a page boundary for the program segments. */
1817 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1818 	error = sbuf_finish(sb);
1819 	sbuf_delete(sb);
1820 
1821 	return (error);
1822 }
1823 
1824 void
1825 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1826     size_t *sizep)
1827 {
1828 	struct proc *p;
1829 	struct thread *thr;
1830 	size_t size;
1831 
1832 	p = td->td_proc;
1833 	size = 0;
1834 
1835 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1836 	    __elfN(note_prpsinfo), p);
1837 
1838 	/*
1839 	 * To have the debugger select the right thread (LWP) as the initial
1840 	 * thread, we dump the state of the thread passed to us in td first.
1841 	 * This is the thread that causes the core dump and thus likely to
1842 	 * be the right thread one wants to have selected in the debugger.
1843 	 */
1844 	thr = td;
1845 	while (thr != NULL) {
1846 		size += __elfN(prepare_register_notes)(td, list, thr);
1847 		size += __elfN(register_note)(td, list, -1,
1848 		    __elfN(note_threadmd), thr);
1849 
1850 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1851 		    TAILQ_NEXT(thr, td_plist);
1852 		if (thr == td)
1853 			thr = TAILQ_NEXT(thr, td_plist);
1854 	}
1855 
1856 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1857 	    __elfN(note_procstat_proc), p);
1858 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1859 	    note_procstat_files, p);
1860 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1861 	    note_procstat_vmmap, p);
1862 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1863 	    note_procstat_groups, p);
1864 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1865 	    note_procstat_umask, p);
1866 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1867 	    note_procstat_rlimit, p);
1868 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1869 	    note_procstat_osrel, p);
1870 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1871 	    __elfN(note_procstat_psstrings), p);
1872 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1873 	    __elfN(note_procstat_auxv), p);
1874 
1875 	*sizep = size;
1876 }
1877 
1878 void
1879 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1880     size_t notesz, int flags)
1881 {
1882 	Elf_Ehdr *ehdr;
1883 	Elf_Phdr *phdr;
1884 	Elf_Shdr *shdr;
1885 	struct phdr_closure phc;
1886 	Elf_Brandinfo *bi;
1887 
1888 	ehdr = (Elf_Ehdr *)hdr;
1889 	bi = td->td_proc->p_elf_brandinfo;
1890 
1891 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1892 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1893 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1894 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1895 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1896 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1897 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1898 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1899 	ehdr->e_ident[EI_ABIVERSION] = 0;
1900 	ehdr->e_ident[EI_PAD] = 0;
1901 	ehdr->e_type = ET_CORE;
1902 	ehdr->e_machine = bi->machine;
1903 	ehdr->e_version = EV_CURRENT;
1904 	ehdr->e_entry = 0;
1905 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1906 	ehdr->e_flags = td->td_proc->p_elf_flags;
1907 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1908 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1909 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1910 	ehdr->e_shstrndx = SHN_UNDEF;
1911 	if (numsegs + 1 < PN_XNUM) {
1912 		ehdr->e_phnum = numsegs + 1;
1913 		ehdr->e_shnum = 0;
1914 	} else {
1915 		ehdr->e_phnum = PN_XNUM;
1916 		ehdr->e_shnum = 1;
1917 
1918 		ehdr->e_shoff = ehdr->e_phoff +
1919 		    (numsegs + 1) * ehdr->e_phentsize;
1920 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1921 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1922 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1923 
1924 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1925 		memset(shdr, 0, sizeof(*shdr));
1926 		/*
1927 		 * A special first section is used to hold large segment and
1928 		 * section counts.  This was proposed by Sun Microsystems in
1929 		 * Solaris and has been adopted by Linux; the standard ELF
1930 		 * tools are already familiar with the technique.
1931 		 *
1932 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1933 		 * (or 12-7 depending on the version of the document) for more
1934 		 * details.
1935 		 */
1936 		shdr->sh_type = SHT_NULL;
1937 		shdr->sh_size = ehdr->e_shnum;
1938 		shdr->sh_link = ehdr->e_shstrndx;
1939 		shdr->sh_info = numsegs + 1;
1940 	}
1941 
1942 	/*
1943 	 * Fill in the program header entries.
