1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_core.h" 37 38 #include <sys/param.h> 39 #include <sys/capsicum.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/imgact.h> 43 #include <sys/imgact_elf.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mman.h> 49 #include <sys/namei.h> 50 #include <sys/pioctl.h> 51 #include <sys/proc.h> 52 #include <sys/procfs.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sbuf.h> 57 #include <sys/sf_buf.h> 58 #include <sys/smp.h> 59 #include <sys/systm.h> 60 #include <sys/signalvar.h> 61 #include <sys/stat.h> 62 #include <sys/sx.h> 63 #include <sys/syscall.h> 64 #include <sys/sysctl.h> 65 #include <sys/sysent.h> 66 #include <sys/vnode.h> 67 #include <sys/syslog.h> 68 #include <sys/eventhandler.h> 69 #include <sys/user.h> 70 71 #include <net/zlib.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #ifdef COMPRESS_USER_CORES 108 static int compress_core(gzFile, char *, char *, unsigned int, 109 struct thread * td); 110 #endif 111 #define CORE_BUF_SIZE (16 * 1024) 112 113 int __elfN(fallback_brand) = -1; 114 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 115 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 116 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 117 118 static int elf_legacy_coredump = 0; 119 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 120 &elf_legacy_coredump, 0, ""); 121 122 int __elfN(nxstack) = 123 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 133 #if defined(__amd64__) 134 int i386_read_exec = 0; 135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 136 "enable execution from readable segments"); 137 #endif 138 #endif 139 140 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 141 142 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 143 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 144 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 145 146 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 147 148 Elf_Brandnote __elfN(freebsd_brandnote) = { 149 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 150 .hdr.n_descsz = sizeof(int32_t), 151 .hdr.n_type = 1, 152 .vendor = FREEBSD_ABI_VENDOR, 153 .flags = BN_TRANSLATE_OSREL, 154 .trans_osrel = __elfN(freebsd_trans_osrel) 155 }; 156 157 static boolean_t 158 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 159 { 160 uintptr_t p; 161 162 p = (uintptr_t)(note + 1); 163 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 164 *osrel = *(const int32_t *)(p); 165 166 return (TRUE); 167 } 168 169 static const char GNU_ABI_VENDOR[] = "GNU"; 170 static int GNU_KFREEBSD_ABI_DESC = 3; 171 172 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 173 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 174 .hdr.n_descsz = 16, /* XXX at least 16 */ 175 .hdr.n_type = 1, 176 .vendor = GNU_ABI_VENDOR, 177 .flags = BN_TRANSLATE_OSREL, 178 .trans_osrel = kfreebsd_trans_osrel 179 }; 180 181 static boolean_t 182 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 183 { 184 const Elf32_Word *desc; 185 uintptr_t p; 186 187 p = (uintptr_t)(note + 1); 188 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 189 190 desc = (const Elf32_Word *)p; 191 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 192 return (FALSE); 193 194 /* 195 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 196 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 197 */ 198 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 199 200 return (TRUE); 201 } 202 203 int 204 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 205 { 206 int i; 207 208 for (i = 0; i < MAX_BRANDS; i++) { 209 if (elf_brand_list[i] == NULL) { 210 elf_brand_list[i] = entry; 211 break; 212 } 213 } 214 if (i == MAX_BRANDS) { 215 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 216 __func__, entry); 217 return (-1); 218 } 219 return (0); 220 } 221 222 int 223 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 224 { 225 int i; 226 227 for (i = 0; i < MAX_BRANDS; i++) { 228 if (elf_brand_list[i] == entry) { 229 elf_brand_list[i] = NULL; 230 break; 231 } 232 } 233 if (i == MAX_BRANDS) 234 return (-1); 235 return (0); 236 } 237 238 int 239 __elfN(brand_inuse)(Elf_Brandinfo *entry) 240 { 241 struct proc *p; 242 int rval = FALSE; 243 244 sx_slock(&allproc_lock); 245 FOREACH_PROC_IN_SYSTEM(p) { 246 if (p->p_sysent == entry->sysvec) { 247 rval = TRUE; 248 break; 249 } 250 } 251 sx_sunlock(&allproc_lock); 252 253 return (rval); 254 } 255 256 static Elf_Brandinfo * 257 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 258 int interp_name_len, int32_t *osrel) 259 { 260 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 261 Elf_Brandinfo *bi; 262 boolean_t ret; 263 int i; 264 265 /* 266 * We support four types of branding -- (1) the ELF EI_OSABI field 267 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 268 * branding w/in the ELF header, (3) path of the `interp_path' 269 * field, and (4) the ".note.ABI-tag" ELF section. 270 */ 271 272 /* Look for an ".note.ABI-tag" ELF section */ 273 for (i = 0; i < MAX_BRANDS; i++) { 274 bi = elf_brand_list[i]; 275 if (bi == NULL) 276 continue; 277 if (hdr->e_machine == bi->machine && (bi->flags & 278 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 279 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 280 if (ret) 281 return (bi); 282 } 283 } 284 285 /* If the executable has a brand, search for it in the brand list. */ 286 for (i = 0; i < MAX_BRANDS; i++) { 287 bi = elf_brand_list[i]; 288 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 289 continue; 290 if (hdr->e_machine == bi->machine && 291 (hdr->e_ident[EI_OSABI] == bi->brand || 292 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 293 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 294 return (bi); 295 } 296 297 /* No known brand, see if the header is recognized by any brand */ 298 for (i = 0; i < MAX_BRANDS; i++) { 299 bi = elf_brand_list[i]; 300 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 301 bi->header_supported == NULL) 302 continue; 303 if (hdr->e_machine == bi->machine) { 304 ret = bi->header_supported(imgp); 305 if (ret) 306 return (bi); 307 } 308 } 309 310 /* Lacking a known brand, search for a recognized interpreter. */ 311 if (interp != NULL) { 312 for (i = 0; i < MAX_BRANDS; i++) { 313 bi = elf_brand_list[i]; 314 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 315 continue; 316 if (hdr->e_machine == bi->machine && 317 /* ELF image p_filesz includes terminating zero */ 318 strlen(bi->interp_path) + 1 == interp_name_len && 319 strncmp(interp, bi->interp_path, interp_name_len) 320 == 0) 321 return (bi); 322 } 323 } 324 325 /* Lacking a recognized interpreter, try the default brand */ 326 for (i = 0; i < MAX_BRANDS; i++) { 327 bi = elf_brand_list[i]; 328 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 329 continue; 330 if (hdr->e_machine == bi->machine && 331 __elfN(fallback_brand) == bi->brand) 332 return (bi); 333 } 334 return (NULL); 335 } 336 337 static int 338 __elfN(check_header)(const Elf_Ehdr *hdr) 339 { 340 Elf_Brandinfo *bi; 341 int i; 342 343 if (!IS_ELF(*hdr) || 344 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 345 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 346 hdr->e_ident[EI_VERSION] != EV_CURRENT || 347 hdr->e_phentsize != sizeof(Elf_Phdr) || 348 hdr->e_version != ELF_TARG_VER) 349 return (ENOEXEC); 350 351 /* 352 * Make sure we have at least one brand for this machine. 