xref: /freebsd/sys/kern/imgact_elf.c (revision 60b9567d16b585b05c86c60393958ad81cbfa72f)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_capsicum.h"
35 #include "opt_compat.h"
36 #include "opt_gzio.h"
37 
38 #include <sys/param.h>
39 #include <sys/capsicum.h>
40 #include <sys/exec.h>
41 #include <sys/fcntl.h>
42 #include <sys/gzio.h>
43 #include <sys/imgact.h>
44 #include <sys/imgact_elf.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/mman.h>
51 #include <sys/namei.h>
52 #include <sys/pioctl.h>
53 #include <sys/proc.h>
54 #include <sys/procfs.h>
55 #include <sys/racct.h>
56 #include <sys/resourcevar.h>
57 #include <sys/rwlock.h>
58 #include <sys/sbuf.h>
59 #include <sys/sf_buf.h>
60 #include <sys/smp.h>
61 #include <sys/systm.h>
62 #include <sys/signalvar.h>
63 #include <sys/stat.h>
64 #include <sys/sx.h>
65 #include <sys/syscall.h>
66 #include <sys/sysctl.h>
67 #include <sys/sysent.h>
68 #include <sys/vnode.h>
69 #include <sys/syslog.h>
70 #include <sys/eventhandler.h>
71 #include <sys/user.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_param.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80 
81 #include <machine/elf.h>
82 #include <machine/md_var.h>
83 
84 #define ELF_NOTE_ROUNDSIZE	4
85 #define OLD_EI_BRAND	8
86 
87 static int __elfN(check_header)(const Elf_Ehdr *hdr);
88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
89     const char *interp, int interp_name_len, int32_t *osrel);
90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
91     u_long *entry, size_t pagesize);
92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
93     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
94     size_t pagesize);
95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note,
97     int32_t *osrel);
98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
99 static boolean_t __elfN(check_note)(struct image_params *imgp,
100     Elf_Brandnote *checknote, int32_t *osrel);
101 static vm_prot_t __elfN(trans_prot)(Elf_Word);
102 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
103 
104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
105     "");
106 
107 #define	CORE_BUF_SIZE	(16 * 1024)
108 
109 int __elfN(fallback_brand) = -1;
110 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
111     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
112     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
113 
114 static int elf_legacy_coredump = 0;
115 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
116     &elf_legacy_coredump, 0,
117     "include all and only RW pages in core dumps");
118 
119 int __elfN(nxstack) =
120 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
121     (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__)
122 	1;
123 #else
124 	0;
125 #endif
126 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
127     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
128     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
129 
130 #if __ELF_WORD_SIZE == 32
131 #if defined(__amd64__)
132 int i386_read_exec = 0;
133 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
134     "enable execution from readable segments");
135 #endif
136 #endif
137 
138 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
139 
140 #define	trunc_page_ps(va, ps)	rounddown2(va, ps)
141 #define	round_page_ps(va, ps)	roundup2(va, ps)
142 #define	aligned(a, t)	(trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a))
143 
144 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
145 
146 Elf_Brandnote __elfN(freebsd_brandnote) = {
147 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
148 	.hdr.n_descsz	= sizeof(int32_t),
149 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
150 	.vendor		= FREEBSD_ABI_VENDOR,
151 	.flags		= BN_TRANSLATE_OSREL,
152 	.trans_osrel	= __elfN(freebsd_trans_osrel)
153 };
154 
155 static boolean_t
156 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
157 {
158 	uintptr_t p;
159 
160 	p = (uintptr_t)(note + 1);
161 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
162 	*osrel = *(const int32_t *)(p);
163 
164 	return (TRUE);
165 }
166 
167 static const char GNU_ABI_VENDOR[] = "GNU";
168 static int GNU_KFREEBSD_ABI_DESC = 3;
169 
170 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
171 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
172 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
173 	.hdr.n_type	= 1,
174 	.vendor		= GNU_ABI_VENDOR,
175 	.flags		= BN_TRANSLATE_OSREL,
176 	.trans_osrel	= kfreebsd_trans_osrel
177 };
178 
179 static boolean_t
180 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
181 {
182 	const Elf32_Word *desc;
183 	uintptr_t p;
184 
185 	p = (uintptr_t)(note + 1);
186 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
187 
188 	desc = (const Elf32_Word *)p;
189 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
190 		return (FALSE);
191 
192 	/*
193 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
194 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
195 	 */
196 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
197 
198 	return (TRUE);
199 }
200 
201 int
202 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
203 {
204 	int i;
205 
206 	for (i = 0; i < MAX_BRANDS; i++) {
207 		if (elf_brand_list[i] == NULL) {
208 			elf_brand_list[i] = entry;
209 			break;
210 		}
211 	}
212 	if (i == MAX_BRANDS) {
213 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
214 			__func__, entry);
215 		return (-1);
216 	}
217 	return (0);
218 }
219 
220 int
221 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
222 {
223 	int i;
224 
225 	for (i = 0; i < MAX_BRANDS; i++) {
226 		if (elf_brand_list[i] == entry) {
227 			elf_brand_list[i] = NULL;
228 			break;
229 		}
230 	}
231 	if (i == MAX_BRANDS)
232 		return (-1);
233 	return (0);
234 }
235 
236 int
237 __elfN(brand_inuse)(Elf_Brandinfo *entry)
238 {
239 	struct proc *p;
240 	int rval = FALSE;
241 
242 	sx_slock(&allproc_lock);
243 	FOREACH_PROC_IN_SYSTEM(p) {
244 		if (p->p_sysent == entry->sysvec) {
245 			rval = TRUE;
246 			break;
247 		}
248 	}
249 	sx_sunlock(&allproc_lock);
250 
251 	return (rval);
252 }
253 
254 static Elf_Brandinfo *
255 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
256     int interp_name_len, int32_t *osrel)
257 {
258 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
259 	Elf_Brandinfo *bi, *bi_m;
260 	boolean_t ret;
261 	int i;
262 
263 	/*
264 	 * We support four types of branding -- (1) the ELF EI_OSABI field
265 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
266 	 * branding w/in the ELF header, (3) path of the `interp_path'
267 	 * field, and (4) the ".note.ABI-tag" ELF section.
268 	 */
269 
270 	/* Look for an ".note.ABI-tag" ELF section */
271 	bi_m = NULL;
272 	for (i = 0; i < MAX_BRANDS; i++) {
273 		bi = elf_brand_list[i];
274 		if (bi == NULL)
275 			continue;
276 		if (hdr->e_machine == bi->machine && (bi->flags &
277 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
278 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
279 			/* Give brand a chance to veto check_note's guess */
280 			if (ret && bi->header_supported)
281 				ret = bi->header_supported(imgp);
282 			/*
283 			 * If note checker claimed the binary, but the
284 			 * interpreter path in the image does not
285 			 * match default one for the brand, try to
286 			 * search for other brands with the same
287 			 * interpreter.  Either there is better brand
288 			 * with the right interpreter, or, failing
289 			 * this, we return first brand which accepted
290 			 * our note and, optionally, header.
291 			 */
292 			if (ret && bi_m == NULL && (strlen(bi->interp_path) +
293 			    1 != interp_name_len || strncmp(interp,
294 			    bi->interp_path, interp_name_len) != 0)) {
295 				bi_m = bi;
296 				ret = 0;
297 			}
298 			if (ret)
299 				return (bi);
300 		}
301 	}
302 	if (bi_m != NULL)
303 		return (bi_m);
304 
305 	/* If the executable has a brand, search for it in the brand list. */
306 	for (i = 0; i < MAX_BRANDS; i++) {
307 		bi = elf_brand_list[i];
308 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
309 			continue;
310 		if (hdr->e_machine == bi->machine &&
311 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
312 		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
313 		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) {
314 			/* Looks good, but give brand a chance to veto */
315 			if (!bi->header_supported || bi->header_supported(imgp))
316 				return (bi);
317 		}
318 	}
319 
320 	/* No known brand, see if the header is recognized by any brand */
321 	for (i = 0; i < MAX_BRANDS; i++) {
322 		bi = elf_brand_list[i];
323 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
324 		    bi->header_supported == NULL)
325 			continue;
326 		if (hdr->e_machine == bi->machine) {
327 			ret = bi->header_supported(imgp);
328 			if (ret)
329 				return (bi);
330 		}
331 	}
332 
333 	/* Lacking a known brand, search for a recognized interpreter. */
334 	if (interp != NULL) {
335 		for (i = 0; i < MAX_BRANDS; i++) {
336 			bi = elf_brand_list[i];
337 			if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
338 				continue;
339 			if (hdr->e_machine == bi->machine &&
340 			    /* ELF image p_filesz includes terminating zero */
341 			    strlen(bi->interp_path) + 1 == interp_name_len &&
342 			    strncmp(interp, bi->interp_path, interp_name_len)
343 			    == 0)
344 				return (bi);
345 		}
346 	}
347 
348 	/* Lacking a recognized interpreter, try the default brand */
349 	for (i = 0; i < MAX_BRANDS; i++) {
350 		bi = elf_brand_list[i];
351 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
352 			continue;
353 		if (hdr->e_machine == bi->machine &&
354 		    __elfN(fallback_brand) == bi->brand)
355 			return (bi);
356 	}
357 	return (NULL);
358 }
359 
360 static int
361 __elfN(check_header)(const Elf_Ehdr *hdr)
362 {
363 	Elf_Brandinfo *bi;
364 	int i;
365 
366 	if (!IS_ELF(*hdr) ||
367 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
368 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
369 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
370 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
371 	    hdr->e_version != ELF_TARG_VER)
372 		return (ENOEXEC);
373 
374 	/*
375 	 * Make sure we have at least one brand for this machine.