1944 	 */
1945 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1946 
1947 	/* The note segement. */
1948 	phdr->p_type = PT_NOTE;
1949 	phdr->p_offset = hdrsize;
1950 	phdr->p_vaddr = 0;
1951 	phdr->p_paddr = 0;
1952 	phdr->p_filesz = notesz;
1953 	phdr->p_memsz = 0;
1954 	phdr->p_flags = PF_R;
1955 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1956 	phdr++;
1957 
1958 	/* All the writable segments from the program. */
1959 	phc.phdr = phdr;
1960 	phc.offset = round_page(hdrsize + notesz);
1961 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1962 }
1963 
1964 static size_t
1965 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
1966     struct regset *regset, struct thread *target_td)
1967 {
1968 	const struct sysentvec *sv;
1969 	struct note_info *ninfo;
1970 	size_t size, notesize;
1971 
1972 	size = 0;
1973 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
1974 		return (0);
1975 
1976 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1977 	ninfo->type = regset->note;
1978 	ninfo->regset = regset;
1979 	ninfo->outarg = target_td;
1980 	ninfo->outsize = size;
1981 	TAILQ_INSERT_TAIL(list, ninfo, link);
1982 
1983 	sv = td->td_proc->p_sysent;
1984 	notesize = sizeof(Elf_Note) +		/* note header */
1985 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
1986 						/* note name */
1987 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1988 
1989 	return (notesize);
1990 }
1991 
1992 size_t
1993 __elfN(register_note)(struct thread *td, struct note_info_list *list,
1994     int type, outfunc_t out, void *arg)
1995 {
1996 	const struct sysentvec *sv;
1997 	struct note_info *ninfo;
1998 	size_t size, notesize;
1999 
2000 	sv = td->td_proc->p_sysent;
2001 	size = 0;
2002 	out(arg, NULL, &size);
2003 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2004 	ninfo->type = type;
2005 	ninfo->outfunc = out;
2006 	ninfo->outarg = arg;
2007 	ninfo->outsize = size;
2008 	TAILQ_INSERT_TAIL(list, ninfo, link);
2009 
2010 	if (type == -1)
2011 		return (size);
2012 
2013 	notesize = sizeof(Elf_Note) +		/* note header */
2014 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2015 						/* note name */
2016 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2017 
2018 	return (notesize);
2019 }
2020 
2021 static size_t
2022 append_note_data(const void *src, void *dst, size_t len)
2023 {
2024 	size_t padded_len;
2025 
2026 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2027 	if (dst != NULL) {
2028 		bcopy(src, dst, len);
2029 		bzero((char *)dst + len, padded_len - len);
2030 	}
2031 	return (padded_len);
2032 }
2033 
2034 size_t
2035 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2036 {
2037 	Elf_Note *note;
2038 	char *buf;
2039 	size_t notesize;
2040 
2041 	buf = dst;
2042 	if (buf != NULL) {
2043 		note = (Elf_Note *)buf;
2044 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2045 		note->n_descsz = size;
2046 		note->n_type = type;
2047 		buf += sizeof(*note);
2048 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2049 		    sizeof(FREEBSD_ABI_VENDOR));
2050 		append_note_data(src, buf, size);
2051 		if (descp != NULL)
2052 			*descp = buf;
2053 	}
2054 
2055 	notesize = sizeof(Elf_Note) +		/* note header */
2056 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2057 						/* note name */
2058 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2059 
2060 	return (notesize);
2061 }
2062 
2063 static void
2064 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2065 {
2066 	Elf_Note note;
2067 	const struct sysentvec *sv;
2068 	ssize_t old_len, sect_len;
2069 	size_t new_len, descsz, i;
2070 
2071 	if (ninfo->type == -1) {
2072 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2073 		return;
2074 	}
2075 
2076 	sv = td->td_proc->p_sysent;
2077 
2078 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2079 	note.n_descsz = ninfo->outsize;
2080 	note.n_type = ninfo->type;
2081 
2082 	sbuf_bcat(sb, &note, sizeof(note));
2083 	sbuf_start_section(sb, &old_len);
2084 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2085 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2086 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2087 	if (note.n_descsz == 0)
2088 		return;
2089 	sbuf_start_section(sb, &old_len);
2090 	if (ninfo->regset != NULL) {
2091 		struct regset *regset = ninfo->regset;
2092 		void *buf;
2093 
2094 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2095 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2096 		sbuf_bcat(sb, buf, ninfo->outsize);
2097 		free(buf, M_TEMP);
2098 	} else
2099 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2100 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2101 	if (sect_len < 0)
2102 		return;
2103 
2104 	new_len = (size_t)sect_len;
2105 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2106 	if (new_len < descsz) {
2107 		/*
2108 		 * It is expected that individual note emitters will correctly
2109 		 * predict their expected output size and fill up to that size
2110 		 * themselves, padding in a format-specific way if needed.