353 */ 354 355 for (i = 0; i < MAX_BRANDS; i++) { 356 bi = elf_brand_list[i]; 357 if (bi != NULL && bi->machine == hdr->e_machine) 358 break; 359 } 360 if (i == MAX_BRANDS) 361 return (ENOEXEC); 362 363 return (0); 364 } 365 366 static int 367 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 368 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 369 { 370 struct sf_buf *sf; 371 int error; 372 vm_offset_t off; 373 374 /* 375 * Create the page if it doesn't exist yet. Ignore errors. 376 */ 377 vm_map_lock(map); 378 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 379 VM_PROT_ALL, VM_PROT_ALL, 0); 380 vm_map_unlock(map); 381 382 /* 383 * Find the page from the underlying object. 384 */ 385 if (object) { 386 sf = vm_imgact_map_page(object, offset); 387 if (sf == NULL) 388 return (KERN_FAILURE); 389 off = offset - trunc_page(offset); 390 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 391 end - start); 392 vm_imgact_unmap_page(sf); 393 if (error) { 394 return (KERN_FAILURE); 395 } 396 } 397 398 return (KERN_SUCCESS); 399 } 400 401 static int 402 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 403 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 404 { 405 struct sf_buf *sf; 406 vm_offset_t off; 407 vm_size_t sz; 408 int error, rv; 409 410 if (start != trunc_page(start)) { 411 rv = __elfN(map_partial)(map, object, offset, start, 412 round_page(start), prot); 413 if (rv) 414 return (rv); 415 offset += round_page(start) - start; 416 start = round_page(start); 417 } 418 if (end != round_page(end)) { 419 rv = __elfN(map_partial)(map, object, offset + 420 trunc_page(end) - start, trunc_page(end), end, prot); 421 if (rv) 422 return (rv); 423 end = trunc_page(end); 424 } 425 if (end > start) { 426 if (offset & PAGE_MASK) { 427 /* 428 * The mapping is not page aligned. This means we have 429 * to copy the data. Sigh. 430 */ 431 rv = vm_map_find(map, NULL, 0, &start, end - start, 0, 432 VMFS_NO_SPACE, prot | VM_PROT_WRITE, VM_PROT_ALL, 433 0); 434 if (rv) 435 return (rv); 436 if (object == NULL) 437 return (KERN_SUCCESS); 438 for (; start < end; start += sz) { 439 sf = vm_imgact_map_page(object, offset); 440 if (sf == NULL) 441 return (KERN_FAILURE); 442 off = offset - trunc_page(offset); 443 sz = end - start; 444 if (sz > PAGE_SIZE - off) 445 sz = PAGE_SIZE - off; 446 error = copyout((caddr_t)sf_buf_kva(sf) + off, 447 (caddr_t)start, sz); 448 vm_imgact_unmap_page(sf); 449 if (error) { 450 return (KERN_FAILURE); 451 } 452 offset += sz; 453 } 454 rv = KERN_SUCCESS; 455 } else { 456 vm_object_reference(object); 457 vm_map_lock(map); 458 rv = vm_map_insert(map, object, offset, start, end, 459 prot, VM_PROT_ALL, cow); 460 vm_map_unlock(map); 461 if (rv != KERN_SUCCESS) 462 vm_object_deallocate(object); 463 } 464 return (rv); 465 } else { 466 return (KERN_SUCCESS); 467 } 468 } 469 470 static int 471 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 472 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 473 size_t pagesize) 474 { 475 struct sf_buf *sf; 476 size_t map_len; 477 vm_map_t map; 478 vm_object_t object; 479 vm_offset_t map_addr; 480 int error, rv, cow; 481 size_t copy_len; 482 vm_offset_t file_addr; 483 484 /* 485 * It's necessary to fail if the filsz + offset taken from the 486 * header is greater than the actual file pager object's size. 487 * If we were to allow this, then the vm_map_find() below would 488 * walk right off the end of the file object and into the ether. 489 * 490 * While I'm here, might as well check for something else that 491 * is invalid: filsz cannot be greater than memsz. 492 */ 493 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 494 uprintf("elf_load_section: truncated ELF file\n"); 495 return (ENOEXEC); 496 } 497 498 object = imgp->object; 499 map = &imgp->proc->p_vmspace->vm_map; 500 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 501 file_addr = trunc_page_ps(offset, pagesize); 502 503 /* 504 * We have two choices. We can either clear the data in the last page 505 * of an oversized mapping, or we can start the anon mapping a page 506 * early and copy the initialized data into that first page. We 507 * choose the second.. 508 */ 509 if (memsz > filsz) 510 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 511 else 512 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 513 514 if (map_len != 0) { 515 /* cow flags: don't dump readonly sections in core */ 516 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 517 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 518 519 rv = __elfN(map_insert)(map, 520 object, 521 file_addr, /* file offset */ 522 map_addr, /* virtual start */ 523 map_addr + map_len,/* virtual end */ 524 prot, 525 cow); 526 if (rv != KERN_SUCCESS) 527 return (EINVAL); 528 529 /* we can stop now if we've covered it all */ 530 if (memsz == filsz) { 531 return (0); 532 } 533 } 534 535 536 /* 537 * We have to get the remaining bit of the file into the first part 538 * of the oversized map segment. This is normally because the .data 539 * segment in the file is extended to provide bss. It's a neat idea 540 * to try and save a page, but it's a pain in the behind to implement. 541 */ 542 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 543 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 544 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 545 map_addr; 546 547 /* This had damn well better be true! */ 548 if (map_len != 0) { 549 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr + 550 map_len, VM_PROT_ALL, 0); 551 if (rv != KERN_SUCCESS) { 552 return (EINVAL); 553 } 554 } 555 556 if (copy_len != 0) { 557 vm_offset_t off; 558 559 sf = vm_imgact_map_page(object, offset + filsz); 560 if (sf == NULL) 561 return (EIO); 562 563 /* send the page fragment to user space */ 564 off = trunc_page_ps(offset + filsz, pagesize) - 565 trunc_page(offset + filsz); 566 error = copyout((caddr_t)sf_buf_kva(sf) + off, 567 (caddr_t)map_addr, copy_len); 568 vm_imgact_unmap_page(sf); 569 if (error) { 570 return (error); 571 } 572 } 573 574 /* 575 * set it to the specified protection. 576 * XXX had better undo the damage from pasting over the cracks here! 577 */ 578 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 579 map_len), prot, FALSE); 580 581 return (0); 582 } 583 584 /* 585 * Load the file "file" into memory. It may be either a shared object 586 * or an executable. 587 * 588 * The "addr" reference parameter is in/out. On entry, it specifies 589 * the address where a shared object should be loaded. If the file is 590 * an executable, this value is ignored. On exit, "addr" specifies 591 * where the file was actually loaded. 592 * 593 * The "entry" reference parameter is out only. On exit, it specifies 594 * the entry point for the loaded file. 595 */ 596 static int 597 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 598 u_long *entry, size_t pagesize) 599 { 600 struct { 601 struct nameidata nd; 602 struct vattr attr; 603 struct image_params image_params; 604 } *tempdata; 605 const Elf_Ehdr *hdr = NULL; 606 const Elf_Phdr *phdr = NULL; 607 struct nameidata *nd; 608 struct vattr *attr; 609 struct image_params *imgp; 610 vm_prot_t prot; 611 u_long rbase; 612 u_long base_addr = 0; 613 int error, i, numsegs; 614 615 #ifdef CAPABILITY_MODE 616 /* 617 * XXXJA: This check can go away once we are sufficiently confident 618 * that the checks in namei() are correct. 