1 /*- 2 * Copyright (c) 2000 David O'Brien 3 * Copyright (c) 1995-1996 Søren Schmidt 4 * Copyright (c) 1996 Peter Wemm 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer 12 * in this position and unchanged. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_capsicum.h" 35 #include "opt_compat.h" 36 #include "opt_core.h" 37 38 #include <sys/param.h> 39 #include <sys/capability.h> 40 #include <sys/exec.h> 41 #include <sys/fcntl.h> 42 #include <sys/imgact.h> 43 #include <sys/imgact_elf.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mman.h> 49 #include <sys/namei.h> 50 #include <sys/pioctl.h> 51 #include <sys/proc.h> 52 #include <sys/procfs.h> 53 #include <sys/racct.h> 54 #include <sys/resourcevar.h> 55 #include <sys/rwlock.h> 56 #include <sys/sbuf.h> 57 #include <sys/sf_buf.h> 58 #include <sys/smp.h> 59 #include <sys/systm.h> 60 #include <sys/signalvar.h> 61 #include <sys/stat.h> 62 #include <sys/sx.h> 63 #include <sys/syscall.h> 64 #include <sys/sysctl.h> 65 #include <sys/sysent.h> 66 #include <sys/vnode.h> 67 #include <sys/syslog.h> 68 #include <sys/eventhandler.h> 69 #include <sys/user.h> 70 71 #include <net/zlib.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_kern.h> 75 #include <vm/vm_param.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/vm_extern.h> 80 81 #include <machine/elf.h> 82 #include <machine/md_var.h> 83 84 #define ELF_NOTE_ROUNDSIZE 4 85 #define OLD_EI_BRAND 8 86 87 static int __elfN(check_header)(const Elf_Ehdr *hdr); 88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 89 const char *interp, int interp_name_len, int32_t *osrel); 90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 91 u_long *entry, size_t pagesize); 92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 93 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 94 size_t pagesize); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel); 101 static vm_prot_t __elfN(trans_prot)(Elf_Word); 102 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 103 104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 105 ""); 106 107 #ifdef COMPRESS_USER_CORES 108 static int compress_core(gzFile, char *, char *, unsigned int, 109 struct thread * td); 110 #endif 111 #define CORE_BUF_SIZE (16 * 1024) 112 113 int __elfN(fallback_brand) = -1; 114 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 115 fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0, 116 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 117 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand", 118 &__elfN(fallback_brand)); 119 120 static int elf_legacy_coredump = 0; 121 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 122 &elf_legacy_coredump, 0, ""); 123 124 int __elfN(nxstack) = 125 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ 126 1; 127 #else 128 0; 129 #endif 130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 131 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 132 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 133 134 #if __ELF_WORD_SIZE == 32 135 #if defined(__amd64__) || defined(__ia64__) 136 int i386_read_exec = 0; 137 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 138 "enable execution from readable segments"); 139 #endif 140 #endif 141 142 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 143 144 #define trunc_page_ps(va, ps) ((va) & ~(ps - 1)) 145 #define round_page_ps(va, ps) (((va) + (ps - 1)) & ~(ps - 1)) 146 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 147 148 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 149 150 Elf_Brandnote __elfN(freebsd_brandnote) = { 151 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 152 .hdr.n_descsz = sizeof(int32_t), 153 .hdr.n_type = 1, 154 .vendor = FREEBSD_ABI_VENDOR, 155 .flags = BN_TRANSLATE_OSREL, 156 .trans_osrel = __elfN(freebsd_trans_osrel) 157 }; 158 159 static boolean_t 160 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 161 { 162 uintptr_t p; 163 164 p = (uintptr_t)(note + 1); 165 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 166 *osrel = *(const int32_t *)(p); 167 168 return (TRUE); 169 } 170 171 static const char GNU_ABI_VENDOR[] = "GNU"; 172 static int GNU_KFREEBSD_ABI_DESC = 3; 173 174 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 175 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 176 .hdr.n_descsz = 16, /* XXX at least 16 */ 177 .hdr.n_type = 1, 178 .vendor = GNU_ABI_VENDOR, 179 .flags = BN_TRANSLATE_OSREL, 180 .trans_osrel = kfreebsd_trans_osrel 181 }; 182 183 static boolean_t 184 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 185 { 186 const Elf32_Word *desc; 187 uintptr_t p; 188 189 p = (uintptr_t)(note + 1); 190 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 191 192 desc = (const Elf32_Word *)p; 193 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 194 return (FALSE); 195 196 /* 197 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 198 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 199 */ 200 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 201 202 return (TRUE); 203 } 204 205 int 206 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 207 { 208 int i; 209 210 for (i = 0; i < MAX_BRANDS; i++) { 211 if (elf_brand_list[i] == NULL) { 212 elf_brand_list[i] = entry; 213 break; 214 } 215 } 216 if (i == MAX_BRANDS) { 217 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 218 __func__, entry); 219 return (-1); 220 } 221 return (0); 222 } 223 224 int 225 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 226 { 227 int i; 228 229 for (i = 0; i < MAX_BRANDS; i++) { 230 if (elf_brand_list[i] == entry) { 231 elf_brand_list[i] = NULL; 232 break; 233 } 234 } 235 if (i == MAX_BRANDS) 236 return (-1); 237 return (0); 238 } 239 240 int 241 __elfN(brand_inuse)(Elf_Brandinfo *entry) 242 { 243 struct proc *p; 244 int rval = FALSE; 245 246 sx_slock(&allproc_lock); 247 FOREACH_PROC_IN_SYSTEM(p) { 248 if (p->p_sysent == entry->sysvec) { 249 rval = TRUE; 250 break; 251 } 252 } 253 sx_sunlock(&allproc_lock); 254 255 return (rval); 256 } 257 258 static Elf_Brandinfo * 259 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 260 int interp_name_len, int32_t *osrel) 261 { 262 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 263 Elf_Brandinfo *bi; 264 boolean_t ret; 265 int i; 266 267 /* 268 * We support four types of branding -- (1) the ELF EI_OSABI field 269 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 270 * branding w/in the ELF header, (3) path of the `interp_path' 271 * field, and (4) the ".note.ABI-tag" ELF section. 272 */ 273 274 /* Look for an ".note.ABI-tag" ELF section */ 275 for (i = 0; i < MAX_BRANDS; i++) { 276 bi = elf_brand_list[i]; 277 if (bi == NULL) 278 continue; 279 if (hdr->e_machine == bi->machine && (bi->flags & 280 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 281 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 282 if (ret) 283 return (bi); 284 } 285 } 286 287 /* If the executable has a brand, search for it in the brand list. */ 288 for (i = 0; i < MAX_BRANDS; i++) { 289 bi = elf_brand_list[i]; 290 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 291 continue; 292 if (hdr->e_machine == bi->machine && 293 (hdr->e_ident[EI_OSABI] == bi->brand || 294 strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 295 bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0)) 296 return (bi); 297 } 298 299 /* Lacking a known brand, search for a recognized interpreter. */ 300 if (interp != NULL) { 301 for (i = 0; i < MAX_BRANDS; i++) { 302 bi = elf_brand_list[i]; 303 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 304 continue; 305 if (hdr->e_machine == bi->machine && 306 /* ELF image p_filesz includes terminating zero */ 307 strlen(bi->interp_path) + 1 == interp_name_len && 308 strncmp(interp, bi->interp_path, interp_name_len) 309 == 0) 310 return (bi); 311 } 312 } 313 314 /* Lacking a recognized interpreter, try the default brand */ 315 for (i = 0; i < MAX_BRANDS; i++) { 316 bi = elf_brand_list[i]; 317 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY) 318 continue; 319 if (hdr->e_machine == bi->machine && 320 __elfN(fallback_brand) == bi->brand) 321 return (bi); 322 } 323 return (NULL); 324 } 325 326 static int 327 __elfN(check_header)(const Elf_Ehdr *hdr) 328 { 329 Elf_Brandinfo *bi; 330 int i; 331 332 if (!IS_ELF(*hdr) || 333 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 334 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 335 hdr->e_ident[EI_VERSION] != EV_CURRENT || 336 hdr->e_phentsize != sizeof(Elf_Phdr) || 337 hdr->e_version != ELF_TARG_VER) 338 return (ENOEXEC); 339 340 /* 341 * Make sure we have at least one brand for this machine. 