376 	 */
377 
378 	for (i = 0; i < MAX_BRANDS; i++) {
379 		bi = elf_brand_list[i];
380 		if (bi != NULL && bi->machine == hdr->e_machine)
381 			break;
382 	}
383 	if (i == MAX_BRANDS)
384 		return (ENOEXEC);
385 
386 	return (0);
387 }
388 
389 static int
390 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
391     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
392 {
393 	struct sf_buf *sf;
394 	int error;
395 	vm_offset_t off;
396 
397 	/*
398 	 * Create the page if it doesn't exist yet. Ignore errors.
399 	 */
400 	vm_map_lock(map);
401 	vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end),
402 	    VM_PROT_ALL, VM_PROT_ALL, 0);
403 	vm_map_unlock(map);
404 
405 	/*
406 	 * Find the page from the underlying object.
407 	 */
408 	if (object) {
409 		sf = vm_imgact_map_page(object, offset);
410 		if (sf == NULL)
411 			return (KERN_FAILURE);
412 		off = offset - trunc_page(offset);
413 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
414 		    end - start);
415 		vm_imgact_unmap_page(sf);
416 		if (error) {
417 			return (KERN_FAILURE);
418 		}
419 	}
420 
421 	return (KERN_SUCCESS);
422 }
423 
424 static int
425 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
426     vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow)
427 {
428 	struct sf_buf *sf;
429 	vm_offset_t off;
430 	vm_size_t sz;
431 	int error, rv;
432 
433 	if (start != trunc_page(start)) {
434 		rv = __elfN(map_partial)(map, object, offset, start,
435 		    round_page(start), prot);
436 		if (rv)
437 			return (rv);
438 		offset += round_page(start) - start;
439 		start = round_page(start);
440 	}
441 	if (end != round_page(end)) {
442 		rv = __elfN(map_partial)(map, object, offset +
443 		    trunc_page(end) - start, trunc_page(end), end, prot);
444 		if (rv)
445 			return (rv);
446 		end = trunc_page(end);
447 	}
448 	if (end > start) {
449 		if (offset & PAGE_MASK) {
450 			/*
451 			 * The mapping is not page aligned. This means we have
452 			 * to copy the data. Sigh.
453 			 */
454 			rv = vm_map_find(map, NULL, 0, &start, end - start, 0,
455 			    VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL,
456 			    0);
457 			if (rv != KERN_SUCCESS)
458 				return (rv);
459 			if (object == NULL)
460 				return (KERN_SUCCESS);
461 			for (; start < end; start += sz) {
462 				sf = vm_imgact_map_page(object, offset);
463 				if (sf == NULL)
464 					return (KERN_FAILURE);
465 				off = offset - trunc_page(offset);
466 				sz = end - start;
467 				if (sz > PAGE_SIZE - off)
468 					sz = PAGE_SIZE - off;
469 				error = copyout((caddr_t)sf_buf_kva(sf) + off,
470 				    (caddr_t)start, sz);
471 				vm_imgact_unmap_page(sf);
472 				if (error != 0)
473 					return (KERN_FAILURE);
474 				offset += sz;
475 			}
476 			rv = KERN_SUCCESS;
477 		} else {
478 			vm_object_reference(object);
479 			vm_map_lock(map);
480 			rv = vm_map_insert(map, object, offset, start, end,
481 			    prot, VM_PROT_ALL, cow);
482 			vm_map_unlock(map);
483 			if (rv != KERN_SUCCESS)
484 				vm_object_deallocate(object);
485 		}
486 		return (rv);
487 	} else {
488 		return (KERN_SUCCESS);
489 	}
490 }
491 
492 static int
493 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
494     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
495     size_t pagesize)
496 {
497 	struct sf_buf *sf;
498 	size_t map_len;
499 	vm_map_t map;
500 	vm_object_t object;
501 	vm_offset_t map_addr;
502 	int error, rv, cow;
503 	size_t copy_len;
504 	vm_offset_t file_addr;
505 
506 	/*
507 	 * It's necessary to fail if the filsz + offset taken from the
508 	 * header is greater than the actual file pager object's size.
509 	 * If we were to allow this, then the vm_map_find() below would
510 	 * walk right off the end of the file object and into the ether.
511 	 *
512 	 * While I'm here, might as well check for something else that
513 	 * is invalid: filsz cannot be greater than memsz.
514 	 */
515 	if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) {
516 		uprintf("elf_load_section: truncated ELF file\n");
517 		return (ENOEXEC);
518 	}
519 
520 	object = imgp->object;
521 	map = &imgp->proc->p_vmspace->vm_map;
522 	map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize);
523 	file_addr = trunc_page_ps(offset, pagesize);
524 
525 	/*
526 	 * We have two choices.  We can either clear the data in the last page
527 	 * of an oversized mapping, or we can start the anon mapping a page
528 	 * early and copy the initialized data into that first page.  We
529 	 * choose the second..
530 	 */
531 	if (memsz > filsz)
532 		map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr;
533 	else
534 		map_len = round_page_ps(offset + filsz, pagesize) - file_addr;
535 
536 	if (map_len != 0) {
537 		/* cow flags: don't dump readonly sections in core */
538 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
539 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
540 
541 		rv = __elfN(map_insert)(map,
542 				      object,
543 				      file_addr,	/* file offset */
544 				      map_addr,		/* virtual start */
545 				      map_addr + map_len,/* virtual end */
546 				      prot,
547 				      cow);
548 		if (rv != KERN_SUCCESS)
549 			return (EINVAL);
550 
551 		/* we can stop now if we've covered it all */
552 		if (memsz == filsz) {
553 			return (0);
554 		}
555 	}
556 
557 
558 	/*
559 	 * We have to get the remaining bit of the file into the first part
560 	 * of the oversized map segment.  This is normally because the .data
561 	 * segment in the file is extended to provide bss.  It's a neat idea
562 	 * to try and save a page, but it's a pain in the behind to implement.
563 	 */
564 	copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize);
565 	map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize);
566 	map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) -
567 	    map_addr;
568 
569 	/* This had damn well better be true! */
570 	if (map_len != 0) {
571 		rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr +
572 		    map_len, VM_PROT_ALL, 0);
573 		if (rv != KERN_SUCCESS) {
574 			return (EINVAL);
575 		}
576 	}
577 
578 	if (copy_len != 0) {
579 		vm_offset_t off;
580 
581 		sf = vm_imgact_map_page(object, offset + filsz);
582 		if (sf == NULL)
583 			return (EIO);
584 
585 		/* send the page fragment to user space */
586 		off = trunc_page_ps(offset + filsz, pagesize) -
587 		    trunc_page(offset + filsz);
588 		error = copyout((caddr_t)sf_buf_kva(sf) + off,
589 		    (caddr_t)map_addr, copy_len);
590 		vm_imgact_unmap_page(sf);
591 		if (error) {
592 			return (error);
593 		}
594 	}
595 
596 	/*
597 	 * set it to the specified protection.
598 	 * XXX had better undo the damage from pasting over the cracks here!
599 	 */
600 	vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
601 	    map_len), prot, FALSE);
602 
603 	return (0);
604 }
605 
606 /*
607  * Load the file "file" into memory.  It may be either a shared object
608  * or an executable.
609  *
610  * The "addr" reference parameter is in/out.  On entry, it specifies
611  * the address where a shared object should be loaded.  If the file is
612  * an executable, this value is ignored.  On exit, "addr" specifies
613  * where the file was actually loaded.
614  *
615  * The "entry" reference parameter is out only.  On exit, it specifies
616  * the entry point for the loaded file.
617  */
618 static int
619 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
620 	u_long *entry, size_t pagesize)
621 {
622 	struct {
623 		struct nameidata nd;
624 		struct vattr attr;
625 		struct image_params image_params;
626 	} *tempdata;
627 	const Elf_Ehdr *hdr = NULL;
628 	const Elf_Phdr *phdr = NULL;
629 	struct nameidata *nd;
630 	struct vattr *attr;
631 	struct image_params *imgp;
632 	vm_prot_t prot;
633 	u_long rbase;
634 	u_long base_addr = 0;
635 	int error, i, numsegs;
636 
637 #ifdef CAPABILITY_MODE
638 	/*
639 	 * XXXJA: This check can go away once we are sufficiently confident
640 	 * that the checks in namei() are correct.
641 	 */
642 	if (IN_CAPABILITY_MODE(curthread))
643 		return (ECAPMODE);
644 #endif
645 
646 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
647 	nd = &tempdata->nd;
648 	attr = &tempdata->attr;
649 	imgp = &tempdata->image_params;
650 
651 	/*
652 	 * Initialize part of the common data
653 	 */
654 	imgp->proc = p;
655 	imgp->attr = attr;
656 	imgp->firstpage = NULL;
657 	imgp->image_header = NULL;
658 	imgp->object = NULL;
659 	imgp->execlabel = NULL;
660 
661 	NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread);
662 	if ((error = namei(nd)) != 0) {
663 		nd->ni_vp = NULL;
664 		goto fail;
665 	}
666 	NDFREE(nd, NDF_ONLY_PNBUF);
667 	imgp->vp = nd->ni_vp;
668 
669 	/*
670 	 * Check permissions, modes, uid, etc on the file, and "open" it.
