xref: /freebsd/sys/kern/imgact_elf.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include "opt_capsicum.h"
35 #include "opt_compat.h"
36 #include "opt_core.h"
37 
38 #include <sys/param.h>
39 #include <sys/capability.h>
40 #include <sys/exec.h>
41 #include <sys/fcntl.h>
42 #include <sys/imgact.h>
43 #include <sys/imgact_elf.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mman.h>
49 #include <sys/namei.h>
50 #include <sys/pioctl.h>
51 #include <sys/proc.h>
52 #include <sys/procfs.h>
53 #include <sys/racct.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sf_buf.h>
58 #include <sys/smp.h>
59 #include <sys/systm.h>
60 #include <sys/signalvar.h>
61 #include <sys/stat.h>
62 #include <sys/sx.h>
63 #include <sys/syscall.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysent.h>
66 #include <sys/vnode.h>
67 #include <sys/syslog.h>
68 #include <sys/eventhandler.h>
69 #include <sys/user.h>
70 
71 #include <net/zlib.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_param.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80 
81 #include <machine/elf.h>
82 #include <machine/md_var.h>
83 
84 #define ELF_NOTE_ROUNDSIZE	4
85 #define OLD_EI_BRAND	8
86 
87 static int __elfN(check_header)(const Elf_Ehdr *hdr);
88 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
89     const char *interp, int interp_name_len, int32_t *osrel);
90 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
91     u_long *entry, size_t pagesize);
92 static int __elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
93     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
94     size_t pagesize);
95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
96 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note,
97     int32_t *osrel);
98 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
99 static boolean_t __elfN(check_note)(struct image_params *imgp,
100     Elf_Brandnote *checknote, int32_t *osrel);
101 static vm_prot_t __elfN(trans_prot)(Elf_Word);
102 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
103 
104 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0,
105     "");
106 
107 #ifdef COMPRESS_USER_CORES
108 static int compress_core(gzFile, char *, char *, unsigned int,
109     struct thread * td);
110 #endif
111 #define CORE_BUF_SIZE	(16 * 1024)
112 
113 int __elfN(fallback_brand) = -1;
114 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
115     fallback_brand, CTLFLAG_RW, &__elfN(fallback_brand), 0,
116     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
117 TUNABLE_INT("kern.elf" __XSTRING(__ELF_WORD_SIZE) ".fallback_brand",
118     &__elfN(fallback_brand));
119 
120 static int elf_legacy_coredump = 0;
121 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
122     &elf_legacy_coredump, 0, "");
123 
124 int __elfN(nxstack) =
125 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */
126 	1;
127 #else
128 	0;
129 #endif
130 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
131     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
132     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack");
133 
134 #if __ELF_WORD_SIZE == 32
135 #if defined(__amd64__) || defined(__ia64__)
136 int i386_read_exec = 0;
137 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
138     "enable execution from readable segments");
139 #endif
140 #endif
141 
142 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
143 
144 #define	trunc_page_ps(va, ps)	((va) & ~(ps - 1))
145 #define	round_page_ps(va, ps)	(((va) + (ps - 1)) & ~(ps - 1))
146 #define	aligned(a, t)	(trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a))
147 
148 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD";
149 
150 Elf_Brandnote __elfN(freebsd_brandnote) = {
151 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
152 	.hdr.n_descsz	= sizeof(int32_t),
153 	.hdr.n_type	= 1,
154 	.vendor		= FREEBSD_ABI_VENDOR,
155 	.flags		= BN_TRANSLATE_OSREL,
156 	.trans_osrel	= __elfN(freebsd_trans_osrel)
157 };
158 
159 static boolean_t
160 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
161 {
162 	uintptr_t p;
163 
164 	p = (uintptr_t)(note + 1);
165 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
166 	*osrel = *(const int32_t *)(p);
167 
168 	return (TRUE);
169 }
170 
171 static const char GNU_ABI_VENDOR[] = "GNU";
172 static int GNU_KFREEBSD_ABI_DESC = 3;
173 
174 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
175 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
176 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
177 	.hdr.n_type	= 1,
