1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 #include "opt_compat.h" 39 40 #include <sys/param.h> 41 #include <sys/capsicum.h> 42 #include <sys/compressor.h> 43 #include <sys/exec.h> 44 #include <sys/fcntl.h> 45 #include <sys/imgact.h> 46 #include <sys/imgact_elf.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mount.h> 52 #include <sys/mman.h> 53 #include <sys/namei.h> 54 #include <sys/pioctl.h> 55 #include <sys/proc.h> 56 #include <sys/procfs.h> 57 #include <sys/ptrace.h> 58 #include <sys/racct.h> 59 #include <sys/resourcevar.h> 60 #include <sys/rwlock.h> 61 #include <sys/sbuf.h> 62 #include <sys/sf_buf.h> 63 #include <sys/smp.h> 64 #include <sys/systm.h> 65 #include <sys/signalvar.h> 66 #include <sys/stat.h> 67 #include <sys/sx.h> 68 #include <sys/syscall.h> 69 #include <sys/sysctl.h> 70 #include <sys/sysent.h> 71 #include <sys/vnode.h> 72 #include <sys/syslog.h> 73 #include <sys/eventhandler.h> 74 #include <sys/user.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_param.h> 79 #include <vm/pmap.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_extern.h> 83 84 #include <machine/elf.h> 85 #include <machine/md_var.h> 86 87 #define ELF_NOTE_ROUNDSIZE 4 88 #define OLD_EI_BRAND 8 89 90 static int __elfN(check_header)(const Elf_Ehdr *hdr); 91 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 92 const char *interp, int interp_name_len, int32_t *osrel); 93 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 94 u_long *entry, size_t pagesize); 95 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 96 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 97 size_t pagesize); 98 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 99 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 100 int32_t *osrel); 101 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 102 static boolean_t __elfN(check_note)(struct image_params *imgp, 103 Elf_Brandnote *checknote, int32_t *osrel); 104 static vm_prot_t __elfN(trans_prot)(Elf_Word); 105 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 106 107 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 108 ""); 109 110 #define CORE_BUF_SIZE (16 * 1024) 111 112 int __elfN(fallback_brand) = -1; 113 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 114 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 115 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 116 117 static int elf_legacy_coredump = 0; 118 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 119 &elf_legacy_coredump, 0, 120 "include all and only RW pages in core dumps"); 121 122 int __elfN(nxstack) = 123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 124 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) 125 1; 126 #else 127 0; 128 #endif 129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 132 133 #if __ELF_WORD_SIZE == 32 134 #if defined(__amd64__) 135 int i386_read_exec = 0; 136 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 137 "enable execution from readable segments"); 138 #endif 139 #endif 140 141 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 142 143 #define trunc_page_ps(va, ps) rounddown2(va, ps) 144 #define round_page_ps(va, ps) roundup2(va, ps) 145 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 146 147 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 148 149 Elf_Brandnote __elfN(freebsd_brandnote) = { 150 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 151 .hdr.n_descsz = sizeof(int32_t), 152 .hdr.n_type = NT_FREEBSD_ABI_TAG, 153 .vendor = FREEBSD_ABI_VENDOR, 154 .flags = BN_TRANSLATE_OSREL, 155 .trans_osrel = __elfN(freebsd_trans_osrel) 156 }; 157 158 static bool 159 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 160 { 161 uintptr_t p; 162 163 p = (uintptr_t)(note + 1); 164 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 165 *osrel = *(const int32_t *)(p); 166 167 return (true); 168 } 169 170 static const char GNU_ABI_VENDOR[] = "GNU"; 171 static int GNU_KFREEBSD_ABI_DESC = 3; 172 173 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 174 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 175 .hdr.n_descsz = 16, /* XXX at least 16 */ 176 .hdr.n_type = 1, 177 .vendor = GNU_ABI_VENDOR, 178 .flags = BN_TRANSLATE_OSREL, 179 .trans_osrel = kfreebsd_trans_osrel 180 }; 181 182 static bool 183 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 184 { 185 const Elf32_Word *desc; 186 uintptr_t p; 187 188 p = (uintptr_t)(note + 1); 189 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 190 191 desc = (const Elf32_Word *)p; 192 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 193 return (false); 194 195 /* 196 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 197 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 198 */ 199 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 200 201 return (true); 202 } 203 204 int 205 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 206 { 207 int i; 208 209 for (i = 0; i < MAX_BRANDS; i++) { 210 if (elf_brand_list[i] == NULL) { 211 elf_brand_list[i] = entry; 212 break; 213 } 214 } 215 if (i == MAX_BRANDS) { 216 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 217 __func__, entry); 218 return (-1); 219 } 220 return (0); 221 } 222 223 int 224 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 225 { 226 int i; 227 228 for (i = 0; i < MAX_BRANDS; i++) { 229 if (elf_brand_list[i] == entry) { 230 elf_brand_list[i] = NULL; 231 break; 232 } 233 } 234 if (i == MAX_BRANDS) 235 return (-1); 236 return (0); 237 } 238 239 int 240 __elfN(brand_inuse)(Elf_Brandinfo *entry) 241 { 242 struct proc *p; 243 int rval = FALSE; 244 245 sx_slock(&allproc_lock); 246 FOREACH_PROC_IN_SYSTEM(p) { 247 if (p->p_sysent == entry->sysvec) { 248 rval = TRUE; 249 break; 250 } 251 } 252 sx_sunlock(&allproc_lock); 253 254 return (rval); 255 } 256 257 static Elf_Brandinfo * 258 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 259 int interp_name_len, int32_t *osrel) 260 { 261 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 262 Elf_Brandinfo *bi, *bi_m; 263 boolean_t ret; 264 int i; 265 266 /* 267 * We support four types of branding -- (1) the ELF EI_OSABI field 268 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 269 * branding w/in the ELF header, (3) path of the `interp_path' 270 * field, and (4) the ".note.ABI-tag" ELF section. 271 */ 272 273 /* Look for an ".note.ABI-tag" ELF section */ 274 bi_m = NULL; 275 for (i = 0; i < MAX_BRANDS; i++) { 276 bi = elf_brand_list[i]; 277 if (bi == NULL) 278 continue; 279 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 280 continue; 281 if (hdr->e_machine == bi->machine && (bi->flags & 282 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 283 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 284 /* Give brand a chance to veto check_note's guess */ 285 if (ret && bi->header_supported) 286 ret = bi->header_supported(imgp); 287 /* 288 * If note checker claimed the binary, but the 289 * interpreter path in the image does not 290 * match default one for the brand, try to 291 * search for other brands with the same 292 * interpreter. Either there is better brand 293 * with the right interpreter, or, failing 294 * this, we return first brand which accepted 295 * our note and, optionally, header. 296 */ 297 if (ret && bi_m == NULL && interp != NULL && 298 (bi->interp_path == NULL || 299 (strlen(bi->interp_path) + 1 != interp_name_len || 300 strncmp(interp, bi->interp_path, interp_name_len) 301 != 0))) { 302 bi_m = bi; 303 ret = 0; 304 } 305 if (ret) 306 return (bi); 307 } 308 } 309 if (bi_m != NULL) 310 return (bi_m); 311 312 /* If the executable has a brand, search for it in the brand list. */ 313 for (i = 0; i < MAX_BRANDS; i++) { 314 bi = elf_brand_list[i]; 315 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 316 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 317 continue; 318 if (hdr->e_machine == bi->machine && 319 (hdr->e_ident[EI_OSABI] == bi->brand || 320 (bi->compat_3_brand != NULL && 321 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 322 bi->compat_3_brand) == 0))) { 323 /* Looks good, but give brand a chance to veto */ 324 if (bi->header_supported == NULL || 325 bi->header_supported(imgp)) { 326 /* 327 * Again, prefer strictly matching 328 * interpreter path. 329 */ 330 if (interp_name_len == 0 && 331 bi->interp_path == NULL) 332 return (bi); 333 if (bi->interp_path != NULL && 334 strlen(bi->interp_path) + 1 == 335 interp_name_len && strncmp(interp, 336 bi->interp_path, interp_name_len) == 0) 337 return (bi); 338 if (bi_m == NULL) 339 bi_m = bi; 340 } 341 } 342 } 343 if (bi_m != NULL) 344 return (bi_m); 345 346 /* No known brand, see if the header is recognized by any brand */ 347 for (i = 0; i < MAX_BRANDS; i++) { 348 bi = elf_brand_list[i]; 349 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 350 bi->header_supported == NULL) 351 continue; 352 if (hdr->e_machine == bi->machine) { 353 ret = bi->header_supported(imgp); 354 if (ret) 355 return (bi); 356 } 357 } 358 359 /* Lacking