671 	 */
672 	error = exec_check_permissions(imgp);
673 	if (error)
674 		goto fail;
675 
676 	error = exec_map_first_page(imgp);
677 	if (error)
678 		goto fail;
679 
680 	/*
681 	 * Also make certain that the interpreter stays the same, so set
682 	 * its VV_TEXT flag, too.
683 	 */
684 	VOP_SET_TEXT(nd->ni_vp);
685 
686 	imgp->object = nd->ni_vp->v_object;
687 
688 	hdr = (const Elf_Ehdr *)imgp->image_header;
689 	if ((error = __elfN(check_header)(hdr)) != 0)
690 		goto fail;
691 	if (hdr->e_type == ET_DYN)
692 		rbase = *addr;
693 	else if (hdr->e_type == ET_EXEC)
694 		rbase = 0;
695 	else {
696 		error = ENOEXEC;
697 		goto fail;
698 	}
699 
700 	/* Only support headers that fit within first page for now      */
701 	if ((hdr->e_phoff > PAGE_SIZE) ||
702 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
703 		error = ENOEXEC;
704 		goto fail;
705 	}
706 
707 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
708 	if (!aligned(phdr, Elf_Addr)) {
709 		error = ENOEXEC;
710 		goto fail;
711 	}
712 
713 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
714 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
715 			/* Loadable segment */
716 			prot = __elfN(trans_prot)(phdr[i].p_flags);
717 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
718 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
719 			    phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize);
720 			if (error != 0)
721 				goto fail;
722 			/*
723 			 * Establish the base address if this is the
724 			 * first segment.
725 			 */
726 			if (numsegs == 0)
727   				base_addr = trunc_page(phdr[i].p_vaddr +
728 				    rbase);
729 			numsegs++;
730 		}
731 	}
732 	*addr = base_addr;
733 	*entry = (unsigned long)hdr->e_entry + rbase;
734 
735 fail:
736 	if (imgp->firstpage)
737 		exec_unmap_first_page(imgp);
738 
739 	if (nd->ni_vp)
740 		vput(nd->ni_vp);
741 
742 	free(tempdata, M_TEMP);
743 
744 	return (error);
745 }
746 
747 static int
748 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
749 {
750 	struct thread *td;
751 	const Elf_Ehdr *hdr;
752 	const Elf_Phdr *phdr;
753 	Elf_Auxargs *elf_auxargs;
754 	struct vmspace *vmspace;
755 	const char *err_str, *newinterp;
756 	char *interp, *interp_buf, *path;
757 	Elf_Brandinfo *brand_info;
758 	struct sysentvec *sv;
759 	vm_prot_t prot;
760 	u_long text_size, data_size, total_size, text_addr, data_addr;
761 	u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr;
762 	int32_t osrel;
763 	int error, i, n, interp_name_len, have_interp;
764 
765 	hdr = (const Elf_Ehdr *)imgp->image_header;
766 
767 	/*
768 	 * Do we have a valid ELF header ?
769 	 *
770 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
771 	 * if particular brand doesn't support it.
772 	 */
773 	if (__elfN(check_header)(hdr) != 0 ||
774 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
775 		return (-1);
776 
777 	/*
778 	 * From here on down, we return an errno, not -1, as we've
779 	 * detected an ELF file.
780 	 */
781 
782 	if ((hdr->e_phoff > PAGE_SIZE) ||
783 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
784 		/* Only support headers in first page for now */
785 		uprintf("Program headers not in the first page\n");
786 		return (ENOEXEC);
787 	}
788 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
789 	if (!aligned(phdr, Elf_Addr)) {
790 		uprintf("Unaligned program headers\n");
791 		return (ENOEXEC);
792 	}
793 
794 	n = error = 0;
795 	baddr = 0;
796 	osrel = 0;
797 	text_size = data_size = total_size = text_addr = data_addr = 0;
798 	entry = proghdr = 0;
799 	interp_name_len = 0;
800 	err_str = newinterp = NULL;
801 	interp = interp_buf = NULL;
802 	td = curthread;
803 
804 	for (i = 0; i < hdr->e_phnum; i++) {
805 		switch (phdr[i].p_type) {
806 		case PT_LOAD:
807 			if (n == 0)
808 				baddr = phdr[i].p_vaddr;
809 			n++;
810 			break;
811 		case PT_INTERP:
812 			/* Path to interpreter */
813 			if (phdr[i].p_filesz > MAXPATHLEN) {
814 				uprintf("Invalid PT_INTERP\n");
815 				error = ENOEXEC;
816 				goto ret;
817 			}
818 			if (interp != NULL) {
819 				uprintf("Multiple PT_INTERP headers\n");
820 				error = ENOEXEC;
821 				goto ret;
822 			}
823 			interp_name_len = phdr[i].p_filesz;
824 			if (phdr[i].p_offset > PAGE_SIZE ||
825 			    interp_name_len > PAGE_SIZE - phdr[i].p_offset) {
826 				VOP_UNLOCK(imgp->vp, 0);
827 				interp_buf = malloc(interp_name_len + 1, M_TEMP,
828 				    M_WAITOK);
829 				vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
830 				error = vn_rdwr(UIO_READ, imgp->vp, interp_buf,
831 				    interp_name_len, phdr[i].p_offset,
832 				    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
833 				    NOCRED, NULL, td);
834 				if (error != 0) {
835 					uprintf("i/o error PT_INTERP\n");
836 					goto ret;
837 				}
838 				interp_buf[interp_name_len] = '\0';
839 				interp = interp_buf;
840 			} else {
841 				interp = __DECONST(char *, imgp->image_header) +
842 				    phdr[i].p_offset;
843 			}
844 			break;
845 		case PT_GNU_STACK:
846 			if (__elfN(nxstack))
847 				imgp->stack_prot =
848 				    __elfN(trans_prot)(phdr[i].p_flags);
849 			imgp->stack_sz = phdr[i].p_memsz;
850 			break;
851 		}
852 	}
853 
854 	brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len,
855 	    &osrel);
856 	if (brand_info == NULL) {
857 		uprintf("ELF binary type \"%u\" not known.\n",
858 		    hdr->e_ident[EI_OSABI]);
859 		error = ENOEXEC;
860 		goto ret;
861 	}
862 	if (hdr->e_type == ET_DYN) {
863 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
864 			uprintf("Cannot execute shared object\n");
865 			error = ENOEXEC;
866 			goto ret;
867 		}
868 		/*
869 		 * Honour the base load address from the dso if it is
870 		 * non-zero for some reason.
871 		 */
872 		if (baddr == 0)
873 			et_dyn_addr = ET_DYN_LOAD_ADDR;
874 		else
875 			et_dyn_addr = 0;
876 	} else
877 		et_dyn_addr = 0;
878 	sv = brand_info->sysvec;
879 	if (interp != NULL && brand_info->interp_newpath != NULL)
880 		newinterp = brand_info->interp_newpath;
881 
882 	/*
883 	 * Avoid a possible deadlock if the current address space is destroyed
884 	 * and that address space maps the locked vnode.  In the common case,
885 	 * the locked vnode's v_usecount is decremented but remains greater
886 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
887 	 * However, in cases where the vnode lock is external, such as nullfs,
888 	 * v_usecount may become zero.
889 	 *
890 	 * The VV_TEXT flag prevents modifications to the executable while
891 	 * the vnode is unlocked.
892 	 */
893 	VOP_UNLOCK(imgp->vp, 0);
894 
895 	error = exec_new_vmspace(imgp, sv);
896 	imgp->proc->p_sysent = sv;
897 
898 	vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
899 	if (error != 0)
900 		goto ret;
901 
902 	for (i = 0; i < hdr->e_phnum; i++) {
903 		switch (phdr[i].p_type) {
904 		case PT_LOAD:	/* Loadable segment */
905 			if (phdr[i].p_memsz == 0)
906 				break;
907 			prot = __elfN(trans_prot)(phdr[i].p_flags);
908 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
909 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr,
910 			    phdr[i].p_memsz, phdr[i].p_filesz, prot,
911 			    sv->sv_pagesize);
912 			if (error != 0)
913 				goto ret;
914 
915 			/*
916 			 * If this segment contains the program headers,
917 			 * remember their virtual address for the AT_PHDR
918 			 * aux entry. Static binaries don't usually include
919 			 * a PT_PHDR entry.
920 			 */
921 			if (phdr[i].p_offset == 0 &&
922 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
923 				<= phdr[i].p_filesz)
924 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
925 				    et_dyn_addr;
926 
927 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
928 			seg_size = round_page(phdr[i].p_memsz +
929 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
930 
931 			/*
932 			 * Make the largest executable segment the official
933 			 * text segment and all others data.
934 			 *
935 			 * Note that obreak() assumes that data_addr +
936 			 * data_size == end of data load area, and the ELF
937 			 * file format expects segments to be sorted by
938 			 * address.  If multiple data segments exist, the
939 			 * last one will be used.