178 	.vendor		= GNU_ABI_VENDOR,
179 	.flags		= BN_TRANSLATE_OSREL,
180 	.trans_osrel	= kfreebsd_trans_osrel
181 };
182 
183 static boolean_t
184 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
185 {
186 	const Elf32_Word *desc;
187 	uintptr_t p;
188 
189 	p = (uintptr_t)(note + 1);
190 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
191 
192 	desc = (const Elf32_Word *)p;
193 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
194 		return (FALSE);
195 
196 	/*
197 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
198 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
199 	 */
200 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
201 
202 	return (TRUE);
203 }
204 
205 int
206 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
207 {
208 	int i;
209 
210 	for (i = 0; i < MAX_BRANDS; i++) {
211 		if (elf_brand_list[i] == NULL) {
212 			elf_brand_list[i] = entry;
213 			break;
214 		}
215 	}
216 	if (i == MAX_BRANDS) {
217 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
218 			__func__, entry);
219 		return (-1);
220 	}
221 	return (0);
222 }
223 
224 int
225 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
226 {
227 	int i;
228 
229 	for (i = 0; i < MAX_BRANDS; i++) {
230 		if (elf_brand_list[i] == entry) {
231 			elf_brand_list[i] = NULL;
232 			break;
233 		}
234 	}
235 	if (i == MAX_BRANDS)
236 		return (-1);
237 	return (0);
238 }
239 
240 int
241 __elfN(brand_inuse)(Elf_Brandinfo *entry)
242 {
243 	struct proc *p;
244 	int rval = FALSE;
245 
246 	sx_slock(&allproc_lock);
247 	FOREACH_PROC_IN_SYSTEM(p) {
248 		if (p->p_sysent == entry->sysvec) {
249 			rval = TRUE;
250 			break;
251 		}
252 	}
253 	sx_sunlock(&allproc_lock);
254 
255 	return (rval);
256 }
257 
258 static Elf_Brandinfo *
259 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
260     int interp_name_len, int32_t *osrel)
261 {
262 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
263 	Elf_Brandinfo *bi;
264 	boolean_t ret;
265 	int i;
266 
267 	/*
268 	 * We support four types of branding -- (1) the ELF EI_OSABI field
269 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
270 	 * branding w/in the ELF header, (3) path of the `interp_path'
271 	 * field, and (4) the ".note.ABI-tag" ELF section.
272 	 */
273 
274 	/* Look for an ".note.ABI-tag" ELF section */
275 	for (i = 0; i < MAX_BRANDS; i++) {
276 		bi = elf_brand_list[i];
277 		if (bi == NULL)
278 			continue;
279 		if (hdr->e_machine == bi->machine && (bi->flags &
280 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
281 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
282 			if (ret)
283 				return (bi);
284 		}
285 	}
286 
287 	/* If the executable has a brand, search for it in the brand list. */
288 	for (i = 0; i < MAX_BRANDS; i++) {
289 		bi = elf_brand_list[i];
290 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
291 			continue;
292 		if (hdr->e_machine == bi->machine &&
293 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
294 		    strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
295 		    bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
296 			return (bi);
297 	}
298 
299 	/* Lacking a known brand, search for a recognized interpreter. */
300 	if (interp != NULL) {
301 		for (i = 0; i < MAX_BRANDS; i++) {
302 			bi = elf_brand_list[i];
303 			if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
304 				continue;
305 			if (hdr->e_machine == bi->machine &&
306 			    /* ELF image p_filesz includes terminating zero */
307 			    strlen(bi->interp_path) + 1 == interp_name_len &&
308 			    strncmp(interp, bi->interp_path, interp_name_len)
309 			    == 0)
310 				return (bi);
311 		}
312 	}
313 
314 	/* Lacking a recognized interpreter, try the default brand */
315 	for (i = 0; i < MAX_BRANDS; i++) {
316 		bi = elf_brand_list[i];
317 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
318 			continue;
319 		if (hdr->e_machine == bi->machine &&
320 		    __elfN(fallback_brand) == bi->brand)
321 			return (bi);
322 	}
323 	return (NULL);
324 }
325 
326 static int
327 __elfN(check_header)(const Elf_Ehdr *hdr)
328 {
329 	Elf_Brandinfo *bi;
330 	int i;
331 
332 	if (!IS_ELF(*hdr) ||
333 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
334 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
335 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
336 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
337 	    hdr->e_version != ELF_TARG_VER)
338 		return (ENOEXEC);
339 
340 	/*
341 	 * Make sure we have at least one brand for this machine.