619 */ 620 if (IN_CAPABILITY_MODE(curthread)) 621 return (ECAPMODE); 622 #endif 623 624 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 625 nd = &tempdata->nd; 626 attr = &tempdata->attr; 627 imgp = &tempdata->image_params; 628 629 /* 630 * Initialize part of the common data 631 */ 632 imgp->proc = p; 633 imgp->attr = attr; 634 imgp->firstpage = NULL; 635 imgp->image_header = NULL; 636 imgp->object = NULL; 637 imgp->execlabel = NULL; 638 639 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 640 if ((error = namei(nd)) != 0) { 641 nd->ni_vp = NULL; 642 goto fail; 643 } 644 NDFREE(nd, NDF_ONLY_PNBUF); 645 imgp->vp = nd->ni_vp; 646 647 /* 648 * Check permissions, modes, uid, etc on the file, and "open" it. 649 */ 650 error = exec_check_permissions(imgp); 651 if (error) 652 goto fail; 653 654 error = exec_map_first_page(imgp); 655 if (error) 656 goto fail; 657 658 /* 659 * Also make certain that the interpreter stays the same, so set 660 * its VV_TEXT flag, too. 661 */ 662 VOP_SET_TEXT(nd->ni_vp); 663 664 imgp->object = nd->ni_vp->v_object; 665 666 hdr = (const Elf_Ehdr *)imgp->image_header; 667 if ((error = __elfN(check_header)(hdr)) != 0) 668 goto fail; 669 if (hdr->e_type == ET_DYN) 670 rbase = *addr; 671 else if (hdr->e_type == ET_EXEC) 672 rbase = 0; 673 else { 674 error = ENOEXEC; 675 goto fail; 676 } 677 678 /* Only support headers that fit within first page for now */ 679 if ((hdr->e_phoff > PAGE_SIZE) || 680 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 681 error = ENOEXEC; 682 goto fail; 683 } 684 685 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 686 if (!aligned(phdr, Elf_Addr)) { 687 error = ENOEXEC; 688 goto fail; 689 } 690 691 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 692 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 693 /* Loadable segment */ 694 prot = __elfN(trans_prot)(phdr[i].p_flags); 695 error = __elfN(load_section)(imgp, phdr[i].p_offset, 696 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 697 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 698 if (error != 0) 699 goto fail; 700 /* 701 * Establish the base address if this is the 702 * first segment. 703 */ 704 if (numsegs == 0) 705 base_addr = trunc_page(phdr[i].p_vaddr + 706 rbase); 707 numsegs++; 708 } 709 } 710 *addr = base_addr; 711 *entry = (unsigned long)hdr->e_entry + rbase; 712 713 fail: 714 if (imgp->firstpage) 715 exec_unmap_first_page(imgp); 716 717 if (nd->ni_vp) 718 vput(nd->ni_vp); 719 720 free(tempdata, M_TEMP); 721 722 return (error); 723 } 724 725 static int 726 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 727 { 728 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 729 const Elf_Phdr *phdr; 730 Elf_Auxargs *elf_auxargs; 731 struct vmspace *vmspace; 732 vm_prot_t prot; 733 u_long text_size = 0, data_size = 0, total_size = 0; 734 u_long text_addr = 0, data_addr = 0; 735 u_long seg_size, seg_addr; 736 u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; 737 int32_t osrel = 0; 738 int error = 0, i, n, interp_name_len = 0; 739 const char *interp = NULL, *newinterp = NULL; 740 Elf_Brandinfo *brand_info; 741 char *path; 742 struct sysentvec *sv; 743 744 /* 745 * Do we have a valid ELF header ? 746 * 747 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 748 * if particular brand doesn't support it. 749 */ 750 if (__elfN(check_header)(hdr) != 0 || 751 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 752 return (-1); 753 754 /* 755 * From here on down, we return an errno, not -1, as we've 756 * detected an ELF file. 757 */ 758 759 if ((hdr->e_phoff > PAGE_SIZE) || 760 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 761 /* Only support headers in first page for now */ 762 return (ENOEXEC); 763 } 764 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 765 if (!aligned(phdr, Elf_Addr)) 766 return (ENOEXEC); 767 n = 0; 768 baddr = 0; 769 for (i = 0; i < hdr->e_phnum; i++) { 770 switch (phdr[i].p_type) { 771 case PT_LOAD: 772 if (n == 0) 773 baddr = phdr[i].p_vaddr; 774 n++; 775 break; 776 case PT_INTERP: 777 /* Path to interpreter */ 778 if (phdr[i].p_filesz > MAXPATHLEN || 779 phdr[i].p_offset > PAGE_SIZE || 780 phdr[i].p_filesz > PAGE_SIZE - phdr[i].p_offset) 781 return (ENOEXEC); 782 interp = imgp->image_header + phdr[i].p_offset; 783 interp_name_len = phdr[i].p_filesz; 784 break; 785 case PT_GNU_STACK: 786 if (__elfN(nxstack)) 787 imgp->stack_prot = 788 __elfN(trans_prot)(phdr[i].p_flags); 789 break; 790 } 791 } 792 793 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 794 &osrel); 795 if (brand_info == NULL) { 796 uprintf("ELF binary type \"%u\" not known.\n", 797 hdr->e_ident[EI_OSABI]); 798 return (ENOEXEC); 799 } 800 if (hdr->e_type == ET_DYN) { 801 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) 802 return (ENOEXEC); 803 /* 804 * Honour the base load address from the dso if it is 805 * non-zero for some reason. 806 */ 807 if (baddr == 0) 808 et_dyn_addr = ET_DYN_LOAD_ADDR; 809 else 810 et_dyn_addr = 0; 811 } else 812 et_dyn_addr = 0; 813 sv = brand_info->sysvec; 814 if (interp != NULL && brand_info->interp_newpath != NULL) 815 newinterp = brand_info->interp_newpath; 816 817 /* 818 * Avoid a possible deadlock if the current address space is destroyed 819 * and that address space maps the locked vnode. In the common case, 820 * the locked vnode's v_usecount is decremented but remains greater 821 * than zero. Consequently, the vnode lock is not needed by vrele(). 822 * However, in cases where the vnode lock is external, such as nullfs, 823 * v_usecount may become zero. 824 * 825 * The VV_TEXT flag prevents modifications to the executable while 826 * the vnode is unlocked. 827 */ 828 VOP_UNLOCK(imgp->vp, 0); 829 830 error = exec_new_vmspace(imgp, sv); 831 imgp->proc->p_sysent = sv; 832 833 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 834 if (error) 835 return (error); 836 837 for (i = 0; i < hdr->e_phnum; i++) { 838 switch (phdr[i].p_type) { 839 case PT_LOAD: /* Loadable segment */ 840 if (phdr[i].p_memsz == 0) 841 break; 842 prot = __elfN(trans_prot)(phdr[i].p_flags); 843 error = __elfN(load_section)(imgp, phdr[i].p_offset, 844 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 845 phdr[i].p_memsz, phdr[i].p_filesz, prot, 846 sv->sv_pagesize); 847 if (error != 0) 848 return (error); 849 850 /* 851 * If this segment contains the program headers, 852 * remember their virtual address for the AT_PHDR 853 * aux entry. Static binaries don't usually include 854 * a PT_PHDR entry. 855 */ 856 if (phdr[i].p_offset == 0 && 857 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 858 <= phdr[i].p_filesz) 859 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 860 et_dyn_addr; 861 862 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 863 seg_size = round_page(phdr[i].p_memsz + 864 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 865 866 /* 867 * Make the largest executable segment the official 868 * text segment and all others data. 869 * 870 * Note that obreak() assumes that data_addr + 871 * data_size == end of data load area, and the ELF 872 * file format expects segments to be sorted by 873 * address. If multiple data segments exist, the 874 * last one will be used. 875 */ 876 877 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 878 text_size = seg_size; 879 text_addr = seg_addr; 880 } else { 881 data_size = seg_size; 882 data_addr = seg_addr; 883 } 884 total_size += seg_size; 885 break; 886 case PT_PHDR: /* Program header table info */ 887 proghdr = phdr[i].p_vaddr + et_dyn_addr; 888 break; 889 default: 890 break; 891 } 892 } 893 894 if (data_addr == 0 && data_size == 0) { 895 data_addr = text_addr; 896 data_size = text_size; 897 } 898 899 entry = (u_long)hdr->e_entry + et_dyn_addr; 900 901 /* 902 * Check limits. It should be safe to check the 903 * limits after loading the segments since we do 904 * not actually fault in all the segments pages. 