940 			 */
941 
942 			if (phdr[i].p_flags & PF_X && text_size < seg_size) {
943 				text_size = seg_size;
944 				text_addr = seg_addr;
945 			} else {
946 				data_size = seg_size;
947 				data_addr = seg_addr;
948 			}
949 			total_size += seg_size;
950 			break;
951 		case PT_PHDR: 	/* Program header table info */
952 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
953 			break;
954 		default:
955 			break;
956 		}
957 	}
958 
959 	if (data_addr == 0 && data_size == 0) {
960 		data_addr = text_addr;
961 		data_size = text_size;
962 	}
963 
964 	entry = (u_long)hdr->e_entry + et_dyn_addr;
965 
966 	/*
967 	 * Check limits.  It should be safe to check the
968 	 * limits after loading the segments since we do
969 	 * not actually fault in all the segments pages.
970 	 */
971 	PROC_LOCK(imgp->proc);
972 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
973 		err_str = "Data segment size exceeds process limit";
974 	else if (text_size > maxtsiz)
975 		err_str = "Text segment size exceeds system limit";
976 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
977 		err_str = "Total segment size exceeds process limit";
978 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
979 		err_str = "Data segment size exceeds resource limit";
980 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
981 		err_str = "Total segment size exceeds resource limit";
982 	if (err_str != NULL) {
983 		PROC_UNLOCK(imgp->proc);
984 		uprintf("%s\n", err_str);
985 		error = ENOMEM;
986 		goto ret;
987 	}
988 
989 	vmspace = imgp->proc->p_vmspace;
990 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
991 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
992 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
993 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
994 
995 	/*
996 	 * We load the dynamic linker where a userland call
997 	 * to mmap(0, ...) would put it.  The rationale behind this
998 	 * calculation is that it leaves room for the heap to grow to
999 	 * its maximum allowed size.
1000 	 */
1001 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1002 	    RLIMIT_DATA));
1003 	PROC_UNLOCK(imgp->proc);
1004 
1005 	imgp->entry_addr = entry;
1006 
1007 	if (interp != NULL) {
1008 		have_interp = FALSE;
1009 		VOP_UNLOCK(imgp->vp, 0);
1010 		if (brand_info->emul_path != NULL &&
1011 		    brand_info->emul_path[0] != '\0') {
1012 			path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
1013 			snprintf(path, MAXPATHLEN, "%s%s",
1014 			    brand_info->emul_path, interp);
1015 			error = __elfN(load_file)(imgp->proc, path, &addr,
1016 			    &imgp->entry_addr, sv->sv_pagesize);
1017 			free(path, M_TEMP);
1018 			if (error == 0)
1019 				have_interp = TRUE;
1020 		}
1021 		if (!have_interp && newinterp != NULL &&
1022 		    (brand_info->interp_path == NULL ||
1023 		    strcmp(interp, brand_info->interp_path) == 0)) {
1024 			error = __elfN(load_file)(imgp->proc, newinterp, &addr,
1025 			    &imgp->entry_addr, sv->sv_pagesize);
1026 			if (error == 0)
1027 				have_interp = TRUE;
1028 		}
1029 		if (!have_interp) {
1030 			error = __elfN(load_file)(imgp->proc, interp, &addr,
1031 			    &imgp->entry_addr, sv->sv_pagesize);
1032 		}
1033 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
1034 		if (error != 0) {
1035 			uprintf("ELF interpreter %s not found, error %d\n",
1036 			    interp, error);
1037 			goto ret;
1038 		}
1039 	} else
1040 		addr = et_dyn_addr;
1041 
1042 	/*
1043 	 * Construct auxargs table (used by the fixup routine)
1044 	 */
1045 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1046 	elf_auxargs->execfd = -1;
1047 	elf_auxargs->phdr = proghdr;
1048 	elf_auxargs->phent = hdr->e_phentsize;
1049 	elf_auxargs->phnum = hdr->e_phnum;
1050 	elf_auxargs->pagesz = PAGE_SIZE;
1051 	elf_auxargs->base = addr;
1052 	elf_auxargs->flags = 0;
1053 	elf_auxargs->entry = entry;
1054 	elf_auxargs->hdr_eflags = hdr->e_flags;
1055 
1056 	imgp->auxargs = elf_auxargs;
1057 	imgp->interpreted = 0;
1058 	imgp->reloc_base = addr;
1059 	imgp->proc->p_osrel = osrel;
1060 
1061  ret:
1062 	free(interp_buf, M_TEMP);
1063 	return (error);
1064 }
1065 
1066 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
1067 
1068 int
1069 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
1070 {
1071 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1072 	Elf_Addr *base;
1073 	Elf_Addr *pos;
1074 
1075 	base = (Elf_Addr *)*stack_base;
1076 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
1077 
1078 	if (args->execfd != -1)
1079 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1080 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1081 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1082 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1083 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1084 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1085 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1086 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1087 #ifdef AT_EHDRFLAGS
1088 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1089 #endif
1090 	if (imgp->execpathp != 0)
1091 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
1092 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1093 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1094 	if (imgp->canary != 0) {
1095 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1096 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1097 	}
1098 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1099 	if (imgp->pagesizes != 0) {
1100 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1101 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1102 	}
1103 	if (imgp->sysent->sv_timekeep_base != 0) {
1104 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1105 		    imgp->sysent->sv_timekeep_base);
1106 	}
1107 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1108 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1109 	    imgp->sysent->sv_stackprot);
1110 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1111 
1112 	free(imgp->auxargs, M_TEMP);
1113 	imgp->auxargs = NULL;
1114 
1115 	base--;
1116 	suword(base, (long)imgp->args->argc);
1117 	*stack_base = (register_t *)base;
1118 	return (0);
1119 }
1120 
1121 /*
1122  * Code for generating ELF core dumps.
1123  */
1124 
1125 typedef void (*segment_callback)(vm_map_entry_t, void *);
1126 
1127 /* Closure for cb_put_phdr(). */
1128 struct phdr_closure {
1129 	Elf_Phdr *phdr;		/* Program header to fill in */
1130 	Elf_Off offset;		/* Offset of segment in core file */
1131 };
1132 
1133 /* Closure for cb_size_segment(). */
1134 struct sseg_closure {
1135 	int count;		/* Count of writable segments. */
1136 	size_t size;		/* Total size of all writable segments. */
1137 };
1138 
1139 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1140 
1141 struct note_info {
1142 	int		type;		/* Note type. */
1143 	outfunc_t 	outfunc; 	/* Output function. */
1144 	void		*outarg;	/* Argument for the output function. */
1145 	size_t		outsize;	/* Output size. */
1146 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1147 };
1148 
1149 TAILQ_HEAD(note_info_list, note_info);
1150 
1151 /* Coredump output parameters. */
1152 struct coredump_params {
1153 	off_t		offset;
1154 	struct ucred	*active_cred;
1155 	struct ucred	*file_cred;
1156 	struct thread	*td;
1157 	struct vnode	*vp;
1158 	struct gzio_stream *gzs;
1159 };
1160 
1161 static void cb_put_phdr(vm_map_entry_t, void *);
1162 static void cb_size_segment(vm_map_entry_t, void *);
1163 static int core_write(struct coredump_params *, const void *, size_t, off_t,
1164     enum uio_seg);
1165 static void each_dumpable_segment(struct thread *, segment_callback, void *);
1166 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1167     struct note_info_list *, size_t);
1168 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1169     size_t *);
1170 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1171 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1172 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1173 static int sbuf_drain_core_output(void *, const char *, int);
1174 static int sbuf_drain_count(void *arg, const char *data, int len);
1175 
1176 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1177 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1178 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1179 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1180 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1181 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1182 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1183 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1184 static void note_procstat_files(void *, struct sbuf *, size_t *);
1185 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1186 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1187 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1188 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1189 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1190 
1191 #ifdef GZIO
1192 extern int compress_user_cores_gzlevel;
1193 
1194 /*
1195  * Write out a core segment to the compression stream.
1196  */
1197 static int
1198 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len)
1199 {
1200 	u_int chunk_len;
1201 	int error;
1202 
1203 	while (len > 0) {
1204 		chunk_len = MIN(len, CORE_BUF_SIZE);
1205 
1206 		/*
1207 		 * We can get EFAULT error here.
1208 		 * In that case zero out the current chunk of the segment.
1209 		 */
1210 		error = copyin(base, buf, chunk_len);
1211 		if (error != 0)
1212 			bzero(buf, chunk_len);
1213 		error = gzio_write(p->gzs, buf, chunk_len);
1214 		if (error != 0)
1215 			break;
1216 		base += chunk_len;
1217 		len -= chunk_len;
1218 	}
1219 	return (error);
1220 }
1221 
1222 static int
1223 core_gz_write(void *base, size_t len, off_t offset, void *arg)
1224 {
1225 
1226 	return (core_write((struct coredump_params *)arg, base, len, offset,
1227 	    UIO_SYSSPACE));
1228 }
1229 #endif /* GZIO */
1230 
1231 static int
1232 core_write(struct coredump_params *p, const void *base, size_t len,
1233     off_t offset, enum uio_seg seg)
1234 {
1235 
1236 	return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base),
1237 	    len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED,
1238 	    p->active_cred, p->file_cred, NULL, p->td));
1239 }
1240 
1241 static int
1242 core_output(void *base, size_t len, off_t offset, struct coredump_params *p,
1243     void *tmpbuf)
1244 {
1245 	int error;
1246 
1247 #ifdef GZIO
1248 	if (p->gzs != NULL)
1249 		return (compress_chunk(p, base, tmpbuf, len));
1250 #endif
1251 	/*
1252 	 * EFAULT is a non-fatal error that we can get, for example,
1253 	 * if the segment is backed by a file but extends beyond its
1254 	 * end.