342 */ 343 344 for (i = 0; i < MAX_BRANDS; i++) { 345 bi = elf_brand_list[i]; 346 if (bi != NULL && bi->machine == hdr->e_machine) 347 break; 348 } 349 if (i == MAX_BRANDS) 350 return (ENOEXEC); 351 352 return (0); 353 } 354 355 static int 356 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 357 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 358 { 359 struct sf_buf *sf; 360 int error; 361 vm_offset_t off; 362 363 /* 364 * Create the page if it doesn't exist yet. Ignore errors. 365 */ 366 vm_map_lock(map); 367 vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end), 368 VM_PROT_ALL, VM_PROT_ALL, 0); 369 vm_map_unlock(map); 370 371 /* 372 * Find the page from the underlying object. 373 */ 374 if (object) { 375 sf = vm_imgact_map_page(object, offset); 376 if (sf == NULL) 377 return (KERN_FAILURE); 378 off = offset - trunc_page(offset); 379 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 380 end - start); 381 vm_imgact_unmap_page(sf); 382 if (error) { 383 return (KERN_FAILURE); 384 } 385 } 386 387 return (KERN_SUCCESS); 388 } 389 390 static int 391 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 392 vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) 393 { 394 struct sf_buf *sf; 395 vm_offset_t off; 396 vm_size_t sz; 397 int error, rv; 398 399 if (start != trunc_page(start)) { 400 rv = __elfN(map_partial)(map, object, offset, start, 401 round_page(start), prot); 402 if (rv) 403 return (rv); 404 offset += round_page(start) - start; 405 start = round_page(start); 406 } 407 if (end != round_page(end)) { 408 rv = __elfN(map_partial)(map, object, offset + 409 trunc_page(end) - start, trunc_page(end), end, prot); 410 if (rv) 411 return (rv); 412 end = trunc_page(end); 413 } 414 if (end > start) { 415 if (offset & PAGE_MASK) { 416 /* 417 * The mapping is not page aligned. This means we have 418 * to copy the data. Sigh. 419 */ 420 rv = vm_map_find(map, NULL, 0, &start, end - start, 421 FALSE, prot | VM_PROT_WRITE, VM_PROT_ALL, 0); 422 if (rv) 423 return (rv); 424 if (object == NULL) 425 return (KERN_SUCCESS); 426 for (; start < end; start += sz) { 427 sf = vm_imgact_map_page(object, offset); 428 if (sf == NULL) 429 return (KERN_FAILURE); 430 off = offset - trunc_page(offset); 431 sz = end - start; 432 if (sz > PAGE_SIZE - off) 433 sz = PAGE_SIZE - off; 434 error = copyout((caddr_t)sf_buf_kva(sf) + off, 435 (caddr_t)start, sz); 436 vm_imgact_unmap_page(sf); 437 if (error) { 438 return (KERN_FAILURE); 439 } 440 offset += sz; 441 } 442 rv = KERN_SUCCESS; 443 } else { 444 vm_object_reference(object); 445 vm_map_lock(map); 446 rv = vm_map_insert(map, object, offset, start, end, 447 prot, VM_PROT_ALL, cow); 448 vm_map_unlock(map); 449 if (rv != KERN_SUCCESS) 450 vm_object_deallocate(object); 451 } 452 return (rv); 453 } else { 454 return (KERN_SUCCESS); 455 } 456 } 457 458 static int 459 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset, 460 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 461 size_t pagesize) 462 { 463 struct sf_buf *sf; 464 size_t map_len; 465 vm_map_t map; 466 vm_object_t object; 467 vm_offset_t map_addr; 468 int error, rv, cow; 469 size_t copy_len; 470 vm_offset_t file_addr; 471 472 /* 473 * It's necessary to fail if the filsz + offset taken from the 474 * header is greater than the actual file pager object's size. 475 * If we were to allow this, then the vm_map_find() below would 476 * walk right off the end of the file object and into the ether. 477 * 478 * While I'm here, might as well check for something else that 479 * is invalid: filsz cannot be greater than memsz. 480 */ 481 if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) { 482 uprintf("elf_load_section: truncated ELF file\n"); 483 return (ENOEXEC); 484 } 485 486 object = imgp->object; 487 map = &imgp->proc->p_vmspace->vm_map; 488 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 489 file_addr = trunc_page_ps(offset, pagesize); 490 491 /* 492 * We have two choices. We can either clear the data in the last page 493 * of an oversized mapping, or we can start the anon mapping a page 494 * early and copy the initialized data into that first page. We 495 * choose the second.. 496 */ 497 if (memsz > filsz) 498 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 499 else 500 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 501 502 if (map_len != 0) { 503 /* cow flags: don't dump readonly sections in core */ 504 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 505 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 506 507 rv = __elfN(map_insert)(map, 508 object, 509 file_addr, /* file offset */ 510 map_addr, /* virtual start */ 511 map_addr + map_len,/* virtual end */ 512 prot, 513 cow); 514 if (rv != KERN_SUCCESS) 515 return (EINVAL); 516 517 /* we can stop now if we've covered it all */ 518 if (memsz == filsz) { 519 return (0); 520 } 521 } 522 523 524 /* 525 * We have to get the remaining bit of the file into the first part 526 * of the oversized map segment. This is normally because the .data 527 * segment in the file is extended to provide bss. It's a neat idea 528 * to try and save a page, but it's a pain in the behind to implement. 529 */ 530 copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize); 531 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 532 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 533 map_addr; 534 535 /* This had damn well better be true! */ 536 if (map_len != 0) { 537 rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr + 538 map_len, VM_PROT_ALL, 0); 539 if (rv != KERN_SUCCESS) { 540 return (EINVAL); 541 } 542 } 543 544 if (copy_len != 0) { 545 vm_offset_t off; 546 547 sf = vm_imgact_map_page(object, offset + filsz); 548 if (sf == NULL) 549 return (EIO); 550 551 /* send the page fragment to user space */ 552 off = trunc_page_ps(offset + filsz, pagesize) - 553 trunc_page(offset + filsz); 554 error = copyout((caddr_t)sf_buf_kva(sf) + off, 555 (caddr_t)map_addr, copy_len); 556 vm_imgact_unmap_page(sf); 557 if (error) { 558 return (error); 559 } 560 } 561 562 /* 563 * set it to the specified protection. 564 * XXX had better undo the damage from pasting over the cracks here! 565 */ 566 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 567 map_len), prot, FALSE); 568 569 return (0); 570 } 571 572 /* 573 * Load the file "file" into memory. It may be either a shared object 574 * or an executable. 575 * 576 * The "addr" reference parameter is in/out. On entry, it specifies 577 * the address where a shared object should be loaded. If the file is 578 * an executable, this value is ignored. On exit, "addr" specifies 579 * where the file was actually loaded. 