905 */ 906 PROC_LOCK(imgp->proc); 907 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 908 text_size > maxtsiz || 909 total_size > lim_cur(imgp->proc, RLIMIT_VMEM) || 910 racct_set(imgp->proc, RACCT_DATA, data_size) != 0 || 911 racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) { 912 PROC_UNLOCK(imgp->proc); 913 return (ENOMEM); 914 } 915 916 vmspace = imgp->proc->p_vmspace; 917 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 918 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 919 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 920 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 921 922 /* 923 * We load the dynamic linker where a userland call 924 * to mmap(0, ...) would put it. The rationale behind this 925 * calculation is that it leaves room for the heap to grow to 926 * its maximum allowed size. 927 */ 928 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc, 929 RLIMIT_DATA)); 930 PROC_UNLOCK(imgp->proc); 931 932 imgp->entry_addr = entry; 933 934 if (interp != NULL) { 935 int have_interp = FALSE; 936 VOP_UNLOCK(imgp->vp, 0); 937 if (brand_info->emul_path != NULL && 938 brand_info->emul_path[0] != '\0') { 939 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 940 snprintf(path, MAXPATHLEN, "%s%s", 941 brand_info->emul_path, interp); 942 error = __elfN(load_file)(imgp->proc, path, &addr, 943 &imgp->entry_addr, sv->sv_pagesize); 944 free(path, M_TEMP); 945 if (error == 0) 946 have_interp = TRUE; 947 } 948 if (!have_interp && newinterp != NULL) { 949 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 950 &imgp->entry_addr, sv->sv_pagesize); 951 if (error == 0) 952 have_interp = TRUE; 953 } 954 if (!have_interp) { 955 error = __elfN(load_file)(imgp->proc, interp, &addr, 956 &imgp->entry_addr, sv->sv_pagesize); 957 } 958 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 959 if (error != 0) { 960 uprintf("ELF interpreter %s not found\n", interp); 961 return (error); 962 } 963 } else 964 addr = et_dyn_addr; 965 966 /* 967 * Construct auxargs table (used by the fixup routine) 968 */ 969 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 970 elf_auxargs->execfd = -1; 971 elf_auxargs->phdr = proghdr; 972 elf_auxargs->phent = hdr->e_phentsize; 973 elf_auxargs->phnum = hdr->e_phnum; 974 elf_auxargs->pagesz = PAGE_SIZE; 975 elf_auxargs->base = addr; 976 elf_auxargs->flags = 0; 977 elf_auxargs->entry = entry; 978 979 imgp->auxargs = elf_auxargs; 980 imgp->interpreted = 0; 981 imgp->reloc_base = addr; 982 imgp->proc->p_osrel = osrel; 983 984 return (error); 985 } 986 987 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 988 989 int 990 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 991 { 992 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 993 Elf_Addr *base; 994 Elf_Addr *pos; 995 996 base = (Elf_Addr *)*stack_base; 997 pos = base + (imgp->args->argc + imgp->args->envc + 2); 998 999 if (args->execfd != -1) 1000 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1001 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1002 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1003 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1004 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1005 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1006 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1007 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1008 if (imgp->execpathp != 0) 1009 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1010 AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate); 1011 if (imgp->canary != 0) { 1012 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1013 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1014 } 1015 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1016 if (imgp->pagesizes != 0) { 1017 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1018 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1019 } 1020 if (imgp->sysent->sv_timekeep_base != 0) { 1021 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1022 imgp->sysent->sv_timekeep_base); 1023 } 1024 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1025 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1026 imgp->sysent->sv_stackprot); 1027 AUXARGS_ENTRY(pos, AT_NULL, 0); 1028 1029 free(imgp->auxargs, M_TEMP); 1030 imgp->auxargs = NULL; 1031 1032 base--; 1033 suword(base, (long)imgp->args->argc); 1034 *stack_base = (register_t *)base; 1035 return (0); 1036 } 1037 1038 /* 1039 * Code for generating ELF core dumps. 1040 */ 1041 1042 typedef void (*segment_callback)(vm_map_entry_t, void *); 1043 1044 /* Closure for cb_put_phdr(). */ 1045 struct phdr_closure { 1046 Elf_Phdr *phdr; /* Program header to fill in */ 1047 Elf_Off offset; /* Offset of segment in core file */ 1048 }; 1049 1050 /* Closure for cb_size_segment(). */ 1051 struct sseg_closure { 1052 int count; /* Count of writable segments. */ 1053 size_t size; /* Total size of all writable segments. */ 1054 }; 1055 1056 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1057 1058 struct note_info { 1059 int type; /* Note type. */ 1060 outfunc_t outfunc; /* Output function. */ 1061 void *outarg; /* Argument for the output function. */ 1062 size_t outsize; /* Output size. */ 1063 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1064 }; 1065 1066 TAILQ_HEAD(note_info_list, note_info); 1067 1068 static void cb_put_phdr(vm_map_entry_t, void *); 1069 static void cb_size_segment(vm_map_entry_t, void *); 1070 static void each_writable_segment(struct thread *, segment_callback, void *); 1071 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *, 1072 int, void *, size_t, struct note_info_list *, size_t, gzFile); 1073 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1074 size_t *); 1075 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1076 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1077 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1078 static int sbuf_drain_core_output(void *, const char *, int); 1079 static int sbuf_drain_count(void *arg, const char *data, int len); 1080 1081 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1082 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1083 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1084 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1085 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1086 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1087 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1088 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1089 static void note_procstat_files(void *, struct sbuf *, size_t *); 1090 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1091 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1092 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1093 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1094 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1095 1096 #ifdef COMPRESS_USER_CORES 1097 extern int compress_user_cores; 1098 extern int compress_user_cores_gzlevel; 1099 #endif 1100 1101 static int 1102 core_output(struct vnode *vp, void *base, size_t len, off_t offset, 1103 struct ucred *active_cred, struct ucred *file_cred, 1104 struct thread *td, char *core_buf, gzFile gzfile) { 1105 1106 int error; 1107 if (gzfile) { 1108 #ifdef COMPRESS_USER_CORES 1109 error = compress_core(gzfile, base, core_buf, len, td); 