1255 	 */
1256 	error = core_write(p, base, len, offset, UIO_USERSPACE);
1257 	if (error == EFAULT) {
1258 		log(LOG_WARNING, "Failed to fully fault in a core file segment "
1259 		    "at VA %p with size 0x%zx to be written at offset 0x%jx "
1260 		    "for process %s\n", base, len, offset, curproc->p_comm);
1261 
1262 		/*
1263 		 * Write a "real" zero byte at the end of the target region
1264 		 * in the case this is the last segment.
1265 		 * The intermediate space will be implicitly zero-filled.
1266 		 */
1267 		error = core_write(p, zero_region, 1, offset + len - 1,
1268 		    UIO_SYSSPACE);
1269 	}
1270 	return (error);
1271 }
1272 
1273 /*
1274  * Drain into a core file.
1275  */
1276 static int
1277 sbuf_drain_core_output(void *arg, const char *data, int len)
1278 {
1279 	struct coredump_params *p;
1280 	int error, locked;
1281 
1282 	p = (struct coredump_params *)arg;
1283 
1284 	/*
1285 	 * Some kern_proc out routines that print to this sbuf may
1286 	 * call us with the process lock held. Draining with the
1287 	 * non-sleepable lock held is unsafe. The lock is needed for
1288 	 * those routines when dumping a live process. In our case we
1289 	 * can safely release the lock before draining and acquire
1290 	 * again after.
1291 	 */
1292 	locked = PROC_LOCKED(p->td->td_proc);
1293 	if (locked)
1294 		PROC_UNLOCK(p->td->td_proc);
1295 #ifdef GZIO
1296 	if (p->gzs != NULL)
1297 		error = gzio_write(p->gzs, __DECONST(char *, data), len);
1298 	else
1299 #endif
1300 		error = core_write(p, __DECONST(void *, data), len, p->offset,
1301 		    UIO_SYSSPACE);
1302 	if (locked)
1303 		PROC_LOCK(p->td->td_proc);
1304 	if (error != 0)
1305 		return (-error);
1306 	p->offset += len;
1307 	return (len);
1308 }
1309 
1310 /*
1311  * Drain into a counter.
1312  */
1313 static int
1314 sbuf_drain_count(void *arg, const char *data __unused, int len)
1315 {
1316 	size_t *sizep;
1317 
1318 	sizep = (size_t *)arg;
1319 	*sizep += len;
1320 	return (len);
1321 }
1322 
1323 int
1324 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1325 {
1326 	struct ucred *cred = td->td_ucred;
1327 	int error = 0;
1328 	struct sseg_closure seginfo;
1329 	struct note_info_list notelst;
1330 	struct coredump_params params;
1331 	struct note_info *ninfo;
1332 	void *hdr, *tmpbuf;
1333 	size_t hdrsize, notesz, coresize;
1334 #ifdef GZIO
1335 	boolean_t compress;
1336 
1337 	compress = (flags & IMGACT_CORE_COMPRESS) != 0;
1338 #endif
1339 	hdr = NULL;
1340 	tmpbuf = NULL;
1341 	TAILQ_INIT(&notelst);
1342 
1343 	/* Size the program segments. */
1344 	seginfo.count = 0;
1345 	seginfo.size = 0;
1346 	each_dumpable_segment(td, cb_size_segment, &seginfo);
1347 
1348 	/*
1349 	 * Collect info about the core file header area.
1350 	 */
1351 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1352 	if (seginfo.count + 1 >= PN_XNUM)
1353 		hdrsize += sizeof(Elf_Shdr);
1354 	__elfN(prepare_notes)(td, &notelst, &notesz);
1355 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1356 
1357 	/* Set up core dump parameters. */
1358 	params.offset = 0;
1359 	params.active_cred = cred;
1360 	params.file_cred = NOCRED;
1361 	params.td = td;
1362 	params.vp = vp;
1363 	params.gzs = NULL;
1364 
1365 #ifdef RACCT
1366 	if (racct_enable) {
1367 		PROC_LOCK(td->td_proc);
1368 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1369 		PROC_UNLOCK(td->td_proc);
1370 		if (error != 0) {
1371 			error = EFAULT;
1372 			goto done;
1373 		}
1374 	}
1375 #endif
1376 	if (coresize >= limit) {
1377 		error = EFAULT;
1378 		goto done;
1379 	}
1380 
1381 #ifdef GZIO
1382 	/* Create a compression stream if necessary. */
1383 	if (compress) {
1384 		params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE,
1385 		    CORE_BUF_SIZE, compress_user_cores_gzlevel, &params);
1386 		if (params.gzs == NULL) {
1387 			error = EFAULT;
1388 			goto done;
1389 		}
1390 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1391         }
1392 #endif
1393 
1394 	/*
1395 	 * Allocate memory for building the header, fill it up,
1396 	 * and write it out following the notes.
1397 	 */
1398 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1399 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1400 	    notesz);
1401 
1402 	/* Write the contents of all of the writable segments. */
1403 	if (error == 0) {
1404 		Elf_Phdr *php;
1405 		off_t offset;
1406 		int i;
1407 
1408 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1409 		offset = round_page(hdrsize + notesz);
1410 		for (i = 0; i < seginfo.count; i++) {
1411 			error = core_output((caddr_t)(uintptr_t)php->p_vaddr,
1412 			    php->p_filesz, offset, &params, tmpbuf);
1413 			if (error != 0)
1414 				break;
1415 			offset += php->p_filesz;
1416 			php++;
1417 		}
1418 #ifdef GZIO
1419 		if (error == 0 && compress)
1420 			error = gzio_flush(params.gzs);
1421 #endif
1422 	}
1423 	if (error) {
1424 		log(LOG_WARNING,
1425 		    "Failed to write core file for process %s (error %d)\n",
1426 		    curproc->p_comm, error);
1427 	}
1428 
1429 done:
1430 #ifdef GZIO
1431 	if (compress) {
1432 		free(tmpbuf, M_TEMP);
1433 		if (params.gzs != NULL)
1434 			gzio_fini(params.gzs);
1435 	}
1436 #endif
1437 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1438 		TAILQ_REMOVE(&notelst, ninfo, link);
1439 		free(ninfo, M_TEMP);
1440 	}
1441 	if (hdr != NULL)
1442 		free(hdr, M_TEMP);
1443 
1444 	return (error);
1445 }
1446 
1447 /*
1448  * A callback for each_dumpable_segment() to write out the segment's
1449  * program header entry.
1450  */
1451 static void
1452 cb_put_phdr(entry, closure)
1453 	vm_map_entry_t entry;
1454 	void *closure;
1455 {
1456 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1457 	Elf_Phdr *phdr = phc->phdr;
1458 
1459 	phc->offset = round_page(phc->offset);
1460 
1461 	phdr->p_type = PT_LOAD;
1462 	phdr->p_offset = phc->offset;
1463 	phdr->p_vaddr = entry->start;
1464 	phdr->p_paddr = 0;
1465 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1466 	phdr->p_align = PAGE_SIZE;
1467 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1468 
1469 	phc->offset += phdr->p_filesz;
1470 	phc->phdr++;
1471 }
1472 
1473 /*
1474  * A callback for each_dumpable_segment() to gather information about
1475  * the number of segments and their total size.
1476  */
1477 static void
1478 cb_size_segment(vm_map_entry_t entry, void *closure)
1479 {
1480 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1481 
1482 	ssc->count++;
1483 	ssc->size += entry->end - entry->start;
1484 }
1485 
1486 /*
1487  * For each writable segment in the process's memory map, call the given
1488  * function with a pointer to the map entry and some arbitrary
1489  * caller-supplied data.
1490  */
1491 static void
1492 each_dumpable_segment(struct thread *td, segment_callback func, void *closure)
1493 {
1494 	struct proc *p = td->td_proc;
1495 	vm_map_t map = &p->p_vmspace->vm_map;
1496 	vm_map_entry_t entry;
1497 	vm_object_t backing_object, object;
1498 	boolean_t ignore_entry;
1499 
1500 	vm_map_lock_read(map);
1501 	for (entry = map->header.next; entry != &map->header;
1502 	    entry = entry->next) {
1503 		/*
1504 		 * Don't dump inaccessible mappings, deal with legacy
1505 		 * coredump mode.
1506 		 *
1507 		 * Note that read-only segments related to the elf binary
1508 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1509 		 * need to arbitrarily ignore such segments.
1510 		 */
1511 		if (elf_legacy_coredump) {
1512 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1513 				continue;
1514 		} else {
1515 			if ((entry->protection & VM_PROT_ALL) == 0)
1516 				continue;
1517 		}
1518 
1519 		/*
1520 		 * Dont include memory segment in the coredump if
1521 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1522 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1523 		 * kernel map).