a known brand, search for a recognized interpreter. */ 360 if (interp != NULL) { 361 for (i = 0; i < MAX_BRANDS; i++) { 362 bi = elf_brand_list[i]; 363 if (bi == NULL || (bi->flags & 364 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 365 != 0) 366 continue; 367 if (hdr->e_machine == bi->machine && 368 bi->interp_path != NULL && 369 /* ELF image p_filesz includes terminating zero */ 370 strlen(bi->interp_path) + 1 == interp_name_len && 371 strncmp(interp, bi->interp_path, interp_name_len) 372 == 0 && (bi->header_supported == NULL || 373 bi->header_supported(imgp))) 374 return (bi); 375 } 376 } 377 378 /* Lacking a recognized interpreter, try the default brand */ 379 for (i = 0; i < MAX_BRANDS; i++) { 380 bi = elf_brand_list[i]; 381 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 382 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 383 continue; 384 if (hdr->e_machine == bi->machine && 385 __elfN(fallback_brand) == bi->brand && 386 (bi->header_supported == NULL || 387 bi->header_supported(imgp))) 388 return (bi); 389 } 390 return (NULL); 391 } 392 393 static int 394 __elfN(check_header)(const Elf_Ehdr *hdr) 395 { 396 Elf_Brandinfo *bi; 397 int i; 398 399 if (!IS_ELF(*hdr) || 400 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 401 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 402 hdr->e_ident[EI_VERSION] != EV_CURRENT || 403 hdr->e_phentsize != sizeof(Elf_Phdr) || 404 hdr->e_version != ELF_TARG_VER) 405 return (ENOEXEC); 406 407 /* 408 * Make sure we have at least one brand for this machine. 409 */ 410 411 for (i = 0; i < MAX_BRANDS; i++) { 412 bi = elf_brand_list[i]; 413 if (bi != NULL && bi->machine == hdr->e_machine) 414 break; 415 } 416 if (i == MAX_BRANDS) 417 return (ENOEXEC); 418 419 return (0); 420 } 421 422 static int 423 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 424 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 425 { 426 struct sf_buf *sf; 427 int error; 428 vm_offset_t off; 429 430 /* 431 * Create the page if it doesn't exist yet. Ignore errors. 432 */ 433 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 434 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 435 436 /* 437 * Find the page from the underlying object. 438 */ 439 if (object != NULL) { 440 sf = vm_imgact_map_page(object, offset); 441 if (sf == NULL) 442 return (KERN_FAILURE); 443 off = offset - trunc_page(offset); 444 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 445 end - start); 446 vm_imgact_unmap_page(sf); 447 if (error != 0) 448 return (KERN_FAILURE); 449 } 450 451 return (KERN_SUCCESS); 452 } 453 454 static int 455 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 456 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 457 int cow) 458 { 459 struct sf_buf *sf; 460 vm_offset_t off; 461 vm_size_t sz; 462 int error, locked, rv; 463 464 if (start != trunc_page(start)) { 465 rv = __elfN(map_partial)(map, object, offset, start, 466 round_page(start), prot); 467 if (rv != KERN_SUCCESS) 468 return (rv); 469 offset += round_page(start) - start; 470 start = round_page(start); 471 } 472 if (end != round_page(end)) { 473 rv = __elfN(map_partial)(map, object, offset + 474 trunc_page(end) - start, trunc_page(end), end, prot); 475 if (rv != KERN_SUCCESS) 476 return (rv); 477 end = trunc_page(end); 478 } 479 if (start >= end) 480 return (KERN_SUCCESS); 481 if ((offset & PAGE_MASK) != 0) { 482 /* 483 * The mapping is not page aligned. This means that we have 484 * to copy the data. 485 */ 486 rv = vm_map_fixed(map, NULL, 0, start, end - start, 487 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 488 if (rv != KERN_SUCCESS) 489 return (rv); 490 if (object == NULL) 491 return (KERN_SUCCESS); 492 for (; start < end; start += sz) { 493 sf = vm_imgact_map_page(object, offset); 494 if (sf == NULL) 495 return (KERN_FAILURE); 496 off = offset - trunc_page(offset); 497 sz = end - start; 498 if (sz > PAGE_SIZE - off) 499 sz = PAGE_SIZE - off; 500 error = copyout((caddr_t)sf_buf_kva(sf) + off, 501 (caddr_t)start, sz); 502 vm_imgact_unmap_page(sf); 503 if (error != 0) 504 return (KERN_FAILURE); 505 offset += sz; 506 } 507 } else { 508 vm_object_reference(object); 509 rv = vm_map_fixed(map, object, offset, start, end - start, 510 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 511 if (rv != KERN_SUCCESS) { 512 locked = VOP_ISLOCKED(imgp->vp); 513 VOP_UNLOCK(imgp->vp, 0); 514 vm_object_deallocate(object); 515 vn_lock(imgp->vp, locked | LK_RETRY); 516 return (rv); 517 } 518 } 519 return (KERN_SUCCESS); 520 } 521 522 static int 523 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 524 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 525 size_t pagesize) 526 { 527 struct sf_buf *sf; 528 size_t map_len; 529 vm_map_t map; 530 vm_object_t object; 531 vm_offset_t off, map_addr; 532 int error, rv, cow; 533 size_t copy_len; 534 vm_ooffset_t file_addr; 535 536 /* 537 * It's necessary to fail if the filsz + offset taken from the 538 * header is greater than the actual file pager object's size. 539 * If we were to allow this, then the vm_map_find() below would 540 * walk right off the end of the file object and into the ether. 541 * 542 * While I'm here, might as well check for something else that 543 * is invalid: filsz cannot be greater than memsz. 544 */ 545 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 546 filsz > memsz) { 547 uprintf("elf_load_section: truncated ELF file\n"); 548 return (ENOEXEC); 549 } 550 551 object = imgp->object; 552 map = &imgp->proc->p_vmspace->vm_map; 553 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 554 file_addr = trunc_page_ps(offset, pagesize); 555 556 /* 557 * We have two choices. We can either clear the data in the last page 558 * of an oversized mapping, or we can start the anon mapping a page 559 * early and copy the initialized data into that first page. We 560 * choose the second. 561 */ 562 if (filsz == 0) 563 map_len = 0; 564 else if (memsz > filsz) 565 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 566 else 567 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 568 569 if (map_len != 0) { 570 /* cow flags: don't dump readonly sections in core */ 571 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 572 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 573 574 rv = __elfN(map_insert)(imgp, map, 575 object, 576 file_addr, /* file offset */ 577 map_addr, /* virtual start */ 578 map_addr + map_len,/* virtual end */ 579 prot, 580 cow); 581 if (rv != KERN_SUCCESS) 582 return (EINVAL); 583 584 /* we can stop now if we've covered it all */ 585 if (memsz == filsz) 586 return (0); 587 } 588 589 590 /* 591 * We have to get the remaining bit of the file into the first part 592 * of the oversized map segment. This is normally because the .data 593 * segment in the file is extended to provide bss. It's a neat idea 594 * to try and save a page, but it's a pain in the behind to implement. 595 */ 596 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset + 597 filsz, pagesize); 598 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 599 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 600 map_addr; 601 602 /* This had damn well better be true! */ 603 if (map_len != 0) { 604 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 605 map_addr + map_len, prot, 0); 606 if (rv != KERN_SUCCESS) 607 return (EINVAL); 608 } 609 610 if (copy_len != 0) { 611 sf = vm_imgact_map_page(object, offset + filsz); 612 if (sf == NULL) 613 return (EIO); 614 615 /* send the page fragment to user space */ 616 off = trunc_page_ps(offset + filsz, pagesize) - 617 trunc_page(offset + filsz); 618 error = copyout((caddr_t)sf_buf_kva(sf) + off, 619 (caddr_t)map_addr, copy_len); 620 vm_imgact_unmap_page(sf); 621 if (error != 0) 622 return (error); 623 } 624 625 /* 626 * Remove write access to the page if it was only granted by map_insert 627 * to allow copyout. 628 */ 629 if ((prot & VM_PROT_WRITE) == 0) 630 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 631 map_len), prot, FALSE); 632 633 return (0); 634 } 635 636 /* 637 * Load the file "file" into memory. It may be either a shared object 638 * or an executable. 639 * 640 * The "addr" reference parameter is in/out. On entry, it specifies 641 * the address where a shared object should be loaded. If the file is 642 * an executable, this value is ignored. On exit, "addr" specifies 643 * where the file was actually loaded. 644 * 645 * The "entry" reference parameter is out only. On exit, it specifies 646 * the entry point for the loaded file. 647 */ 648 static int 649 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 650 u_long *entry, size_t pagesize) 651 { 652 struct { 653 struct nameidata nd; 654 struct vattr attr; 655 struct image_params image_params; 656 } *tempdata; 657 const Elf_Ehdr *hdr = NULL; 658 const Elf_Phdr *phdr = NULL; 659 struct nameidata *nd; 660 struct vattr *attr; 661 struct image_params *imgp; 662 vm_prot_t prot; 663 u_long rbase; 664 u_long base_addr = 0; 665 int error, i, numsegs; 666 667 #ifdef CAPABILITY_MODE 668 /* 669 * XXXJA: This check can go away once we are sufficiently confident 670 * that the checks in namei() are correct. 