1110 #else 1111 panic("shouldn't be here"); 1112 #endif 1113 } else { 1114 error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset, 1115 UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred, 1116 NULL, td); 1117 } 1118 return (error); 1119 } 1120 1121 /* Coredump output parameters for sbuf drain routine. */ 1122 struct sbuf_drain_core_params { 1123 off_t offset; 1124 struct ucred *active_cred; 1125 struct ucred *file_cred; 1126 struct thread *td; 1127 struct vnode *vp; 1128 #ifdef COMPRESS_USER_CORES 1129 gzFile gzfile; 1130 #endif 1131 }; 1132 1133 /* 1134 * Drain into a core file. 1135 */ 1136 static int 1137 sbuf_drain_core_output(void *arg, const char *data, int len) 1138 { 1139 struct sbuf_drain_core_params *p; 1140 int error, locked; 1141 1142 p = (struct sbuf_drain_core_params *)arg; 1143 1144 /* 1145 * Some kern_proc out routines that print to this sbuf may 1146 * call us with the process lock held. Draining with the 1147 * non-sleepable lock held is unsafe. The lock is needed for 1148 * those routines when dumping a live process. In our case we 1149 * can safely release the lock before draining and acquire 1150 * again after. 1151 */ 1152 locked = PROC_LOCKED(p->td->td_proc); 1153 if (locked) 1154 PROC_UNLOCK(p->td->td_proc); 1155 #ifdef COMPRESS_USER_CORES 1156 if (p->gzfile != Z_NULL) 1157 error = compress_core(p->gzfile, NULL, __DECONST(char *, data), 1158 len, p->td); 1159 else 1160 #endif 1161 error = vn_rdwr_inchunks(UIO_WRITE, p->vp, 1162 __DECONST(void *, data), len, p->offset, UIO_SYSSPACE, 1163 IO_UNIT | IO_DIRECT, p->active_cred, p->file_cred, NULL, 1164 p->td); 1165 if (locked) 1166 PROC_LOCK(p->td->td_proc); 1167 if (error != 0) 1168 return (-error); 1169 p->offset += len; 1170 return (len); 1171 } 1172 1173 /* 1174 * Drain into a counter. 1175 */ 1176 static int 1177 sbuf_drain_count(void *arg, const char *data __unused, int len) 1178 { 1179 size_t *sizep; 1180 1181 sizep = (size_t *)arg; 1182 *sizep += len; 1183 return (len); 1184 } 1185 1186 int 1187 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1188 { 1189 struct ucred *cred = td->td_ucred; 1190 int error = 0; 1191 struct sseg_closure seginfo; 1192 struct note_info_list notelst; 1193 struct note_info *ninfo; 1194 void *hdr; 1195 size_t hdrsize, notesz, coresize; 1196 1197 gzFile gzfile = Z_NULL; 1198 char *core_buf = NULL; 1199 #ifdef COMPRESS_USER_CORES 1200 char gzopen_flags[8]; 1201 char *p; 1202 int doing_compress = flags & IMGACT_CORE_COMPRESS; 1203 #endif 1204 1205 hdr = NULL; 1206 TAILQ_INIT(¬elst); 1207 1208 #ifdef COMPRESS_USER_CORES 1209 if (doing_compress) { 1210 p = gzopen_flags; 1211 *p++ = 'w'; 1212 if (compress_user_cores_gzlevel >= 0 && 1213 compress_user_cores_gzlevel <= 9) 1214 *p++ = '0' + compress_user_cores_gzlevel; 1215 *p = 0; 1216 gzfile = gz_open("", gzopen_flags, vp); 1217 if (gzfile == Z_NULL) { 1218 error = EFAULT; 1219 goto done; 1220 } 1221 core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1222 if (!core_buf) { 1223 error = ENOMEM; 1224 goto done; 1225 } 1226 } 1227 #endif 1228 1229 /* Size the program segments. */ 1230 seginfo.count = 0; 1231 seginfo.size = 0; 1232 each_writable_segment(td, cb_size_segment, &seginfo); 1233 1234 /* 1235 * Collect info about the core file header area. 1236 */ 1237 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1238 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1239 coresize = round_page(hdrsize + notesz) + seginfo.size; 1240 1241 #ifdef RACCT 1242 PROC_LOCK(td->td_proc); 1243 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1244 PROC_UNLOCK(td->td_proc); 1245 if (error != 0) { 1246 error = EFAULT; 1247 goto done; 1248 } 1249 #endif 1250 if (coresize >= limit) { 1251 error = EFAULT; 1252 goto done; 1253 } 1254 1255 /* 1256 * Allocate memory for building the header, fill it up, 1257 * and write it out following the notes. 1258 */ 1259 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1260 if (hdr == NULL) { 1261 error = EINVAL; 1262 goto done; 1263 } 1264 error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize, 1265 ¬elst, notesz, gzfile); 1266 1267 /* Write the contents of all of the writable segments. */ 1268 if (error == 0) { 1269 Elf_Phdr *php; 1270 off_t offset; 1271 int i; 1272 1273 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1274 offset = round_page(hdrsize + notesz); 1275 for (i = 0; i < seginfo.count; i++) { 1276 error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr, 1277 php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile); 1278 if (error != 0) 1279 break; 1280 offset += php->p_filesz; 1281 php++; 1282 } 1283 } 1284 if (error) { 1285 log(LOG_WARNING, 1286 "Failed to write core file for process %s (error %d)\n", 1287 curproc->p_comm, error); 1288 } 1289 1290 done: 1291 #ifdef COMPRESS_USER_CORES 1292 if (core_buf) 1293 free(core_buf, M_TEMP); 1294 if (gzfile) 1295 gzclose(gzfile); 1296 #endif 1297 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1298 TAILQ_REMOVE(¬elst, ninfo, link); 1299 free(ninfo, M_TEMP); 1300 } 1301 if (hdr != NULL) 1302 free(hdr, M_TEMP); 1303 1304 return (error); 1305 } 1306 1307 /* 1308 * A callback for each_writable_segment() to write out the segment's 1309 * program header entry. 1310 */ 1311 static void 1312 cb_put_phdr(entry, closure) 1313 vm_map_entry_t entry; 1314 void *closure; 1315 { 1316 struct phdr_closure *phc = (struct phdr_closure *)closure; 1317 Elf_Phdr *phdr = phc->phdr; 1318 1319 phc->offset = round_page(phc->offset); 1320 1321 phdr->p_type = PT_LOAD; 1322 phdr->p_offset = phc->offset; 1323 phdr->p_vaddr = entry->start; 1324 phdr->p_paddr = 0; 1325 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1326 phdr->p_align = PAGE_SIZE; 1327 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1328 1329 phc->offset += phdr->p_filesz; 1330 phc->phdr++; 1331 } 1332 1333 /* 1334 * A callback for each_writable_segment() to gather information about 1335 * the number of segments and their total size. 1336 */ 1337 static void 1338 cb_size_segment(entry, closure) 1339 vm_map_entry_t entry; 1340 void *closure; 1341 { 1342 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1343 1344 ssc->count++; 1345 ssc->size += entry->end - entry->start; 1346 } 1347 1348 /* 1349 * For each writable segment in the process's memory map, call the given 1350 * function with a pointer to the map entry and some arbitrary 1351 * caller-supplied data. 1352 */ 1353 static void 1354 each_writable_segment(td, func, closure) 1355 struct thread *td; 1356 segment_callback func; 1357 void *closure; 1358 { 1359 struct proc *p = td->td_proc; 1360 vm_map_t map = &p->p_vmspace->vm_map; 1361 vm_map_entry_t entry; 1362 vm_object_t backing_object, object; 1363 boolean_t ignore_entry; 1364 1365 vm_map_lock_read(map); 1366 for (entry = map->header.next; entry != &map->header; 1367 entry = entry->next) { 1368 /* 1369 * Don't dump inaccessible mappings, deal with legacy 1370 * coredump mode. 1371 * 1372 * Note that read-only segments related to the elf binary 1373 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1374 * need to arbitrarily ignore such segments. 1375 */ 1376 if (elf_legacy_coredump) { 1377 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1378 continue; 1379 } else { 1380 if ((entry->protection & VM_PROT_ALL) == 0) 1381 continue; 1382 } 1383 1384 /* 1385 * Dont include memory segment in the coredump if 1386 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1387 * madvise(2). Do not dump submaps (i.e. parts of the 1388 * kernel map). 