1524 		 */
1525 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1526 			continue;
1527 
1528 		if ((object = entry->object.vm_object) == NULL)
1529 			continue;
1530 
1531 		/* Ignore memory-mapped devices and such things. */
1532 		VM_OBJECT_RLOCK(object);
1533 		while ((backing_object = object->backing_object) != NULL) {
1534 			VM_OBJECT_RLOCK(backing_object);
1535 			VM_OBJECT_RUNLOCK(object);
1536 			object = backing_object;
1537 		}
1538 		ignore_entry = object->type != OBJT_DEFAULT &&
1539 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE &&
1540 		    object->type != OBJT_PHYS;
1541 		VM_OBJECT_RUNLOCK(object);
1542 		if (ignore_entry)
1543 			continue;
1544 
1545 		(*func)(entry, closure);
1546 	}
1547 	vm_map_unlock_read(map);
1548 }
1549 
1550 /*
1551  * Write the core file header to the file, including padding up to
1552  * the page boundary.
1553  */
1554 static int
1555 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1556     size_t hdrsize, struct note_info_list *notelst, size_t notesz)
1557 {
1558 	struct note_info *ninfo;
1559 	struct sbuf *sb;
1560 	int error;
1561 
1562 	/* Fill in the header. */
1563 	bzero(hdr, hdrsize);
1564 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz);
1565 
1566 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1567 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1568 	sbuf_start_section(sb, NULL);
1569 	sbuf_bcat(sb, hdr, hdrsize);
1570 	TAILQ_FOREACH(ninfo, notelst, link)
1571 	    __elfN(putnote)(ninfo, sb);
1572 	/* Align up to a page boundary for the program segments. */
1573 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1574 	error = sbuf_finish(sb);
1575 	sbuf_delete(sb);
1576 
1577 	return (error);
1578 }
1579 
1580 static void
1581 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1582     size_t *sizep)
1583 {
1584 	struct proc *p;
1585 	struct thread *thr;
1586 	size_t size;
1587 
1588 	p = td->td_proc;
1589 	size = 0;
1590 
1591 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1592 
1593 	/*
1594 	 * To have the debugger select the right thread (LWP) as the initial
1595 	 * thread, we dump the state of the thread passed to us in td first.
1596 	 * This is the thread that causes the core dump and thus likely to
1597 	 * be the right thread one wants to have selected in the debugger.
1598 	 */
1599 	thr = td;
1600 	while (thr != NULL) {
1601 		size += register_note(list, NT_PRSTATUS,
1602 		    __elfN(note_prstatus), thr);
1603 		size += register_note(list, NT_FPREGSET,
1604 		    __elfN(note_fpregset), thr);
1605 		size += register_note(list, NT_THRMISC,
1606 		    __elfN(note_thrmisc), thr);
1607 		size += register_note(list, -1,
1608 		    __elfN(note_threadmd), thr);
1609 
1610 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1611 		    TAILQ_NEXT(thr, td_plist);
1612 		if (thr == td)
1613 			thr = TAILQ_NEXT(thr, td_plist);
1614 	}
1615 
1616 	size += register_note(list, NT_PROCSTAT_PROC,
1617 	    __elfN(note_procstat_proc), p);
1618 	size += register_note(list, NT_PROCSTAT_FILES,
1619 	    note_procstat_files, p);
1620 	size += register_note(list, NT_PROCSTAT_VMMAP,
1621 	    note_procstat_vmmap, p);
1622 	size += register_note(list, NT_PROCSTAT_GROUPS,
1623 	    note_procstat_groups, p);
1624 	size += register_note(list, NT_PROCSTAT_UMASK,
1625 	    note_procstat_umask, p);
1626 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1627 	    note_procstat_rlimit, p);
1628 	size += register_note(list, NT_PROCSTAT_OSREL,
1629 	    note_procstat_osrel, p);
1630 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1631 	    __elfN(note_procstat_psstrings), p);
1632 	size += register_note(list, NT_PROCSTAT_AUXV,
1633 	    __elfN(note_procstat_auxv), p);
1634 
1635 	*sizep = size;
1636 }
1637 
1638 static void
1639 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1640     size_t notesz)
1641 {
1642 	Elf_Ehdr *ehdr;
1643 	Elf_Phdr *phdr;
1644 	Elf_Shdr *shdr;
1645 	struct phdr_closure phc;
1646 
1647 	ehdr = (Elf_Ehdr *)hdr;
1648 
1649 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1650 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1651 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1652 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1653 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1654 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1655 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1656 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1657 	ehdr->e_ident[EI_ABIVERSION] = 0;
1658 	ehdr->e_ident[EI_PAD] = 0;
1659 	ehdr->e_type = ET_CORE;
1660 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1661 	ehdr->e_machine = ELF_ARCH32;
1662 #else
1663 	ehdr->e_machine = ELF_ARCH;
1664 #endif
1665 	ehdr->e_version = EV_CURRENT;
1666 	ehdr->e_entry = 0;
1667 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1668 	ehdr->e_flags = 0;
1669 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1670 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1671 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1672 	ehdr->e_shstrndx = SHN_UNDEF;
1673 	if (numsegs + 1 < PN_XNUM) {
1674 		ehdr->e_phnum = numsegs + 1;
1675 		ehdr->e_shnum = 0;
1676 	} else {
1677 		ehdr->e_phnum = PN_XNUM;
1678 		ehdr->e_shnum = 1;
1679 
1680 		ehdr->e_shoff = ehdr->e_phoff +
1681 		    (numsegs + 1) * ehdr->e_phentsize;
1682 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1683 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1684 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1685 
1686 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1687 		memset(shdr, 0, sizeof(*shdr));
1688 		/*
1689 		 * A special first section is used to hold large segment and
1690 		 * section counts.  This was proposed by Sun Microsystems in
1691 		 * Solaris and has been adopted by Linux; the standard ELF
1692 		 * tools are already familiar with the technique.
1693 		 *
1694 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1695 		 * (or 12-7 depending on the version of the document) for more
1696 		 * details.
1697 		 */
1698 		shdr->sh_type = SHT_NULL;
1699 		shdr->sh_size = ehdr->e_shnum;
1700 		shdr->sh_link = ehdr->e_shstrndx;
1701 		shdr->sh_info = numsegs + 1;
1702 	}
1703 
1704 	/*
1705 	 * Fill in the program header entries.
1706 	 */
1707 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1708 
1709 	/* The note segement. */
1710 	phdr->p_type = PT_NOTE;
1711 	phdr->p_offset = hdrsize;
1712 	phdr->p_vaddr = 0;
1713 	phdr->p_paddr = 0;
1714 	phdr->p_filesz = notesz;
1715 	phdr->p_memsz = 0;
1716 	phdr->p_flags = PF_R;
1717 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1718 	phdr++;
1719 
1720 	/* All the writable segments from the program. */
1721 	phc.phdr = phdr;
1722 	phc.offset = round_page(hdrsize + notesz);
1723 	each_dumpable_segment(td, cb_put_phdr, &phc);
1724 }
1725 
1726 static size_t
1727 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1728 {
1729 	struct note_info *ninfo;
1730 	size_t size, notesize;
1731 
1732 	size = 0;
1733 	out(arg, NULL, &size);
1734 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1735 	ninfo->type = type;
1736 	ninfo->outfunc = out;
1737 	ninfo->outarg = arg;
1738 	ninfo->outsize = size;
1739 	TAILQ_INSERT_TAIL(list, ninfo, link);
1740 
1741 	if (type == -1)
1742 		return (size);
1743 
1744 	notesize = sizeof(Elf_Note) +		/* note header */
1745 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1746 						/* note name */
1747 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1748 
1749 	return (notesize);
1750 }
1751 
1752 static size_t
1753 append_note_data(const void *src, void *dst, size_t len)
1754 {
1755 	size_t padded_len;
1756 
1757 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
1758 	if (dst != NULL) {
1759 		bcopy(src, dst, len);
1760 		bzero((char *)dst + len, padded_len - len);
1761 	}
1762 	return (padded_len);
1763 }
1764 
1765 size_t
1766 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
1767 {
1768 	Elf_Note *note;
1769 	char *buf;
1770 	size_t notesize;
1771 
1772 	buf = dst;
1773 	if (buf != NULL) {
1774 		note = (Elf_Note *)buf;
1775 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1776 		note->n_descsz = size;
1777 		note->n_type = type;
1778 		buf += sizeof(*note);
1779 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
1780 		    sizeof(FREEBSD_ABI_VENDOR));
1781 		append_note_data(src, buf, size);
1782 		if (descp != NULL)
1783 			*descp = buf;
1784 	}
1785 
1786 	notesize = sizeof(Elf_Note) +		/* note header */
1787 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
1788 						/* note name */
1789 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1790 
1791 	return (notesize);
1792 }
1793 
1794 static void
1795 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
1796 {
1797 	Elf_Note note;
1798 	ssize_t old_len, sect_len;
1799 	size_t new_len, descsz, i;
1800 
1801 	if (ninfo->type == -1) {
1802 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1803 		return;
1804 	}
1805 
1806 	note.n_namesz = sizeof(FREEBSD_ABI_VENDOR);
1807 	note.n_descsz = ninfo->outsize;
1808 	note.n_type = ninfo->type;
1809 
1810 	sbuf_bcat(sb, &note, sizeof(note));
1811 	sbuf_start_section(sb, &old_len);
1812 	sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR));
1813 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1814 	if (note.n_descsz == 0)
1815 		return;
1816 	sbuf_start_section(sb, &old_len);
1817 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1818 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1819 	if (sect_len < 0)
1820 		return;
1821 
1822 	new_len = (size_t)sect_len;
1823 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
1824 	if (new_len < descsz) {
1825 		/*
1826 		 * It is expected that individual note emitters will correctly
1827 		 * predict their expected output size and fill up to that size
1828 		 * themselves, padding in a format-specific way if needed.