2111 		 * However, in case they don't, just do it here with zeros.
2112 		 */
2113 		for (i = 0; i < descsz - new_len; i++)
2114 			sbuf_putc(sb, 0);
2115 	} else if (new_len > descsz) {
2116 		/*
2117 		 * We can't always truncate sb -- we may have drained some
2118 		 * of it already.
2119 		 */
2120 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2121 		    "read it (%zu > %zu).  Since it is longer than "
2122 		    "expected, this coredump's notes are corrupt.  THIS "
2123 		    "IS A BUG in the note_procstat routine for type %u.\n",
2124 		    __func__, (unsigned)note.n_type, new_len, descsz,
2125 		    (unsigned)note.n_type));
2126 	}
2127 }
2128 
2129 /*
2130  * Miscellaneous note out functions.
2131  */
2132 
2133 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2134 #include <compat/freebsd32/freebsd32.h>
2135 #include <compat/freebsd32/freebsd32_signal.h>
2136 
2137 typedef struct prstatus32 elf_prstatus_t;
2138 typedef struct prpsinfo32 elf_prpsinfo_t;
2139 typedef struct fpreg32 elf_prfpregset_t;
2140 typedef struct fpreg32 elf_fpregset_t;
2141 typedef struct reg32 elf_gregset_t;
2142 typedef struct thrmisc32 elf_thrmisc_t;
2143 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2144 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2145 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2146 typedef uint32_t elf_ps_strings_t;
2147 #else
2148 typedef prstatus_t elf_prstatus_t;
2149 typedef prpsinfo_t elf_prpsinfo_t;
2150 typedef prfpregset_t elf_prfpregset_t;
2151 typedef prfpregset_t elf_fpregset_t;
2152 typedef gregset_t elf_gregset_t;
2153 typedef thrmisc_t elf_thrmisc_t;
2154 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2155 #define ELF_KERN_PROC_MASK	0
2156 typedef struct kinfo_proc elf_kinfo_proc_t;
2157 typedef vm_offset_t elf_ps_strings_t;
2158 #endif
2159 
2160 static void
2161 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2162 {
2163 	struct sbuf sbarg;
2164 	size_t len;
2165 	char *cp, *end;
2166 	struct proc *p;
2167 	elf_prpsinfo_t *psinfo;
2168 	int error;
2169 
2170 	p = arg;
2171 	if (sb != NULL) {
2172 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2173 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2174 		psinfo->pr_version = PRPSINFO_VERSION;
2175 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2176 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2177 		PROC_LOCK(p);
2178 		if (p->p_args != NULL) {
2179 			len = sizeof(psinfo->pr_psargs) - 1;
2180 			if (len > p->p_args->ar_length)
2181 				len = p->p_args->ar_length;
2182 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2183 			PROC_UNLOCK(p);
2184 			error = 0;
2185 		} else {
2186 			_PHOLD(p);
2187 			PROC_UNLOCK(p);
2188 			sbuf_new(&sbarg, psinfo->pr_psargs,
2189 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2190 			error = proc_getargv(curthread, p, &sbarg);
2191 			PRELE(p);
2192 			if (sbuf_finish(&sbarg) == 0)
2193 				len = sbuf_len(&sbarg) - 1;
2194 			else
2195 				len = sizeof(psinfo->pr_psargs) - 1;
2196 			sbuf_delete(&sbarg);
2197 		}
2198 		if (error || len == 0)
2199 			strlcpy(psinfo->pr_psargs, p->p_comm,
2200 			    sizeof(psinfo->pr_psargs));
