1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_capsicum.h" 36 37 #include <sys/param.h> 38 #include <sys/capsicum.h> 39 #include <sys/compressor.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/imgact.h> 43 #include <sys/imgact_elf.h> 44 #include <sys/jail.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mount.h> 49 #include <sys/mman.h> 50 #include <sys/namei.h> 51 #include <sys/proc.h> 52 #include <sys/procfs.h> 53 #include <sys/ptrace.h> 54 #include <sys/racct.h> 55 #include <sys/reg.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sf_buf.h> 60 #include <sys/smp.h> 61 #include <sys/systm.h> 62 #include <sys/signalvar.h> 63 #include <sys/stat.h> 64 #include <sys/sx.h> 65 #include <sys/syscall.h> 66 #include <sys/sysctl.h> 67 #include <sys/sysent.h> 68 #include <sys/vnode.h> 69 #include <sys/syslog.h> 70 #include <sys/eventhandler.h> 71 #include <sys/user.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int32_t *osrel, uint32_t *fctl0); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry); 92 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 94 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 95 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 96 int32_t *osrel); 97 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 98 static bool __elfN(check_note)(struct image_params *imgp, 99 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0, 100 uint32_t *fctl0); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 static size_t __elfN(prepare_register_notes)(struct thread *td, 104 struct note_info_list *list, struct thread *target_td); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 107 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 ""); 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if defined(__amd64__) 133 static int __elfN(vdso) = 1; 134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 135 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0, 136 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading"); 137 #else 138 static int __elfN(vdso) = 0; 139 #endif 140 141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 142 int i386_read_exec = 0; 143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 144 "enable execution from readable segments"); 145 #endif 146 147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 148 static int 149 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 150 { 151 u_long val; 152 int error; 153 154 val = __elfN(pie_base); 155 error = sysctl_handle_long(oidp, &val, 0, req); 156 if (error != 0 || req->newptr == NULL) 157 return (error); 158 if ((val & PAGE_MASK) != 0) 159 return (EINVAL); 160 __elfN(pie_base) = val; 161 return (0); 162 } 163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 164 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 165 sysctl_pie_base, "LU", 166 "PIE load base without randomization"); 167 168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 170 ""); 171 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 172 173 /* 174 * Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures 175 * have limited address space (which can cause issues for applications with 176 * high memory use) so we leave it off there. 177 */ 178 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64; 179 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 180 &__elfN(aslr_enabled), 0, 181 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 182 ": enable address map randomization"); 183 184 /* 185 * Enable ASLR by default for 64-bit PIE binaries. 186 */ 187 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64; 188 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 189 &__elfN(pie_aslr_enabled), 0, 190 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 191 ": enable address map randomization for PIE binaries"); 192 193 /* 194 * Sbrk is deprecated and it can be assumed that in most cases it will not be 195 * used anyway. This setting is valid only with ASLR enabled, and allows ASLR 196 * to use the bss grow region. 197 */ 198 static int __elfN(aslr_honor_sbrk) = 0; 199 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 200 &__elfN(aslr_honor_sbrk), 0, 201 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 202 203 static int __elfN(aslr_stack) = 1; 204 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN, 205 &__elfN(aslr_stack), 0, 206 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 207 ": enable stack address randomization"); 208 209 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64; 210 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN, 211 &__elfN(aslr_shared_page), 0, 212 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 213 ": enable shared page address randomization"); 214 215 static int __elfN(sigfastblock) = 1; 216 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 217 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 218 "enable sigfastblock for new processes"); 219 220 static bool __elfN(allow_wx) = true; 221 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 222 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 223 "Allow pages to be mapped simultaneously writable and executable"); 224 225 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 226 227 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 228 229 Elf_Brandnote __elfN(freebsd_brandnote) = { 230 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 231 .hdr.n_descsz = sizeof(int32_t), 232 .hdr.n_type = NT_FREEBSD_ABI_TAG, 233 .vendor = FREEBSD_ABI_VENDOR, 234 .flags = BN_TRANSLATE_OSREL, 235 .trans_osrel = __elfN(freebsd_trans_osrel) 236 }; 237 238 static bool 239 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 240 { 241 uintptr_t p; 242 243 p = (uintptr_t)(note + 1); 244 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 245 *osrel = *(const int32_t *)(p); 246 247 return (true); 248 } 249 250 static const char GNU_ABI_VENDOR[] = "GNU"; 251 static int GNU_KFREEBSD_ABI_DESC = 3; 252 253 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 254 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 255 .hdr.n_descsz = 16, /* XXX at least 16 */ 256 .hdr.n_type = 1, 257 .vendor = GNU_ABI_VENDOR, 258 .flags = BN_TRANSLATE_OSREL, 259 .trans_osrel = kfreebsd_trans_osrel 260 }; 261 262 static bool 263 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 264 { 265 const Elf32_Word *desc; 266 uintptr_t p; 267 268 p = (uintptr_t)(note + 1); 269 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 270 271 desc = (const Elf32_Word *)p; 272 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 273 return (false); 274 275 /* 276 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 277 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 278 */ 279 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 280 281 return (true); 282 } 283 284 int 285 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 286 { 287 int i; 288 289 for (i = 0; i < MAX_BRANDS; i++) { 290 if (elf_brand_list[i] == NULL) { 291 elf_brand_list[i] = entry; 292 break; 293 } 294 } 295 if (i == MAX_BRANDS) { 296 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 297 __func__, entry); 298 return (-1); 299 } 300 return (0); 301 } 302 303 int 304 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 305 { 306 int i; 307 308 for (i = 0; i < MAX_BRANDS; i++) { 309 if (elf_brand_list[i] == entry) { 310 elf_brand_list[i] = NULL; 311 break; 312 } 313 } 314 if (i == MAX_BRANDS) 315 return (-1); 316 return (0); 317 } 318 319 bool 320 __elfN(brand_inuse)(Elf_Brandinfo *entry) 321 { 322 struct proc *p; 323 bool rval = false; 324 325 sx_slock(&allproc_lock); 326 FOREACH_PROC_IN_SYSTEM(p) { 327 if (p->p_sysent == entry->sysvec) { 328 rval = true; 329 break; 330 } 331 } 332 sx_sunlock(&allproc_lock); 333 334 return (rval); 335 } 336 337 static Elf_Brandinfo * 338 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 339 int32_t *osrel, uint32_t *fctl0) 340 { 341 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 342 Elf_Brandinfo *bi, *bi_m; 343 bool ret, has_fctl0; 344 int i, interp_name_len; 345 346 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 347 348 /* 349 * We support four types of branding -- (1) the ELF EI_OSABI field 350 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 351 * branding w/in the ELF header, (3) path of the `interp_path' 352 * field, and (4) the ".note.ABI-tag" ELF section. 353 */ 354 355 /* Look for an ".note.ABI-tag" ELF section */ 356 bi_m = NULL; 357 for (i = 0; i < MAX_BRANDS; i++) { 358 bi = elf_brand_list[i]; 359 if (bi == NULL) 360 continue; 361 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 362 continue; 363 if (hdr->e_machine == bi->machine && (bi->flags & 364 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 365 has_fctl0 = false; 366 *fctl0 = 0; 367 *osrel = 0; 368 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 369 &has_fctl0, fctl0); 370 /* Give brand a chance to veto check_note's guess */ 371 if (ret && bi->header_supported) { 372 ret = bi->header_supported(imgp, osrel, 373 has_fctl0 ? fctl0 : NULL); 374 } 375 /* 376 * If note checker claimed the binary, but the 377 * interpreter path in the image does not 378 * match default one for the brand, try to 379 * search for other brands with the same 380 * interpreter. Either there is better brand 381 * with the right interpreter, or, failing 382 * this, we return first brand which accepted 383 * our note and, optionally, header. 