580 * 581 * The "entry" reference parameter is out only. On exit, it specifies 582 * the entry point for the loaded file. 583 */ 584 static int 585 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 586 u_long *entry, size_t pagesize) 587 { 588 struct { 589 struct nameidata nd; 590 struct vattr attr; 591 struct image_params image_params; 592 } *tempdata; 593 const Elf_Ehdr *hdr = NULL; 594 const Elf_Phdr *phdr = NULL; 595 struct nameidata *nd; 596 struct vattr *attr; 597 struct image_params *imgp; 598 vm_prot_t prot; 599 u_long rbase; 600 u_long base_addr = 0; 601 int error, i, numsegs; 602 603 #ifdef CAPABILITY_MODE 604 /* 605 * XXXJA: This check can go away once we are sufficiently confident 606 * that the checks in namei() are correct. 607 */ 608 if (IN_CAPABILITY_MODE(curthread)) 609 return (ECAPMODE); 610 #endif 611 612 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 613 nd = &tempdata->nd; 614 attr = &tempdata->attr; 615 imgp = &tempdata->image_params; 616 617 /* 618 * Initialize part of the common data 619 */ 620 imgp->proc = p; 621 imgp->attr = attr; 622 imgp->firstpage = NULL; 623 imgp->image_header = NULL; 624 imgp->object = NULL; 625 imgp->execlabel = NULL; 626 627 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 628 if ((error = namei(nd)) != 0) { 629 nd->ni_vp = NULL; 630 goto fail; 631 } 632 NDFREE(nd, NDF_ONLY_PNBUF); 633 imgp->vp = nd->ni_vp; 634 635 /* 636 * Check permissions, modes, uid, etc on the file, and "open" it. 637 */ 638 error = exec_check_permissions(imgp); 639 if (error) 640 goto fail; 641 642 error = exec_map_first_page(imgp); 643 if (error) 644 goto fail; 645 646 /* 647 * Also make certain that the interpreter stays the same, so set 648 * its VV_TEXT flag, too. 649 */ 650 VOP_SET_TEXT(nd->ni_vp); 651 652 imgp->object = nd->ni_vp->v_object; 653 654 hdr = (const Elf_Ehdr *)imgp->image_header; 655 if ((error = __elfN(check_header)(hdr)) != 0) 656 goto fail; 657 if (hdr->e_type == ET_DYN) 658 rbase = *addr; 659 else if (hdr->e_type == ET_EXEC) 660 rbase = 0; 661 else { 662 error = ENOEXEC; 663 goto fail; 664 } 665 666 /* Only support headers that fit within first page for now */ 667 if ((hdr->e_phoff > PAGE_SIZE) || 668 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 669 error = ENOEXEC; 670 goto fail; 671 } 672 673 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 674 if (!aligned(phdr, Elf_Addr)) { 675 error = ENOEXEC; 676 goto fail; 677 } 678 679 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 680 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 681 /* Loadable segment */ 682 prot = __elfN(trans_prot)(phdr[i].p_flags); 683 error = __elfN(load_section)(imgp, phdr[i].p_offset, 684 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 685 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 686 if (error != 0) 687 goto fail; 688 /* 689 * Establish the base address if this is the 690 * first segment. 691 */ 692 if (numsegs == 0) 693 base_addr = trunc_page(phdr[i].p_vaddr + 694 rbase); 695 numsegs++; 696 } 697 } 698 *addr = base_addr; 699 *entry = (unsigned long)hdr->e_entry + rbase; 700 701 fail: 702 if (imgp->firstpage) 703 exec_unmap_first_page(imgp); 704 705 if (nd->ni_vp) 706 vput(nd->ni_vp); 707 708 free(tempdata, M_TEMP); 709 710 return (error); 711 } 712 713 static int 714 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 715 { 716 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 717 const Elf_Phdr *phdr; 718 Elf_Auxargs *elf_auxargs; 719 struct vmspace *vmspace; 720 vm_prot_t prot; 721 u_long text_size = 0, data_size = 0, total_size = 0; 722 u_long text_addr = 0, data_addr = 0; 723 u_long seg_size, seg_addr; 724 u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0; 725 int32_t osrel = 0; 726 int error = 0, i, n, interp_name_len = 0; 727 const char *interp = NULL, *newinterp = NULL; 728 Elf_Brandinfo *brand_info; 729 char *path; 730 struct sysentvec *sv; 731 732 /* 733 * Do we have a valid ELF header ? 734 * 735 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 736 * if particular brand doesn't support it. 737 */ 738 if (__elfN(check_header)(hdr) != 0 || 739 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 740 return (-1); 741 742 /* 743 * From here on down, we return an errno, not -1, as we've 744 * detected an ELF file. 745 */ 746 747 if ((hdr->e_phoff > PAGE_SIZE) || 748 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 749 /* Only support headers in first page for now */ 750 return (ENOEXEC); 751 } 752 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 753 if (!aligned(phdr, Elf_Addr)) 754 return (ENOEXEC); 755 n = 0; 756 baddr = 0; 757 for (i = 0; i < hdr->e_phnum; i++) { 758 switch (phdr[i].p_type) { 759 case PT_LOAD: 760 if (n == 0) 761 baddr = phdr[i].p_vaddr; 762 n++; 763 break; 764 case PT_INTERP: 765 /* Path to interpreter */ 766 if (phdr[i].p_filesz > MAXPATHLEN || 767 phdr[i].p_offset > PAGE_SIZE || 768 phdr[i].p_filesz > PAGE_SIZE - phdr[i].p_offset) 769 return (ENOEXEC); 770 interp = imgp->image_header + phdr[i].p_offset; 771 interp_name_len = phdr[i].p_filesz; 772 break; 773 case PT_GNU_STACK: 774 if (__elfN(nxstack)) 775 imgp->stack_prot = 776 __elfN(trans_prot)(phdr[i].p_flags); 777 break; 778 } 779 } 780 781 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 782 &osrel); 783 if (brand_info == NULL) { 784 uprintf("ELF binary type \"%u\" not known.\n", 785 hdr->e_ident[EI_OSABI]); 786 return (ENOEXEC); 787 } 788 if (hdr->e_type == ET_DYN) { 789 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) 790 return (ENOEXEC); 791 /* 792 * Honour the base load address from the dso if it is 793 * non-zero for some reason. 794 */ 795 if (baddr == 0) 796 et_dyn_addr = ET_DYN_LOAD_ADDR; 797 else 798 et_dyn_addr = 0; 799 } else 800 et_dyn_addr = 0; 801 sv = brand_info->sysvec; 802 if (interp != NULL && brand_info->interp_newpath != NULL) 803 newinterp = brand_info->interp_newpath; 804 805 /* 806 * Avoid a possible deadlock if the current address space is destroyed 807 * and that address space maps the locked vnode. In the common case, 808 * the locked vnode's v_usecount is decremented but remains greater 809 * than zero. Consequently, the vnode lock is not needed by vrele(). 810 * However, in cases where the vnode lock is external, such as nullfs, 811 * v_usecount may become zero. 812 * 813 * The VV_TEXT flag prevents modifications to the executable while 814 * the vnode is unlocked. 815 */ 816 VOP_UNLOCK(imgp->vp, 0); 817 818 error = exec_new_vmspace(imgp, sv); 819 imgp->proc->p_sysent = sv; 820 821 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 822 if (error) 823 return (error); 824 825 for (i = 0; i < hdr->e_phnum; i++) { 826 switch (phdr[i].p_type) { 827 case PT_LOAD: /* Loadable segment */ 828 if (phdr[i].p_memsz == 0) 829 break; 830 prot = __elfN(trans_prot)(phdr[i].p_flags); 831 error = __elfN(load_section)(imgp, phdr[i].p_offset, 832 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 833 phdr[i].p_memsz, phdr[i].p_filesz, prot, 834 sv->sv_pagesize); 835 if (error != 0) 836 return (error); 837 838 /* 839 * If this segment contains the program headers, 840 * remember their virtual address for the AT_PHDR 841 * aux entry. Static binaries don't usually include 842 * a PT_PHDR entry. 