2201 		else {
2202 			KASSERT(len < sizeof(psinfo->pr_psargs),
2203 			    ("len is too long: %zu vs %zu", len,
2204 			    sizeof(psinfo->pr_psargs)));
2205 			cp = psinfo->pr_psargs;
2206 			end = cp + len - 1;
2207 			for (;;) {
2208 				cp = memchr(cp, '\0', end - cp);
2209 				if (cp == NULL)
2210 					break;
2211 				*cp = ' ';
2212 			}
2213 		}
2214 		psinfo->pr_pid = p->p_pid;
2215 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2216 		free(psinfo, M_TEMP);
2217 	}
2218 	*sizep = sizeof(*psinfo);
2219 }
2220 
2221 static bool
2222 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2223     size_t *sizep)
2224 {
2225 	elf_prstatus_t *status;
2226 
2227 	if (buf != NULL) {
2228 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2229 		    __func__));
2230 		status = buf;
2231 		memset(status, 0, *sizep);
2232 		status->pr_version = PRSTATUS_VERSION;
2233 		status->pr_statussz = sizeof(elf_prstatus_t);
2234 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2235 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2236 		status->pr_osreldate = osreldate;
2237 		status->pr_cursig = td->td_proc->p_sig;
2238 		status->pr_pid = td->td_tid;
2239 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2240 		fill_regs32(td, &status->pr_reg);
2241 #else
2242 		fill_regs(td, &status->pr_reg);
2243 #endif
2244 	}
2245 	*sizep = sizeof(*status);
2246 	return (true);
2247 }
2248 
2249 static bool
2250 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2251     size_t size)
2252 {
2253 	elf_prstatus_t *status;
2254 
2255 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2256 	status = buf;
2257 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2258 	set_regs32(td, &status->pr_reg);
2259 #else
2260 	set_regs(td, &status->pr_reg);
2261 #endif
2262 	return (true);
2263 }
2264 
2265 static struct regset __elfN(regset_prstatus) = {
2266 	.note = NT_PRSTATUS,
2267 	.size = sizeof(elf_prstatus_t),
2268 	.get = __elfN(get_prstatus),
2269 	.set = __elfN(set_prstatus),
2270 };
2271 ELF_REGSET(__elfN(regset_prstatus));
2272 
2273 static bool
2274 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2275     size_t *sizep)
2276 {
2277 	elf_prfpregset_t *fpregset;
2278 
2279 	if (buf != NULL) {
2280 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2281 		    __func__));
2282 		fpregset = buf;
2283 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2284 		fill_fpregs32(td, fpregset);
2285 #else
2286 		fill_fpregs(td, fpregset);
2287 #endif
2288 	}
2289 	*sizep = sizeof(*fpregset);
2290 	return (true);
2291 }
2292 
2293 static bool
2294 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2295     size_t size)
2296 {
2297 	elf_prfpregset_t *fpregset;
2298 
2299 	fpregset = buf;
2300 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2301 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2302 	set_fpregs32(td, fpregset);
2303 #else
2304 	set_fpregs(td, fpregset);
2305 #endif
2306 	return (true);
2307 }
2308 
2309 static struct regset __elfN(regset_fpregset) = {
2310 	.note = NT_FPREGSET,
2311 	.size = sizeof(elf_prfpregset_t),
2312 	.get = __elfN(get_fpregset),