384 */ 385 if (ret && bi_m == NULL && interp != NULL && 386 (bi->interp_path == NULL || 387 (strlen(bi->interp_path) + 1 != interp_name_len || 388 strncmp(interp, bi->interp_path, interp_name_len) 389 != 0))) { 390 bi_m = bi; 391 ret = 0; 392 } 393 if (ret) 394 return (bi); 395 } 396 } 397 if (bi_m != NULL) 398 return (bi_m); 399 400 /* If the executable has a brand, search for it in the brand list. */ 401 for (i = 0; i < MAX_BRANDS; i++) { 402 bi = elf_brand_list[i]; 403 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 404 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 405 continue; 406 if (hdr->e_machine == bi->machine && 407 (hdr->e_ident[EI_OSABI] == bi->brand || 408 (bi->compat_3_brand != NULL && 409 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 410 bi->compat_3_brand) == 0))) { 411 /* Looks good, but give brand a chance to veto */ 412 if (bi->header_supported == NULL || 413 bi->header_supported(imgp, NULL, NULL)) { 414 /* 415 * Again, prefer strictly matching 416 * interpreter path. 417 */ 418 if (interp_name_len == 0 && 419 bi->interp_path == NULL) 420 return (bi); 421 if (bi->interp_path != NULL && 422 strlen(bi->interp_path) + 1 == 423 interp_name_len && strncmp(interp, 424 bi->interp_path, interp_name_len) == 0) 425 return (bi); 426 if (bi_m == NULL) 427 bi_m = bi; 428 } 429 } 430 } 431 if (bi_m != NULL) 432 return (bi_m); 433 434 /* No known brand, see if the header is recognized by any brand */ 435 for (i = 0; i < MAX_BRANDS; i++) { 436 bi = elf_brand_list[i]; 437 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 438 bi->header_supported == NULL) 439 continue; 440 if (hdr->e_machine == bi->machine) { 441 ret = bi->header_supported(imgp, NULL, NULL); 442 if (ret) 443 return (bi); 444 } 445 } 446 447 /* Lacking a known brand, search for a recognized interpreter. */ 448 if (interp != NULL) { 449 for (i = 0; i < MAX_BRANDS; i++) { 450 bi = elf_brand_list[i]; 451 if (bi == NULL || (bi->flags & 452 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 453 != 0) 454 continue; 455 if (hdr->e_machine == bi->machine && 456 bi->interp_path != NULL && 457 /* ELF image p_filesz includes terminating zero */ 458 strlen(bi->interp_path) + 1 == interp_name_len && 459 strncmp(interp, bi->interp_path, interp_name_len) 460 == 0 && (bi->header_supported == NULL || 461 bi->header_supported(imgp, NULL, NULL))) 462 return (bi); 463 } 464 } 465 466 /* Lacking a recognized interpreter, try the default brand */ 467 for (i = 0; i < MAX_BRANDS; i++) { 468 bi = elf_brand_list[i]; 469 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 470 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 471 continue; 472 if (hdr->e_machine == bi->machine && 473 __elfN(fallback_brand) == bi->brand && 474 (bi->header_supported == NULL || 475 bi->header_supported(imgp, NULL, NULL))) 476 return (bi); 477 } 478 return (NULL); 479 } 480 481 static bool 482 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 483 { 484 return (hdr->e_phoff <= PAGE_SIZE && 485 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 486 } 487 488 static int 489 __elfN(check_header)(const Elf_Ehdr *hdr) 490 { 491 Elf_Brandinfo *bi; 492 int i; 493 494 if (!IS_ELF(*hdr) || 495 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 496 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 497 hdr->e_ident[EI_VERSION] != EV_CURRENT || 498 hdr->e_phentsize != sizeof(Elf_Phdr) || 499 hdr->e_version != ELF_TARG_VER) 500 return (ENOEXEC); 501 502 /* 503 * Make sure we have at least one brand for this machine. 504 */ 505 506 for (i = 0; i < MAX_BRANDS; i++) { 507 bi = elf_brand_list[i]; 508 if (bi != NULL && bi->machine == hdr->e_machine) 509 break; 510 } 511 if (i == MAX_BRANDS) 512 return (ENOEXEC); 513 514 return (0); 515 } 516 517 static int 518 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 519 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 520 { 521 struct sf_buf *sf; 522 int error; 523 vm_offset_t off; 524 525 /* 526 * Create the page if it doesn't exist yet. Ignore errors. 527 */ 528 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 529 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 530 531 /* 532 * Find the page from the underlying object. 533 */ 534 if (object != NULL) { 535 sf = vm_imgact_map_page(object, offset); 536 if (sf == NULL) 537 return (KERN_FAILURE); 538 off = offset - trunc_page(offset); 539 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 540 end - start); 541 vm_imgact_unmap_page(sf); 542 if (error != 0) 543 return (KERN_FAILURE); 544 } 545 546 return (KERN_SUCCESS); 547 } 548 549 static int 550 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 551 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 552 int cow) 553 { 554 struct sf_buf *sf; 555 vm_offset_t off; 556 vm_size_t sz; 557 int error, locked, rv; 558 559 if (start != trunc_page(start)) { 560 rv = __elfN(map_partial)(map, object, offset, start, 561 round_page(start), prot); 562 if (rv != KERN_SUCCESS) 563 return (rv); 564 offset += round_page(start) - start; 565 start = round_page(start); 566 } 567 if (end != round_page(end)) { 568 rv = __elfN(map_partial)(map, object, offset + 569 trunc_page(end) - start, trunc_page(end), end, prot); 570 if (rv != KERN_SUCCESS) 571 return (rv); 572 end = trunc_page(end); 573 } 574 if (start >= end) 575 return (KERN_SUCCESS); 576 if ((offset & PAGE_MASK) != 0) { 577 /* 578 * The mapping is not page aligned. This means that we have 579 * to copy the data. 580 */ 581 rv = vm_map_fixed(map, NULL, 0, start, end - start, 582 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 583 if (rv != KERN_SUCCESS) 584 return (rv); 585 if (object == NULL) 586 return (KERN_SUCCESS); 587 for (; start < end; start += sz) { 588 sf = vm_imgact_map_page(object, offset); 589 if (sf == NULL) 590 return (KERN_FAILURE); 591 off = offset - trunc_page(offset); 592 sz = end - start; 593 if (sz > PAGE_SIZE - off) 594 sz = PAGE_SIZE - off; 595 error = copyout((caddr_t)sf_buf_kva(sf) + off, 596 (caddr_t)start, sz); 597 vm_imgact_unmap_page(sf); 598 if (error != 0) 599 return (KERN_FAILURE); 600 offset += sz; 601 } 602 } else { 603 vm_object_reference(object); 604 rv = vm_map_fixed(map, object, offset, start, end - start, 605 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 606 (object != NULL ? MAP_VN_EXEC : 0)); 607 if (rv != KERN_SUCCESS) { 608 locked = VOP_ISLOCKED(imgp->vp); 609 VOP_UNLOCK(imgp->vp); 610 vm_object_deallocate(object); 611 vn_lock(imgp->vp, locked | LK_RETRY); 612 return (rv); 613 } else if (object != NULL) { 614 MPASS(imgp->vp->v_object == object); 615 VOP_SET_TEXT_CHECKED(imgp->vp); 616 } 617 } 618 return (KERN_SUCCESS); 619 } 620 621 static int 622 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 623 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 624 { 625 struct sf_buf *sf; 626 size_t map_len; 627 vm_map_t map; 628 vm_object_t object; 629 vm_offset_t map_addr; 630 int error, rv, cow; 631 size_t copy_len; 632 vm_ooffset_t file_addr; 633 634 /* 635 * It's necessary to fail if the filsz + offset taken from the 636 * header is greater than the actual file pager object's size. 637 * If we were to allow this, then the vm_map_find() below would 638 * walk right off the end of the file object and into the ether. 639 * 640 * While I'm here, might as well check for something else that 641 * is invalid: filsz cannot be greater than memsz. 642 */ 643 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 644 filsz > memsz) { 645 uprintf("elf_load_section: truncated ELF file\n"); 646 return (ENOEXEC); 647 } 648 649 object = imgp->object; 650 map = &imgp->proc->p_vmspace->vm_map; 651 map_addr = trunc_page((vm_offset_t)vmaddr); 652 file_addr = trunc_page(offset); 653 654 /* 655 * We have two choices. We can either clear the data in the last page 656 * of an oversized mapping, or we can start the anon mapping a page 657 * early and copy the initialized data into that first page. We 658 * choose the second. 659 */ 660 if (filsz == 0) 661 map_len = 0; 662 else if (memsz > filsz) 663 map_len = trunc_page(offset + filsz) - file_addr; 664 else 665 map_len = round_page(offset + filsz) - file_addr; 666 667 if (map_len != 0) { 668 /* cow flags: don't dump readonly sections in core */ 669 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 670 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 671 672 rv = __elfN(map_insert)(imgp, map, object, file_addr, 673 map_addr, map_addr + map_len, prot, cow); 674 if (rv != KERN_SUCCESS) 675 return (EINVAL); 676 677 /* we can stop now if we've covered it all */ 678 if (memsz == filsz) 679 return (0); 680 } 681 682 /* 683 * We have to get the remaining bit of the file into the first part 684 * of the oversized map segment. This is normally because the .data 685 * segment in the file is extended to provide bss. It's a neat idea 686 * to try and save a page, but it's a pain in the behind to implement. 687 */ 688 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 689 filsz); 690 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 691 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 692 693 /* This had damn well better be true! */ 694 if (map_len != 0) { 695 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 696 map_addr + map_len, prot, 0); 697 if (rv != KERN_SUCCESS) 698 return (EINVAL); 699 } 700 701 if (copy_len != 0) { 702 sf = vm_imgact_map_page(object, offset + filsz); 703 if (sf == NULL) 704 return (EIO); 705 706 /* send the page fragment to user space */ 707 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 708 copy_len); 709 vm_imgact_unmap_page(sf); 710 if (error != 0) 711 return (error); 712 } 713 714 /* 715 * Remove write access to the page if it was only granted by map_insert 716 * to allow copyout. 717 */ 718 if ((prot & VM_PROT_WRITE) == 0) 719 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 720 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 721 722 return (0); 723 } 724 725 static int 726 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 727 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 728 { 729 vm_prot_t prot; 730 u_long base_addr; 731 bool first; 732 int error, i; 733 734 ASSERT_VOP_LOCKED(imgp->vp, __func__); 735 736 base_addr = 0; 737 first = true; 738 739 for (i = 0; i < hdr->e_phnum; i++) { 740 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 741 continue; 742 743 /* Loadable segment */ 744 prot = __elfN(trans_prot)(phdr[i].p_flags); 745 error = __elfN(load_section)(imgp, phdr[i].p_offset, 746 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 747 phdr[i].p_memsz, phdr[i].p_filesz, prot); 748 if (error != 0) 749 return (error); 750 751 /* 752 * Establish the base address if this is the first segment. 753 */ 754 if (first) { 755 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 756 first = false; 757 } 758 } 759 760 if (base_addrp != NULL) 761 *base_addrp = base_addr; 762 763 return (0); 764 } 765 766 /* 767 * Load the file "file" into memory. It may be either a shared object 768 * or an executable. 769 * 770 * The "addr" reference parameter is in/out. On entry, it specifies 771 * the address where a shared object should be loaded. If the file is 772 * an executable, this value is ignored. On exit, "addr" specifies 773 * where the file was actually loaded. 774 * 775 * The "entry" reference parameter is out only. On exit, it specifies 776 * the entry point for the loaded file. 777 */ 778 static int 779 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 780 u_long *entry) 781 { 782 struct { 783 struct nameidata nd; 784 struct vattr attr; 785 struct image_params image_params; 786 } *tempdata; 787 const Elf_Ehdr *hdr = NULL; 788 const Elf_Phdr *phdr = NULL; 789 struct nameidata *nd; 790 struct vattr *attr; 791 struct image_params *imgp; 792 u_long rbase; 793 u_long base_addr = 0; 794 int error; 795 796 #ifdef CAPABILITY_MODE 797 /* 798 * XXXJA: This check can go away once we are sufficiently confident 799 * that the checks in namei() are correct. 