843 */ 844 if (phdr[i].p_offset == 0 && 845 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 846 <= phdr[i].p_filesz) 847 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 848 et_dyn_addr; 849 850 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 851 seg_size = round_page(phdr[i].p_memsz + 852 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 853 854 /* 855 * Make the largest executable segment the official 856 * text segment and all others data. 857 * 858 * Note that obreak() assumes that data_addr + 859 * data_size == end of data load area, and the ELF 860 * file format expects segments to be sorted by 861 * address. If multiple data segments exist, the 862 * last one will be used. 863 */ 864 865 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 866 text_size = seg_size; 867 text_addr = seg_addr; 868 } else { 869 data_size = seg_size; 870 data_addr = seg_addr; 871 } 872 total_size += seg_size; 873 break; 874 case PT_PHDR: /* Program header table info */ 875 proghdr = phdr[i].p_vaddr + et_dyn_addr; 876 break; 877 default: 878 break; 879 } 880 } 881 882 if (data_addr == 0 && data_size == 0) { 883 data_addr = text_addr; 884 data_size = text_size; 885 } 886 887 entry = (u_long)hdr->e_entry + et_dyn_addr; 888 889 /* 890 * Check limits. It should be safe to check the 891 * limits after loading the segments since we do 892 * not actually fault in all the segments pages. 893 */ 894 PROC_LOCK(imgp->proc); 895 if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) || 896 text_size > maxtsiz || 897 total_size > lim_cur(imgp->proc, RLIMIT_VMEM) || 898 racct_set(imgp->proc, RACCT_DATA, data_size) != 0 || 899 racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) { 900 PROC_UNLOCK(imgp->proc); 901 return (ENOMEM); 902 } 903 904 vmspace = imgp->proc->p_vmspace; 905 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 906 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 907 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 908 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 909 910 /* 911 * We load the dynamic linker where a userland call 912 * to mmap(0, ...) would put it. The rationale behind this 913 * calculation is that it leaves room for the heap to grow to 914 * its maximum allowed size. 915 */ 916 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc, 917 RLIMIT_DATA)); 918 PROC_UNLOCK(imgp->proc); 919 920 imgp->entry_addr = entry; 921 922 if (interp != NULL) { 923 int have_interp = FALSE; 924 VOP_UNLOCK(imgp->vp, 0); 925 if (brand_info->emul_path != NULL && 926 brand_info->emul_path[0] != '\0') { 927 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 928 snprintf(path, MAXPATHLEN, "%s%s", 929 brand_info->emul_path, interp); 930 error = __elfN(load_file)(imgp->proc, path, &addr, 931 &imgp->entry_addr, sv->sv_pagesize); 932 free(path, M_TEMP); 933 if (error == 0) 934 have_interp = TRUE; 935 } 936 if (!have_interp && newinterp != NULL) { 937 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 938 &imgp->entry_addr, sv->sv_pagesize); 939 if (error == 0) 940 have_interp = TRUE; 941 } 942 if (!have_interp) { 943 error = __elfN(load_file)(imgp->proc, interp, &addr, 944 &imgp->entry_addr, sv->sv_pagesize); 945 } 946 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 947 if (error != 0) { 948 uprintf("ELF interpreter %s not found\n", interp); 949 return (error); 950 } 951 } else 952 addr = et_dyn_addr; 953 954 /* 955 * Construct auxargs table (used by the fixup routine) 956 */ 957 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 958 elf_auxargs->execfd = -1; 959 elf_auxargs->phdr = proghdr; 960 elf_auxargs->phent = hdr->e_phentsize; 961 elf_auxargs->phnum = hdr->e_phnum; 962 elf_auxargs->pagesz = PAGE_SIZE; 963 elf_auxargs->base = addr; 964 elf_auxargs->flags = 0; 965 elf_auxargs->entry = entry; 966 967 imgp->auxargs = elf_auxargs; 968 imgp->interpreted = 0; 969 imgp->reloc_base = addr; 970 imgp->proc->p_osrel = osrel; 971 972 return (error); 973 } 974 975 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 976 977 int 978 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 979 { 980 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 981 Elf_Addr *base; 982 Elf_Addr *pos; 983 984 base = (Elf_Addr *)*stack_base; 985 pos = base + (imgp->args->argc + imgp->args->envc + 2); 986 987 if (args->execfd != -1) 988 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 989 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 990 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 991 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 992 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 993 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 994 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 995 AUXARGS_ENTRY(pos, AT_BASE, args->base); 996 if (imgp->execpathp != 0) 997 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 998 AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate); 999 if (imgp->canary != 0) { 1000 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1001 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1002 } 1003 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1004 if (imgp->pagesizes != 0) { 1005 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1006 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1007 } 1008 if (imgp->sysent->sv_timekeep_base != 0) { 1009 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1010 imgp->sysent->sv_timekeep_base); 1011 } 1012 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1013 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1014 imgp->sysent->sv_stackprot); 1015 AUXARGS_ENTRY(pos, AT_NULL, 0); 1016 1017 free(imgp->auxargs, M_TEMP); 1018 imgp->auxargs = NULL; 1019 1020 base--; 1021 suword(base, (long)imgp->args->argc); 1022 *stack_base = (register_t *)base; 1023 return (0); 1024 } 1025 1026 /* 1027 * Code for generating ELF core dumps. 1028 */ 1029 1030 typedef void (*segment_callback)(vm_map_entry_t, void *); 1031 1032 /* Closure for cb_put_phdr(). */ 1033 struct phdr_closure { 1034 Elf_Phdr *phdr; /* Program header to fill in */ 1035 Elf_Off offset; /* Offset of segment in core file */ 1036 }; 1037 1038 /* Closure for cb_size_segment(). */ 1039 struct sseg_closure { 1040 int count; /* Count of writable segments. */ 1041 size_t size; /* Total size of all writable segments. */ 1042 }; 1043 1044 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1045 1046 struct note_info { 1047 int type; /* Note type. */ 1048 outfunc_t outfunc; /* Output function. */ 1049 void *outarg; /* Argument for the output function. */ 1050 size_t outsize; /* Output size. */ 1051 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1052 }; 1053 1054 TAILQ_HEAD(note_info_list, note_info); 1055 1056 static void cb_put_phdr(vm_map_entry_t, void *); 1057 static void cb_size_segment(vm_map_entry_t, void *); 1058 static void each_writable_segment(struct thread *, segment_callback, void *); 1059 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *, 1060 int, void *, size_t, struct note_info_list *, size_t, gzFile); 1061 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1062 size_t *); 1063 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1064 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1065 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1066 static int sbuf_drain_core_output(void *, const char *, int); 1067 static int sbuf_drain_count(void *arg, const char *data, int len); 1068 1069 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1070 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1071 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1072 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1073 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1074 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1075 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1076 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1077 static void note_procstat_files(void *, struct sbuf *, size_t *); 1078 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1079 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1080 