1389 */ 1390 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1391 continue; 1392 1393 if ((object = entry->object.vm_object) == NULL) 1394 continue; 1395 1396 /* Ignore memory-mapped devices and such things. */ 1397 VM_OBJECT_RLOCK(object); 1398 while ((backing_object = object->backing_object) != NULL) { 1399 VM_OBJECT_RLOCK(backing_object); 1400 VM_OBJECT_RUNLOCK(object); 1401 object = backing_object; 1402 } 1403 ignore_entry = object->type != OBJT_DEFAULT && 1404 object->type != OBJT_SWAP && object->type != OBJT_VNODE; 1405 VM_OBJECT_RUNLOCK(object); 1406 if (ignore_entry) 1407 continue; 1408 1409 (*func)(entry, closure); 1410 } 1411 vm_map_unlock_read(map); 1412 } 1413 1414 /* 1415 * Write the core file header to the file, including padding up to 1416 * the page boundary. 1417 */ 1418 static int 1419 __elfN(corehdr)(struct thread *td, struct vnode *vp, struct ucred *cred, 1420 int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst, 1421 size_t notesz, gzFile gzfile) 1422 { 1423 struct sbuf_drain_core_params params; 1424 struct note_info *ninfo; 1425 struct sbuf *sb; 1426 int error; 1427 1428 /* Fill in the header. */ 1429 bzero(hdr, hdrsize); 1430 __elfN(puthdr)(td, hdr, hdrsize, numsegs, notesz); 1431 1432 params.offset = 0; 1433 params.active_cred = cred; 1434 params.file_cred = NOCRED; 1435 params.td = td; 1436 params.vp = vp; 1437 #ifdef COMPRESS_USER_CORES 1438 params.gzfile = gzfile; 1439 #endif 1440 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1441 sbuf_set_drain(sb, sbuf_drain_core_output, ¶ms); 1442 sbuf_start_section(sb, NULL); 1443 sbuf_bcat(sb, hdr, hdrsize); 1444 TAILQ_FOREACH(ninfo, notelst, link) 1445 __elfN(putnote)(ninfo, sb); 1446 /* Align up to a page boundary for the program segments. */ 1447 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1448 error = sbuf_finish(sb); 1449 sbuf_delete(sb); 1450 1451 return (error); 1452 } 1453 1454 static void 1455 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1456 size_t *sizep) 1457 { 1458 struct proc *p; 1459 struct thread *thr; 1460 size_t size; 1461 1462 p = td->td_proc; 1463 size = 0; 1464 1465 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1466 1467 /* 1468 * To have the debugger select the right thread (LWP) as the initial 1469 * thread, we dump the state of the thread passed to us in td first. 1470 * This is the thread that causes the core dump and thus likely to 1471 * be the right thread one wants to have selected in the debugger. 1472 */ 1473 thr = td; 1474 while (thr != NULL) { 1475 size += register_note(list, NT_PRSTATUS, 1476 __elfN(note_prstatus), thr); 1477 size += register_note(list, NT_FPREGSET, 1478 __elfN(note_fpregset), thr); 1479 size += register_note(list, NT_THRMISC, 1480 __elfN(note_thrmisc), thr); 1481 size += register_note(list, -1, 1482 __elfN(note_threadmd), thr); 1483 1484 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1485 TAILQ_NEXT(thr, td_plist); 1486 if (thr == td) 1487 thr = TAILQ_NEXT(thr, td_plist); 1488 } 1489 1490 size += register_note(list, NT_PROCSTAT_PROC, 1491 __elfN(note_procstat_proc), p); 1492 size += register_note(list, NT_PROCSTAT_FILES, 1493 note_procstat_files, p); 1494 size += register_note(list, NT_PROCSTAT_VMMAP, 1495 note_procstat_vmmap, p); 1496 size += register_note(list, NT_PROCSTAT_GROUPS, 1497 note_procstat_groups, p); 1498 size += register_note(list, NT_PROCSTAT_UMASK, 1499 note_procstat_umask, p); 1500 size += register_note(list, NT_PROCSTAT_RLIMIT, 1501 note_procstat_rlimit, p); 1502 size += register_note(list, NT_PROCSTAT_OSREL, 1503 note_procstat_osrel, p); 1504 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1505 __elfN(note_procstat_psstrings), p); 1506 size += register_note(list, NT_PROCSTAT_AUXV, 1507 __elfN(note_procstat_auxv), p); 1508 1509 *sizep = size; 1510 } 1511 1512 static void 1513 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1514 size_t notesz) 1515 { 1516 Elf_Ehdr *ehdr; 1517 Elf_Phdr *phdr; 1518 struct phdr_closure phc; 1519 1520 ehdr = (Elf_Ehdr *)hdr; 1521 phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)); 1522 1523 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1524 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1525 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1526 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1527 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1528 ehdr->e_ident[EI_DATA] = ELF_DATA; 1529 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1530 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1531 ehdr->e_ident[EI_ABIVERSION] = 0; 1532 ehdr->e_ident[EI_PAD] = 0; 1533 ehdr->e_type = ET_CORE; 1534 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1535 ehdr->e_machine = ELF_ARCH32; 1536 #else 1537 ehdr->e_machine = ELF_ARCH; 1538 #endif 1539 ehdr->e_version = EV_CURRENT; 1540 ehdr->e_entry = 0; 1541 ehdr->e_phoff = sizeof(Elf_Ehdr); 1542 ehdr->e_flags = 0; 1543 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1544 ehdr->e_phentsize = sizeof(Elf_Phdr); 1545 ehdr->e_phnum = numsegs + 1; 1546 ehdr->e_shentsize = sizeof(Elf_Shdr); 1547 ehdr->e_shnum = 0; 1548 ehdr->e_shstrndx = SHN_UNDEF; 1549 1550 /* 1551 * Fill in the program header entries. 1552 */ 1553 1554 /* The note segement. */ 1555 phdr->p_type = PT_NOTE; 1556 phdr->p_offset = hdrsize; 1557 phdr->p_vaddr = 0; 1558 phdr->p_paddr = 0; 1559 phdr->p_filesz = notesz; 1560 phdr->p_memsz = 0; 1561 phdr->p_flags = PF_R; 1562 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1563 phdr++; 1564 1565 /* All the writable segments from the program. */ 1566 phc.phdr = phdr; 1567 phc.offset = round_page(hdrsize + notesz); 1568 each_writable_segment(td, cb_put_phdr, &phc); 1569 } 1570 1571 static size_t 1572 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1573 { 1574 struct note_info *ninfo; 1575 size_t size, notesize; 1576 1577 size = 0; 1578 out(arg, NULL, &size); 1579 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1580 ninfo->type = type; 1581 ninfo->outfunc = out; 1582 ninfo->outarg = arg; 1583 ninfo->outsize = size; 1584 TAILQ_INSERT_TAIL(list, ninfo, link); 1585 1586 if (type == -1) 1587 return (size); 1588 1589 notesize = sizeof(Elf_Note) + /* note header */ 1590 roundup2(8, ELF_NOTE_ROUNDSIZE) + /* note name ("FreeBSD") */ 1591 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1592 1593 return (notesize); 1594 } 1595 1596 static void 1597 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1598 { 1599 Elf_Note note; 1600 ssize_t old_len; 1601 1602 if (ninfo->type == -1) { 1603 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1604 return; 1605 } 1606 1607 note.n_namesz = 8; /* strlen("FreeBSD") + 1 */ 1608 note.n_descsz = ninfo->outsize; 1609 note.n_type = ninfo->type; 1610 1611 sbuf_bcat(sb, ¬e, sizeof(note)); 1612 sbuf_start_section(sb, &old_len); 1613 sbuf_bcat(sb, "FreeBSD", note.n_namesz); 1614 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1615 if (note.n_descsz == 0) 1616 return; 1617 sbuf_start_section(sb, &old_len); 1618 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1619 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1620 } 1621 1622 /* 1623 * Miscellaneous note out functions. 