800 */ 801 if (IN_CAPABILITY_MODE(curthread)) 802 return (ECAPMODE); 803 #endif 804 805 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 806 nd = &tempdata->nd; 807 attr = &tempdata->attr; 808 imgp = &tempdata->image_params; 809 810 /* 811 * Initialize part of the common data 812 */ 813 imgp->proc = p; 814 imgp->attr = attr; 815 816 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 817 UIO_SYSSPACE, file); 818 if ((error = namei(nd)) != 0) { 819 nd->ni_vp = NULL; 820 goto fail; 821 } 822 NDFREE_PNBUF(nd); 823 imgp->vp = nd->ni_vp; 824 825 /* 826 * Check permissions, modes, uid, etc on the file, and "open" it. 827 */ 828 error = exec_check_permissions(imgp); 829 if (error) 830 goto fail; 831 832 error = exec_map_first_page(imgp); 833 if (error) 834 goto fail; 835 836 imgp->object = nd->ni_vp->v_object; 837 838 hdr = (const Elf_Ehdr *)imgp->image_header; 839 if ((error = __elfN(check_header)(hdr)) != 0) 840 goto fail; 841 if (hdr->e_type == ET_DYN) 842 rbase = *addr; 843 else if (hdr->e_type == ET_EXEC) 844 rbase = 0; 845 else { 846 error = ENOEXEC; 847 goto fail; 848 } 849 850 /* Only support headers that fit within first page for now */ 851 if (!__elfN(phdr_in_zero_page)(hdr)) { 852 error = ENOEXEC; 853 goto fail; 854 } 855 856 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 857 if (!aligned(phdr, Elf_Addr)) { 858 error = ENOEXEC; 859 goto fail; 860 } 861 862 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 863 if (error != 0) 864 goto fail; 865 866 *addr = base_addr; 867 *entry = (unsigned long)hdr->e_entry + rbase; 868 869 fail: 870 if (imgp->firstpage) 871 exec_unmap_first_page(imgp); 872 873 if (nd->ni_vp) { 874 if (imgp->textset) 875 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 876 vput(nd->ni_vp); 877 } 878 free(tempdata, M_TEMP); 879 880 return (error); 881 } 882 883 /* 884 * Select randomized valid address in the map map, between minv and 885 * maxv, with specified alignment. The [minv, maxv) range must belong 886 * to the map. Note that function only allocates the address, it is 887 * up to caller to clamp maxv in a way that the final allocation 888 * length fit into the map. 889 * 890 * Result is returned in *resp, error code indicates that arguments 891 * did not pass sanity checks for overflow and range correctness. 892 */ 893 static int 894 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv, 895 u_int align, u_long *resp) 896 { 897 u_long rbase, res; 898 899 MPASS(vm_map_min(map) <= minv); 900 901 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) { 902 uprintf("Invalid ELF segments layout\n"); 903 return (ENOEXEC); 904 } 905 906 arc4rand(&rbase, sizeof(rbase), 0); 907 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 908 res &= ~((u_long)align - 1); 909 if (res >= maxv) 910 res -= align; 911 912 KASSERT(res >= minv, 913 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 914 res, minv, maxv, rbase)); 915 KASSERT(res < maxv, 916 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 917 res, maxv, minv, rbase)); 918 919 *resp = res; 920 return (0); 921 } 922 923 static int 924 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 925 const Elf_Phdr *phdr) 926 { 927 struct vmspace *vmspace; 928 const char *err_str; 929 u_long text_size, data_size, total_size, text_addr, data_addr; 930 u_long seg_size, seg_addr; 931 int i; 932 933 err_str = NULL; 934 text_size = data_size = total_size = text_addr = data_addr = 0; 935 936 for (i = 0; i < hdr->e_phnum; i++) { 937 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 938 continue; 939 940 seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr); 941 seg_size = round_page(phdr[i].p_memsz + 942 phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr); 943 944 /* 945 * Make the largest executable segment the official 946 * text segment and all others data. 947 * 948 * Note that obreak() assumes that data_addr + data_size == end 949 * of data load area, and the ELF file format expects segments 950 * to be sorted by address. If multiple data segments exist, 951 * the last one will be used. 952 */ 953 954 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 955 text_size = seg_size; 956 text_addr = seg_addr; 957 } else { 958 data_size = seg_size; 959 data_addr = seg_addr; 960 } 961 total_size += seg_size; 962 } 963 964 if (data_addr == 0 && data_size == 0) { 965 data_addr = text_addr; 966 data_size = text_size; 967 } 968 969 /* 970 * Check limits. It should be safe to check the 971 * limits after loading the segments since we do 972 * not actually fault in all the segments pages. 973 */ 974 PROC_LOCK(imgp->proc); 975 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 976 err_str = "Data segment size exceeds process limit"; 977 else if (text_size > maxtsiz) 978 err_str = "Text segment size exceeds system limit"; 979 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 980 err_str = "Total segment size exceeds process limit"; 981 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 982 err_str = "Data segment size exceeds resource limit"; 983 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 984 err_str = "Total segment size exceeds resource limit"; 985 PROC_UNLOCK(imgp->proc); 986 if (err_str != NULL) { 987 uprintf("%s\n", err_str); 988 return (ENOMEM); 989 } 990 991 vmspace = imgp->proc->p_vmspace; 992 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 993 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 994 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 995 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 996 997 return (0); 998 } 999 1000 static int 1001 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 1002 char **interpp, bool *free_interpp) 1003 { 1004 struct thread *td; 1005 char *interp; 1006 int error, interp_name_len; 1007 1008 KASSERT(phdr->p_type == PT_INTERP, 1009 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 1010 ASSERT_VOP_LOCKED(imgp->vp, __func__); 1011 1012 td = curthread; 1013 1014 /* Path to interpreter */ 1015 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 1016 uprintf("Invalid PT_INTERP\n"); 1017 return (ENOEXEC); 1018 } 1019 1020 interp_name_len = phdr->p_filesz; 1021 if (phdr->p_offset > PAGE_SIZE || 1022 interp_name_len > PAGE_SIZE - phdr->p_offset) { 1023 /* 1024 * The vnode lock might be needed by the pagedaemon to 1025 * clean pages owned by the vnode. Do not allow sleep 1026 * waiting for memory with the vnode locked, instead 1027 * try non-sleepable allocation first, and if it 1028 * fails, go to the slow path were we drop the lock 1029 * and do M_WAITOK. A text reference prevents 1030 * modifications to the vnode content. 1031 */ 1032 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 1033 if (interp == NULL) { 1034 VOP_UNLOCK(imgp->vp); 1035 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 1036 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1037 } 1038 1039 error = vn_rdwr(UIO_READ, imgp->vp, interp, 1040 interp_name_len, phdr->p_offset, 1041 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 1042 NOCRED, NULL, td); 1043 if (error != 0) { 1044 free(interp, M_TEMP); 1045 uprintf("i/o error PT_INTERP %d\n", error); 1046 return (error); 1047 } 1048 interp[interp_name_len] = '\0'; 1049 1050 *interpp = interp; 1051 *free_interpp = true; 1052 return (0); 1053 } 1054 1055 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1056 if (interp[interp_name_len - 1] != '\0') { 1057 uprintf("Invalid PT_INTERP\n"); 1058 return (ENOEXEC); 1059 } 1060 1061 *interpp = interp; 1062 *free_interpp = false; 1063 return (0); 1064 } 1065 1066 static int 1067 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1068 const char *interp, u_long *addr, u_long *entry) 1069 { 1070 int error; 1071 1072 if (brand_info->interp_newpath != NULL && 1073 (brand_info->interp_path == NULL || 1074 strcmp(interp, brand_info->interp_path) == 0)) { 1075 error = __elfN(load_file)(imgp->proc, 1076 brand_info->interp_newpath, addr, entry); 1077 if (error == 0) 1078 return (0); 1079 } 1080 1081 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1082 if (error == 0) 1083 return (0); 1084 1085 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1086 return (error); 1087 } 1088 1089 /* 1090 * Impossible et_dyn_addr initial value indicating that the real base 1091 * must be calculated later with some randomization applied. 1092 */ 1093 #define ET_DYN_ADDR_RAND 1 1094 1095 static int 1096 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1097 { 1098 struct thread *td; 1099 const Elf_Ehdr *hdr; 1100 const Elf_Phdr *phdr; 1101 Elf_Auxargs *elf_auxargs; 1102 struct vmspace *vmspace; 1103 vm_map_t map; 1104 char *interp; 1105 Elf_Brandinfo *brand_info; 1106 struct sysentvec *sv; 1107 u_long addr, baddr, entry, proghdr; 1108 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc; 1109 uint32_t fctl0; 1110 int32_t osrel; 1111 bool free_interp; 1112 int error, i, n; 1113 1114 hdr = (const Elf_Ehdr *)imgp->image_header; 1115 1116 /* 1117 * Do we have a valid ELF header ? 1118 * 1119 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1120 * if particular brand doesn't support it. 1121 */ 1122 if (__elfN(check_header)(hdr) != 0 || 1123 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1124 return (-1); 1125 1126 /* 1127 * From here on down, we return an errno, not -1, as we've 1128 * detected an ELF file. 1129 */ 1130 1131 if (!__elfN(phdr_in_zero_page)(hdr)) { 1132 uprintf("Program headers not in the first page\n"); 1133 return (ENOEXEC); 1134 } 1135 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1136 if (!aligned(phdr, Elf_Addr)) { 1137 uprintf("Unaligned program headers\n"); 1138 return (ENOEXEC); 1139 } 1140 1141 n = error = 0; 1142 baddr = 0; 1143 osrel = 0; 1144 fctl0 = 0; 1145 entry = proghdr = 0; 1146 interp = NULL; 1147 free_interp = false; 1148 td = curthread; 1149 1150 /* 1151 * Somewhat arbitrary, limit accepted max alignment for the 1152 * loadable segment to the max supported superpage size. Too 1153 * large alignment requests are not useful and are indicators 1154 * of corrupted or outright malicious binary. 