2313 	.set = __elfN(set_fpregset),
2314 };
2315 ELF_REGSET(__elfN(regset_fpregset));
2316 
2317 static bool
2318 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2319     size_t *sizep)
2320 {
2321 	elf_thrmisc_t *thrmisc;
2322 
2323 	if (buf != NULL) {
2324 		KASSERT(*sizep == sizeof(*thrmisc),
2325 		    ("%s: invalid size", __func__));
2326 		thrmisc = buf;
2327 		bzero(thrmisc, sizeof(*thrmisc));
2328 		strcpy(thrmisc->pr_tname, td->td_name);
2329 	}
2330 	*sizep = sizeof(*thrmisc);
2331 	return (true);
2332 }
2333 
2334 static struct regset __elfN(regset_thrmisc) = {
2335 	.note = NT_THRMISC,
2336 	.size = sizeof(elf_thrmisc_t),
2337 	.get = __elfN(get_thrmisc),
2338 };
2339 ELF_REGSET(__elfN(regset_thrmisc));
2340 
2341 static bool
2342 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2343     size_t *sizep)
2344 {
2345 	elf_lwpinfo_t pl;
2346 	size_t size;
2347 	int structsize;
2348 
2349 	size = sizeof(structsize) + sizeof(pl);
2350 	if (buf != NULL) {
2351 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2352 		structsize = sizeof(pl);
2353 		memcpy(buf, &structsize, sizeof(structsize));
2354 		bzero(&pl, sizeof(pl));
2355 		pl.pl_lwpid = td->td_tid;
2356 		pl.pl_event = PL_EVENT_NONE;
2357 		pl.pl_sigmask = td->td_sigmask;
2358 		pl.pl_siglist = td->td_siglist;
2359 		if (td->td_si.si_signo != 0) {
2360 			pl.pl_event = PL_EVENT_SIGNAL;
2361 			pl.pl_flags |= PL_FLAG_SI;
2362 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2363 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2364 #else
2365 			pl.pl_siginfo = td->td_si;
2366 #endif
2367 		}
2368 		strcpy(pl.pl_tdname, td->td_name);
2369 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2370 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2371 	}
2372 	*sizep = size;
2373 	return (true);
2374 }
2375 
2376 static struct regset __elfN(regset_lwpinfo) = {
2377 	.note = NT_PTLWPINFO,
2378 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2379 	.get = __elfN(get_lwpinfo),
2380 };
2381 ELF_REGSET(__elfN(regset_lwpinfo));
2382 
2383 static size_t
2384 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2385     struct thread *target_td)
2386 {
2387 	struct sysentvec *sv = td->td_proc->p_sysent;
2388 	struct regset **regsetp, **regset_end, *regset;
2389 	size_t size;
2390 
2391 	size = 0;
2392 
2393 	/* NT_PRSTATUS must be the first register set note. */
2394 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2395 	    target_td);
2396 
2397 	regsetp = sv->sv_regset_begin;
2398 	if (regsetp == NULL) {
2399 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2400 		size += __elfN(register_regset_note)(td, list,
2401 		    &__elfN(regset_fpregset), target_td);
2402 		return (size);
2403 	}
2404 	regset_end = sv->sv_regset_end;
2405 	MPASS(regset_end != NULL);
2406 	for (; regsetp < regset_end; regsetp++) {
2407 		regset = *regsetp;
2408 		if (regset->note == NT_PRSTATUS)
2409 			continue;
2410 		size += __elfN(register_regset_note)(td, list, regset,
2411 		    target_td);
2412 	}
2413 	return (size);
2414 }
2415 
2416 /*
2417  * Allow for MD specific notes, as well as any MD
2418  * specific preparations for writing MI notes.