671 */ 672 if (IN_CAPABILITY_MODE(curthread)) 673 return (ECAPMODE); 674 #endif 675 676 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 677 nd = &tempdata->nd; 678 attr = &tempdata->attr; 679 imgp = &tempdata->image_params; 680 681 /* 682 * Initialize part of the common data 683 */ 684 imgp->proc = p; 685 imgp->attr = attr; 686 imgp->firstpage = NULL; 687 imgp->image_header = NULL; 688 imgp->object = NULL; 689 imgp->execlabel = NULL; 690 691 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 692 if ((error = namei(nd)) != 0) { 693 nd->ni_vp = NULL; 694 goto fail; 695 } 696 NDFREE(nd, NDF_ONLY_PNBUF); 697 imgp->vp = nd->ni_vp; 698 699 /* 700 * Check permissions, modes, uid, etc on the file, and "open" it. 701 */ 702 error = exec_check_permissions(imgp); 703 if (error) 704 goto fail; 705 706 error = exec_map_first_page(imgp); 707 if (error) 708 goto fail; 709 710 /* 711 * Also make certain that the interpreter stays the same, so set 712 * its VV_TEXT flag, too. 713 */ 714 VOP_SET_TEXT(nd->ni_vp); 715 716 imgp->object = nd->ni_vp->v_object; 717 718 hdr = (const Elf_Ehdr *)imgp->image_header; 719 if ((error = __elfN(check_header)(hdr)) != 0) 720 goto fail; 721 if (hdr->e_type == ET_DYN) 722 rbase = *addr; 723 else if (hdr->e_type == ET_EXEC) 724 rbase = 0; 725 else { 726 error = ENOEXEC; 727 goto fail; 728 } 729 730 /* Only support headers that fit within first page for now */ 731 if ((hdr->e_phoff > PAGE_SIZE) || 732 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 733 error = ENOEXEC; 734 goto fail; 735 } 736 737 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 738 if (!aligned(phdr, Elf_Addr)) { 739 error = ENOEXEC; 740 goto fail; 741 } 742 743 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 744 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 745 /* Loadable segment */ 746 prot = __elfN(trans_prot)(phdr[i].p_flags); 747 error = __elfN(load_section)(imgp, phdr[i].p_offset, 748 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 749 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 750 if (error != 0) 751 goto fail; 752 /* 753 * Establish the base address if this is the 754 * first segment. 755 */ 756 if (numsegs == 0) 757 base_addr = trunc_page(phdr[i].p_vaddr + 758 rbase); 759 numsegs++; 760 } 761 } 762 *addr = base_addr; 763 *entry = (unsigned long)hdr->e_entry + rbase; 764 765 fail: 766 if (imgp->firstpage) 767 exec_unmap_first_page(imgp); 768 769 if (nd->ni_vp) 770 vput(nd->ni_vp); 771 772 free(tempdata, M_TEMP); 773 774 return (error); 775 } 776 777 static int 778 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 779 { 780 struct thread *td; 781 const Elf_Ehdr *hdr; 782 const Elf_Phdr *phdr; 783 Elf_Auxargs *elf_auxargs; 784 struct vmspace *vmspace; 785 const char *err_str, *newinterp; 786 char *interp, *interp_buf, *path; 787 Elf_Brandinfo *brand_info; 788 struct sysentvec *sv; 789 vm_prot_t prot; 790 u_long text_size, data_size, total_size, text_addr, data_addr; 791 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 792 int32_t osrel; 793 int error, i, n, interp_name_len, have_interp; 794 795 hdr = (const Elf_Ehdr *)imgp->image_header; 796 797 /* 798 * Do we have a valid ELF header ? 799 * 800 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 801 * if particular brand doesn't support it. 802 */ 803 if (__elfN(check_header)(hdr) != 0 || 804 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 805 return (-1); 806 807 /* 808 * From here on down, we return an errno, not -1, as we've 809 * detected an ELF file. 810 */ 811 812 if ((hdr->e_phoff > PAGE_SIZE) || 813 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 814 /* Only support headers in first page for now */ 815 uprintf("Program headers not in the first page\n"); 816 return (ENOEXEC); 817 } 818 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 819 if (!aligned(phdr, Elf_Addr)) { 820 uprintf("Unaligned program headers\n"); 821 return (ENOEXEC); 822 } 823 824 n = error = 0; 825 baddr = 0; 826 osrel = 0; 827 text_size = data_size = total_size = text_addr = data_addr = 0; 828 entry = proghdr = 0; 829 interp_name_len = 0; 830 err_str = newinterp = NULL; 831 interp = interp_buf = NULL; 832 td = curthread; 833 834 for (i = 0; i < hdr->e_phnum; i++) { 835 switch (phdr[i].p_type) { 836 case PT_LOAD: 837 if (n == 0) 838 baddr = phdr[i].p_vaddr; 839 n++; 840 break; 841 case PT_INTERP: 842 /* Path to interpreter */ 843 if (phdr[i].p_filesz > MAXPATHLEN) { 844 uprintf("Invalid PT_INTERP\n"); 845 error = ENOEXEC; 846 goto ret; 847 } 848 if (interp != NULL) { 849 uprintf("Multiple PT_INTERP headers\n"); 850 error = ENOEXEC; 851 goto ret; 852 } 853 interp_name_len = phdr[i].p_filesz; 854 if (phdr[i].p_offset > PAGE_SIZE || 855 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 856 VOP_UNLOCK(imgp->vp, 0); 857 interp_buf = malloc(interp_name_len + 1, M_TEMP, 858 M_WAITOK); 859 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 860 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 861 interp_name_len, phdr[i].p_offset, 862 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 863 NOCRED, NULL, td); 864 if (error != 0) { 865 uprintf("i/o error PT_INTERP\n"); 866 goto ret; 867 } 868 interp_buf[interp_name_len] = '\0'; 869 interp = interp_buf; 870 } else { 871 interp = __DECONST(char *, imgp->image_header) + 872 phdr[i].p_offset; 873 } 874 break; 875 case PT_GNU_STACK: 876 if (__elfN(nxstack)) 877 imgp->stack_prot = 878 __elfN(trans_prot)(phdr[i].p_flags); 879 imgp->stack_sz = phdr[i].p_memsz; 880 break; 881 } 882 } 883 884 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 885 &osrel); 886 if (brand_info == NULL) { 887 uprintf("ELF binary type \"%u\" not known.\n", 888 hdr->e_ident[EI_OSABI]); 889 error = ENOEXEC; 890 goto ret; 891 } 892 et_dyn_addr = 0; 893 if (hdr->e_type == ET_DYN) { 894 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 895 uprintf("Cannot execute shared object\n"); 896 error = ENOEXEC; 897 goto ret; 898 } 899 /* 900 * Honour the base load address from the dso if it is 901 * non-zero for some reason. 902 */ 903 if (baddr == 0) 904 et_dyn_addr = ET_DYN_LOAD_ADDR; 905 } 906 sv = brand_info->sysvec; 907 if (interp != NULL && brand_info->interp_newpath != NULL) 908 newinterp = brand_info->interp_newpath; 909 910 /* 911 * Avoid a possible deadlock if the current address space is destroyed 912 * and that address space maps the locked vnode. In the common case, 913 * the locked vnode's v_usecount is decremented but remains greater 914 * than zero. Consequently, the vnode lock is not needed by vrele(). 915 * However, in cases where the vnode lock is external, such as nullfs, 916 * v_usecount may become zero. 917 * 918 * The VV_TEXT flag prevents modifications to the executable while 919 * the vnode is unlocked. 920 */ 921 VOP_UNLOCK(imgp->vp, 0); 922 923 error = exec_new_vmspace(imgp, sv); 924 imgp->proc->p_sysent = sv; 925 926 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 927 if (error != 0) 928 goto ret; 929 930 for (i = 0; i < hdr->e_phnum; i++) { 931 switch (phdr[i].p_type) { 932 case PT_LOAD: /* Loadable segment */ 933 if (phdr[i].p_memsz == 0) 934 break; 935 prot = __elfN(trans_prot)(phdr[i].p_flags); 936 error = __elfN(load_section)(imgp, phdr[i].p_offset, 937 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 938 phdr[i].p_memsz, phdr[i].p_filesz, prot, 939 sv->sv_pagesize); 940 if (error != 0) 941 goto ret; 942 943 /* 944 * If this segment contains the program headers, 945 * remember their virtual address for the AT_PHDR 946 * aux entry. Static binaries don't usually include 947 * a PT_PHDR entry. 948 */ 949 if (phdr[i].p_offset == 0 && 950 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 951 <= phdr[i].p_filesz) 952 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 953 et_dyn_addr; 954 955 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 956 seg_size = round_page(phdr[i].p_memsz + 957 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 958 959 /* 960 * Make the largest executable segment the official 961 * text segment and all others data. 962 * 963 * Note that obreak() assumes that data_addr + 964 * data_size == end of data load area, and the ELF 965 * file format expects segments to be sorted by 966 * address. If multiple data segments exist, the 967 * last one will be used. 968 */ 969 970 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 971 text_size = seg_size; 972 text_addr = seg_addr; 973 } else { 974 data_size = seg_size; 975 data_addr = seg_addr; 976 } 977 total_size += seg_size; 978 break; 979 case PT_PHDR: /* Program header table info */ 980 proghdr = phdr[i].p_vaddr + et_dyn_addr; 981 break; 982 default: 983 break; 984 } 985 } 986 987 if (data_addr == 0 && data_size == 0) { 988 data_addr = text_addr; 989 data_size = text_size; 990 } 991 992 entry = (u_long)hdr->e_entry + et_dyn_addr; 993 994 /* 995 * Check limits. It should be safe to check the 996 * limits after loading the segments since we do 997 * not actually fault in all the segments pages. 