1155 */ 1156 maxalign = PAGE_SIZE; 1157 maxsalign = PAGE_SIZE * 1024; 1158 for (i = MAXPAGESIZES - 1; i > 0; i--) { 1159 if (pagesizes[i] > maxsalign) 1160 maxsalign = pagesizes[i]; 1161 } 1162 1163 mapsz = 0; 1164 1165 for (i = 0; i < hdr->e_phnum; i++) { 1166 switch (phdr[i].p_type) { 1167 case PT_LOAD: 1168 if (n == 0) 1169 baddr = phdr[i].p_vaddr; 1170 if (!powerof2(phdr[i].p_align) || 1171 phdr[i].p_align > maxsalign) { 1172 uprintf("Invalid segment alignment\n"); 1173 error = ENOEXEC; 1174 goto ret; 1175 } 1176 if (phdr[i].p_align > maxalign) 1177 maxalign = phdr[i].p_align; 1178 if (mapsz + phdr[i].p_memsz < mapsz) { 1179 uprintf("Mapsize overflow\n"); 1180 error = ENOEXEC; 1181 goto ret; 1182 } 1183 mapsz += phdr[i].p_memsz; 1184 n++; 1185 1186 /* 1187 * If this segment contains the program headers, 1188 * remember their virtual address for the AT_PHDR 1189 * aux entry. Static binaries don't usually include 1190 * a PT_PHDR entry. 1191 */ 1192 if (phdr[i].p_offset == 0 && 1193 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= 1194 phdr[i].p_filesz) 1195 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1196 break; 1197 case PT_INTERP: 1198 /* Path to interpreter */ 1199 if (interp != NULL) { 1200 uprintf("Multiple PT_INTERP headers\n"); 1201 error = ENOEXEC; 1202 goto ret; 1203 } 1204 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1205 &free_interp); 1206 if (error != 0) 1207 goto ret; 1208 break; 1209 case PT_GNU_STACK: 1210 if (__elfN(nxstack)) { 1211 imgp->stack_prot = 1212 __elfN(trans_prot)(phdr[i].p_flags); 1213 if ((imgp->stack_prot & VM_PROT_RW) != 1214 VM_PROT_RW) { 1215 uprintf("Invalid PT_GNU_STACK\n"); 1216 error = ENOEXEC; 1217 goto ret; 1218 } 1219 } 1220 imgp->stack_sz = phdr[i].p_memsz; 1221 break; 1222 case PT_PHDR: /* Program header table info */ 1223 proghdr = phdr[i].p_vaddr; 1224 break; 1225 } 1226 } 1227 1228 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1229 if (brand_info == NULL) { 1230 uprintf("ELF binary type \"%u\" not known.\n", 1231 hdr->e_ident[EI_OSABI]); 1232 error = ENOEXEC; 1233 goto ret; 1234 } 1235 sv = brand_info->sysvec; 1236 if (hdr->e_type == ET_DYN) { 1237 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1238 uprintf("Cannot execute shared object\n"); 1239 error = ENOEXEC; 1240 goto ret; 1241 } 1242 /* 1243 * Honour the base load address from the dso if it is 1244 * non-zero for some reason. 1245 */ 1246 if (baddr == 0) { 1247 if ((sv->sv_flags & SV_ASLR) == 0 || 1248 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1249 imgp->et_dyn_addr = __elfN(pie_base); 1250 else if ((__elfN(pie_aslr_enabled) && 1251 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1252 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1253 imgp->et_dyn_addr = ET_DYN_ADDR_RAND; 1254 else 1255 imgp->et_dyn_addr = __elfN(pie_base); 1256 } 1257 } 1258 1259 /* 1260 * Avoid a possible deadlock if the current address space is destroyed 1261 * and that address space maps the locked vnode. In the common case, 1262 * the locked vnode's v_usecount is decremented but remains greater 1263 * than zero. Consequently, the vnode lock is not needed by vrele(). 1264 * However, in cases where the vnode lock is external, such as nullfs, 1265 * v_usecount may become zero. 1266 * 1267 * The VV_TEXT flag prevents modifications to the executable while 1268 * the vnode is unlocked. 1269 */ 1270 VOP_UNLOCK(imgp->vp); 1271 1272 /* 1273 * Decide whether to enable randomization of user mappings. 1274 * First, reset user preferences for the setid binaries. 1275 * Then, account for the support of the randomization by the 1276 * ABI, by user preferences, and make special treatment for 1277 * PIE binaries. 1278 */ 1279 if (imgp->credential_setid) { 1280 PROC_LOCK(imgp->proc); 1281 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1282 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1283 PROC_UNLOCK(imgp->proc); 1284 } 1285 if ((sv->sv_flags & SV_ASLR) == 0 || 1286 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1287 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1288 KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND, 1289 ("imgp->et_dyn_addr == RAND and !ASLR")); 1290 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1291 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1292 imgp->et_dyn_addr == ET_DYN_ADDR_RAND) { 1293 imgp->map_flags |= MAP_ASLR; 1294 /* 1295 * If user does not care about sbrk, utilize the bss 1296 * grow region for mappings as well. We can select 1297 * the base for the image anywere and still not suffer 1298 * from the fragmentation. 1299 */ 1300 if (!__elfN(aslr_honor_sbrk) || 1301 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1302 imgp->map_flags |= MAP_ASLR_IGNSTART; 1303 if (__elfN(aslr_stack)) 1304 imgp->map_flags |= MAP_ASLR_STACK; 1305 if (__elfN(aslr_shared_page)) 1306 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE; 1307 } 1308 1309 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1310 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1311 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1312 imgp->map_flags |= MAP_WXORX; 1313 1314 error = exec_new_vmspace(imgp, sv); 1315 1316 imgp->proc->p_sysent = sv; 1317 imgp->proc->p_elf_brandinfo = brand_info; 1318 1319 vmspace = imgp->proc->p_vmspace; 1320 map = &vmspace->vm_map; 1321 maxv = sv->sv_usrstack; 1322 if ((imgp->map_flags & MAP_ASLR_STACK) == 0) 1323 maxv -= lim_max(td, RLIMIT_STACK); 1324 if (error == 0 && mapsz >= maxv - vm_map_min(map)) { 1325 uprintf("Excessive mapping size\n"); 1326 error = ENOEXEC; 1327 } 1328 1329 if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) { 1330 KASSERT((map->flags & MAP_ASLR) != 0, 1331 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1332 error = __CONCAT(rnd_, __elfN(base))(map, 1333 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1334 /* reserve half of the address space to interpreter */ 1335 maxv / 2, maxalign, &imgp->et_dyn_addr); 1336 } 1337 1338 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1339 if (error != 0) 1340 goto ret; 1341 1342 error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL); 1343 if (error != 0) 1344 goto ret; 1345 1346 error = __elfN(enforce_limits)(imgp, hdr, phdr); 1347 if (error != 0) 1348 goto ret; 1349 1350 /* 1351 * We load the dynamic linker where a userland call 1352 * to mmap(0, ...) would put it. The rationale behind this 1353 * calculation is that it leaves room for the heap to grow to 1354 * its maximum allowed size. 1355 */ 1356 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1357 RLIMIT_DATA)); 1358 if ((map->flags & MAP_ASLR) != 0) { 1359 maxv1 = maxv / 2 + addr / 2; 1360 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1361 (MAXPAGESIZES > 1 && pagesizes[1] != 0) ? 1362 pagesizes[1] : pagesizes[0], &anon_loc); 1363 if (error != 0) 1364 goto ret; 1365 map->anon_loc = anon_loc; 1366 } else { 1367 map->anon_loc = addr; 1368 } 1369 1370 entry = (u_long)hdr->e_entry + imgp->et_dyn_addr; 1371 imgp->entry_addr = entry; 1372 1373 if (interp != NULL) { 1374 VOP_UNLOCK(imgp->vp); 1375 if ((map->flags & MAP_ASLR) != 0) { 1376 /* Assume that interpreter fits into 1/4 of AS */ 1377 maxv1 = maxv / 2 + addr / 2; 1378 error = __CONCAT(rnd_, __elfN(base))(map, addr, 1379 maxv1, PAGE_SIZE, &addr); 1380 } 1381 if (error == 0) { 1382 error = __elfN(load_interp)(imgp, brand_info, interp, 1383 &addr, &imgp->entry_addr); 1384 } 1385 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1386 if (error != 0) 1387 goto ret; 1388 } else 1389 addr = imgp->et_dyn_addr; 1390 1391 error = exec_map_stack(imgp); 1392 if (error != 0) 1393 goto ret; 1394 1395 /* 1396 * Construct auxargs table (used by the copyout_auxargs routine) 1397 */ 1398 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1399 if (elf_auxargs == NULL) { 1400 VOP_UNLOCK(imgp->vp); 1401 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1402 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1403 } 1404 elf_auxargs->execfd = -1; 1405 elf_auxargs->phdr = proghdr + imgp->et_dyn_addr; 1406 elf_auxargs->phent = hdr->e_phentsize; 1407 elf_auxargs->phnum = hdr->e_phnum; 1408 elf_auxargs->pagesz = PAGE_SIZE; 1409 elf_auxargs->base = addr; 1410 elf_auxargs->flags = 0; 1411 elf_auxargs->entry = entry; 1412 elf_auxargs->hdr_eflags = hdr->e_flags; 1413 1414 imgp->auxargs = elf_auxargs; 1415 imgp->interpreted = 0; 1416 imgp->reloc_base = addr; 1417 imgp->proc->p_osrel = osrel; 1418 imgp->proc->p_fctl0 = fctl0; 1419 imgp->proc->p_elf_flags = hdr->e_flags; 1420 1421 ret: 1422 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock"); 1423 if (free_interp) 1424 free(interp, M_TEMP); 1425 return (error); 1426 } 1427 1428 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1429 1430 int 1431 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1432 { 1433 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1434 Elf_Auxinfo *argarray, *pos; 1435 struct vmspace *vmspace; 1436 rlim_t stacksz; 1437 int error, bsdflags, oc; 1438 1439 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1440 M_WAITOK | M_ZERO); 1441 1442 vmspace = imgp->proc->p_vmspace; 1443 1444 if (args->execfd != -1) 1445 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1446 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1447 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1448 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1449 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1450 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1451 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1452 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1453 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1454 if (imgp->execpathp != 0) 1455 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1456 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1457 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1458 if (imgp->canary != 0) { 1459 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1460 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1461 } 1462 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1463 if (imgp->pagesizes != 0) { 1464 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1465 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1466 } 1467 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) { 1468 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1469 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset); 1470 } 1471 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1472 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1473 imgp->sysent->sv_stackprot); 1474 if (imgp->sysent->sv_hwcap != NULL) 1475 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1476 if (imgp->sysent->sv_hwcap2 != NULL) 1477 