1624 */ 1625 1626 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1627 #include <compat/freebsd32/freebsd32.h> 1628 1629 typedef struct prstatus32 elf_prstatus_t; 1630 typedef struct prpsinfo32 elf_prpsinfo_t; 1631 typedef struct fpreg32 elf_prfpregset_t; 1632 typedef struct fpreg32 elf_fpregset_t; 1633 typedef struct reg32 elf_gregset_t; 1634 typedef struct thrmisc32 elf_thrmisc_t; 1635 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1636 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1637 typedef uint32_t elf_ps_strings_t; 1638 #else 1639 typedef prstatus_t elf_prstatus_t; 1640 typedef prpsinfo_t elf_prpsinfo_t; 1641 typedef prfpregset_t elf_prfpregset_t; 1642 typedef prfpregset_t elf_fpregset_t; 1643 typedef gregset_t elf_gregset_t; 1644 typedef thrmisc_t elf_thrmisc_t; 1645 #define ELF_KERN_PROC_MASK 0 1646 typedef struct kinfo_proc elf_kinfo_proc_t; 1647 typedef vm_offset_t elf_ps_strings_t; 1648 #endif 1649 1650 static void 1651 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1652 { 1653 struct proc *p; 1654 elf_prpsinfo_t *psinfo; 1655 1656 p = (struct proc *)arg; 1657 if (sb != NULL) { 1658 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1659 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1660 psinfo->pr_version = PRPSINFO_VERSION; 1661 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1662 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1663 /* 1664 * XXX - We don't fill in the command line arguments properly 1665 * yet. 1666 */ 1667 strlcpy(psinfo->pr_psargs, p->p_comm, 1668 sizeof(psinfo->pr_psargs)); 1669 1670 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1671 free(psinfo, M_TEMP); 1672 } 1673 *sizep = sizeof(*psinfo); 1674 } 1675 1676 static void 1677 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1678 { 1679 struct thread *td; 1680 elf_prstatus_t *status; 1681 1682 td = (struct thread *)arg; 1683 if (sb != NULL) { 1684 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1685 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1686 status->pr_version = PRSTATUS_VERSION; 1687 status->pr_statussz = sizeof(elf_prstatus_t); 1688 status->pr_gregsetsz = sizeof(elf_gregset_t); 1689 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1690 status->pr_osreldate = osreldate; 1691 status->pr_cursig = td->td_proc->p_sig; 1692 status->pr_pid = td->td_tid; 1693 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1694 fill_regs32(td, &status->pr_reg); 1695 #else 1696 fill_regs(td, &status->pr_reg); 1697 #endif 1698 sbuf_bcat(sb, status, sizeof(*status)); 1699 free(status, M_TEMP); 1700 } 1701 *sizep = sizeof(*status); 1702 } 1703 1704 static void 1705 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1706 { 1707 struct thread *td; 1708 elf_prfpregset_t *fpregset; 1709 1710 td = (struct thread *)arg; 1711 if (sb != NULL) { 1712 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1713 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1714 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1715 fill_fpregs32(td, fpregset); 1716 #else 1717 fill_fpregs(td, fpregset); 1718 #endif 1719 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1720 free(fpregset, M_TEMP); 1721 } 1722 *sizep = sizeof(*fpregset); 1723 } 1724 1725 static void 1726 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1727 { 1728 struct thread *td; 1729 elf_thrmisc_t thrmisc; 1730 1731 td = (struct thread *)arg; 1732 if (sb != NULL) { 1733 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1734 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1735 strcpy(thrmisc.pr_tname, td->td_name); 1736 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1737 } 1738 *sizep = sizeof(thrmisc); 1739 } 1740 1741 /* 1742 * Allow for MD specific notes, as well as any MD 1743 * specific preparations for writing MI notes. 1744 */ 1745 static void 1746 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 1747 { 1748 struct thread *td; 1749 void *buf; 1750 size_t size; 1751 1752 td = (struct thread *)arg; 1753 size = *sizep; 1754 if (size != 0 && sb != NULL) 1755 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 1756 else 1757 buf = NULL; 1758 size = 0; 1759 __elfN(dump_thread)(td, buf, &size); 1760 KASSERT(*sizep == size, ("invalid size")); 1761 if (size != 0 && sb != NULL) 1762 sbuf_bcat(sb, buf, size); 1763 free(buf, M_TEMP); 1764 *sizep = size; 1765 } 1766 1767 #ifdef KINFO_PROC_SIZE 1768 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 1769 #endif 1770 1771 static void 1772 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 1773 { 1774 struct proc *p; 1775 size_t size; 1776 int structsize; 1777 1778 p = (struct proc *)arg; 1779 size = sizeof(structsize) + p->p_numthreads * 1780 sizeof(elf_kinfo_proc_t); 1781 1782 if (sb != NULL) { 1783 KASSERT(*sizep == size, ("invalid size")); 1784 structsize = sizeof(elf_kinfo_proc_t); 1785 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1786 PROC_LOCK(p); 1787 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 1788 } 1789 *sizep = size; 1790 } 1791 1792 #ifdef KINFO_FILE_SIZE 1793 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 1794 #endif 1795 1796 static void 1797 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 1798 { 1799 struct proc *p; 1800 size_t size; 1801 int structsize; 1802 1803 p = (struct proc *)arg; 1804 if (sb == NULL) { 1805 size = 0; 1806 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1807 sbuf_set_drain(sb, sbuf_drain_count, &size); 1808 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1809 PROC_LOCK(p); 1810 kern_proc_filedesc_out(p, sb, -1); 1811 sbuf_finish(sb); 1812 sbuf_delete(sb); 1813 *sizep = size; 1814 } else { 1815 structsize = sizeof(struct kinfo_file); 1816 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1817 PROC_LOCK(p); 1818 kern_proc_filedesc_out(p, sb, -1); 1819 } 1820 } 1821 1822 #ifdef KINFO_VMENTRY_SIZE 1823 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1824 #endif 1825 1826 static void 1827 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 1828 { 1829 struct proc *p; 1830 size_t size; 1831 int structsize; 1832 1833 p = (struct proc *)arg; 1834 if (sb == NULL) { 1835 size = 0; 1836 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1837 sbuf_set_drain(sb, sbuf_drain_count, &size); 1838 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1839 PROC_LOCK(p); 1840 kern_proc_vmmap_out(p, sb); 1841 sbuf_finish(sb); 1842 sbuf_delete(sb); 1843 *sizep = size; 1844 } else { 1845 structsize = sizeof(struct kinfo_vmentry); 1846 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1847 PROC_LOCK(p); 1848 kern_proc_vmmap_out(p, sb); 1849 } 1850 } 1851 1852 static void 1853 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 1854 { 1855 struct proc *p; 1856 size_t size; 1857 int structsize; 1858 1859 p = (struct proc *)arg; 1860 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 1861 if (sb != NULL) { 1862 KASSERT(*sizep == size, ("invalid size")); 1863 structsize = sizeof(gid_t); 1864 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1865 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 1866 sizeof(gid_t)); 1867 } 1868 *sizep = size; 1869 } 1870 1871 static void 1872 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 1873 { 1874 struct proc *p; 1875 size_t size; 1876 int structsize; 1877 1878 p = (struct proc *)arg; 1879 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 1880 if (sb != NULL) { 1881 KASSERT(*sizep == size, ("invalid size")); 1882 structsize = sizeof(p->p_fd->fd_cmask); 1883 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1884 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 1885 } 1886 *sizep = size; 1887 } 1888 1889 static void 1890 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 1891 { 1892 struct proc *p; 1893 struct rlimit rlim[RLIM_NLIMITS]; 1894 size_t size; 1895 int structsize, i; 