342 	 */
343 
344 	for (i = 0; i < MAX_BRANDS; i++) {
345 		bi = elf_brand_list[i];
346 		if (bi != NULL && bi->machine == hdr->e_machine)
347 			break;
348 	}
349 	if (i == MAX_BRANDS)
350 		return (ENOEXEC);
351 
352 	return (0);
353 }
354 
355 static int
356 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
357     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
358 {
359 	struct sf_buf *sf;
360 	int error;
361 	vm_offset_t off;
362 
363 	/*
364 	 * Create the page if it doesn't exist yet. Ignore errors.
365 	 */
366 	vm_map_lock(map);
367 	vm_map_insert(map, NULL, 0, trunc_page(start), round_page(end),
368 	    VM_PROT_ALL, VM_PROT_ALL, 0);
369 	vm_map_unlock(map);
370 
371 	/*
372 	 * Find the page from the underlying object.
373 	 */
374 	if (object) {
375 		sf = vm_imgact_map_page(object, offset);
376 		if (sf == NULL)
377 			return (KERN_FAILURE);
378 		off = offset - trunc_page(offset);
379 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
380 		    end - start);
381 		vm_imgact_unmap_page(sf);
382 		if (error) {
383 			return (KERN_FAILURE);
384 		}
385 	}
386 
387 	return (KERN_SUCCESS);
388 }
389 
390 static int
391 __elfN(map_insert)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
392     vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow)
393 {
394 	struct sf_buf *sf;
395 	vm_offset_t off;
396 	vm_size_t sz;
397 	int error, rv;
398 
399 	if (start != trunc_page(start)) {
400 		rv = __elfN(map_partial)(map, object, offset, start,
401 		    round_page(start), prot);
402 		if (rv)
403 			return (rv);
404 		offset += round_page(start) - start;
405 		start = round_page(start);
406 	}
407 	if (end != round_page(end)) {
408 		rv = __elfN(map_partial)(map, object, offset +
409 		    trunc_page(end) - start, trunc_page(end), end, prot);
410 		if (rv)
411 			return (rv);
412 		end = trunc_page(end);
413 	}
414 	if (end > start) {
415 		if (offset & PAGE_MASK) {
416 			/*
417 			 * The mapping is not page aligned. This means we have
418 			 * to copy the data. Sigh.
419 			 */
420 			rv = vm_map_find(map, NULL, 0, &start, end - start,
421 			    FALSE, prot | VM_PROT_WRITE, VM_PROT_ALL, 0);
422 			if (rv)
423 				return (rv);
424 			if (object == NULL)
425 				return (KERN_SUCCESS);
426 			for (; start < end; start += sz) {
427 				sf = vm_imgact_map_page(object, offset);
428 				if (sf == NULL)
429 					return (KERN_FAILURE);
430 				off = offset - trunc_page(offset);
431 				sz = end - start;
432 				if (sz > PAGE_SIZE - off)
433 					sz = PAGE_SIZE - off;
434 				error = copyout((caddr_t)sf_buf_kva(sf) + off,
435 				    (caddr_t)start, sz);
436 				vm_imgact_unmap_page(sf);
437 				if (error) {
438 					return (KERN_FAILURE);
439 				}
440 				offset += sz;
441 			}
442 			rv = KERN_SUCCESS;
443 		} else {
444 			vm_object_reference(object);
445 			vm_map_lock(map);
446 			rv = vm_map_insert(map, object, offset, start, end,
447 			    prot, VM_PROT_ALL, cow);
448 			vm_map_unlock(map);
449 			if (rv != KERN_SUCCESS)
450 				vm_object_deallocate(object);
451 		}
452 		return (rv);
453 	} else {
454 		return (KERN_SUCCESS);
455 	}
456 }
457 
458 static int
459 __elfN(load_section)(struct image_params *imgp, vm_offset_t offset,
460     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot,
461     size_t pagesize)
462 {
463 	struct sf_buf *sf;
464 	size_t map_len;
465 	vm_map_t map;
466 	vm_object_t object;
467 	vm_offset_t map_addr;
468 	int error, rv, cow;
469 	size_t copy_len;
470 	vm_offset_t file_addr;
471 
472 	/*
473 	 * It's necessary to fail if the filsz + offset taken from the
474 	 * header is greater than the actual file pager object's size.
475 	 * If we were to allow this, then the vm_map_find() below would
476 	 * walk right off the end of the file object and into the ether.