2419  */
2420 static void
2421 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2422 {
2423 	struct thread *td;
2424 	void *buf;
2425 	size_t size;
2426 
2427 	td = (struct thread *)arg;
2428 	size = *sizep;
2429 	if (size != 0 && sb != NULL)
2430 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2431 	else
2432 		buf = NULL;
2433 	size = 0;
2434 	__elfN(dump_thread)(td, buf, &size);
2435 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2436 	if (size != 0 && sb != NULL)
2437 		sbuf_bcat(sb, buf, size);
2438 	free(buf, M_TEMP);
2439 	*sizep = size;
2440 }
2441 
2442 #ifdef KINFO_PROC_SIZE
2443 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2444 #endif
2445 
2446 static void
2447 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2448 {
2449 	struct proc *p;
2450 	size_t size;
2451 	int structsize;
2452 
2453 	p = arg;
2454 	size = sizeof(structsize) + p->p_numthreads *
2455 	    sizeof(elf_kinfo_proc_t);
2456 
2457 	if (sb != NULL) {
2458 		KASSERT(*sizep == size, ("invalid size"));
2459 		structsize = sizeof(elf_kinfo_proc_t);
2460 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2461 		sx_slock(&proctree_lock);
2462 		PROC_LOCK(p);
2463 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2464 		sx_sunlock(&proctree_lock);
2465 	}
2466 	*sizep = size;
2467 }
2468 
2469 #ifdef KINFO_FILE_SIZE
2470 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2471 #endif
2472 
2473 static void
2474 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2475 {
2476 	struct proc *p;
2477 	size_t size, sect_sz, i;
2478 	ssize_t start_len, sect_len;
2479 	int structsize, filedesc_flags;
2480 
2481 	if (coredump_pack_fileinfo)
2482 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2483 	else
2484 		filedesc_flags = 0;
2485 
2486 	p = arg;
2487 	structsize = sizeof(struct kinfo_file);
2488 	if (sb == NULL) {
2489 		size = 0;
2490 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2491 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2492 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2493 		PROC_LOCK(p);
2494 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2495 		sbuf_finish(sb);
2496 		sbuf_delete(sb);
2497 		*sizep = size;
2498 	} else {
2499 		sbuf_start_section(sb, &start_len);
2500 
2501 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2502 		PROC_LOCK(p);
2503 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2504 		    filedesc_flags);
2505 
2506 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2507 		if (sect_len < 0)
2508 			return;
2509 		sect_sz = sect_len;
2510 
2511 		KASSERT(sect_sz <= *sizep,
2512 		    ("kern_proc_filedesc_out did not respect maxlen; "
2513 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2514 		     sect_sz - sizeof(structsize)));
2515 
2516 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2517 			sbuf_putc(sb, 0);
2518 	}
2519 }
2520 
2521 #ifdef KINFO_VMENTRY_SIZE
2522 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2523 #endif
2524 
2525 static void
2526 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2527 {
2528 	struct proc *p;
2529 	size_t size;
2530 	int structsize, vmmap_flags;
2531 
2532 	if (coredump_pack_vmmapinfo)
2533 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2534 	else
2535 		vmmap_flags = 0;
2536 
2537 	p = arg;
2538 	structsize = sizeof(struct kinfo_vmentry);
2539 	if (sb == NULL) {
2540 		size = 0;
2541 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2542 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2543 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2544 		PROC_LOCK(p);
2545 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2546 		sbuf_finish(sb);
2547 		sbuf_delete(sb);
2548 		*sizep = size;
2549 	} else {
2550 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2551 		PROC_LOCK(p);
2552 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2553 		    vmmap_flags);
2554 	}
2555 }
2556 
2557 static void
2558 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2559 {
2560 	struct proc *p;
2561 	size_t size;
2562 	int structsize;
2563 
2564 	p = arg;
2565 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2566 	if (sb != NULL) {
2567 		KASSERT(*sizep == size, ("invalid size"));
2568 		structsize = sizeof(gid_t);
2569 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2570 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2571 		    sizeof(gid_t));
2572 	}
2573 	*sizep = size;
2574 }
2575 
2576 static void
2577 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2578 {
2579 	struct proc *p;
2580 	size_t size;
2581 	int structsize;
2582 
2583 	p = arg;
2584 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2585 	if (sb != NULL) {
2586 		KASSERT(*sizep == size, ("invalid size"));
2587 		structsize = sizeof(p->p_pd->pd_cmask);
2588 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2589 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2590 	}
2591 	*sizep = size;
2592 }
2593 
2594 static void
2595 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2596 {
2597 	struct proc *p;
2598 	struct rlimit rlim[RLIM_NLIMITS];
2599 	size_t size;
2600 	int structsize, i;
2601 
2602 	p = arg;