1896 1897 p = (struct proc *)arg; 1898 size = sizeof(structsize) + sizeof(rlim); 1899 if (sb != NULL) { 1900 KASSERT(*sizep == size, ("invalid size")); 1901 structsize = sizeof(rlim); 1902 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1903 PROC_LOCK(p); 1904 for (i = 0; i < RLIM_NLIMITS; i++) 1905 lim_rlimit(p, i, &rlim[i]); 1906 PROC_UNLOCK(p); 1907 sbuf_bcat(sb, rlim, sizeof(rlim)); 1908 } 1909 *sizep = size; 1910 } 1911 1912 static void 1913 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 1914 { 1915 struct proc *p; 1916 size_t size; 1917 int structsize; 1918 1919 p = (struct proc *)arg; 1920 size = sizeof(structsize) + sizeof(p->p_osrel); 1921 if (sb != NULL) { 1922 KASSERT(*sizep == size, ("invalid size")); 1923 structsize = sizeof(p->p_osrel); 1924 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1925 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 1926 } 1927 *sizep = size; 1928 } 1929 1930 static void 1931 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 1932 { 1933 struct proc *p; 1934 elf_ps_strings_t ps_strings; 1935 size_t size; 1936 int structsize; 1937 1938 p = (struct proc *)arg; 1939 size = sizeof(structsize) + sizeof(ps_strings); 1940 if (sb != NULL) { 1941 KASSERT(*sizep == size, ("invalid size")); 1942 structsize = sizeof(ps_strings); 1943 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1944 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 1945 #else 1946 ps_strings = p->p_sysent->sv_psstrings; 1947 #endif 1948 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1949 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 1950 } 1951 *sizep = size; 1952 } 1953 1954 static void 1955 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 1956 { 1957 struct proc *p; 1958 size_t size; 1959 int structsize; 1960 1961 p = (struct proc *)arg; 1962 if (sb == NULL) { 1963 size = 0; 1964 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1965 sbuf_set_drain(sb, sbuf_drain_count, &size); 1966 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1967 PHOLD(p); 1968 proc_getauxv(curthread, p, sb); 1969 PRELE(p); 1970 sbuf_finish(sb); 1971 sbuf_delete(sb); 1972 *sizep = size; 1973 } else { 1974 structsize = sizeof(Elf_Auxinfo); 1975 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1976 PHOLD(p); 1977 proc_getauxv(curthread, p, sb); 1978 PRELE(p); 1979 } 1980 } 1981 1982 static boolean_t 1983 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 1984 int32_t *osrel, const Elf_Phdr *pnote) 1985 { 1986 const Elf_Note *note, *note0, *note_end; 1987 const char *note_name; 1988 int i; 1989 1990 if (pnote == NULL || pnote->p_offset > PAGE_SIZE || 1991 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) 1992 return (FALSE); 1993 1994 note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); 1995 note_end = (const Elf_Note *)(imgp->image_header + 1996 pnote->p_offset + pnote->p_filesz); 1997 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 1998 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 1999 (const char *)note < sizeof(Elf_Note)) 2000 return (FALSE); 2001 if (note->n_namesz != checknote->hdr.n_namesz || 2002 note->n_descsz != checknote->hdr.n_descsz || 2003 note->n_type != checknote->hdr.n_type) 2004 goto nextnote; 2005 note_name = (const char *)(note + 1); 2006 if (note_name + checknote->hdr.n_namesz >= 2007 (const char *)note_end || strncmp(checknote->vendor, 2008 note_name, checknote->hdr.n_namesz) != 0) 2009 goto nextnote; 2010 2011 /* 2012 * Fetch the osreldate for binary 2013 * from the ELF OSABI-note if necessary. 2014 */ 2015 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2016 checknote->trans_osrel != NULL) 2017 return (checknote->trans_osrel(note, osrel)); 2018 return (TRUE); 2019 2020 nextnote: 2021 note = (const Elf_Note *)((const char *)(note + 1) + 2022 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2023 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2024 } 2025 2026 return (FALSE); 2027 } 2028 2029 /* 2030 * Try to find the appropriate ABI-note section for checknote, 2031 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2032 * first page of the image is searched, the same as for headers. 2033 */ 2034 static boolean_t 2035 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2036 int32_t *osrel) 2037 { 2038 const Elf_Phdr *phdr; 2039 const Elf_Ehdr *hdr; 2040 int i; 2041 2042 hdr = (const Elf_Ehdr *)imgp->image_header; 2043 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2044 2045 for (i = 0; i < hdr->e_phnum; i++) { 2046 if (phdr[i].p_type == PT_NOTE && 2047 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2048 return (TRUE); 2049 } 2050 return (FALSE); 2051 2052 } 2053 2054 /* 2055 * Tell kern_execve.c about it, with a little help from the linker. 2056 */ 2057 static struct execsw __elfN(execsw) = { 2058 __CONCAT(exec_, __elfN(imgact)), 2059 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2060 }; 2061 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2062 2063 #ifdef COMPRESS_USER_CORES 2064 /* 2065 * Compress and write out a core segment for a user process. 2066 * 2067 * 'inbuf' is the starting address of a VM segment in the process' address 2068 * space that is to be compressed and written out to the core file. 'dest_buf' 2069 * is a buffer in the kernel's address space. The segment is copied from 2070 * 'inbuf' to 'dest_buf' first before being processed by the compression 2071 * routine gzwrite(). This copying is necessary because the content of the VM 2072 * segment may change between the compression pass and the crc-computation pass 2073 * in gzwrite(). This is because realtime threads may preempt the UNIX kernel. 2074 * 2075 * If inbuf is NULL it is assumed that data is already copied to 'dest_buf'. 2076 */ 2077 static int 2078 compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len, 2079 struct thread *td) 2080 { 2081 int len_compressed; 2082 int error = 0; 2083 unsigned int chunk_len; 2084 2085 while (len) { 2086 if (inbuf != NULL) { 2087 chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len; 2088 copyin(inbuf, dest_buf, chunk_len); 2089 inbuf += chunk_len; 2090 } else { 2091 chunk_len = len; 2092 } 2093 len_compressed = gzwrite(file, dest_buf, chunk_len); 2094 2095 EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed); 2096 2097 if ((unsigned int)len_compressed != chunk_len) { 2098 log(LOG_WARNING, 2099 "compress_core: length mismatch (0x%x returned, " 2100 "0x%x expected)\n", len_compressed, chunk_len); 2101 EVENTHANDLER_INVOKE(app_coredump_error, td, 2102 "compress_core: length mismatch %x -> %x", 2103 chunk_len, len_compressed); 2104 error = EFAULT; 2105 break; 2106 } 2107 len -= chunk_len; 2108 maybe_yield(); 2109 } 2110 2111 return (error); 2112 } 2113 #endif /* COMPRESS_USER_CORES */ 2114 2115 static vm_prot_t 2116 __elfN(trans_prot)(Elf_Word flags) 2117 { 2118 vm_prot_t prot; 2119 2120 prot = 0; 2121 if (flags & PF_X) 2122 prot |= VM_PROT_EXECUTE; 2123 if (flags & PF_W) 2124 prot |= VM_PROT_WRITE; 2125 if (flags & PF_R) 2126 prot |= VM_PROT_READ; 2127 #if __ELF_WORD_SIZE == 32 2128 #if defined(__amd64__) 2129 if (i386_read_exec && (flags & PF_R)) 2130 prot |= VM_PROT_EXECUTE; 2131 #endif 2132 #endif 2133 return (prot); 2134 } 2135 2136 static Elf_Word 2137 __elfN(untrans_prot)(vm_prot_t prot) 2138 { 2139 Elf_Word flags; 2140 2141 flags = 0; 2142 if (prot & VM_PROT_EXECUTE) 2143 flags |= PF_X; 2144 if (prot & VM_PROT_READ) 2145 flags |= PF_R; 2146 if (prot & VM_PROT_WRITE) 2147 flags |= PF_W; 2148 return (flags); 2149 } 2150