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1081 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1082 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1083 1084 #ifdef COMPRESS_USER_CORES 1085 extern int compress_user_cores; 1086 extern int compress_user_cores_gzlevel; 1087 #endif 1088 1089 static int 1090 core_output(struct vnode *vp, void *base, size_t len, off_t offset, 1091 struct ucred *active_cred, struct ucred *file_cred, 1092 struct thread *td, char *core_buf, gzFile gzfile) { 1093 1094 int error; 1095 if (gzfile) { 1096 #ifdef COMPRESS_USER_CORES 1097 error = compress_core(gzfile, base, core_buf, len, td); 1098 #else 1099 panic("shouldn't be here"); 1100 #endif 1101 } else { 1102 error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset, 1103 UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred, 1104 NULL, td); 1105 } 1106 return (error); 1107 } 1108 1109 /* Coredump output parameters for sbuf drain routine. */ 1110 struct sbuf_drain_core_params { 1111 off_t offset; 1112 struct ucred *active_cred; 1113 struct ucred *file_cred; 1114 struct thread *td; 1115 struct vnode *vp; 1116 #ifdef COMPRESS_USER_CORES 1117 gzFile gzfile; 1118 #endif 1119 }; 1120 1121 /* 1122 * Drain into a core file. 1123 */ 1124 static int 1125 sbuf_drain_core_output(void *arg, const char *data, int len) 1126 { 1127 struct sbuf_drain_core_params *p; 1128 int error, locked; 1129 1130 p = (struct sbuf_drain_core_params *)arg; 1131 1132 /* 1133 * Some kern_proc out routines that print to this sbuf may 1134 * call us with the process lock held. Draining with the 1135 * non-sleepable lock held is unsafe. The lock is needed for 1136 * those routines when dumping a live process. In our case we 1137 * can safely release the lock before draining and acquire 1138 * again after. 1139 */ 1140 locked = PROC_LOCKED(p->td->td_proc); 1141 if (locked) 1142 PROC_UNLOCK(p->td->td_proc); 1143 #ifdef COMPRESS_USER_CORES 1144 if (p->gzfile != Z_NULL) 1145 error = compress_core(p->gzfile, NULL, __DECONST(char *, data), 1146 len, p->td); 1147 else 1148 #endif 1149 error = vn_rdwr_inchunks(UIO_WRITE, p->vp, 1150 __DECONST(void *, data), len, p->offset, UIO_SYSSPACE, 1151 IO_UNIT | IO_DIRECT, p->active_cred, p->file_cred, NULL, 1152 p->td); 1153 if (locked) 1154 PROC_LOCK(p->td->td_proc); 1155 if (error != 0) 1156 return (-error); 1157 p->offset += len; 1158 return (len); 1159 } 1160 1161 /* 1162 * Drain into a counter. 1163 */ 1164 static int 1165 sbuf_drain_count(void *arg, const char *data __unused, int len) 1166 { 1167 size_t *sizep; 1168 1169 sizep = (size_t *)arg; 1170 *sizep += len; 1171 return (len); 1172 } 1173 1174 int 1175 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1176 { 1177 struct ucred *cred = td->td_ucred; 1178 int error = 0; 1179 struct sseg_closure seginfo; 1180 struct note_info_list notelst; 1181 struct note_info *ninfo; 1182 void *hdr; 1183 size_t hdrsize, notesz, coresize; 1184 1185 gzFile gzfile = Z_NULL; 1186 char *core_buf = NULL; 1187 #ifdef COMPRESS_USER_CORES 1188 char gzopen_flags[8]; 1189 char *p; 1190 int doing_compress = flags & IMGACT_CORE_COMPRESS; 1191 #endif 1192 1193 hdr = NULL; 1194 TAILQ_INIT(¬elst); 1195 1196 #ifdef COMPRESS_USER_CORES 1197 if (doing_compress) { 1198 p = gzopen_flags; 1199 *p++ = 'w'; 1200 if (compress_user_cores_gzlevel >= 0 && 1201 compress_user_cores_gzlevel <= 9) 1202 *p++ = '0' + compress_user_cores_gzlevel; 1203 *p = 0; 1204 gzfile = gz_open("", gzopen_flags, vp); 1205 if (gzfile == Z_NULL) { 1206 error = EFAULT; 1207 goto done; 1208 } 1209 core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1210 if (!core_buf) { 1211 error = ENOMEM; 1212 goto done; 1213 } 1214 } 1215 #endif 1216 1217 /* Size the program segments. */ 1218 seginfo.count = 0; 1219 seginfo.size = 0; 1220 each_writable_segment(td, cb_size_segment, &seginfo); 1221 1222 /* 1223 * Collect info about the core file header area. 1224 */ 1225 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1226 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1227 coresize = round_page(hdrsize + notesz) + seginfo.size; 1228 1229 #ifdef RACCT 1230 PROC_LOCK(td->td_proc); 1231 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1232 PROC_UNLOCK(td->td_proc); 1233 if (error != 0) { 1234 error = EFAULT; 1235 goto done; 1236 } 1237 #endif 1238 if (coresize >= limit) { 1239 error = EFAULT; 1240 goto done; 1241 } 1242 1243 /* 1244 * Allocate memory for building the header, fill it up, 1245 * and write it out following the notes. 1246 */ 1247 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1248 if (hdr == NULL) { 1249 error = EINVAL; 1250 goto done; 1251 } 1252 error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize, 1253 ¬elst, notesz, gzfile); 1254 1255 /* Write the contents of all of the writable segments. */ 1256 if (error == 0) { 1257 Elf_Phdr *php; 1258 off_t offset; 1259 int i; 1260 1261 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1262 offset = round_page(hdrsize + notesz); 1263 for (i = 0; i < seginfo.count; i++) { 1264 error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr, 1265 php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile); 1266 if (error != 0) 1267 break; 1268 offset += php->p_filesz; 1269 php++; 1270 } 1271 } 1272 if (error) { 1273 log(LOG_WARNING, 1274 "Failed to write core file for process %s (error %d)\n", 1275 curproc->p_comm, error); 1276 } 1277 1278 done: 1279 #ifdef COMPRESS_USER_CORES 1280 if (core_buf) 1281 free(core_buf, M_TEMP); 1282 if (gzfile) 1283 gzclose(gzfile); 1284 #endif 1285 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1286 TAILQ_REMOVE(¬elst, ninfo, link); 1287 free(ninfo, M_TEMP); 1288 } 1289 if (hdr != NULL) 1290 free(hdr, M_TEMP); 1291 1292 return (error); 1293 } 1294 1295 /* 1296 * A callback for each_writable_segment() to write out the segment's 1297 * program header entry. 1298 */ 1299 static void 1300 cb_put_phdr(entry, closure) 1301 vm_map_entry_t entry; 1302 void *closure; 1303 { 1304 struct phdr_closure *phc = (struct phdr_closure *)closure; 1305 Elf_Phdr *phdr = phc->phdr; 1306 1307 phc->offset = round_page(phc->offset); 1308 1309 phdr->p_type = PT_LOAD; 1310 phdr->p_offset = phc->offset; 1311 phdr->p_vaddr = entry->start; 1312 phdr->p_paddr = 0; 1313 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1314 phdr->p_align = PAGE_SIZE; 1315 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1316 1317 phc->offset += phdr->p_filesz; 1318 phc->phdr++; 1319 } 1320 1321 /* 1322 * A callback for each_writable_segment() to gather information about 1323 * the number of segments and their total size. 1324 */ 1325 static void 1326 cb_size_segment(entry, closure) 1327 vm_map_entry_t entry; 1328 void *closure; 1329 { 1330 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1331 1332 ssc->count++; 1333 ssc->size += entry->end - entry->start; 1334 } 1335 1336 /* 1337 * For each writable segment in the process's memory map, call the given 1338 * function with a pointer to the map entry and some arbitrary 1339 * caller-supplied data. 1340 */ 1341 static void 1342 each_writable_segment(td, func, closure) 1343 struct thread *td; 1344 segment_callback func; 1345 void *closure; 1346 { 1347 struct proc *p = td->td_proc; 1348 vm_map_t map = &p->p_vmspace->vm_map; 1349 vm_map_entry_t entry; 1350 vm_object_t backing_object, object; 1351 boolean_t ignore_entry; 1352 1353 vm_map_lock_read(map); 1354 for (entry = map->header.next; entry != &map->header; 1355 entry = entry->next) { 1356 /* 1357 * Don't dump inaccessible mappings, deal with legacy 1358 * coredump mode. 1359 * 1360 * Note that read-only segments related to the elf binary 1361 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1362 * need to arbitrarily ignore such segments. 