1829 		 * However, in case they don't, just do it here with zeros.
1830 		 */
1831 		for (i = 0; i < descsz - new_len; i++)
1832 			sbuf_putc(sb, 0);
1833 	} else if (new_len > descsz) {
1834 		/*
1835 		 * We can't always truncate sb -- we may have drained some
1836 		 * of it already.
1837 		 */
1838 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
1839 		    "read it (%zu > %zu).  Since it is longer than "
1840 		    "expected, this coredump's notes are corrupt.  THIS "
1841 		    "IS A BUG in the note_procstat routine for type %u.\n",
1842 		    __func__, (unsigned)note.n_type, new_len, descsz,
1843 		    (unsigned)note.n_type));
1844 	}
1845 }
1846 
1847 /*
1848  * Miscellaneous note out functions.
1849  */
1850 
1851 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1852 #include <compat/freebsd32/freebsd32.h>
1853 
1854 typedef struct prstatus32 elf_prstatus_t;
1855 typedef struct prpsinfo32 elf_prpsinfo_t;
1856 typedef struct fpreg32 elf_prfpregset_t;
1857 typedef struct fpreg32 elf_fpregset_t;
1858 typedef struct reg32 elf_gregset_t;
1859 typedef struct thrmisc32 elf_thrmisc_t;
1860 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
1861 typedef struct kinfo_proc32 elf_kinfo_proc_t;
1862 typedef uint32_t elf_ps_strings_t;
1863 #else
1864 typedef prstatus_t elf_prstatus_t;
1865 typedef prpsinfo_t elf_prpsinfo_t;
1866 typedef prfpregset_t elf_prfpregset_t;
1867 typedef prfpregset_t elf_fpregset_t;
1868 typedef gregset_t elf_gregset_t;
1869 typedef thrmisc_t elf_thrmisc_t;
1870 #define ELF_KERN_PROC_MASK	0
1871 typedef struct kinfo_proc elf_kinfo_proc_t;
1872 typedef vm_offset_t elf_ps_strings_t;
1873 #endif
1874 
1875 static void
1876 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
1877 {
1878 	struct sbuf sbarg;
1879 	size_t len;
1880 	char *cp, *end;
1881 	struct proc *p;
1882 	elf_prpsinfo_t *psinfo;
1883 	int error;
1884 
1885 	p = (struct proc *)arg;
1886 	if (sb != NULL) {
1887 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
1888 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
1889 		psinfo->pr_version = PRPSINFO_VERSION;
1890 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
1891 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
1892 		PROC_LOCK(p);
1893 		if (p->p_args != NULL) {
1894 			len = sizeof(psinfo->pr_psargs) - 1;
1895 			if (len > p->p_args->ar_length)
1896 				len = p->p_args->ar_length;
1897 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
1898 			PROC_UNLOCK(p);
1899 			error = 0;
1900 		} else {
1901 			_PHOLD(p);
1902 			PROC_UNLOCK(p);
1903 			sbuf_new(&sbarg, psinfo->pr_psargs,
1904 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
1905 			error = proc_getargv(curthread, p, &sbarg);
1906 			PRELE(p);
1907 			if (sbuf_finish(&sbarg) == 0)
1908 				len = sbuf_len(&sbarg) - 1;
1909 			else
1910 				len = sizeof(psinfo->pr_psargs) - 1;
1911 			sbuf_delete(&sbarg);
1912 		}
1913 		if (error || len == 0)
1914 			strlcpy(psinfo->pr_psargs, p->p_comm,
1915 			    sizeof(psinfo->pr_psargs));
1916 		else {
1917 			KASSERT(len < sizeof(psinfo->pr_psargs),
1918 			    ("len is too long: %zu vs %zu", len,
1919 			    sizeof(psinfo->pr_psargs)));
1920 			cp = psinfo->pr_psargs;
1921 			end = cp + len - 1;
1922 			for (;;) {
1923 				cp = memchr(cp, '\0', end - cp);
1924 				if (cp == NULL)
1925 					break;
1926 				*cp = ' ';
1927 			}
1928 		}
1929 		psinfo->pr_pid = p->p_pid;
1930 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
1931 		free(psinfo, M_TEMP);
1932 	}
1933 	*sizep = sizeof(*psinfo);
1934 }
1935 
1936 static void
1937 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
1938 {
1939 	struct thread *td;
1940 	elf_prstatus_t *status;
1941 
1942 	td = (struct thread *)arg;
1943 	if (sb != NULL) {
1944 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
1945 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
1946 		status->pr_version = PRSTATUS_VERSION;
1947 		status->pr_statussz = sizeof(elf_prstatus_t);
1948 		status->pr_gregsetsz = sizeof(elf_gregset_t);
1949 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
1950 		status->pr_osreldate = osreldate;
1951 		status->pr_cursig = td->td_proc->p_sig;
1952 		status->pr_pid = td->td_tid;
1953 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1954 		fill_regs32(td, &status->pr_reg);
1955 #else
1956 		fill_regs(td, &status->pr_reg);
1957 #endif
1958 		sbuf_bcat(sb, status, sizeof(*status));
1959 		free(status, M_TEMP);
1960 	}
1961 	*sizep = sizeof(*status);
1962 }
1963 
1964 static void
1965 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
1966 {
1967 	struct thread *td;
1968 	elf_prfpregset_t *fpregset;
1969 
1970 	td = (struct thread *)arg;
1971 	if (sb != NULL) {
1972 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
1973 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
1974 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1975 		fill_fpregs32(td, fpregset);
1976 #else
1977 		fill_fpregs(td, fpregset);
1978 #endif
1979 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
1980 		free(fpregset, M_TEMP);
1981 	}
1982 	*sizep = sizeof(*fpregset);
1983 }
1984 
1985 static void
1986 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
1987 {
1988 	struct thread *td;
1989 	elf_thrmisc_t thrmisc;
1990 
1991 	td = (struct thread *)arg;
1992 	if (sb != NULL) {
1993 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
1994 		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
1995 		strcpy(thrmisc.pr_tname, td->td_name);
1996 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
1997 	}
1998 	*sizep = sizeof(thrmisc);
1999 }
2000 
2001 /*
2002  * Allow for MD specific notes, as well as any MD
2003  * specific preparations for writing MI notes.