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1478 bsdflags = 0; 1479 bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0; 1480 oc = atomic_load_int(&vm_overcommit); 1481 bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) != 1482 0 ? ELF_BSDF_VMNOOVERCOMMIT : 0; 1483 AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags); 1484 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1485 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1486 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1487 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1488 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1489 #ifdef RANDOM_FENESTRASX 1490 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) { 1491 AUXARGS_ENTRY(pos, AT_FXRNG, 1492 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset); 1493 } 1494 #endif 1495 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) { 1496 AUXARGS_ENTRY(pos, AT_KPRELOAD, 1497 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset); 1498 } 1499 AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop)); 1500 stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 1501 AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz); 1502 AUXARGS_ENTRY(pos, AT_NULL, 0); 1503 1504 free(imgp->auxargs, M_TEMP); 1505 imgp->auxargs = NULL; 1506 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1507 1508 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1509 free(argarray, M_TEMP); 1510 return (error); 1511 } 1512 1513 int 1514 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1515 { 1516 Elf_Addr *base; 1517 1518 base = (Elf_Addr *)*stack_base; 1519 base--; 1520 if (elf_suword(base, imgp->args->argc) == -1) 1521 return (EFAULT); 1522 *stack_base = (uintptr_t)base; 1523 return (0); 1524 } 1525 1526 /* 1527 * Code for generating ELF core dumps. 1528 */ 1529 1530 typedef void (*segment_callback)(vm_map_entry_t, void *); 1531 1532 /* Closure for cb_put_phdr(). */ 1533 struct phdr_closure { 1534 Elf_Phdr *phdr; /* Program header to fill in */ 1535 Elf_Off offset; /* Offset of segment in core file */ 1536 }; 1537 1538 struct note_info { 1539 int type; /* Note type. */ 1540 struct regset *regset; /* Register set. */ 1541 outfunc_t outfunc; /* Output function. */ 1542 void *outarg; /* Argument for the output function. */ 1543 size_t outsize; /* Output size. */ 1544 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1545 }; 1546 1547 TAILQ_HEAD(note_info_list, note_info); 1548 1549 extern int compress_user_cores; 1550 extern int compress_user_cores_level; 1551 1552 static void cb_put_phdr(vm_map_entry_t, void *); 1553 static void cb_size_segment(vm_map_entry_t, void *); 1554 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1555 int); 1556 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1557 struct note_info_list *, size_t, int); 1558 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1559 1560 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1561 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1562 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1563 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1564 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1565 static void note_procstat_files(void *, struct sbuf *, size_t *); 1566 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1567 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1568 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1569 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1570 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1571 1572 static int 1573 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1574 { 1575 1576 return (core_write((struct coredump_params *)arg, base, len, offset, 1577 UIO_SYSSPACE, NULL)); 1578 } 1579 1580 int 1581 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1582 { 1583 struct ucred *cred = td->td_ucred; 1584 int compm, error = 0; 1585 struct sseg_closure seginfo; 1586 struct note_info_list notelst; 1587 struct coredump_params params; 1588 struct note_info *ninfo; 1589 void *hdr, *tmpbuf; 1590 size_t hdrsize, notesz, coresize; 1591 1592 hdr = NULL; 1593 tmpbuf = NULL; 1594 TAILQ_INIT(¬elst); 1595 1596 /* Size the program segments. */ 1597 __elfN(size_segments)(td, &seginfo, flags); 1598 1599 /* 1600 * Collect info about the core file header area. 1601 */ 1602 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1603 if (seginfo.count + 1 >= PN_XNUM) 1604 hdrsize += sizeof(Elf_Shdr); 1605 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1606 coresize = round_page(hdrsize + notesz) + seginfo.size; 1607 1608 /* Set up core dump parameters. */ 1609 params.offset = 0; 1610 params.active_cred = cred; 1611 params.file_cred = NOCRED; 1612 params.td = td; 1613 params.vp = vp; 1614 params.comp = NULL; 1615 1616 #ifdef RACCT 1617 if (racct_enable) { 1618 PROC_LOCK(td->td_proc); 1619 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1620 PROC_UNLOCK(td->td_proc); 1621 if (error != 0) { 1622 error = EFAULT; 1623 goto done; 1624 } 1625 } 1626 #endif 1627 if (coresize >= limit) { 1628 error = EFAULT; 1629 goto done; 1630 } 1631 1632 /* Create a compression stream if necessary. */ 1633 compm = compress_user_cores; 1634 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1635 compm == 0) 1636 compm = COMPRESS_GZIP; 1637 if (compm != 0) { 1638 params.comp = compressor_init(core_compressed_write, 1639 compm, CORE_BUF_SIZE, 1640 compress_user_cores_level, ¶ms); 1641 if (params.comp == NULL) { 1642 error = EFAULT; 1643 goto done; 1644 } 1645 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1646 } 1647 1648 /* 1649 * Allocate memory for building the header, fill it up, 1650 * and write it out following the notes. 1651 */ 1652 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1653 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1654 notesz, flags); 1655 1656 /* Write the contents of all of the writable segments. */ 1657 if (error == 0) { 1658 Elf_Phdr *php; 1659 off_t offset; 1660 int i; 1661 1662 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1663 offset = round_page(hdrsize + notesz); 1664 for (i = 0; i < seginfo.count; i++) { 1665 error = core_output((char *)(uintptr_t)php->p_vaddr, 1666 php->p_filesz, offset, ¶ms, tmpbuf); 1667 if (error != 0) 1668 break; 1669 offset += php->p_filesz; 1670 php++; 1671 } 1672 if (error == 0 && params.comp != NULL) 1673 error = compressor_flush(params.comp); 1674 } 1675 if (error) { 1676 log(LOG_WARNING, 1677 "Failed to write core file for process %s (error %d)\n", 1678 curproc->p_comm, error); 1679 } 1680 1681 done: 1682 free(tmpbuf, M_TEMP); 1683 if (params.comp != NULL) 1684 compressor_fini(params.comp); 1685 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1686 TAILQ_REMOVE(¬elst, ninfo, link); 1687 free(ninfo, M_TEMP); 1688 } 1689 if (hdr != NULL) 1690 free(hdr, M_TEMP); 1691 1692 return (error); 1693 } 1694 1695 /* 1696 * A callback for each_dumpable_segment() to write out the segment's 1697 * program header entry. 1698 */ 1699 static void 1700 cb_put_phdr(vm_map_entry_t entry, void *closure) 1701 { 1702 struct phdr_closure *phc = (struct phdr_closure *)closure; 1703 Elf_Phdr *phdr = phc->phdr; 1704 1705 phc->offset = round_page(phc->offset); 1706 1707 phdr->p_type = PT_LOAD; 1708 phdr->p_offset = phc->offset; 1709 phdr->p_vaddr = entry->start; 1710 phdr->p_paddr = 0; 1711 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1712 phdr->p_align = PAGE_SIZE; 1713 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1714 1715 phc->offset += phdr->p_filesz; 1716 phc->phdr++; 1717 } 1718 1719 /* 1720 * A callback for each_dumpable_segment() to gather information about 1721 * the number of segments and their total size. 1722 */ 1723 static void 1724 cb_size_segment(vm_map_entry_t entry, void *closure) 1725 { 1726 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1727 1728 ssc->count++; 1729 ssc->size += entry->end - entry->start; 1730 } 1731 1732 void 1733 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1734 int flags) 1735 { 1736 seginfo->count = 0; 1737 seginfo->size = 0; 1738 1739 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1740 } 1741 1742 /* 1743 * For each writable segment in the process's memory map, call the given 1744 * function with a pointer to the map entry and some arbitrary 1745 * caller-supplied data. 1746 */ 1747 static void 1748 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1749 int flags) 1750 { 1751 struct proc *p = td->td_proc; 1752 vm_map_t map = &p->p_vmspace->vm_map; 1753 vm_map_entry_t entry; 1754 vm_object_t backing_object, object; 1755 bool ignore_entry; 1756 1757 vm_map_lock_read(map); 1758 VM_MAP_ENTRY_FOREACH(entry, map) { 1759 /* 1760 * Don't dump inaccessible mappings, deal with legacy 1761 * coredump mode. 1762 * 1763 * Note that read-only segments related to the elf binary 1764 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1765 * need to arbitrarily ignore such segments. 1766 */ 1767 if ((flags & SVC_ALL) == 0) { 1768 if (elf_legacy_coredump) { 1769 if ((entry->protection & VM_PROT_RW) != 1770 VM_PROT_RW) 1771 continue; 1772 } else { 1773 if ((entry->protection & VM_PROT_ALL) == 0) 1774 continue; 1775 } 1776 } 1777 1778 /* 1779 * Dont include memory segment in the coredump if 1780 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1781 * madvise(2). Do not dump submaps (i.e. parts of the 1782 * kernel map). 1783 */ 1784 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1785 continue; 1786 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1787 (flags & SVC_ALL) == 0) 1788 continue; 1789 if ((object = entry->object.vm_object) == NULL) 1790 continue; 1791 1792 /* Ignore memory-mapped devices and such things. */ 1793 VM_OBJECT_RLOCK(object); 1794 while ((backing_object = object->backing_object) != NULL) { 1795 VM_OBJECT_RLOCK(backing_object); 1796 VM_OBJECT_RUNLOCK(object); 1797 object = backing_object; 1798 } 1799 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1800 VM_OBJECT_RUNLOCK(object); 1801 if (ignore_entry) 1802 continue; 1803 1804 (*func)(entry, closure); 1805 } 1806 vm_map_unlock_read(map); 1807 } 1808 1809 /* 1810 * Write the core file header to the file, including padding up to 1811 * the page boundary. 