998 */ 999 PROC_LOCK(imgp->proc); 1000 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 1001 err_str = "Data segment size exceeds process limit"; 1002 else if (text_size > maxtsiz) 1003 err_str = "Text segment size exceeds system limit"; 1004 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 1005 err_str = "Total segment size exceeds process limit"; 1006 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 1007 err_str = "Data segment size exceeds resource limit"; 1008 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 1009 err_str = "Total segment size exceeds resource limit"; 1010 if (err_str != NULL) { 1011 PROC_UNLOCK(imgp->proc); 1012 uprintf("%s\n", err_str); 1013 error = ENOMEM; 1014 goto ret; 1015 } 1016 1017 vmspace = imgp->proc->p_vmspace; 1018 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 1019 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 1020 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 1021 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 1022 1023 /* 1024 * We load the dynamic linker where a userland call 1025 * to mmap(0, ...) would put it. The rationale behind this 1026 * calculation is that it leaves room for the heap to grow to 1027 * its maximum allowed size. 1028 */ 1029 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1030 RLIMIT_DATA)); 1031 PROC_UNLOCK(imgp->proc); 1032 1033 imgp->entry_addr = entry; 1034 1035 if (interp != NULL) { 1036 have_interp = FALSE; 1037 VOP_UNLOCK(imgp->vp, 0); 1038 if (brand_info->emul_path != NULL && 1039 brand_info->emul_path[0] != '\0') { 1040 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1041 snprintf(path, MAXPATHLEN, "%s%s", 1042 brand_info->emul_path, interp); 1043 error = __elfN(load_file)(imgp->proc, path, &addr, 1044 &imgp->entry_addr, sv->sv_pagesize); 1045 free(path, M_TEMP); 1046 if (error == 0) 1047 have_interp = TRUE; 1048 } 1049 if (!have_interp && newinterp != NULL && 1050 (brand_info->interp_path == NULL || 1051 strcmp(interp, brand_info->interp_path) == 0)) { 1052 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1053 &imgp->entry_addr, sv->sv_pagesize); 1054 if (error == 0) 1055 have_interp = TRUE; 1056 } 1057 if (!have_interp) { 1058 error = __elfN(load_file)(imgp->proc, interp, &addr, 1059 &imgp->entry_addr, sv->sv_pagesize); 1060 } 1061 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1062 if (error != 0) { 1063 uprintf("ELF interpreter %s not found, error %d\n", 1064 interp, error); 1065 goto ret; 1066 } 1067 } else 1068 addr = et_dyn_addr; 1069 1070 /* 1071 * Construct auxargs table (used by the fixup routine) 1072 */ 1073 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1074 elf_auxargs->execfd = -1; 1075 elf_auxargs->phdr = proghdr; 1076 elf_auxargs->phent = hdr->e_phentsize; 1077 elf_auxargs->phnum = hdr->e_phnum; 1078 elf_auxargs->pagesz = PAGE_SIZE; 1079 elf_auxargs->base = addr; 1080 elf_auxargs->flags = 0; 1081 elf_auxargs->entry = entry; 1082 elf_auxargs->hdr_eflags = hdr->e_flags; 1083 1084 imgp->auxargs = elf_auxargs; 1085 imgp->interpreted = 0; 1086 imgp->reloc_base = addr; 1087 imgp->proc->p_osrel = osrel; 1088 imgp->proc->p_elf_machine = hdr->e_machine; 1089 imgp->proc->p_elf_flags = hdr->e_flags; 1090 1091 ret: 1092 free(interp_buf, M_TEMP); 1093 return (error); 1094 } 1095 1096 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1097 1098 int 1099 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1100 { 1101 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1102 Elf_Addr *base; 1103 Elf_Addr *pos; 1104 1105 base = (Elf_Addr *)*stack_base; 1106 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1107 1108 if (args->execfd != -1) 1109 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1110 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1111 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1112 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1113 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1114 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1115 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1116 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1117 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1118 if (imgp->execpathp != 0) 1119 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1120 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1121 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1122 if (imgp->canary != 0) { 1123 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1124 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1125 } 1126 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1127 if (imgp->pagesizes != 0) { 1128 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1129 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1130 } 1131 if (imgp->sysent->sv_timekeep_base != 0) { 1132 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1133 imgp->sysent->sv_timekeep_base); 1134 } 1135 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1136 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1137 imgp->sysent->sv_stackprot); 1138 if (imgp->sysent->sv_hwcap != NULL) 1139 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1140 if (imgp->sysent->sv_hwcap2 != NULL) 1141 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1142 AUXARGS_ENTRY(pos, AT_NULL, 0); 1143 1144 free(imgp->auxargs, M_TEMP); 1145 imgp->auxargs = NULL; 1146 1147 base--; 1148 suword(base, (long)imgp->args->argc); 1149 *stack_base = (register_t *)base; 1150 return (0); 1151 } 1152 1153 /* 1154 * Code for generating ELF core dumps. 1155 */ 1156 1157 typedef void (*segment_callback)(vm_map_entry_t, void *); 1158 1159 /* Closure for cb_put_phdr(). */ 1160 struct phdr_closure { 1161 Elf_Phdr *phdr; /* Program header to fill in */ 1162 Elf_Off offset; /* Offset of segment in core file */ 1163 }; 1164 1165 /* Closure for cb_size_segment(). */ 1166 struct sseg_closure { 1167 int count; /* Count of writable segments. */ 1168 size_t size; /* Total size of all writable segments. */ 1169 }; 1170 1171 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1172 1173 struct note_info { 1174 int type; /* Note type. */ 1175 outfunc_t outfunc; /* Output function. */ 1176 void *outarg; /* Argument for the output function. */ 1177 size_t outsize; /* Output size. */ 1178 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1179 }; 1180 1181 TAILQ_HEAD(note_info_list, note_info); 1182 1183 /* Coredump output parameters. */ 1184 struct coredump_params { 1185 off_t offset; 1186 struct ucred *active_cred; 1187 struct ucred *file_cred; 1188 struct thread *td; 1189 struct vnode *vp; 1190 struct compressor *comp; 1191 }; 1192 1193 extern int compress_user_cores; 1194 extern int compress_user_cores_level; 1195 1196 static void cb_put_phdr(vm_map_entry_t, void *); 1197 static void cb_size_segment(vm_map_entry_t, void *); 1198 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1199 enum uio_seg); 1200 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1201 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1202 struct note_info_list *, size_t); 1203 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1204 size_t *); 1205 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1206 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1207 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1208 static int sbuf_drain_core_output(void *, const char *, int); 1209 static int sbuf_drain_count(void *arg, const char *data, int len); 1210 1211 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1212 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1213 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1214 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1215 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1216 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1217 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1218 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1219 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1220 static void note_procstat_files(void *, struct sbuf *, size_t *); 1221 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1222 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1223 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1224 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1225 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1226 1227 /* 1228 * Write out a core segment to the compression stream. 1229 */ 1230 static int 1231 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1232 { 1233 u_int chunk_len; 1234 int error; 1235 1236 while (len > 0) { 1237 chunk_len = MIN(len, CORE_BUF_SIZE); 1238 1239 /* 1240 * We can get EFAULT error here. 1241 * In that case zero out the current chunk of the segment. 