2004  */
2005 static void
2006 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2007 {
2008 	struct thread *td;
2009 	void *buf;
2010 	size_t size;
2011 
2012 	td = (struct thread *)arg;
2013 	size = *sizep;
2014 	if (size != 0 && sb != NULL)
2015 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2016 	else
2017 		buf = NULL;
2018 	size = 0;
2019 	__elfN(dump_thread)(td, buf, &size);
2020 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2021 	if (size != 0 && sb != NULL)
2022 		sbuf_bcat(sb, buf, size);
2023 	free(buf, M_TEMP);
2024 	*sizep = size;
2025 }
2026 
2027 #ifdef KINFO_PROC_SIZE
2028 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2029 #endif
2030 
2031 static void
2032 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2033 {
2034 	struct proc *p;
2035 	size_t size;
2036 	int structsize;
2037 
2038 	p = (struct proc *)arg;
2039 	size = sizeof(structsize) + p->p_numthreads *
2040 	    sizeof(elf_kinfo_proc_t);
2041 
2042 	if (sb != NULL) {
2043 		KASSERT(*sizep == size, ("invalid size"));
2044 		structsize = sizeof(elf_kinfo_proc_t);
2045 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2046 		sx_slock(&proctree_lock);
2047 		PROC_LOCK(p);
2048 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2049 		sx_sunlock(&proctree_lock);
2050 	}
2051 	*sizep = size;
2052 }
2053 
2054 #ifdef KINFO_FILE_SIZE
2055 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2056 #endif
2057 
2058 static void
2059 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2060 {
2061 	struct proc *p;
2062 	size_t size, sect_sz, i;
2063 	ssize_t start_len, sect_len;
2064 	int structsize, filedesc_flags;
2065 
2066 	if (coredump_pack_fileinfo)
2067 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2068 	else
2069 		filedesc_flags = 0;
2070 
2071 	p = (struct proc *)arg;
2072 	structsize = sizeof(struct kinfo_file);
2073 	if (sb == NULL) {
2074 		size = 0;
2075 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2076 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2077 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2078 		PROC_LOCK(p);
2079 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2080 		sbuf_finish(sb);
2081 		sbuf_delete(sb);
2082 		*sizep = size;
2083 	} else {
2084 		sbuf_start_section(sb, &start_len);
2085 
2086 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2087 		PROC_LOCK(p);
2088 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2089 		    filedesc_flags);
2090 
2091 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2092 		if (sect_len < 0)
2093 			return;
2094 		sect_sz = sect_len;
2095 
2096 		KASSERT(sect_sz <= *sizep,
2097 		    ("kern_proc_filedesc_out did not respect maxlen; "
2098 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2099 		     sect_sz - sizeof(structsize)));
2100 
2101 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2102 			sbuf_putc(sb, 0);
2103 	}
2104 }
2105 
2106 #ifdef KINFO_VMENTRY_SIZE
2107 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2108 #endif
2109 
2110 static void
2111 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2112 {
2113 	struct proc *p;
2114 	size_t size;
2115 	int structsize, vmmap_flags;
2116 
2117 	if (coredump_pack_vmmapinfo)
2118 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2119 	else
2120 		vmmap_flags = 0;
2121 
2122 	p = (struct proc *)arg;
2123 	structsize = sizeof(struct kinfo_vmentry);
2124 	if (sb == NULL) {
2125 		size = 0;
2126 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2127 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2128 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2129 		PROC_LOCK(p);
2130 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2131 		sbuf_finish(sb);
2132 		sbuf_delete(sb);
2133 		*sizep = size;
2134 	} else {
2135 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2136 		PROC_LOCK(p);
2137 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2138 		    vmmap_flags);
2139 	}
2140 }
2141 
2142 static void
2143 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2144 {
2145 	struct proc *p;
2146 	size_t size;
2147 	int structsize;
2148 
2149 	p = (struct proc *)arg;
2150 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2151 	if (sb != NULL) {
2152 		KASSERT(*sizep == size, ("invalid size"));
2153 		structsize = sizeof(gid_t);
2154 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2155 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2156 		    sizeof(gid_t));
2157 	}
2158 	*sizep = size;
2159 }
2160 
2161 static void
2162 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2163 {
2164 	struct proc *p;
2165 	size_t size;
2166 	int structsize;
2167 
2168 	p = (struct proc *)arg;
2169 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
2170 	if (sb != NULL) {
2171 		KASSERT(*sizep == size, ("invalid size"));
2172 		structsize = sizeof(p->p_fd->fd_cmask);
2173 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2174 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
2175 	}
2176 	*sizep = size;
2177 }
2178 
2179 static void
2180 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2181 {
2182 	struct proc *p;
2183 	struct rlimit rlim[RLIM_NLIMITS];
2184 	size_t size;
2185 	int structsize, i;
2186 
2187 	p = (struct proc *)arg;
2188 	size = sizeof(structsize) + sizeof(rlim);
2189 	if (sb != NULL) {
2190 		KASSERT(*sizep == size, ("invalid size"));
2191 		structsize = sizeof(rlim);
2192 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2193 		PROC_LOCK(p);
2194 		for (i = 0; i < RLIM_NLIMITS; i++)
2195 			lim_rlimit_proc(p, i, &rlim[i]);
2196 		PROC_UNLOCK(p);
2197 		sbuf_bcat(sb, rlim, sizeof(rlim));
2198 	}
2199 	*sizep = size;
2200 }
2201 
2202 static void
2203 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2204 {
2205 	struct proc *p;
2206 	size_t size;
2207 	int structsize;
2208 
2209 	p = (struct proc *)arg;
2210 	size = sizeof(structsize) + sizeof(p->p_osrel);
2211 	if (sb != NULL) {
2212 		KASSERT(*sizep == size, ("invalid size"));
2213 		structsize = sizeof(p->p_osrel);
2214 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2215 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2216 	}
2217 	*sizep = size;
2218 }
2219 
2220 static void
2221 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2222 {
2223 	struct proc *p;
2224 	elf_ps_strings_t ps_strings;
2225 	size_t size;
2226 	int structsize;
2227 
2228 	p = (struct proc *)arg;
2229 	size = sizeof(structsize) + sizeof(ps_strings);
2230 	if (sb != NULL) {
2231 		KASSERT(*sizep == size, ("invalid size"));
2232 		structsize = sizeof(ps_strings);
2233 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2234 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
2235 #else
2236 		ps_strings = p->p_sysent->sv_psstrings;
2237 #endif
2238 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2239 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2240 	}
2241 	*sizep = size;
2242 }
2243 
2244 static void
2245 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2246 {
2247 	struct proc *p;
2248 	size_t size;
2249 	int structsize;
2250 
2251 	p = (struct proc *)arg;
2252 	if (sb == NULL) {
2253 		size = 0;
2254 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2255 		sbuf_set_drain(sb, sbuf_drain_count, &size);
2256 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2257 		PHOLD(p);
2258 		proc_getauxv(curthread, p, sb);
2259 		PRELE(p);
2260 		sbuf_finish(sb);
2261 		sbuf_delete(sb);
2262 		*sizep = size;
2263 	} else {
2264 		structsize = sizeof(Elf_Auxinfo);
2265 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2266 		PHOLD(p);
2267 		proc_getauxv(curthread, p, sb);
2268 		PRELE(p);
2269 	}
2270 }
2271 
2272 static boolean_t
2273 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote,
2274     int32_t *osrel, const Elf_Phdr *pnote)
2275 {
2276 	const Elf_Note *note, *note0, *note_end;
2277 	const char *note_name;
2278 	char *buf;
2279 	int i, error;
2280 	boolean_t res;
2281 
2282 	/* We need some limit, might as well use PAGE_SIZE. */
2283 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2284 		return (FALSE);
2285 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2286 	if (pnote->p_offset > PAGE_SIZE ||
2287 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2288 		VOP_UNLOCK(imgp->vp, 0);
2289 		buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2290 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
2291 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2292 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2293 		    curthread->td_ucred, NOCRED, NULL, curthread);
2294 		if (error != 0) {
2295 			uprintf("i/o error PT_NOTE\n");
2296 			res = FALSE;
2297 			goto ret;
2298 		}
2299 		note = note0 = (const Elf_Note *)buf;
2300 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2301 	} else {
2302 		note = note0 = (const Elf_Note *)(imgp->image_header +
2303 		    pnote->p_offset);
2304 		note_end = (const Elf_Note *)(imgp->image_header +
2305 		    pnote->p_offset + pnote->p_filesz);
2306 		buf = NULL;
2307 	}
2308 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
2309 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
2310 		    (const char *)note < sizeof(Elf_Note)) {
2311 			res = FALSE;
2312 			goto ret;
2313 		}
2314 		if (note->n_namesz != checknote->hdr.n_namesz ||
2315 		    note->n_descsz != checknote->hdr.n_descsz ||
2316 		    note->n_type != checknote->hdr.n_type)
2317 			goto nextnote;
2318 		note_name = (const char *)(note + 1);
2319 		if (note_name + checknote->hdr.n_namesz >=
2320 		    (const char *)note_end || strncmp(checknote->vendor,
2321 		    note_name, checknote->hdr.n_namesz) != 0)
2322 			goto nextnote;
2323 
2324 		/*
2325 		 * Fetch the osreldate for binary
2326 		 * from the ELF OSABI-note if necessary.
2327 		 */
2328 		if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
2329 		    checknote->trans_osrel != NULL) {
2330 			res = checknote->trans_osrel(note, osrel);
2331 			goto ret;
2332 		}
2333 		res = TRUE;
2334 		goto ret;
2335 nextnote:
2336 		note = (const Elf_Note *)((const char *)(note + 1) +
2337 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2338 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2339 	}
2340 	res = FALSE;
2341 ret:
2342 	free(buf, M_TEMP);
2343 	return (res);
2344 }
2345 
2346 /*
2347  * Try to find the appropriate ABI-note section for checknote,
2348  * fetch the osreldate for binary from the ELF OSABI-note. Only the
2349  * first page of the image is searched, the same as for headers.
2350  */
2351 static boolean_t
2352 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
2353     int32_t *osrel)
2354 {
2355 	const Elf_Phdr *phdr;
2356 	const Elf_Ehdr *hdr;
2357 	int i;
2358 
2359 	hdr = (const Elf_Ehdr *)imgp->image_header;
2360 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2361 
2362 	for (i = 0; i < hdr->e_phnum; i++) {
2363 		if (phdr[i].p_type == PT_NOTE &&
2364 		    __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i]))
2365 			return (TRUE);
2366 	}
2367 	return (FALSE);
2368 
2369 }
2370 
2371 /*
2372  * Tell kern_execve.c about it, with a little help from the linker.
2373  */
2374 static struct execsw __elfN(execsw) = {
2375 	__CONCAT(exec_, __elfN(imgact)),
2376 	__XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2377 };
2378 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2379 
2380 static vm_prot_t
2381 __elfN(trans_prot)(Elf_Word flags)
2382 {
2383 	vm_prot_t prot;
2384 
2385 	prot = 0;
2386 	if (flags & PF_X)
2387 		prot |= VM_PROT_EXECUTE;
2388 	if (flags & PF_W)
2389 		prot |= VM_PROT_WRITE;
2390 	if (flags & PF_R)
2391 		prot |= VM_PROT_READ;
2392 #if __ELF_WORD_SIZE == 32
2393 #if defined(__amd64__)
2394 	if (i386_read_exec && (flags & PF_R))
2395 		prot |= VM_PROT_EXECUTE;
2396 #endif
2397 #endif
2398 	return (prot);
2399 }
2400 
2401 static Elf_Word
2402 __elfN(untrans_prot)(vm_prot_t prot)
2403 {
2404 	Elf_Word flags;
2405 
2406 	flags = 0;
2407 	if (prot & VM_PROT_EXECUTE)
2408 		flags |= PF_X;
2409 	if (prot & VM_PROT_READ)
2410 		flags |= PF_R;
2411 	if (prot & VM_PROT_WRITE)
2412 		flags |= PF_W;
2413 	return (flags);
2414 }
2415