1812 */ 1813 static int 1814 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1815 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1816 int flags) 1817 { 1818 struct note_info *ninfo; 1819 struct sbuf *sb; 1820 int error; 1821 1822 /* Fill in the header. */ 1823 bzero(hdr, hdrsize); 1824 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1825 1826 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1827 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1828 sbuf_start_section(sb, NULL); 1829 sbuf_bcat(sb, hdr, hdrsize); 1830 TAILQ_FOREACH(ninfo, notelst, link) 1831 __elfN(putnote)(p->td, ninfo, sb); 1832 /* Align up to a page boundary for the program segments. */ 1833 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1834 error = sbuf_finish(sb); 1835 sbuf_delete(sb); 1836 1837 return (error); 1838 } 1839 1840 void 1841 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1842 size_t *sizep) 1843 { 1844 struct proc *p; 1845 struct thread *thr; 1846 size_t size; 1847 1848 p = td->td_proc; 1849 size = 0; 1850 1851 size += __elfN(register_note)(td, list, NT_PRPSINFO, 1852 __elfN(note_prpsinfo), p); 1853 1854 /* 1855 * To have the debugger select the right thread (LWP) as the initial 1856 * thread, we dump the state of the thread passed to us in td first. 1857 * This is the thread that causes the core dump and thus likely to 1858 * be the right thread one wants to have selected in the debugger. 1859 */ 1860 thr = td; 1861 while (thr != NULL) { 1862 size += __elfN(prepare_register_notes)(td, list, thr); 1863 size += __elfN(register_note)(td, list, -1, 1864 __elfN(note_threadmd), thr); 1865 1866 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1867 TAILQ_NEXT(thr, td_plist); 1868 if (thr == td) 1869 thr = TAILQ_NEXT(thr, td_plist); 1870 } 1871 1872 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1873 __elfN(note_procstat_proc), p); 1874 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1875 note_procstat_files, p); 1876 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1877 note_procstat_vmmap, p); 1878 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1879 note_procstat_groups, p); 1880 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1881 note_procstat_umask, p); 1882 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1883 note_procstat_rlimit, p); 1884 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1885 note_procstat_osrel, p); 1886 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1887 __elfN(note_procstat_psstrings), p); 1888 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1889 __elfN(note_procstat_auxv), p); 1890 1891 *sizep = size; 1892 } 1893 1894 void 1895 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1896 size_t notesz, int flags) 1897 { 1898 Elf_Ehdr *ehdr; 1899 Elf_Phdr *phdr; 1900 Elf_Shdr *shdr; 1901 struct phdr_closure phc; 1902 Elf_Brandinfo *bi; 1903 1904 ehdr = (Elf_Ehdr *)hdr; 1905 bi = td->td_proc->p_elf_brandinfo; 1906 1907 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1908 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1909 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1910 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1911 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1912 ehdr->e_ident[EI_DATA] = ELF_DATA; 1913 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1914 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1915 ehdr->e_ident[EI_ABIVERSION] = 0; 1916 ehdr->e_ident[EI_PAD] = 0; 1917 ehdr->e_type = ET_CORE; 1918 ehdr->e_machine = bi->machine; 1919 ehdr->e_version = EV_CURRENT; 1920 ehdr->e_entry = 0; 1921 ehdr->e_phoff = sizeof(Elf_Ehdr); 1922 ehdr->e_flags = td->td_proc->p_elf_flags; 1923 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1924 ehdr->e_phentsize = sizeof(Elf_Phdr); 1925 ehdr->e_shentsize = sizeof(Elf_Shdr); 1926 ehdr->e_shstrndx = SHN_UNDEF; 1927 if (numsegs + 1 < PN_XNUM) { 1928 ehdr->e_phnum = numsegs + 1; 1929 ehdr->e_shnum = 0; 1930 } else { 1931 ehdr->e_phnum = PN_XNUM; 1932 ehdr->e_shnum = 1; 1933 1934 ehdr->e_shoff = ehdr->e_phoff + 1935 (numsegs + 1) * ehdr->e_phentsize; 1936 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1937 ("e_shoff: %zu, hdrsize - shdr: %zu", 1938 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1939 1940 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1941 memset(shdr, 0, sizeof(*shdr)); 1942 /* 1943 * A special first section is used to hold large segment and 1944 * section counts. This was proposed by Sun Microsystems in 1945 * Solaris and has been adopted by Linux; the standard ELF 1946 * tools are already familiar with the technique. 1947 * 1948 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1949 * (or 12-7 depending on the version of the document) for more 1950 * details. 1951 */ 1952 shdr->sh_type = SHT_NULL; 1953 shdr->sh_size = ehdr->e_shnum; 1954 shdr->sh_link = ehdr->e_shstrndx; 1955 shdr->sh_info = numsegs + 1; 1956 } 1957 1958 /* 1959 * Fill in the program header entries. 1960 */ 1961 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1962 1963 /* The note segement. */ 1964 phdr->p_type = PT_NOTE; 1965 phdr->p_offset = hdrsize; 1966 phdr->p_vaddr = 0; 1967 phdr->p_paddr = 0; 1968 phdr->p_filesz = notesz; 1969 phdr->p_memsz = 0; 1970 phdr->p_flags = PF_R; 1971 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1972 phdr++; 1973 1974 /* All the writable segments from the program. */ 1975 phc.phdr = phdr; 1976 phc.offset = round_page(hdrsize + notesz); 1977 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1978 } 1979 1980 static size_t 1981 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list, 1982 struct regset *regset, struct thread *target_td) 1983 { 1984 const struct sysentvec *sv; 1985 struct note_info *ninfo; 1986 size_t size, notesize; 1987 1988 size = 0; 1989 if (!regset->get(regset, target_td, NULL, &size) || size == 0) 1990 return (0); 1991 1992 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1993 ninfo->type = regset->note; 1994 ninfo->regset = regset; 1995 ninfo->outarg = target_td; 1996 ninfo->outsize = size; 1997 TAILQ_INSERT_TAIL(list, ninfo, link); 1998 1999 sv = td->td_proc->p_sysent; 2000 notesize = sizeof(Elf_Note) + /* note header */ 2001 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2002 /* note name */ 2003 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2004 2005 return (notesize); 2006 } 2007 2008 size_t 2009 __elfN(register_note)(struct thread *td, struct note_info_list *list, 2010 int type, outfunc_t out, void *arg) 2011 { 2012 const struct sysentvec *sv; 2013 struct note_info *ninfo; 2014 size_t size, notesize; 2015 2016 sv = td->td_proc->p_sysent; 2017 size = 0; 2018 out(arg, NULL, &size); 2019 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2020 ninfo->type = type; 2021 ninfo->outfunc = out; 2022 ninfo->outarg = arg; 2023 ninfo->outsize = size; 2024 TAILQ_INSERT_TAIL(list, ninfo, link); 2025 2026 if (type == -1) 2027 return (size); 2028 2029 notesize = sizeof(Elf_Note) + /* note header */ 2030 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 2031 /* note name */ 2032 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2033 2034 return (notesize); 2035 } 2036 2037 static size_t 2038 append_note_data(const void *src, void *dst, size_t len) 2039 { 2040 size_t padded_len; 2041 2042 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2043 if (dst != NULL) { 2044 bcopy(src, dst, len); 2045 bzero((char *)dst + len, padded_len - len); 2046 } 2047 return (padded_len); 2048 } 2049 2050 size_t 2051 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2052 { 2053 Elf_Note *note; 2054 char *buf; 2055 size_t notesize; 2056 2057 buf = dst; 2058 if (buf != NULL) { 2059 note = (Elf_Note *)buf; 2060 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2061 note->n_descsz = size; 2062 note->n_type = type; 2063 buf += sizeof(*note); 2064 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2065 sizeof(FREEBSD_ABI_VENDOR)); 2066 append_note_data(src, buf, size); 2067 if (descp != NULL) 2068 *descp = buf; 2069 } 2070 2071 notesize = sizeof(Elf_Note) + /* note header */ 2072 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2073 /* note name */ 2074 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2075 2076 return (notesize); 2077 } 2078 2079 static void 2080 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 2081 { 2082 Elf_Note note; 2083 const struct sysentvec *sv; 2084 ssize_t old_len, sect_len; 2085 size_t new_len, descsz, i; 2086 2087 if (ninfo->type == -1) { 2088 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2089 return; 2090 } 2091 2092 sv = td->td_proc->p_sysent; 2093 2094 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 2095 note.n_descsz = ninfo->outsize; 2096 note.n_type = ninfo->type; 2097 2098 sbuf_bcat(sb, ¬e, sizeof(note)); 2099 sbuf_start_section(sb, &old_len); 2100 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 2101 strlen(sv->sv_elf_core_abi_vendor) + 1); 2102 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2103 if (note.n_descsz == 0) 2104 return; 2105 sbuf_start_section(sb, &old_len); 2106 if (ninfo->regset != NULL) { 2107 struct regset *regset = ninfo->regset; 2108 void *buf; 2109 2110 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK); 2111 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize); 2112 sbuf_bcat(sb, buf, ninfo->outsize); 2113 free(buf, M_TEMP); 2114 } else 2115 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2116 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2117 if (sect_len < 0) 2118 return; 2119 2120 new_len = (size_t)sect_len; 2121 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2122 if (new_len < descsz) { 2123 /* 2124 * It is expected that individual note emitters will correctly 2125 * predict their expected output size and fill up to that size 2126 * themselves, padding in a format-specific way if needed. 2127 * However, in case they don't, just do it here with zeros. 2128 */ 2129 for (i = 0; i < descsz - new_len; i++) 2130 sbuf_putc(sb, 0); 2131 } else if (new_len > descsz) { 2132 /* 2133 * We can't always truncate sb -- we may have drained some 2134 * of it already. 2135 */ 2136 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2137 "read it (%zu > %zu). Since it is longer than " 2138 "expected, this coredump's notes are corrupt. THIS " 2139 "IS A BUG in the note_procstat routine for type %u.\n", 2140 __func__, (unsigned)note.n_type, new_len, descsz, 2141 (unsigned)note.n_type)); 2142 } 2143 } 2144 2145 /* 2146 * Miscellaneous note out functions. 