2603 	size = sizeof(structsize) + sizeof(rlim);
2604 	if (sb != NULL) {
2605 		KASSERT(*sizep == size, ("invalid size"));
2606 		structsize = sizeof(rlim);
2607 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2608 		PROC_LOCK(p);
2609 		for (i = 0; i < RLIM_NLIMITS; i++)
2610 			lim_rlimit_proc(p, i, &rlim[i]);
2611 		PROC_UNLOCK(p);
2612 		sbuf_bcat(sb, rlim, sizeof(rlim));
2613 	}
2614 	*sizep = size;
2615 }
2616 
2617 static void
2618 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2619 {
2620 	struct proc *p;
2621 	size_t size;
2622 	int structsize;
2623 
2624 	p = arg;
2625 	size = sizeof(structsize) + sizeof(p->p_osrel);
2626 	if (sb != NULL) {
2627 		KASSERT(*sizep == size, ("invalid size"));
2628 		structsize = sizeof(p->p_osrel);
2629 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2630 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2631 	}
2632 	*sizep = size;
2633 }
2634 
2635 static void
2636 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2637 {
2638 	struct proc *p;
2639 	elf_ps_strings_t ps_strings;
2640 	size_t size;
2641 	int structsize;
2642 
2643 	p = arg;
2644 	size = sizeof(structsize) + sizeof(ps_strings);
2645 	if (sb != NULL) {
2646 		KASSERT(*sizep == size, ("invalid size"));
2647 		structsize = sizeof(ps_strings);
2648 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2649 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2650 #else
2651 		ps_strings = PROC_PS_STRINGS(p);
2652 #endif
2653 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2654 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2655 	}
2656 	*sizep = size;
2657 }
2658 
2659 static void
2660 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2661 {
2662 	struct proc *p;
2663 	size_t size;
2664 	int structsize;
2665 
2666 	p = arg;
2667 	if (sb == NULL) {
2668 		size = 0;
2669 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2670 		    SBUF_FIXEDLEN);
2671 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2672 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2673 		PHOLD(p);
2674 		proc_getauxv(curthread, p, sb);
2675 		PRELE(p);
2676 		sbuf_finish(sb);
2677 		sbuf_delete(sb);
2678 		*sizep = size;
2679 	} else {
2680 		structsize = sizeof(Elf_Auxinfo);
2681 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2682 		PHOLD(p);
2683 		proc_getauxv(curthread, p, sb);
2684 		PRELE(p);
2685 	}
2686 }
2687 
2688 static bool
2689 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote,
2690     const char *note_vendor, const Elf_Phdr *pnote,
2691     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2692 {
2693 	const Elf_Note *note, *note0, *note_end;
2694 	const char *note_name;
2695 	char *buf;
2696 	int i, error;
2697 	bool res;
2698 
2699 	/* We need some limit, might as well use PAGE_SIZE. */
2700 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2701 		return (false);
2702 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2703 	if (pnote->p_offset > PAGE_SIZE ||
2704 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2705 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2706 		if (buf == NULL) {
2707 			VOP_UNLOCK(imgp->vp);
2708 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2709 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2710 		}
2711 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2712 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2713 		    curthread->td_ucred, NOCRED, NULL, curthread);
2714 		if (error != 0) {
2715 			uprintf("i/o error PT_NOTE\n");
2716 			goto retf;
2717 		}
2718 		note = note0 = (const Elf_Note *)buf;
2719 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2720 	} else {
2721 		note = note0 = (const Elf_Note *)(imgp->image_header +
2722 		    pnote->p_offset);
2723 		note_end = (const Elf_Note *)(imgp->image_header +
2724 		    pnote->p_offset + pnote->p_filesz);
2725 		buf = NULL;
2726 	}
2727 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2728 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2729 		    (const char *)note < sizeof(Elf_Note)) {
2730 			goto retf;
2731 		}
2732 		if (note->n_namesz != checknote->n_namesz ||
2733 		    note->n_descsz != checknote->n_descsz ||
2734 		    note->n_type != checknote->n_type)
2735 			goto nextnote;
2736 		note_name = (const char *)(note + 1);
2737 		if (note_name + checknote->n_namesz >=
2738 		    (const char *)note_end || strncmp(note_vendor,
2739 		    note_name, checknote->n_namesz) != 0)
2740 			goto nextnote;
2741 
2742 		if (cb(note, cb_arg, &res))
2743 			goto ret;
2744 nextnote:
2745 		note = (const Elf_Note *)((const char *)(note + 1) +
2746 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2747 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2748 	}
2749 retf:
2750 	res = false;
2751 ret:
2752 	free(buf, M_TEMP);
2753 	return (res);
2754 }
2755 
2756 struct brandnote_cb_arg {
2757 	Elf_Brandnote *brandnote;
2758 	int32_t *osrel;
2759 };
2760 
2761 static bool
2762 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2763 {
2764 	struct brandnote_cb_arg *arg;
2765 
2766 	arg = arg0;
2767 
2768 	/*
2769 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2770 	 * necessary.