1242 */ 1243 error = copyin(base, buf, chunk_len); 1244 if (error != 0) 1245 bzero(buf, chunk_len); 1246 error = compressor_write(p->comp, buf, chunk_len); 1247 if (error != 0) 1248 break; 1249 base += chunk_len; 1250 len -= chunk_len; 1251 } 1252 return (error); 1253 } 1254 1255 static int 1256 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1257 { 1258 1259 return (core_write((struct coredump_params *)arg, base, len, offset, 1260 UIO_SYSSPACE)); 1261 } 1262 1263 static int 1264 core_write(struct coredump_params *p, const void *base, size_t len, 1265 off_t offset, enum uio_seg seg) 1266 { 1267 1268 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1269 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1270 p->active_cred, p->file_cred, NULL, p->td)); 1271 } 1272 1273 static int 1274 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1275 void *tmpbuf) 1276 { 1277 int error; 1278 1279 if (p->comp != NULL) 1280 return (compress_chunk(p, base, tmpbuf, len)); 1281 1282 /* 1283 * EFAULT is a non-fatal error that we can get, for example, 1284 * if the segment is backed by a file but extends beyond its 1285 * end. 1286 */ 1287 error = core_write(p, base, len, offset, UIO_USERSPACE); 1288 if (error == EFAULT) { 1289 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1290 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1291 "for process %s\n", base, len, offset, curproc->p_comm); 1292 1293 /* 1294 * Write a "real" zero byte at the end of the target region 1295 * in the case this is the last segment. 1296 * The intermediate space will be implicitly zero-filled. 1297 */ 1298 error = core_write(p, zero_region, 1, offset + len - 1, 1299 UIO_SYSSPACE); 1300 } 1301 return (error); 1302 } 1303 1304 /* 1305 * Drain into a core file. 1306 */ 1307 static int 1308 sbuf_drain_core_output(void *arg, const char *data, int len) 1309 { 1310 struct coredump_params *p; 1311 int error, locked; 1312 1313 p = (struct coredump_params *)arg; 1314 1315 /* 1316 * Some kern_proc out routines that print to this sbuf may 1317 * call us with the process lock held. Draining with the 1318 * non-sleepable lock held is unsafe. The lock is needed for 1319 * those routines when dumping a live process. In our case we 1320 * can safely release the lock before draining and acquire 1321 * again after. 1322 */ 1323 locked = PROC_LOCKED(p->td->td_proc); 1324 if (locked) 1325 PROC_UNLOCK(p->td->td_proc); 1326 if (p->comp != NULL) 1327 error = compressor_write(p->comp, __DECONST(char *, data), len); 1328 else 1329 error = core_write(p, __DECONST(void *, data), len, p->offset, 1330 UIO_SYSSPACE); 1331 if (locked) 1332 PROC_LOCK(p->td->td_proc); 1333 if (error != 0) 1334 return (-error); 1335 p->offset += len; 1336 return (len); 1337 } 1338 1339 /* 1340 * Drain into a counter. 1341 */ 1342 static int 1343 sbuf_drain_count(void *arg, const char *data __unused, int len) 1344 { 1345 size_t *sizep; 1346 1347 sizep = (size_t *)arg; 1348 *sizep += len; 1349 return (len); 1350 } 1351 1352 int 1353 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1354 { 1355 struct ucred *cred = td->td_ucred; 1356 int error = 0; 1357 struct sseg_closure seginfo; 1358 struct note_info_list notelst; 1359 struct coredump_params params; 1360 struct note_info *ninfo; 1361 void *hdr, *tmpbuf; 1362 size_t hdrsize, notesz, coresize; 1363 1364 hdr = NULL; 1365 tmpbuf = NULL; 1366 TAILQ_INIT(¬elst); 1367 1368 /* Size the program segments. */ 1369 seginfo.count = 0; 1370 seginfo.size = 0; 1371 each_dumpable_segment(td, cb_size_segment, &seginfo); 1372 1373 /* 1374 * Collect info about the core file header area. 1375 */ 1376 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1377 if (seginfo.count + 1 >= PN_XNUM) 1378 hdrsize += sizeof(Elf_Shdr); 1379 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1380 coresize = round_page(hdrsize + notesz) + seginfo.size; 1381 1382 /* Set up core dump parameters. */ 1383 params.offset = 0; 1384 params.active_cred = cred; 1385 params.file_cred = NOCRED; 1386 params.td = td; 1387 params.vp = vp; 1388 params.comp = NULL; 1389 1390 #ifdef RACCT 1391 if (racct_enable) { 1392 PROC_LOCK(td->td_proc); 1393 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1394 PROC_UNLOCK(td->td_proc); 1395 if (error != 0) { 1396 error = EFAULT; 1397 goto done; 1398 } 1399 } 1400 #endif 1401 if (coresize >= limit) { 1402 error = EFAULT; 1403 goto done; 1404 } 1405 1406 /* Create a compression stream if necessary. */ 1407 if (compress_user_cores != 0) { 1408 params.comp = compressor_init(core_compressed_write, 1409 compress_user_cores, CORE_BUF_SIZE, 1410 compress_user_cores_level, ¶ms); 1411 if (params.comp == NULL) { 1412 error = EFAULT; 1413 goto done; 1414 } 1415 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1416 } 1417 1418 /* 1419 * Allocate memory for building the header, fill it up, 1420 * and write it out following the notes. 1421 */ 1422 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1423 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1424 notesz); 1425 1426 /* Write the contents of all of the writable segments. */ 1427 if (error == 0) { 1428 Elf_Phdr *php; 1429 off_t offset; 1430 int i; 1431 1432 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1433 offset = round_page(hdrsize + notesz); 1434 for (i = 0; i < seginfo.count; i++) { 1435 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1436 php->p_filesz, offset, ¶ms, tmpbuf); 1437 if (error != 0) 1438 break; 1439 offset += php->p_filesz; 1440 php++; 1441 } 1442 if (error == 0 && params.comp != NULL) 1443 error = compressor_flush(params.comp); 1444 } 1445 if (error) { 1446 log(LOG_WARNING, 1447 "Failed to write core file for process %s (error %d)\n", 1448 curproc->p_comm, error); 1449 } 1450 1451 done: 1452 free(tmpbuf, M_TEMP); 1453 if (params.comp != NULL) 1454 compressor_fini(params.comp); 1455 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1456 TAILQ_REMOVE(¬elst, ninfo, link); 1457 free(ninfo, M_TEMP); 1458 } 1459 if (hdr != NULL) 1460 free(hdr, M_TEMP); 1461 1462 return (error); 1463 } 1464 1465 /* 1466 * A callback for each_dumpable_segment() to write out the segment's 1467 * program header entry. 1468 */ 1469 static void 1470 cb_put_phdr(vm_map_entry_t entry, void *closure) 1471 { 1472 struct phdr_closure *phc = (struct phdr_closure *)closure; 1473 Elf_Phdr *phdr = phc->phdr; 1474 1475 phc->offset = round_page(phc->offset); 1476 1477 phdr->p_type = PT_LOAD; 1478 phdr->p_offset = phc->offset; 1479 phdr->p_vaddr = entry->start; 1480 phdr->p_paddr = 0; 1481 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1482 phdr->p_align = PAGE_SIZE; 1483 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1484 1485 phc->offset += phdr->p_filesz; 1486 phc->phdr++; 1487 } 1488 1489 /* 1490 * A callback for each_dumpable_segment() to gather information about 1491 * the number of segments and their total size. 1492 */ 1493 static void 1494 cb_size_segment(vm_map_entry_t entry, void *closure) 1495 { 1496 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1497 1498 ssc->count++; 1499 ssc->size += entry->end - entry->start; 1500 } 1501 1502 /* 1503 * For each writable segment in the process's memory map, call the given 1504 * function with a pointer to the map entry and some arbitrary 1505 * caller-supplied data. 1506 */ 1507 static void 1508 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1509 { 1510 struct proc *p = td->td_proc; 1511 vm_map_t map = &p->p_vmspace->vm_map; 1512 vm_map_entry_t entry; 1513 vm_object_t backing_object, object; 1514 boolean_t ignore_entry; 1515 1516 vm_map_lock_read(map); 1517 for (entry = map->header.next; entry != &map->header; 1518 entry = entry->next) { 1519 /* 1520 * Don't dump inaccessible mappings, deal with legacy 1521 * coredump mode. 1522 * 1523 * Note that read-only segments related to the elf binary 1524 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1525 * need to arbitrarily ignore such segments. 1526 */ 1527 if (elf_legacy_coredump) { 1528 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1529 continue; 1530 } else { 1531 if ((entry->protection & VM_PROT_ALL) == 0) 1532 continue; 1533 } 1534 1535 /* 1536 * Dont include memory segment in the coredump if 1537 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1538 * madvise(2). Do not dump submaps (i.e. parts of the 1539 * kernel map). 1540 */ 1541 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1542 continue; 1543 1544 if ((object = entry->object.vm_object) == NULL) 1545 continue; 1546 1547 /* Ignore memory-mapped devices and such things. */ 1548 VM_OBJECT_RLOCK(object); 1549 while ((backing_object = object->backing_object) != NULL) { 1550 VM_OBJECT_RLOCK(backing_object); 1551 VM_OBJECT_RUNLOCK(object); 1552 object = backing_object; 1553 } 1554 ignore_entry = object->type != OBJT_DEFAULT && 1555 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1556 object->type != OBJT_PHYS; 1557 VM_OBJECT_RUNLOCK(object); 1558 if (ignore_entry) 1559 continue; 1560 1561 (*func)(entry, closure); 1562 } 1563 vm_map_unlock_read(map); 1564 } 1565 1566 /* 1567 * Write the core file header to the file, including padding up to 1568 * the page boundary. 