1363 */ 1364 if (elf_legacy_coredump) { 1365 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1366 continue; 1367 } else { 1368 if ((entry->protection & VM_PROT_ALL) == 0) 1369 continue; 1370 } 1371 1372 /* 1373 * Dont include memory segment in the coredump if 1374 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1375 * madvise(2). Do not dump submaps (i.e. parts of the 1376 * kernel map). 1377 */ 1378 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1379 continue; 1380 1381 if ((object = entry->object.vm_object) == NULL) 1382 continue; 1383 1384 /* Ignore memory-mapped devices and such things. */ 1385 VM_OBJECT_RLOCK(object); 1386 while ((backing_object = object->backing_object) != NULL) { 1387 VM_OBJECT_RLOCK(backing_object); 1388 VM_OBJECT_RUNLOCK(object); 1389 object = backing_object; 1390 } 1391 ignore_entry = object->type != OBJT_DEFAULT && 1392 object->type != OBJT_SWAP && object->type != OBJT_VNODE; 1393 VM_OBJECT_RUNLOCK(object); 1394 if (ignore_entry) 1395 continue; 1396 1397 (*func)(entry, closure); 1398 } 1399 vm_map_unlock_read(map); 1400 } 1401 1402 /* 1403 * Write the core file header to the file, including padding up to 1404 * the page boundary. 1405 */ 1406 static int 1407 __elfN(corehdr)(struct thread *td, struct vnode *vp, struct ucred *cred, 1408 int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst, 1409 size_t notesz, gzFile gzfile) 1410 { 1411 struct sbuf_drain_core_params params; 1412 struct note_info *ninfo; 1413 struct sbuf *sb; 1414 int error; 1415 1416 /* Fill in the header. */ 1417 bzero(hdr, hdrsize); 1418 __elfN(puthdr)(td, hdr, hdrsize, numsegs, notesz); 1419 1420 params.offset = 0; 1421 params.active_cred = cred; 1422 params.file_cred = NOCRED; 1423 params.td = td; 1424 params.vp = vp; 1425 #ifdef COMPRESS_USER_CORES 1426 params.gzfile = gzfile; 1427 #endif 1428 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1429 sbuf_set_drain(sb, sbuf_drain_core_output, ¶ms); 1430 sbuf_start_section(sb, NULL); 1431 sbuf_bcat(sb, hdr, hdrsize); 1432 TAILQ_FOREACH(ninfo, notelst, link) 1433 __elfN(putnote)(ninfo, sb); 1434 /* Align up to a page boundary for the program segments. */ 1435 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1436 error = sbuf_finish(sb); 1437 sbuf_delete(sb); 1438 1439 return (error); 1440 } 1441 1442 static void 1443 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1444 size_t *sizep) 1445 { 1446 struct proc *p; 1447 struct thread *thr; 1448 size_t size; 1449 1450 p = td->td_proc; 1451 size = 0; 1452 1453 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1454 1455 /* 1456 * To have the debugger select the right thread (LWP) as the initial 1457 * thread, we dump the state of the thread passed to us in td first. 1458 * This is the thread that causes the core dump and thus likely to 1459 * be the right thread one wants to have selected in the debugger. 1460 */ 1461 thr = td; 1462 while (thr != NULL) { 1463 size += register_note(list, NT_PRSTATUS, 1464 __elfN(note_prstatus), thr); 1465 size += register_note(list, NT_FPREGSET, 1466 __elfN(note_fpregset), thr); 1467 size += register_note(list, NT_THRMISC, 1468 __elfN(note_thrmisc), thr); 1469 size += register_note(list, -1, 1470 __elfN(note_threadmd), thr); 1471 1472 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1473 TAILQ_NEXT(thr, td_plist); 1474 if (thr == td) 1475 thr = TAILQ_NEXT(thr, td_plist); 1476 } 1477 1478 size += register_note(list, NT_PROCSTAT_PROC, 1479 __elfN(note_procstat_proc), p); 1480 size += register_note(list, NT_PROCSTAT_FILES, 1481 note_procstat_files, p); 1482 size += register_note(list, NT_PROCSTAT_VMMAP, 1483 note_procstat_vmmap, p); 1484 size += register_note(list, NT_PROCSTAT_GROUPS, 1485 note_procstat_groups, p); 1486 size += register_note(list, NT_PROCSTAT_UMASK, 1487 note_procstat_umask, p); 1488 size += register_note(list, NT_PROCSTAT_RLIMIT, 1489 note_procstat_rlimit, p); 1490 size += register_note(list, NT_PROCSTAT_OSREL, 1491 note_procstat_osrel, p); 1492 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1493 __elfN(note_procstat_psstrings), p); 1494 size += register_note(list, NT_PROCSTAT_AUXV, 1495 __elfN(note_procstat_auxv), p); 1496 1497 *sizep = size; 1498 } 1499 1500 static void 1501 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1502 size_t notesz) 1503 { 1504 Elf_Ehdr *ehdr; 1505 Elf_Phdr *phdr; 1506 struct phdr_closure phc; 1507 1508 ehdr = (Elf_Ehdr *)hdr; 1509 phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)); 1510 1511 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1512 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1513 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1514 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1515 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1516 ehdr->e_ident[EI_DATA] = ELF_DATA; 1517 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1518 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1519 ehdr->e_ident[EI_ABIVERSION] = 0; 1520 ehdr->e_ident[EI_PAD] = 0; 1521 ehdr->e_type = ET_CORE; 1522 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1523 ehdr->e_machine = ELF_ARCH32; 1524 #else 1525 ehdr->e_machine = ELF_ARCH; 1526 #endif 1527 ehdr->e_version = EV_CURRENT; 1528 ehdr->e_entry = 0; 1529 ehdr->e_phoff = sizeof(Elf_Ehdr); 1530 ehdr->e_flags = 0; 1531 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1532 ehdr->e_phentsize = sizeof(Elf_Phdr); 1533 ehdr->e_phnum = numsegs + 1; 1534 ehdr->e_shentsize = sizeof(Elf_Shdr); 1535 ehdr->e_shnum = 0; 1536 ehdr->e_shstrndx = SHN_UNDEF; 1537 1538 /* 1539 * Fill in the program header entries. 1540 */ 1541 1542 /* The note segement. */ 1543 phdr->p_type = PT_NOTE; 1544 phdr->p_offset = hdrsize; 1545 phdr->p_vaddr = 0; 1546 phdr->p_paddr = 0; 1547 phdr->p_filesz = notesz; 1548 phdr->p_memsz = 0; 1549 phdr->p_flags = PF_R; 1550 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1551 phdr++; 1552 1553 /* All the writable segments from the program. */ 1554 phc.phdr = phdr; 1555 phc.offset = round_page(hdrsize + notesz); 1556 each_writable_segment(td, cb_put_phdr, &phc); 1557 } 1558 1559 static size_t 1560 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1561 { 1562 struct note_info *ninfo; 1563 size_t size, notesize; 1564 1565 size = 0; 1566 out(arg, NULL, &size); 1567 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1568 ninfo->type = type; 1569 ninfo->outfunc = out; 1570 ninfo->outarg = arg; 1571 ninfo->outsize = size; 1572 TAILQ_INSERT_TAIL(list, ninfo, link); 1573 1574 if (type == -1) 1575 return (size); 1576 1577 notesize = sizeof(Elf_Note) + /* note header */ 1578 roundup2(8, ELF_NOTE_ROUNDSIZE) + /* note name ("FreeBSD") */ 1579 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1580 1581 return (notesize); 1582 } 1583 1584 static void 1585 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1586 { 1587 Elf_Note note; 1588 ssize_t old_len; 1589 1590 if (ninfo->type == -1) { 1591 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1592 return; 1593 } 1594 1595 note.n_namesz = 8; /* strlen("FreeBSD") + 1 */ 1596 note.n_descsz = ninfo->outsize; 1597 note.n_type = ninfo->type; 1598 1599 sbuf_bcat(sb, ¬e, sizeof(note)); 1600 sbuf_start_section(sb, &old_len); 1601 sbuf_bcat(sb, "FreeBSD", note.n_namesz); 1602 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1603 if (note.n_descsz == 0) 1604 return; 1605 sbuf_start_section(sb, &old_len); 1606 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1607 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1608 } 1609 1610 /* 1611 * Miscellaneous note out functions. 