2771 	 */
2772 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2773 	    arg->brandnote->trans_osrel != NULL ?
2774 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2775 
2776 	return (true);
2777 }
2778 
2779 static Elf_Note fctl_note = {
2780 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2781 	.n_descsz = sizeof(uint32_t),
2782 	.n_type = NT_FREEBSD_FEATURE_CTL,
2783 };
2784 
2785 struct fctl_cb_arg {
2786 	bool *has_fctl0;
2787 	uint32_t *fctl0;
2788 };
2789 
2790 static bool
2791 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2792 {
2793 	struct fctl_cb_arg *arg;
2794 	const Elf32_Word *desc;
2795 	uintptr_t p;
2796 
2797 	arg = arg0;
2798 	p = (uintptr_t)(note + 1);
2799 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2800 	desc = (const Elf32_Word *)p;
2801 	*arg->has_fctl0 = true;
2802 	*arg->fctl0 = desc[0];
2803 	*res = true;
2804 	return (true);
2805 }
2806 
2807 /*
2808  * Try to find the appropriate ABI-note section for checknote, fetch
2809  * the osreldate and feature control flags for binary from the ELF
2810  * OSABI-note.  Only the first page of the image is searched, the same
2811  * as for headers.
2812  */
2813 static bool
2814 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2815     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2816 {
2817 	const Elf_Phdr *phdr;
2818 	const Elf_Ehdr *hdr;
2819 	struct brandnote_cb_arg b_arg;
2820 	struct fctl_cb_arg f_arg;
2821 	int i, j;
2822 
2823 	hdr = (const Elf_Ehdr *)imgp->image_header;
2824 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2825 	b_arg.brandnote = brandnote;
2826 	b_arg.osrel = osrel;
2827 	f_arg.has_fctl0 = has_fctl0;
2828 	f_arg.fctl0 = fctl0;
2829 
2830 	for (i = 0; i < hdr->e_phnum; i++) {
2831 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2832 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2833 		    &b_arg)) {
2834 			for (j = 0; j < hdr->e_phnum; j++) {
2835 				if (phdr[j].p_type == PT_NOTE &&
2836 				    __elfN(parse_notes)(imgp, &fctl_note,
2837 				    FREEBSD_ABI_VENDOR, &phdr[j],
2838 				    note_fctl_cb, &f_arg))
2839 					break;
2840 			}
2841 			return (true);
2842 		}
2843 	}
2844 	return (false);
2845 
2846 }
2847 
2848 /*
2849  * Tell kern_execve.c about it, with a little help from the linker.
2850  */
2851 static struct execsw __elfN(execsw) = {
2852 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2853 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2854 };
2855 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2856 
2857 static vm_prot_t
2858 __elfN(trans_prot)(Elf_Word flags)
2859 {
2860 	vm_prot_t prot;
2861 
2862 	prot = 0;
2863 	if (flags & PF_X)
2864 		prot |= VM_PROT_EXECUTE;
2865 	if (flags & PF_W)
2866 		prot |= VM_PROT_WRITE;
2867 	if (flags & PF_R)
2868 		prot |= VM_PROT_READ;
2869 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2870 	if (i386_read_exec && (flags & PF_R))
2871 		prot |= VM_PROT_EXECUTE;
2872 #endif
2873 	return (prot);
2874 }
2875 
2876 static Elf_Word
2877 __elfN(untrans_prot)(vm_prot_t prot)
2878 {
2879 	Elf_Word flags;
2880 
2881 	flags = 0;
2882 	if (prot & VM_PROT_EXECUTE)
2883 		flags |= PF_X;
2884 	if (prot & VM_PROT_READ)
2885 		flags |= PF_R;
2886 	if (prot & VM_PROT_WRITE)
2887 		flags |= PF_W;
2888 	return (flags);
2889 }
2890