477 	 *
478 	 * While I'm here, might as well check for something else that
479 	 * is invalid: filsz cannot be greater than memsz.
480 	 */
481 	if ((off_t)filsz + offset > imgp->attr->va_size || filsz > memsz) {
482 		uprintf("elf_load_section: truncated ELF file\n");
483 		return (ENOEXEC);
484 	}
485 
486 	object = imgp->object;
487 	map = &imgp->proc->p_vmspace->vm_map;
488 	map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize);
489 	file_addr = trunc_page_ps(offset, pagesize);
490 
491 	/*
492 	 * We have two choices.  We can either clear the data in the last page
493 	 * of an oversized mapping, or we can start the anon mapping a page
494 	 * early and copy the initialized data into that first page.  We
495 	 * choose the second..
496 	 */
497 	if (memsz > filsz)
498 		map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr;
499 	else
500 		map_len = round_page_ps(offset + filsz, pagesize) - file_addr;
501 
502 	if (map_len != 0) {
503 		/* cow flags: don't dump readonly sections in core */
504 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
505 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
506 
507 		rv = __elfN(map_insert)(map,
508 				      object,
509 				      file_addr,	/* file offset */
510 				      map_addr,		/* virtual start */
511 				      map_addr + map_len,/* virtual end */
512 				      prot,
513 				      cow);
514 		if (rv != KERN_SUCCESS)
515 			return (EINVAL);
516 
517 		/* we can stop now if we've covered it all */
518 		if (memsz == filsz) {
519 			return (0);
520 		}
521 	}
522 
523 
524 	/*
525 	 * We have to get the remaining bit of the file into the first part
526 	 * of the oversized map segment.  This is normally because the .data
527 	 * segment in the file is extended to provide bss.  It's a neat idea
528 	 * to try and save a page, but it's a pain in the behind to implement.
529 	 */
530 	copy_len = (offset + filsz) - trunc_page_ps(offset + filsz, pagesize);
531 	map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize);
532 	map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) -
533 	    map_addr;
534 
535 	/* This had damn well better be true! */
536 	if (map_len != 0) {
537 		rv = __elfN(map_insert)(map, NULL, 0, map_addr, map_addr +
538 		    map_len, VM_PROT_ALL, 0);
539 		if (rv != KERN_SUCCESS) {
540 			return (EINVAL);
541 		}
542 	}
543 
544 	if (copy_len != 0) {
545 		vm_offset_t off;
546 
547 		sf = vm_imgact_map_page(object, offset + filsz);
548 		if (sf == NULL)
549 			return (EIO);
550 
551 		/* send the page fragment to user space */
552 		off = trunc_page_ps(offset + filsz, pagesize) -
553 		    trunc_page(offset + filsz);
554 		error = copyout((caddr_t)sf_buf_kva(sf) + off,
555 		    (caddr_t)map_addr, copy_len);
556 		vm_imgact_unmap_page(sf);
557 		if (error) {
558 			return (error);
559 		}
560 	}
561 
562 	/*
563 	 * set it to the specified protection.
564 	 * XXX had better undo the damage from pasting over the cracks here!
565 	 */
566 	vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
567 	    map_len), prot, FALSE);
568 
569 	return (0);
570 }
571 
572 /*
573  * Load the file "file" into memory.  It may be either a shared object
574  * or an executable.
575  *
576  * The "addr" reference parameter is in/out.  On entry, it specifies
577  * the address where a shared object should be loaded.  If the file is
578  * an executable, this value is ignored.  On exit, "addr" specifies
579  * where the file was actually loaded.
580  *
581  * The "entry" reference parameter is out only.  On exit, it specifies
582  * the entry point for the loaded file.
583  */
584 static int
585 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
586 	u_long *entry, size_t pagesize)
587 {
588 	struct {
589 		struct nameidata nd;
590 		struct vattr attr;
591 		struct image_params image_params;
592 	} *tempdata;
593 	const Elf_Ehdr *hdr = NULL;
594 	const Elf_Phdr *phdr = NULL;
595 	struct nameidata *nd;
596 	struct vattr *attr;
597 	struct image_params *imgp;
598 	vm_prot_t prot;
599 	u_long rbase;
600 	u_long base_addr = 0;
601 	int error, i, numsegs;
602 
603 #ifdef CAPABILITY_MODE
604 	/*
605 	 * XXXJA: This check can go away once we are sufficiently confident
606 	 * that the checks in namei() are correct.