1612 */ 1613 1614 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1615 #include <compat/freebsd32/freebsd32.h> 1616 1617 typedef struct prstatus32 elf_prstatus_t; 1618 typedef struct prpsinfo32 elf_prpsinfo_t; 1619 typedef struct fpreg32 elf_prfpregset_t; 1620 typedef struct fpreg32 elf_fpregset_t; 1621 typedef struct reg32 elf_gregset_t; 1622 typedef struct thrmisc32 elf_thrmisc_t; 1623 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1624 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1625 typedef uint32_t elf_ps_strings_t; 1626 #else 1627 typedef prstatus_t elf_prstatus_t; 1628 typedef prpsinfo_t elf_prpsinfo_t; 1629 typedef prfpregset_t elf_prfpregset_t; 1630 typedef prfpregset_t elf_fpregset_t; 1631 typedef gregset_t elf_gregset_t; 1632 typedef thrmisc_t elf_thrmisc_t; 1633 #define ELF_KERN_PROC_MASK 0 1634 typedef struct kinfo_proc elf_kinfo_proc_t; 1635 typedef vm_offset_t elf_ps_strings_t; 1636 #endif 1637 1638 static void 1639 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1640 { 1641 struct proc *p; 1642 elf_prpsinfo_t *psinfo; 1643 1644 p = (struct proc *)arg; 1645 if (sb != NULL) { 1646 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1647 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1648 psinfo->pr_version = PRPSINFO_VERSION; 1649 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1650 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1651 /* 1652 * XXX - We don't fill in the command line arguments properly 1653 * yet. 1654 */ 1655 strlcpy(psinfo->pr_psargs, p->p_comm, 1656 sizeof(psinfo->pr_psargs)); 1657 1658 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1659 free(psinfo, M_TEMP); 1660 } 1661 *sizep = sizeof(*psinfo); 1662 } 1663 1664 static void 1665 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1666 { 1667 struct thread *td; 1668 elf_prstatus_t *status; 1669 1670 td = (struct thread *)arg; 1671 if (sb != NULL) { 1672 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1673 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1674 status->pr_version = PRSTATUS_VERSION; 1675 status->pr_statussz = sizeof(elf_prstatus_t); 1676 status->pr_gregsetsz = sizeof(elf_gregset_t); 1677 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1678 status->pr_osreldate = osreldate; 1679 status->pr_cursig = td->td_proc->p_sig; 1680 status->pr_pid = td->td_tid; 1681 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1682 fill_regs32(td, &status->pr_reg); 1683 #else 1684 fill_regs(td, &status->pr_reg); 1685 #endif 1686 sbuf_bcat(sb, status, sizeof(*status)); 1687 free(status, M_TEMP); 1688 } 1689 *sizep = sizeof(*status); 1690 } 1691 1692 static void 1693 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1694 { 1695 struct thread *td; 1696 elf_prfpregset_t *fpregset; 1697 1698 td = (struct thread *)arg; 1699 if (sb != NULL) { 1700 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1701 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1702 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1703 fill_fpregs32(td, fpregset); 1704 #else 1705 fill_fpregs(td, fpregset); 1706 #endif 1707 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 1708 free(fpregset, M_TEMP); 1709 } 1710 *sizep = sizeof(*fpregset); 1711 } 1712 1713 static void 1714 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 1715 { 1716 struct thread *td; 1717 elf_thrmisc_t thrmisc; 1718 1719 td = (struct thread *)arg; 1720 if (sb != NULL) { 1721 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 1722 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 1723 strcpy(thrmisc.pr_tname, td->td_name); 1724 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 1725 } 1726 *sizep = sizeof(thrmisc); 1727 } 1728 1729 /* 1730 * Allow for MD specific notes, as well as any MD 1731 * specific preparations for writing MI notes. 1732 */ 1733 static void 1734 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 1735 { 1736 struct thread *td; 1737 void *buf; 1738 size_t size; 1739 1740 td = (struct thread *)arg; 1741 size = *sizep; 1742 buf = NULL; 1743 if (size != 0 && sb != NULL) 1744 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 1745 size = 0; 1746 __elfN(dump_thread)(td, buf, &size); 1747 KASSERT(*sizep == size, ("invalid size")); 1748 if (size != 0 && sb != NULL) 1749 sbuf_bcat(sb, buf, size); 1750 *sizep = size; 1751 } 1752 1753 #ifdef KINFO_PROC_SIZE 1754 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 1755 #endif 1756 1757 static void 1758 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 1759 { 1760 struct proc *p; 1761 size_t size; 1762 int structsize; 1763 1764 p = (struct proc *)arg; 1765 size = sizeof(structsize) + p->p_numthreads * 1766 sizeof(elf_kinfo_proc_t); 1767 1768 if (sb != NULL) { 1769 KASSERT(*sizep == size, ("invalid size")); 1770 structsize = sizeof(elf_kinfo_proc_t); 1771 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1772 PROC_LOCK(p); 1773 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 1774 } 1775 *sizep = size; 1776 } 1777 1778 #ifdef KINFO_FILE_SIZE 1779 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 1780 #endif 1781 1782 static void 1783 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 1784 { 1785 struct proc *p; 1786 size_t size; 1787 int structsize; 1788 1789 p = (struct proc *)arg; 1790 if (sb == NULL) { 1791 size = 0; 1792 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1793 sbuf_set_drain(sb, sbuf_drain_count, &size); 1794 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1795 PROC_LOCK(p); 1796 kern_proc_filedesc_out(p, sb, -1); 1797 sbuf_finish(sb); 1798 sbuf_delete(sb); 1799 *sizep = size; 1800 } else { 1801 structsize = sizeof(struct kinfo_file); 1802 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1803 PROC_LOCK(p); 1804 kern_proc_filedesc_out(p, sb, -1); 1805 } 1806 } 1807 1808 #ifdef KINFO_VMENTRY_SIZE 1809 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1810 #endif 1811 1812 static void 1813 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 1814 { 1815 struct proc *p; 1816 size_t size; 1817 int structsize; 1818 1819 p = (struct proc *)arg; 1820 if (sb == NULL) { 1821 size = 0; 1822 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1823 sbuf_set_drain(sb, sbuf_drain_count, &size); 1824 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1825 PROC_LOCK(p); 1826 kern_proc_vmmap_out(p, sb); 1827 sbuf_finish(sb); 1828 sbuf_delete(sb); 1829 *sizep = size; 1830 } else { 1831 structsize = sizeof(struct kinfo_vmentry); 1832 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1833 PROC_LOCK(p); 1834 kern_proc_vmmap_out(p, sb); 1835 } 1836 } 1837 1838 static void 1839 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 1840 { 1841 struct proc *p; 1842 size_t size; 1843 int structsize; 1844 1845 p = (struct proc *)arg; 1846 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 1847 if (sb != NULL) { 1848 KASSERT(*sizep == size, ("invalid size")); 1849 structsize = sizeof(gid_t); 1850 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1851 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 1852 sizeof(gid_t)); 1853 } 1854 *sizep = size; 1855 } 1856 1857 static void 1858 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 1859 { 1860 struct proc *p; 1861 size_t size; 1862 int structsize; 1863 1864 p = (struct proc *)arg; 1865 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 1866 if (sb != NULL) { 1867 KASSERT(*sizep == size, ("invalid size")); 1868 structsize = sizeof(p->p_fd->fd_cmask); 1869 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1870 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 1871 } 1872 *sizep = size; 1873 } 1874 1875 static void 1876 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 