2147 */ 2148 2149 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2150 #include <compat/freebsd32/freebsd32.h> 2151 #include <compat/freebsd32/freebsd32_signal.h> 2152 2153 typedef struct prstatus32 elf_prstatus_t; 2154 typedef struct prpsinfo32 elf_prpsinfo_t; 2155 typedef struct fpreg32 elf_prfpregset_t; 2156 typedef struct fpreg32 elf_fpregset_t; 2157 typedef struct reg32 elf_gregset_t; 2158 typedef struct thrmisc32 elf_thrmisc_t; 2159 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t; 2160 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2161 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2162 typedef uint32_t elf_ps_strings_t; 2163 #else 2164 typedef prstatus_t elf_prstatus_t; 2165 typedef prpsinfo_t elf_prpsinfo_t; 2166 typedef prfpregset_t elf_prfpregset_t; 2167 typedef prfpregset_t elf_fpregset_t; 2168 typedef gregset_t elf_gregset_t; 2169 typedef thrmisc_t elf_thrmisc_t; 2170 typedef struct ptrace_lwpinfo elf_lwpinfo_t; 2171 #define ELF_KERN_PROC_MASK 0 2172 typedef struct kinfo_proc elf_kinfo_proc_t; 2173 typedef vm_offset_t elf_ps_strings_t; 2174 #endif 2175 2176 static void 2177 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2178 { 2179 struct sbuf sbarg; 2180 size_t len; 2181 char *cp, *end; 2182 struct proc *p; 2183 elf_prpsinfo_t *psinfo; 2184 int error; 2185 2186 p = arg; 2187 if (sb != NULL) { 2188 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2189 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2190 psinfo->pr_version = PRPSINFO_VERSION; 2191 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2192 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2193 PROC_LOCK(p); 2194 if (p->p_args != NULL) { 2195 len = sizeof(psinfo->pr_psargs) - 1; 2196 if (len > p->p_args->ar_length) 2197 len = p->p_args->ar_length; 2198 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2199 PROC_UNLOCK(p); 2200 error = 0; 2201 } else { 2202 _PHOLD(p); 2203 PROC_UNLOCK(p); 2204 sbuf_new(&sbarg, psinfo->pr_psargs, 2205 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2206 error = proc_getargv(curthread, p, &sbarg); 2207 PRELE(p); 2208 if (sbuf_finish(&sbarg) == 0) { 2209 len = sbuf_len(&sbarg); 2210 if (len > 0) 2211 len--; 2212 } else { 2213 len = sizeof(psinfo->pr_psargs) - 1; 2214 } 2215 sbuf_delete(&sbarg); 2216 } 2217 if (error != 0 || len == 0 || (ssize_t)len == -1) 2218 strlcpy(psinfo->pr_psargs, p->p_comm, 2219 sizeof(psinfo->pr_psargs)); 2220 else { 2221 KASSERT(len < sizeof(psinfo->pr_psargs), 2222 ("len is too long: %zu vs %zu", len, 2223 sizeof(psinfo->pr_psargs))); 2224 cp = psinfo->pr_psargs; 2225 end = cp + len - 1; 2226 for (;;) { 2227 cp = memchr(cp, '\0', end - cp); 2228 if (cp == NULL) 2229 break; 2230 *cp = ' '; 2231 } 2232 } 2233 psinfo->pr_pid = p->p_pid; 2234 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2235 free(psinfo, M_TEMP); 2236 } 2237 *sizep = sizeof(*psinfo); 2238 } 2239 2240 static bool 2241 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf, 2242 size_t *sizep) 2243 { 2244 elf_prstatus_t *status; 2245 2246 if (buf != NULL) { 2247 KASSERT(*sizep == sizeof(*status), ("%s: invalid size", 2248 __func__)); 2249 status = buf; 2250 memset(status, 0, *sizep); 2251 status->pr_version = PRSTATUS_VERSION; 2252 status->pr_statussz = sizeof(elf_prstatus_t); 2253 status->pr_gregsetsz = sizeof(elf_gregset_t); 2254 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2255 status->pr_osreldate = osreldate; 2256 status->pr_cursig = td->td_proc->p_sig; 2257 status->pr_pid = td->td_tid; 2258 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2259 fill_regs32(td, &status->pr_reg); 2260 #else 2261 fill_regs(td, &status->pr_reg); 2262 #endif 2263 } 2264 *sizep = sizeof(*status); 2265 return (true); 2266 } 2267 2268 static bool 2269 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf, 2270 size_t size) 2271 { 2272 elf_prstatus_t *status; 2273 2274 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__)); 2275 status = buf; 2276 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2277 set_regs32(td, &status->pr_reg); 2278 #else 2279 set_regs(td, &status->pr_reg); 2280 #endif 2281 return (true); 2282 } 2283 2284 static struct regset __elfN(regset_prstatus) = { 2285 .note = NT_PRSTATUS, 2286 .size = sizeof(elf_prstatus_t), 2287 .get = __elfN(get_prstatus), 2288 .set = __elfN(set_prstatus), 2289 }; 2290 ELF_REGSET(__elfN(regset_prstatus)); 2291 2292 static bool 2293 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf, 2294 size_t *sizep) 2295 { 2296 elf_prfpregset_t *fpregset; 2297 2298 if (buf != NULL) { 2299 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size", 2300 __func__)); 2301 fpregset = buf; 2302 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2303 fill_fpregs32(td, fpregset); 2304 #else 2305 fill_fpregs(td, fpregset); 2306 #endif 2307 } 2308 *sizep = sizeof(*fpregset); 2309 return (true); 2310 } 2311 2312 static bool 2313 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf, 2314 size_t size) 2315 { 2316 elf_prfpregset_t *fpregset; 2317 2318 fpregset = buf; 2319 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__)); 2320 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2321 set_fpregs32(td, fpregset); 2322 #else 2323 set_fpregs(td, fpregset); 2324 #endif 2325 return (true); 2326 } 2327 2328 static struct regset __elfN(regset_fpregset) = { 2329 .note = NT_FPREGSET, 2330 .size = sizeof(elf_prfpregset_t), 2331 .get = __elfN(get_fpregset), 2332 .set = __elfN(set_fpregset), 2333 }; 2334 ELF_REGSET(__elfN(regset_fpregset)); 2335 2336 static bool 2337 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf, 2338 size_t *sizep) 2339 { 2340 elf_thrmisc_t *thrmisc; 2341 2342 if (buf != NULL) { 2343 KASSERT(*sizep == sizeof(*thrmisc), 2344 ("%s: invalid size", __func__)); 2345 thrmisc = buf; 2346 bzero(thrmisc, sizeof(*thrmisc)); 2347 strcpy(thrmisc->pr_tname, td->td_name); 2348 } 2349 *sizep = sizeof(*thrmisc); 2350 return (true); 2351 } 2352 2353 static struct regset __elfN(regset_thrmisc) = { 2354 .note = NT_THRMISC, 2355 .size = sizeof(elf_thrmisc_t), 2356 .get = __elfN(get_thrmisc), 2357 }; 2358 ELF_REGSET(__elfN(regset_thrmisc)); 2359 2360 static bool 2361 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf, 2362 size_t *sizep) 2363 { 2364 elf_lwpinfo_t pl; 2365 size_t size; 2366 int structsize; 2367 2368 size = sizeof(structsize) + sizeof(pl); 2369 if (buf != NULL) { 2370 KASSERT(*sizep == size, ("%s: invalid size", __func__)); 2371 structsize = sizeof(pl); 2372 memcpy(buf, &structsize, sizeof(structsize)); 2373 bzero(&pl, sizeof(pl)); 2374 pl.pl_lwpid = td->td_tid; 2375 pl.pl_event = PL_EVENT_NONE; 2376 pl.pl_sigmask = td->td_sigmask; 2377 pl.pl_siglist = td->td_siglist; 2378 if (td->td_si.si_signo != 0) { 2379 pl.pl_event = PL_EVENT_SIGNAL; 2380 pl.pl_flags |= PL_FLAG_SI; 2381 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2382 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2383 #else 2384 pl.pl_siginfo = td->td_si; 2385 #endif 2386 } 2387 strcpy(pl.pl_tdname, td->td_name); 2388 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2389 memcpy((int *)buf + 1, &pl, sizeof(pl)); 2390 } 2391 *sizep = size; 2392 return (true); 2393 } 2394 2395 static struct regset __elfN(regset_lwpinfo) = { 2396 .note = NT_PTLWPINFO, 2397 .size = sizeof(int) + sizeof(elf_lwpinfo_t), 2398 .get = __elfN(get_lwpinfo), 2399 }; 2400 ELF_REGSET(__elfN(regset_lwpinfo)); 2401 2402 static size_t 2403 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list, 2404 struct thread *target_td) 2405 { 2406 struct sysentvec *sv = td->td_proc->p_sysent; 2407 struct regset **regsetp, **regset_end, *regset; 2408 size_t size; 2409 2410 size = 0; 2411 2412 /* NT_PRSTATUS must be the first register set note. */ 2413 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus), 2414 target_td); 2415 2416 regsetp = sv->sv_regset_begin; 2417 if (regsetp == NULL) { 2418 /* XXX: This shouldn't be true for any FreeBSD ABIs. */ 2419 size += __elfN(register_regset_note)(td, list, 2420 &__elfN(regset_fpregset), target_td); 2421 return (size); 2422 } 2423 regset_end = sv->sv_regset_end; 2424 MPASS(regset_end != NULL); 2425 for (; regsetp < regset_end; regsetp++) { 2426 regset = *regsetp; 2427 if (regset->note == NT_PRSTATUS) 2428 continue; 2429 size += __elfN(register_regset_note)(td, list, regset, 2430 target_td); 2431 } 2432 return (size); 2433 } 2434 2435 /* 2436 * Allow for MD specific notes, as well as any MD 2437 * specific preparations for writing MI notes. 2438 */ 2439 static void 2440 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2441 { 2442 struct thread *td; 2443 void *buf; 2444 size_t size; 2445 2446 td = (struct thread *)arg; 2447 size = *sizep; 2448 if (size != 0 && sb != NULL) 2449 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2450 else 2451 buf = NULL; 2452 size = 0; 2453 __elfN(dump_thread)(td, buf, &size); 2454 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2455 if (size != 0 && sb != NULL) 2456 sbuf_bcat(sb, buf, size); 2457 free(buf, M_TEMP); 2458 *sizep = size; 2459 } 2460 2461 #ifdef KINFO_PROC_SIZE 2462 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2463 #endif 2464 2465 static void 2466 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2467 { 2468 struct proc *p; 2469 size_t size; 2470 int structsize; 2471 2472 p = arg; 2473 size = sizeof(structsize) + p->p_numthreads * 2474 sizeof(elf_kinfo_proc_t); 2475 2476 if (sb != NULL) { 2477 KASSERT(*sizep == size, ("invalid size")); 2478 structsize = sizeof(elf_kinfo_proc_t); 2479 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2480 sx_slock(&proctree_lock); 2481 PROC_LOCK(p); 2482 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2483 sx_sunlock(&proctree_lock); 2484 } 2485 *sizep = size; 2486 } 2487 2488 #ifdef KINFO_FILE_SIZE 2489 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2490 #endif 2491 2492 static void 2493 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2494 { 2495 struct proc *p; 2496 size_t size, sect_sz, i; 2497 ssize_t start_len, sect_len; 2498 int structsize, filedesc_flags; 2499 2500 if (coredump_pack_fileinfo) 2501 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2502 else 2503 filedesc_flags = 0; 2504 2505 p = arg; 2506 structsize = sizeof(struct kinfo_file); 2507 if (sb == NULL) { 2508 size = 0; 2509 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2510 sbuf_set_drain(sb, sbuf_count_drain, &size); 2511 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2512 PROC_LOCK(p); 2513 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2514 sbuf_finish(sb); 2515 sbuf_delete(sb); 2516 *sizep = size; 2517 } else { 2518 sbuf_start_section(sb, &start_len); 2519 2520 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2521 PROC_LOCK(p); 2522 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2523 filedesc_flags); 2524 2525 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2526 if (sect_len < 0) 2527 return; 2528 sect_sz = sect_len; 2529 2530 