1569 */ 1570 static int 1571 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1572 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1573 { 1574 struct note_info *ninfo; 1575 struct sbuf *sb; 1576 int error; 1577 1578 /* Fill in the header. */ 1579 bzero(hdr, hdrsize); 1580 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1581 1582 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1583 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1584 sbuf_start_section(sb, NULL); 1585 sbuf_bcat(sb, hdr, hdrsize); 1586 TAILQ_FOREACH(ninfo, notelst, link) 1587 __elfN(putnote)(ninfo, sb); 1588 /* Align up to a page boundary for the program segments. */ 1589 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1590 error = sbuf_finish(sb); 1591 sbuf_delete(sb); 1592 1593 return (error); 1594 } 1595 1596 static void 1597 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1598 size_t *sizep) 1599 { 1600 struct proc *p; 1601 struct thread *thr; 1602 size_t size; 1603 1604 p = td->td_proc; 1605 size = 0; 1606 1607 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1608 1609 /* 1610 * To have the debugger select the right thread (LWP) as the initial 1611 * thread, we dump the state of the thread passed to us in td first. 1612 * This is the thread that causes the core dump and thus likely to 1613 * be the right thread one wants to have selected in the debugger. 1614 */ 1615 thr = td; 1616 while (thr != NULL) { 1617 size += register_note(list, NT_PRSTATUS, 1618 __elfN(note_prstatus), thr); 1619 size += register_note(list, NT_FPREGSET, 1620 __elfN(note_fpregset), thr); 1621 size += register_note(list, NT_THRMISC, 1622 __elfN(note_thrmisc), thr); 1623 size += register_note(list, NT_PTLWPINFO, 1624 __elfN(note_ptlwpinfo), thr); 1625 size += register_note(list, -1, 1626 __elfN(note_threadmd), thr); 1627 1628 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1629 TAILQ_NEXT(thr, td_plist); 1630 if (thr == td) 1631 thr = TAILQ_NEXT(thr, td_plist); 1632 } 1633 1634 size += register_note(list, NT_PROCSTAT_PROC, 1635 __elfN(note_procstat_proc), p); 1636 size += register_note(list, NT_PROCSTAT_FILES, 1637 note_procstat_files, p); 1638 size += register_note(list, NT_PROCSTAT_VMMAP, 1639 note_procstat_vmmap, p); 1640 size += register_note(list, NT_PROCSTAT_GROUPS, 1641 note_procstat_groups, p); 1642 size += register_note(list, NT_PROCSTAT_UMASK, 1643 note_procstat_umask, p); 1644 size += register_note(list, NT_PROCSTAT_RLIMIT, 1645 note_procstat_rlimit, p); 1646 size += register_note(list, NT_PROCSTAT_OSREL, 1647 note_procstat_osrel, p); 1648 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1649 __elfN(note_procstat_psstrings), p); 1650 size += register_note(list, NT_PROCSTAT_AUXV, 1651 __elfN(note_procstat_auxv), p); 1652 1653 *sizep = size; 1654 } 1655 1656 static void 1657 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1658 size_t notesz) 1659 { 1660 Elf_Ehdr *ehdr; 1661 Elf_Phdr *phdr; 1662 Elf_Shdr *shdr; 1663 struct phdr_closure phc; 1664 1665 ehdr = (Elf_Ehdr *)hdr; 1666 1667 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1668 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1669 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1670 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1671 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1672 ehdr->e_ident[EI_DATA] = ELF_DATA; 1673 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1674 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1675 ehdr->e_ident[EI_ABIVERSION] = 0; 1676 ehdr->e_ident[EI_PAD] = 0; 1677 ehdr->e_type = ET_CORE; 1678 ehdr->e_machine = td->td_proc->p_elf_machine; 1679 ehdr->e_version = EV_CURRENT; 1680 ehdr->e_entry = 0; 1681 ehdr->e_phoff = sizeof(Elf_Ehdr); 1682 ehdr->e_flags = td->td_proc->p_elf_flags; 1683 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1684 ehdr->e_phentsize = sizeof(Elf_Phdr); 1685 ehdr->e_shentsize = sizeof(Elf_Shdr); 1686 ehdr->e_shstrndx = SHN_UNDEF; 1687 if (numsegs + 1 < PN_XNUM) { 1688 ehdr->e_phnum = numsegs + 1; 1689 ehdr->e_shnum = 0; 1690 } else { 1691 ehdr->e_phnum = PN_XNUM; 1692 ehdr->e_shnum = 1; 1693 1694 ehdr->e_shoff = ehdr->e_phoff + 1695 (numsegs + 1) * ehdr->e_phentsize; 1696 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1697 ("e_shoff: %zu, hdrsize - shdr: %zu", 1698 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1699 1700 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1701 memset(shdr, 0, sizeof(*shdr)); 1702 /* 1703 * A special first section is used to hold large segment and 1704 * section counts. This was proposed by Sun Microsystems in 1705 * Solaris and has been adopted by Linux; the standard ELF 1706 * tools are already familiar with the technique. 1707 * 1708 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1709 * (or 12-7 depending on the version of the document) for more 1710 * details. 1711 */ 1712 shdr->sh_type = SHT_NULL; 1713 shdr->sh_size = ehdr->e_shnum; 1714 shdr->sh_link = ehdr->e_shstrndx; 1715 shdr->sh_info = numsegs + 1; 1716 } 1717 1718 /* 1719 * Fill in the program header entries. 1720 */ 1721 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1722 1723 /* The note segement. */ 1724 phdr->p_type = PT_NOTE; 1725 phdr->p_offset = hdrsize; 1726 phdr->p_vaddr = 0; 1727 phdr->p_paddr = 0; 1728 phdr->p_filesz = notesz; 1729 phdr->p_memsz = 0; 1730 phdr->p_flags = PF_R; 1731 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1732 phdr++; 1733 1734 /* All the writable segments from the program. */ 1735 phc.phdr = phdr; 1736 phc.offset = round_page(hdrsize + notesz); 1737 each_dumpable_segment(td, cb_put_phdr, &phc); 1738 } 1739 1740 static size_t 1741 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1742 { 1743 struct note_info *ninfo; 1744 size_t size, notesize; 1745 1746 size = 0; 1747 out(arg, NULL, &size); 1748 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1749 ninfo->type = type; 1750 ninfo->outfunc = out; 1751 ninfo->outarg = arg; 1752 ninfo->outsize = size; 1753 TAILQ_INSERT_TAIL(list, ninfo, link); 1754 1755 if (type == -1) 1756 return (size); 1757 1758 notesize = sizeof(Elf_Note) + /* note header */ 1759 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1760 /* note name */ 1761 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1762 1763 return (notesize); 1764 } 1765 1766 static size_t 1767 append_note_data(const void *src, void *dst, size_t len) 1768 { 1769 size_t padded_len; 1770 1771 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1772 if (dst != NULL) { 1773 bcopy(src, dst, len); 1774 bzero((char *)dst + len, padded_len - len); 1775 } 1776 return (padded_len); 1777 } 1778 1779 size_t 1780 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1781 { 1782 Elf_Note *note; 1783 char *buf; 1784 size_t notesize; 1785 1786 buf = dst; 1787 if (buf != NULL) { 1788 note = (Elf_Note *)buf; 1789 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1790 note->n_descsz = size; 1791 note->n_type = type; 1792 buf += sizeof(*note); 1793 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1794 sizeof(FREEBSD_ABI_VENDOR)); 1795 append_note_data(src, buf, size); 1796 if (descp != NULL) 1797 *descp = buf; 1798 } 1799 1800 notesize = sizeof(Elf_Note) + /* note header */ 1801 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1802 /* note name */ 1803 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1804 1805 return (notesize); 1806 } 1807 1808 static void 1809 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1810 { 1811 Elf_Note note; 1812 ssize_t old_len, sect_len; 1813 size_t new_len, descsz, i; 1814 1815 if (ninfo->type == -1) { 1816 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1817 return; 1818 } 1819 1820 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1821 note.n_descsz = ninfo->outsize; 1822 note.n_type = ninfo->type; 1823 1824 sbuf_bcat(sb, ¬e, sizeof(note)); 1825 sbuf_start_section(sb, &old_len); 1826 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1827 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1828 if (note.n_descsz == 0) 1829 return; 1830 sbuf_start_section(sb, &old_len); 1831 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1832 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1833 if (sect_len < 0) 1834 return; 1835 1836 new_len = (size_t)sect_len; 1837 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1838 if (new_len < descsz) { 1839 /* 1840 * It is expected that individual note emitters will correctly 1841 * predict their expected output size and fill up to that size 1842 * themselves, padding in a format-specific way if needed. 1843 * However, in case they don't, just do it here with zeros. 1844 */ 1845 for (i = 0; i < descsz - new_len; i++) 1846 sbuf_putc(sb, 0); 1847 } else if (new_len > descsz) { 1848 /* 1849 * We can't always truncate sb -- we may have drained some 1850 * of it already. 