1877 { 1878 struct proc *p; 1879 struct rlimit rlim[RLIM_NLIMITS]; 1880 size_t size; 1881 int structsize, i; 1882 1883 p = (struct proc *)arg; 1884 size = sizeof(structsize) + sizeof(rlim); 1885 if (sb != NULL) { 1886 KASSERT(*sizep == size, ("invalid size")); 1887 structsize = sizeof(rlim); 1888 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1889 PROC_LOCK(p); 1890 for (i = 0; i < RLIM_NLIMITS; i++) 1891 lim_rlimit(p, i, &rlim[i]); 1892 PROC_UNLOCK(p); 1893 sbuf_bcat(sb, rlim, sizeof(rlim)); 1894 } 1895 *sizep = size; 1896 } 1897 1898 static void 1899 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 1900 { 1901 struct proc *p; 1902 size_t size; 1903 int structsize; 1904 1905 p = (struct proc *)arg; 1906 size = sizeof(structsize) + sizeof(p->p_osrel); 1907 if (sb != NULL) { 1908 KASSERT(*sizep == size, ("invalid size")); 1909 structsize = sizeof(p->p_osrel); 1910 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1911 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 1912 } 1913 *sizep = size; 1914 } 1915 1916 static void 1917 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 1918 { 1919 struct proc *p; 1920 elf_ps_strings_t ps_strings; 1921 size_t size; 1922 int structsize; 1923 1924 p = (struct proc *)arg; 1925 size = sizeof(structsize) + sizeof(ps_strings); 1926 if (sb != NULL) { 1927 KASSERT(*sizep == size, ("invalid size")); 1928 structsize = sizeof(ps_strings); 1929 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1930 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 1931 #else 1932 ps_strings = p->p_sysent->sv_psstrings; 1933 #endif 1934 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1935 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 1936 } 1937 *sizep = size; 1938 } 1939 1940 static void 1941 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 1942 { 1943 struct proc *p; 1944 size_t size; 1945 int structsize; 1946 1947 p = (struct proc *)arg; 1948 if (sb == NULL) { 1949 size = 0; 1950 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 1951 sbuf_set_drain(sb, sbuf_drain_count, &size); 1952 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1953 PHOLD(p); 1954 proc_getauxv(curthread, p, sb); 1955 PRELE(p); 1956 sbuf_finish(sb); 1957 sbuf_delete(sb); 1958 *sizep = size; 1959 } else { 1960 structsize = sizeof(Elf_Auxinfo); 1961 sbuf_bcat(sb, &structsize, sizeof(structsize)); 1962 PHOLD(p); 1963 proc_getauxv(curthread, p, sb); 1964 PRELE(p); 1965 } 1966 } 1967 1968 static boolean_t 1969 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 1970 int32_t *osrel, const Elf_Phdr *pnote) 1971 { 1972 const Elf_Note *note, *note0, *note_end; 1973 const char *note_name; 1974 int i; 1975 1976 if (pnote == NULL || pnote->p_offset > PAGE_SIZE || 1977 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) 1978 return (FALSE); 1979 1980 note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); 1981 note_end = (const Elf_Note *)(imgp->image_header + 1982 pnote->p_offset + pnote->p_filesz); 1983 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 1984 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 1985 (const char *)note < sizeof(Elf_Note)) 1986 return (FALSE); 1987 if (note->n_namesz != checknote->hdr.n_namesz || 1988 note->n_descsz != checknote->hdr.n_descsz || 1989 note->n_type != checknote->hdr.n_type) 1990 goto nextnote; 1991 note_name = (const char *)(note + 1); 1992 if (note_name + checknote->hdr.n_namesz >= 1993 (const char *)note_end || strncmp(checknote->vendor, 1994 note_name, checknote->hdr.n_namesz) != 0) 1995 goto nextnote; 1996 1997 /* 1998 * Fetch the osreldate for binary 1999 * from the ELF OSABI-note if necessary. 2000 */ 2001 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2002 checknote->trans_osrel != NULL) 2003 return (checknote->trans_osrel(note, osrel)); 2004 return (TRUE); 2005 2006 nextnote: 2007 note = (const Elf_Note *)((const char *)(note + 1) + 2008 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2009 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2010 } 2011 2012 return (FALSE); 2013 } 2014 2015 /* 2016 * Try to find the appropriate ABI-note section for checknote, 2017 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2018 * first page of the image is searched, the same as for headers. 2019 */ 2020 static boolean_t 2021 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2022 int32_t *osrel) 2023 { 2024 const Elf_Phdr *phdr; 2025 const Elf_Ehdr *hdr; 2026 int i; 2027 2028 hdr = (const Elf_Ehdr *)imgp->image_header; 2029 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2030 2031 for (i = 0; i < hdr->e_phnum; i++) { 2032 if (phdr[i].p_type == PT_NOTE && 2033 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2034 return (TRUE); 2035 } 2036 return (FALSE); 2037 2038 } 2039 2040 /* 2041 * Tell kern_execve.c about it, with a little help from the linker. 2042 */ 2043 static struct execsw __elfN(execsw) = { 2044 __CONCAT(exec_, __elfN(imgact)), 2045 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2046 }; 2047 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2048 2049 #ifdef COMPRESS_USER_CORES 2050 /* 2051 * Compress and write out a core segment for a user process. 2052 * 2053 * 'inbuf' is the starting address of a VM segment in the process' address 2054 * space that is to be compressed and written out to the core file. 'dest_buf' 2055 * is a buffer in the kernel's address space. The segment is copied from 2056 * 'inbuf' to 'dest_buf' first before being processed by the compression 2057 * routine gzwrite(). This copying is necessary because the content of the VM 2058 * segment may change between the compression pass and the crc-computation pass 2059 * in gzwrite(). This is because realtime threads may preempt the UNIX kernel. 2060 * 2061 * If inbuf is NULL it is assumed that data is already copied to 'dest_buf'. 2062 */ 2063 static int 2064 compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len, 2065 struct thread *td) 2066 { 2067 int len_compressed; 2068 int error = 0; 2069 unsigned int chunk_len; 2070 2071 while (len) { 2072 if (inbuf != NULL) { 2073 chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len; 2074 copyin(inbuf, dest_buf, chunk_len); 2075 inbuf += chunk_len; 2076 } else { 2077 chunk_len = len; 2078 } 2079 len_compressed = gzwrite(file, dest_buf, chunk_len); 2080 2081 EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed); 2082 2083 if ((unsigned int)len_compressed != chunk_len) { 2084 log(LOG_WARNING, 2085 "compress_core: length mismatch (0x%x returned, " 2086 "0x%x expected)\n", len_compressed, chunk_len); 2087 EVENTHANDLER_INVOKE(app_coredump_error, td, 2088 "compress_core: length mismatch %x -> %x", 2089 chunk_len, len_compressed); 2090 error = EFAULT; 2091 break; 2092 } 2093 len -= chunk_len; 2094 maybe_yield(); 2095 } 2096 2097 return (error); 2098 } 2099 #endif /* COMPRESS_USER_CORES */ 2100 2101 static vm_prot_t 2102 __elfN(trans_prot)(Elf_Word flags) 2103 { 2104 vm_prot_t prot; 2105 2106 prot = 0; 2107 if (flags & PF_X) 2108 prot |= VM_PROT_EXECUTE; 2109 if (flags & PF_W) 2110 prot |= VM_PROT_WRITE; 2111 if (flags & PF_R) 2112 prot |= VM_PROT_READ; 2113 #if __ELF_WORD_SIZE == 32 2114 #if defined(__amd64__) || defined(__ia64__) 2115 if (i386_read_exec && (flags & PF_R)) 2116 prot |= VM_PROT_EXECUTE; 2117 #endif 2118 #endif 2119 return (prot); 2120 } 2121 2122 static Elf_Word 2123 __elfN(untrans_prot)(vm_prot_t prot) 2124 { 2125 Elf_Word flags; 2126 2127 flags = 0; 2128 if (prot & VM_PROT_EXECUTE) 2129 flags |= PF_X; 2130 if (prot & VM_PROT_READ) 2131 flags |= PF_R; 2132 if (prot & VM_PROT_WRITE) 2133 flags |= PF_W; 2134 return (flags); 2135 } 2136