KASSERT(sect_sz <= *sizep, 2531 ("kern_proc_filedesc_out did not respect maxlen; " 2532 "requested %zu, got %zu", *sizep - sizeof(structsize), 2533 sect_sz - sizeof(structsize))); 2534 2535 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2536 sbuf_putc(sb, 0); 2537 } 2538 } 2539 2540 #ifdef KINFO_VMENTRY_SIZE 2541 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2542 #endif 2543 2544 static void 2545 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2546 { 2547 struct proc *p; 2548 size_t size; 2549 int structsize, vmmap_flags; 2550 2551 if (coredump_pack_vmmapinfo) 2552 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2553 else 2554 vmmap_flags = 0; 2555 2556 p = arg; 2557 structsize = sizeof(struct kinfo_vmentry); 2558 if (sb == NULL) { 2559 size = 0; 2560 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2561 sbuf_set_drain(sb, sbuf_count_drain, &size); 2562 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2563 PROC_LOCK(p); 2564 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2565 sbuf_finish(sb); 2566 sbuf_delete(sb); 2567 *sizep = size; 2568 } else { 2569 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2570 PROC_LOCK(p); 2571 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2572 vmmap_flags); 2573 } 2574 } 2575 2576 static void 2577 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2578 { 2579 struct proc *p; 2580 size_t size; 2581 int structsize; 2582 2583 p = arg; 2584 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2585 if (sb != NULL) { 2586 KASSERT(*sizep == size, ("invalid size")); 2587 structsize = sizeof(gid_t); 2588 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2589 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2590 sizeof(gid_t)); 2591 } 2592 *sizep = size; 2593 } 2594 2595 static void 2596 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2597 { 2598 struct proc *p; 2599 size_t size; 2600 int structsize; 2601 2602 p = arg; 2603 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2604 if (sb != NULL) { 2605 KASSERT(*sizep == size, ("invalid size")); 2606 structsize = sizeof(p->p_pd->pd_cmask); 2607 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2608 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2609 } 2610 *sizep = size; 2611 } 2612 2613 static void 2614 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2615 { 2616 struct proc *p; 2617 struct rlimit rlim[RLIM_NLIMITS]; 2618 size_t size; 2619 int structsize, i; 2620 2621 p = arg; 2622 size = sizeof(structsize) + sizeof(rlim); 2623 if (sb != NULL) { 2624 KASSERT(*sizep == size, ("invalid size")); 2625 structsize = sizeof(rlim); 2626 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2627 PROC_LOCK(p); 2628 for (i = 0; i < RLIM_NLIMITS; i++) 2629 lim_rlimit_proc(p, i, &rlim[i]); 2630 PROC_UNLOCK(p); 2631 sbuf_bcat(sb, rlim, sizeof(rlim)); 2632 } 2633 *sizep = size; 2634 } 2635 2636 static void 2637 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2638 { 2639 struct proc *p; 2640 size_t size; 2641 int structsize; 2642 2643 p = arg; 2644 size = sizeof(structsize) + sizeof(p->p_osrel); 2645 if (sb != NULL) { 2646 KASSERT(*sizep == size, ("invalid size")); 2647 structsize = sizeof(p->p_osrel); 2648 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2649 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2650 } 2651 *sizep = size; 2652 } 2653 2654 static void 2655 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2656 { 2657 struct proc *p; 2658 elf_ps_strings_t ps_strings; 2659 size_t size; 2660 int structsize; 2661 2662 p = arg; 2663 size = sizeof(structsize) + sizeof(ps_strings); 2664 if (sb != NULL) { 2665 KASSERT(*sizep == size, ("invalid size")); 2666 structsize = sizeof(ps_strings); 2667 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2668 ps_strings = PTROUT(PROC_PS_STRINGS(p)); 2669 #else 2670 ps_strings = PROC_PS_STRINGS(p); 2671 #endif 2672 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2673 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2674 } 2675 *sizep = size; 2676 } 2677 2678 static void 2679 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2680 { 2681 struct proc *p; 2682 size_t size; 2683 int structsize; 2684 2685 p = arg; 2686 if (sb == NULL) { 2687 size = 0; 2688 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2689 SBUF_FIXEDLEN); 2690 sbuf_set_drain(sb, sbuf_count_drain, &size); 2691 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2692 PHOLD(p); 2693 proc_getauxv(curthread, p, sb); 2694 PRELE(p); 2695 sbuf_finish(sb); 2696 sbuf_delete(sb); 2697 *sizep = size; 2698 } else { 2699 structsize = sizeof(Elf_Auxinfo); 2700 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2701 PHOLD(p); 2702 proc_getauxv(curthread, p, sb); 2703 PRELE(p); 2704 } 2705 } 2706 2707 static bool 2708 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2709 const char *note_vendor, const Elf_Phdr *pnote, 2710 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg) 2711 { 2712 const Elf_Note *note, *note0, *note_end; 2713 const char *note_name; 2714 char *buf; 2715 int i, error; 2716 bool res; 2717 2718 /* We need some limit, might as well use PAGE_SIZE. */ 2719 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2720 return (false); 2721 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2722 if (pnote->p_offset > PAGE_SIZE || 2723 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2724 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2725 if (buf == NULL) { 2726 VOP_UNLOCK(imgp->vp); 2727 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2728 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2729 } 2730 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2731 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2732 curthread->td_ucred, NOCRED, NULL, curthread); 2733 if (error != 0) { 2734 uprintf("i/o error PT_NOTE\n"); 2735 goto retf; 2736 } 2737 note = note0 = (const Elf_Note *)buf; 2738 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2739 } else { 2740 note = note0 = (const Elf_Note *)(imgp->image_header + 2741 pnote->p_offset); 2742 note_end = (const Elf_Note *)(imgp->image_header + 2743 pnote->p_offset + pnote->p_filesz); 2744 buf = NULL; 2745 } 2746 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2747 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2748 (const char *)note < sizeof(Elf_Note)) { 2749 goto retf; 2750 } 2751 if (note->n_namesz != checknote->n_namesz || 2752 note->n_descsz != checknote->n_descsz || 2753 note->n_type != checknote->n_type) 2754 goto nextnote; 2755 note_name = (const char *)(note + 1); 2756 if (note_name + checknote->n_namesz >= 2757 (const char *)note_end || strncmp(note_vendor, 2758 note_name, checknote->n_namesz) != 0) 2759 goto nextnote; 2760 2761 if (cb(note, cb_arg, &res)) 2762 goto ret; 2763 nextnote: 2764 note = (const Elf_Note *)((const char *)(note + 1) + 2765 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2766 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2767 } 2768 retf: 2769 res = false; 2770 ret: 2771 free(buf, M_TEMP); 2772 return (res); 2773 } 2774 2775 struct brandnote_cb_arg { 2776 Elf_Brandnote *brandnote; 2777 int32_t *osrel; 2778 }; 2779 2780 static bool 2781 brandnote_cb(const Elf_Note *note, void *arg0, bool *res) 2782 { 2783 struct brandnote_cb_arg *arg; 2784 2785 arg = arg0; 2786 2787 /* 2788 * Fetch the osreldate for binary from the ELF OSABI-note if 2789 * necessary. 2790 */ 2791 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2792 arg->brandnote->trans_osrel != NULL ? 2793 arg->brandnote->trans_osrel(note, arg->osrel) : true; 2794 2795 return (true); 2796 } 2797 2798 static Elf_Note fctl_note = { 2799 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2800 .n_descsz = sizeof(uint32_t), 2801 .n_type = NT_FREEBSD_FEATURE_CTL, 2802 }; 2803 2804 struct fctl_cb_arg { 2805 bool *has_fctl0; 2806 uint32_t *fctl0; 2807 }; 2808 2809 static bool 2810 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res) 2811 { 2812 struct fctl_cb_arg *arg; 2813 const Elf32_Word *desc; 2814 uintptr_t p; 2815 2816 arg = arg0; 2817 p = (uintptr_t)(note + 1); 2818 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2819 desc = (const Elf32_Word *)p; 2820 *arg->has_fctl0 = true; 2821 *arg->fctl0 = desc[0]; 2822 *res = true; 2823 return (true); 2824 } 2825 2826 /* 2827 * Try to find the appropriate ABI-note section for checknote, fetch 2828 * the osreldate and feature control flags for binary from the ELF 2829 * OSABI-note. Only the first page of the image is searched, the same 2830 * as for headers. 2831 */ 2832 static bool 2833 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2834 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0) 2835 { 2836 const Elf_Phdr *phdr; 2837 const Elf_Ehdr *hdr; 2838 struct brandnote_cb_arg b_arg; 2839 struct fctl_cb_arg f_arg; 2840 int i, j; 2841 2842 hdr = (const Elf_Ehdr *)imgp->image_header; 2843 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2844 b_arg.brandnote = brandnote; 2845 b_arg.osrel = osrel; 2846 f_arg.has_fctl0 = has_fctl0; 2847 f_arg.fctl0 = fctl0; 2848 2849 for (i = 0; i < hdr->e_phnum; i++) { 2850 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2851 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2852 &b_arg)) { 2853 for (j = 0; j < hdr->e_phnum; j++) { 2854 if (phdr[j].p_type == PT_NOTE && 2855 __elfN(parse_notes)(imgp, &fctl_note, 2856 FREEBSD_ABI_VENDOR, &phdr[j], 2857 note_fctl_cb, &f_arg)) 2858 break; 2859 } 2860 return (true); 2861 } 2862 } 2863 return (false); 2864 2865 } 2866 2867 /* 2868 * Tell kern_execve.c about it, with a little help from the linker. 2869 */ 2870 static struct execsw __elfN(execsw) = { 2871 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2872 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2873 }; 2874 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2875 2876 static vm_prot_t 2877 __elfN(trans_prot)(Elf_Word flags) 2878 { 2879 vm_prot_t prot; 2880 2881 prot = 0; 2882 if (flags & PF_X) 2883 prot |= VM_PROT_EXECUTE; 2884 if (flags & PF_W) 2885 prot |= VM_PROT_WRITE; 2886 if (flags & PF_R) 2887 prot |= VM_PROT_READ; 2888 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2889 if (i386_read_exec && (flags & PF_R)) 2890 prot |= VM_PROT_EXECUTE; 2891 #endif 2892 return (prot); 2893 } 2894 2895 static Elf_Word 2896 __elfN(untrans_prot)(vm_prot_t prot) 2897 { 2898 Elf_Word flags; 2899 2900 flags = 0; 2901 if (prot & VM_PROT_EXECUTE) 2902 flags |= PF_X; 2903 if (prot & VM_PROT_READ) 2904 flags |= PF_R; 2905 if (prot & VM_PROT_WRITE) 2906 flags |= PF_W; 2907 return (flags); 2908 } 2909