1851 */ 1852 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1853 "read it (%zu > %zu). Since it is longer than " 1854 "expected, this coredump's notes are corrupt. THIS " 1855 "IS A BUG in the note_procstat routine for type %u.\n", 1856 __func__, (unsigned)note.n_type, new_len, descsz, 1857 (unsigned)note.n_type)); 1858 } 1859 } 1860 1861 /* 1862 * Miscellaneous note out functions. 1863 */ 1864 1865 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1866 #include <compat/freebsd32/freebsd32.h> 1867 #include <compat/freebsd32/freebsd32_signal.h> 1868 1869 typedef struct prstatus32 elf_prstatus_t; 1870 typedef struct prpsinfo32 elf_prpsinfo_t; 1871 typedef struct fpreg32 elf_prfpregset_t; 1872 typedef struct fpreg32 elf_fpregset_t; 1873 typedef struct reg32 elf_gregset_t; 1874 typedef struct thrmisc32 elf_thrmisc_t; 1875 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1876 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1877 typedef uint32_t elf_ps_strings_t; 1878 #else 1879 typedef prstatus_t elf_prstatus_t; 1880 typedef prpsinfo_t elf_prpsinfo_t; 1881 typedef prfpregset_t elf_prfpregset_t; 1882 typedef prfpregset_t elf_fpregset_t; 1883 typedef gregset_t elf_gregset_t; 1884 typedef thrmisc_t elf_thrmisc_t; 1885 #define ELF_KERN_PROC_MASK 0 1886 typedef struct kinfo_proc elf_kinfo_proc_t; 1887 typedef vm_offset_t elf_ps_strings_t; 1888 #endif 1889 1890 static void 1891 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1892 { 1893 struct sbuf sbarg; 1894 size_t len; 1895 char *cp, *end; 1896 struct proc *p; 1897 elf_prpsinfo_t *psinfo; 1898 int error; 1899 1900 p = (struct proc *)arg; 1901 if (sb != NULL) { 1902 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1903 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1904 psinfo->pr_version = PRPSINFO_VERSION; 1905 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1906 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1907 PROC_LOCK(p); 1908 if (p->p_args != NULL) { 1909 len = sizeof(psinfo->pr_psargs) - 1; 1910 if (len > p->p_args->ar_length) 1911 len = p->p_args->ar_length; 1912 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 1913 PROC_UNLOCK(p); 1914 error = 0; 1915 } else { 1916 _PHOLD(p); 1917 PROC_UNLOCK(p); 1918 sbuf_new(&sbarg, psinfo->pr_psargs, 1919 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 1920 error = proc_getargv(curthread, p, &sbarg); 1921 PRELE(p); 1922 if (sbuf_finish(&sbarg) == 0) 1923 len = sbuf_len(&sbarg) - 1; 1924 else 1925 len = sizeof(psinfo->pr_psargs) - 1; 1926 sbuf_delete(&sbarg); 1927 } 1928 if (error || len == 0) 1929 strlcpy(psinfo->pr_psargs, p->p_comm, 1930 sizeof(psinfo->pr_psargs)); 1931 else { 1932 KASSERT(len < sizeof(psinfo->pr_psargs), 1933 ("len is too long: %zu vs %zu", len, 1934 sizeof(psinfo->pr_psargs))); 1935 cp = psinfo->pr_psargs; 1936 end = cp + len - 1; 1937 for (;;) { 1938 cp = memchr(cp, '\0', end - cp); 1939 if (cp == NULL) 1940 break; 1941 *cp = ' '; 1942 } 1943 } 1944 psinfo->pr_pid = p->p_pid; 1945 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1946 free(psinfo, M_TEMP); 1947 } 1948 *sizep = sizeof(*psinfo); 1949 } 1950 1951 static void 1952 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1953 { 1954 struct thread *td; 1955 elf_prstatus_t *status; 1956 1957 td = (struct thread *)arg; 1958 if (sb != NULL) { 1959 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1960 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1961 status->pr_version = PRSTATUS_VERSION; 1962 status->pr_statussz = sizeof(elf_prstatus_t); 1963 status->pr_gregsetsz = sizeof(elf_gregset_t); 1964 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1965 status->pr_osreldate = osreldate; 1966 status->pr_cursig = td->td_proc->p_sig; 1967 status->pr_pid = td->td_tid; 1968 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1969 fill_regs32(td, &status->pr_reg); 1970 #else 1971 fill_regs(td, &status->pr_reg); 1972 #endif 1973 sbuf_bcat(sb, status, sizeof(*status)); 1974 free(status, M_TEMP); 1975 } 1976 *sizep = sizeof(*status); 1977 } 1978 1979 static void 1980 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1981 { 1982 struct thread *td; 1983 elf_prfpregset_t *fpregset; 1984 1985 td = (struct thread *)arg; 1986 if (sb != NULL) { 1987 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1988 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1989 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1990 fill_fpregs32(td, fpregset); 1991 #else 1992 fill_fpregs(td, fpregset); 1993 #endif 1994 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1995 free(fpregset, M_TEMP); 1996 } 1997 *sizep = sizeof(*fpregset); 1998 } 1999 2000 static void 2001 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2002 { 2003 struct thread *td; 2004 elf_thrmisc_t thrmisc; 2005 2006 td = (struct thread *)arg; 2007 if (sb != NULL) { 2008 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2009 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2010 strcpy(thrmisc.pr_tname, td->td_name); 2011 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2012 } 2013 *sizep = sizeof(thrmisc); 2014 } 2015 2016 static void 2017 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2018 { 2019 struct thread *td; 2020 size_t size; 2021 int structsize; 2022 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2023 struct ptrace_lwpinfo32 pl; 2024 #else 2025 struct ptrace_lwpinfo pl; 2026 #endif 2027 2028 td = (struct thread *)arg; 2029 size = sizeof(structsize) + sizeof(pl); 2030 if (sb != NULL) { 2031 KASSERT(*sizep == size, ("invalid size")); 2032 structsize = sizeof(pl); 2033 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2034 bzero(&pl, sizeof(pl)); 2035 pl.pl_lwpid = td->td_tid; 2036 pl.pl_event = PL_EVENT_NONE; 2037 pl.pl_sigmask = td->td_sigmask; 2038 pl.pl_siglist = td->td_siglist; 2039 if (td->td_si.si_signo != 0) { 2040 pl.pl_event = PL_EVENT_SIGNAL; 2041 pl.pl_flags |= PL_FLAG_SI; 2042 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2043 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2044 #else 2045 pl.pl_siginfo = td->td_si; 2046 #endif 2047 } 2048 strcpy(pl.pl_tdname, td->td_name); 2049 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2050 sbuf_bcat(sb, &pl, sizeof(pl)); 2051 } 2052 *sizep = size; 2053 } 2054 2055 /* 2056 * Allow for MD specific notes, as well as any MD 2057 * specific preparations for writing MI notes. 2058 */ 2059 static void 2060 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2061 { 2062 struct thread *td; 2063 void *buf; 2064 size_t size; 2065 2066 td = (struct thread *)arg; 2067 size = *sizep; 2068 if (size != 0 && sb != NULL) 2069 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2070 else 2071 buf = NULL; 2072 size = 0; 2073 __elfN(dump_thread)(td, buf, &size); 2074 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2075 if (size != 0 && sb != NULL) 2076 sbuf_bcat(sb, buf, size); 2077 free(buf, M_TEMP); 2078 *sizep = size; 2079 } 2080 2081 #ifdef KINFO_PROC_SIZE 2082 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2083 #endif 2084 2085 static void 2086 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2087 { 2088 struct proc *p; 2089 size_t size; 2090 int structsize; 2091 2092 p = (struct proc *)arg; 2093 size = sizeof(structsize) + p->p_numthreads * 2094 sizeof(elf_kinfo_proc_t); 2095 2096 if (sb != NULL) { 2097 KASSERT(*sizep == size, ("invalid size")); 2098 structsize = sizeof(elf_kinfo_proc_t); 2099 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2100 sx_slock(&proctree_lock); 2101 PROC_LOCK(p); 2102 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2103 sx_sunlock(&proctree_lock); 2104 } 2105 *sizep = size; 2106 } 2107 2108 #ifdef KINFO_FILE_SIZE 2109 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2110 #endif 2111 2112 static void 2113 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2114 { 2115 struct proc *p; 2116 size_t size, sect_sz, i; 2117 ssize_t start_len, sect_len; 2118 int structsize, filedesc_flags; 2119 2120 if (coredump_pack_fileinfo) 2121 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2122 else 2123 filedesc_flags = 0; 2124 2125 p = (struct proc *)arg; 2126 structsize = sizeof(struct kinfo_file); 2127 if (sb == NULL) { 2128 size = 0; 2129 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2130 sbuf_set_drain(sb, sbuf_drain_count, &size); 2131 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2132 PROC_LOCK(p); 2133 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2134 sbuf_finish(sb); 2135 sbuf_delete(sb); 2136 *sizep = size; 2137 } else { 2138 sbuf_start_section(sb, &start_len); 2139 2140 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2141 PROC_LOCK(p); 2142 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2143 filedesc_flags); 2144 2145 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2146 if (sect_len < 0) 2147 return; 2148 sect_sz = sect_len; 2149 2150 KASSERT(sect_sz <= *sizep, 2151 ("kern_proc_filedesc_out did not respect maxlen; " 2152 "requested %zu, got %zu", *sizep - sizeof(structsize), 2153 sect_sz - sizeof(structsize))); 2154 2155 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2156 sbuf_putc(sb, 0); 2157 } 2158 } 2159 2160 #ifdef KINFO_VMENTRY_SIZE 2161 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2162 #endif 2163 2164 static void 2165 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2166 { 2167 struct proc *p; 2168 size_t size; 2169 int structsize, vmmap_flags; 2170 2171 if (coredump_pack_vmmapinfo) 2172 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2173 else 2174 vmmap_flags = 0; 2175 2176 p = (struct proc *)arg; 2177 structsize = sizeof(struct kinfo_vmentry); 2178 if (sb == NULL) { 2179 size = 0; 2180 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2181 sbuf_set_drain(sb, sbuf_drain_count, &size); 2182 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2183 PROC_LOCK(p); 2184 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2185 sbuf_finish(sb); 2186 sbuf_delete(sb); 2187 *sizep = size; 2188 } else { 2189 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2190 PROC_LOCK(p); 2191 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2192 vmmap_flags); 2193 } 2194 } 2195 2196 static void 2197 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2198 { 2199 struct proc *p; 2200 size_t size; 2201 int structsize; 2202 2203 p = (struct proc *)arg; 2204 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2205 if (sb != NULL) { 2206 KASSERT(*sizep == size, ("invalid size")); 2207 structsize = sizeof(gid_t); 2208 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2209 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2210 sizeof(gid_t)); 2211 } 2212 *sizep = size; 2213 } 2214 2215 static void 2216 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2217 { 2218 struct proc *p; 2219 size_t size; 2220 int structsize; 2221 2222 p = (struct proc *)arg; 2223 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2224 if (sb != NULL) { 2225 KASSERT(*sizep == size, ("invalid size")); 2226 structsize = sizeof(p->p_fd->fd_cmask); 2227 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2228 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2229 } 2230 *sizep = size; 2231 } 2232 2233 static void 2234 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2235 { 2236 struct proc *p; 2237 struct rlimit rlim[RLIM_NLIMITS]; 2238 size_t size; 2239 int structsize, i; 2240 2241 p = (struct proc *)arg; 2242 size = sizeof(structsize) + sizeof(rlim); 2243 if (sb != NULL) { 2244 KASSERT(*sizep == size, ("invalid size")); 2245 structsize = sizeof(rlim); 2246 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2247 PROC_LOCK(p); 2248 for (i = 0; i < RLIM_NLIMITS; i++) 2249 lim_rlimit_proc(p, i, &rlim[i]); 2250 PROC_UNLOCK(p); 2251 sbuf_bcat(sb, rlim, sizeof(rlim)); 2252 } 2253 *sizep = size; 2254 } 2255 2256 static void 2257 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2258 { 2259 struct proc *p; 2260 size_t size; 2261 int structsize; 2262 2263 p = (struct proc *)arg; 2264 size = sizeof(structsize) + sizeof(p->p_osrel); 2265 if (sb != NULL) { 2266 KASSERT(*sizep == size, ("invalid size")); 2267 structsize = sizeof(p->p_osrel); 2268 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2269 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2270 } 2271 *sizep = size; 2272 } 2273 2274 static void 2275 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2276 { 2277 struct proc *p; 2278 elf_ps_strings_t ps_strings; 2279 size_t size; 2280 int structsize; 2281 2282 p = (struct proc *)arg; 2283 size = sizeof(structsize) + sizeof(ps_strings); 2284 if (sb != NULL) { 2285 KASSERT(*sizep == size, ("invalid size")); 2286 structsize = sizeof(ps_strings); 2287 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2288 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2289 #else 2290 ps_strings = p->p_sysent->sv_psstrings; 2291 #endif 2292 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2293 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2294 } 2295 *sizep = size; 2296 } 2297 2298 static void 2299 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2300 { 2301 struct proc *p; 2302 size_t size; 2303 int structsize; 2304 2305 p = (struct proc *)arg; 2306 if (sb == NULL) { 2307 size = 0; 2308 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2309 sbuf_set_drain(sb, sbuf_drain_count, &size); 2310 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2311 PHOLD(p); 2312 proc_getauxv(curthread, p, sb); 2313 PRELE(p); 2314 sbuf_finish(sb); 2315 sbuf_delete(sb); 2316 *sizep = size; 2317 } else { 2318 structsize = sizeof(Elf_Auxinfo); 2319 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2320 PHOLD(p); 2321 proc_getauxv(curthread, p, sb); 2322 PRELE(p); 2323 } 2324 } 2325 2326 static boolean_t 2327 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2328 int32_t *osrel, const Elf_Phdr *pnote) 2329 { 2330 const Elf_Note *note, *note0, *note_end; 2331 const char *note_name; 2332 char *buf; 2333 int i, error; 2334 boolean_t res; 2335 2336 /* We need some limit, might as well use PAGE_SIZE. */ 2337 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2338 return (FALSE); 2339 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2340 if (pnote->p_offset > PAGE_SIZE || 2341 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2342 VOP_UNLOCK(imgp->vp, 0); 2343 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2344 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2345 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2346 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2347 curthread->td_ucred, NOCRED, NULL, curthread); 2348 if (error != 0) { 2349 uprintf("i/o error PT_NOTE\n"); 2350 res = FALSE; 2351 goto ret; 2352 } 2353 note = note0 = (const Elf_Note *)buf; 2354 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2355 } else { 2356 note = note0 = (const Elf_Note *)(imgp->image_header + 2357 pnote->p_offset); 2358 note_end = (const Elf_Note *)(imgp->image_header + 2359 pnote->p_offset + pnote->p_filesz); 2360 buf = NULL; 2361 } 2362 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2363 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2364 (const char *)note < sizeof(Elf_Note)) { 2365 res = FALSE; 2366 goto ret; 2367 } 2368 if (note->n_namesz != checknote->hdr.n_namesz || 2369 note->n_descsz != checknote->hdr.n_descsz || 2370 note->n_type != checknote->hdr.n_type) 2371 goto nextnote; 2372 note_name = (const char *)(note + 1); 2373 if (note_name + checknote->hdr.n_namesz >= 2374 (const char *)note_end || strncmp(checknote->vendor, 2375 note_name, checknote->hdr.n_namesz) != 0) 2376 goto nextnote; 2377 2378 /* 2379 * Fetch the osreldate for binary 2380 * from the ELF OSABI-note if necessary. 2381 */ 2382 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2383 checknote->trans_osrel != NULL) { 2384 res = checknote->trans_osrel(note, osrel); 2385 goto ret; 2386 } 2387 res = TRUE; 2388 goto ret; 2389 nextnote: 2390 note = (const Elf_Note *)((const char *)(note + 1) + 2391 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2392 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2393 } 2394 res = FALSE; 2395 ret: 2396 free(buf, M_TEMP); 2397 return (res); 2398 } 2399 2400 /* 2401 * Try to find the appropriate ABI-note section for checknote, 2402 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2403 * first page of the image is searched, the same as for headers. 2404 */ 2405 static boolean_t 2406 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2407 int32_t *osrel) 2408 { 2409 const Elf_Phdr *phdr; 2410 const Elf_Ehdr *hdr; 2411 int i; 2412 2413 hdr = (const Elf_Ehdr *)imgp->image_header; 2414 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2415 2416 for (i = 0; i < hdr->e_phnum; i++) { 2417 if (phdr[i].p_type == PT_NOTE && 2418 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2419 return (TRUE); 2420 } 2421 return (FALSE); 2422 2423 } 2424 2425 /* 2426 * Tell kern_execve.c about it, with a little help from the linker. 2427 */ 2428 static struct execsw __elfN(execsw) = { 2429 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2430 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2431 }; 2432 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2433 2434 static vm_prot_t 2435 __elfN(trans_prot)(Elf_Word flags) 2436 { 2437 vm_prot_t prot; 2438 2439 prot = 0; 2440 if (flags & PF_X) 2441 prot |= VM_PROT_EXECUTE; 2442 if (flags & PF_W) 2443 prot |= VM_PROT_WRITE; 2444 if (flags & PF_R) 2445 prot |= VM_PROT_READ; 2446 #if __ELF_WORD_SIZE == 32 2447 #if defined(__amd64__) 2448 if (i386_read_exec && (flags & PF_R)) 2449 prot |= VM_PROT_EXECUTE; 2450 #endif 2451 #endif 2452 return (prot); 2453 } 2454 2455 static Elf_Word 2456 __elfN(untrans_prot)(vm_prot_t prot) 2457 { 2458 Elf_Word flags; 2459 2460 flags = 0; 2461 if (prot & VM_PROT_EXECUTE) 2462 flags |= PF_X; 2463 if (prot & VM_PROT_READ) 2464 flags |= PF_R; 2465 if (prot & VM_PROT_WRITE) 2466 flags |= PF_W; 2467 return (flags); 2468 } 2469