607 	 */
608 	if (IN_CAPABILITY_MODE(curthread))
609 		return (ECAPMODE);
610 #endif
611 
612 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
613 	nd = &tempdata->nd;
614 	attr = &tempdata->attr;
615 	imgp = &tempdata->image_params;
616 
617 	/*
618 	 * Initialize part of the common data
619 	 */
620 	imgp->proc = p;
621 	imgp->attr = attr;
622 	imgp->firstpage = NULL;
623 	imgp->image_header = NULL;
624 	imgp->object = NULL;
625 	imgp->execlabel = NULL;
626 
627 	NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread);
628 	if ((error = namei(nd)) != 0) {
629 		nd->ni_vp = NULL;
630 		goto fail;
631 	}
632 	NDFREE(nd, NDF_ONLY_PNBUF);
633 	imgp->vp = nd->ni_vp;
634 
635 	/*
636 	 * Check permissions, modes, uid, etc on the file, and "open" it.
637 	 */
638 	error = exec_check_permissions(imgp);
639 	if (error)
640 		goto fail;
641 
642 	error = exec_map_first_page(imgp);
643 	if (error)
644 		goto fail;
645 
646 	/*
647 	 * Also make certain that the interpreter stays the same, so set
648 	 * its VV_TEXT flag, too.
649 	 */
650 	VOP_SET_TEXT(nd->ni_vp);
651 
652 	imgp->object = nd->ni_vp->v_object;
653 
654 	hdr = (const Elf_Ehdr *)imgp->image_header;
655 	if ((error = __elfN(check_header)(hdr)) != 0)
656 		goto fail;
657 	if (hdr->e_type == ET_DYN)
658 		rbase = *addr;
659 	else if (hdr->e_type == ET_EXEC)
660 		rbase = 0;
661 	else {
662 		error = ENOEXEC;
663 		goto fail;
664 	}
665 
666 	/* Only support headers that fit within first page for now      */
667 	if ((hdr->e_phoff > PAGE_SIZE) ||
668 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
669 		error = ENOEXEC;
670 		goto fail;
671 	}
672 
673 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
674 	if (!aligned(phdr, Elf_Addr)) {
675 		error = ENOEXEC;
676 		goto fail;
677 	}
678 
679 	for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
680 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
681 			/* Loadable segment */
682 			prot = __elfN(trans_prot)(phdr[i].p_flags);
683 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
684 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
685 			    phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize);
686 			if (error != 0)
687 				goto fail;
688 			/*
689 			 * Establish the base address if this is the
690 			 * first segment.
691 			 */
692 			if (numsegs == 0)
693   				base_addr = trunc_page(phdr[i].p_vaddr +
694 				    rbase);
695 			numsegs++;
696 		}
697 	}
698 	*addr = base_addr;
699 	*entry = (unsigned long)hdr->e_entry + rbase;
700 
701 fail:
702 	if (imgp->firstpage)
703 		exec_unmap_first_page(imgp);
704 
705 	if (nd->ni_vp)
706 		vput(nd->ni_vp);
707 
708 	free(tempdata, M_TEMP);
709 
710 	return (error);
711 }
712 
713 static int
714 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
715 {
716 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
717 	const Elf_Phdr *phdr;
718 	Elf_Auxargs *elf_auxargs;
719 	struct vmspace *vmspace;
720 	vm_prot_t prot;
721 	u_long text_size = 0, data_size = 0, total_size = 0;
722 	u_long text_addr = 0, data_addr = 0;
723 	u_long seg_size, seg_addr;
724 	u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0;
725 	int32_t osrel = 0;
726 	int error = 0, i, n, interp_name_len = 0;
727 	const char *interp = NULL, *newinterp = NULL;
728 	Elf_Brandinfo *brand_info;
729 	char *path;
730 	struct sysentvec *sv;
731 
732 	/*
733 	 * Do we have a valid ELF header ?
734 	 *
735 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
736 	 * if particular brand doesn't support it.
737 	 */
738 	if (__elfN(check_header)(hdr) != 0 ||
739 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
740 		return (-1);
741 
742 	/*
743 	 * From here on down, we return an errno, not -1, as we've
744 	 * detected an ELF file.
745 	 */
746 
747 	if ((hdr->e_phoff > PAGE_SIZE) ||
748 	    (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) {
749 		/* Only support headers in first page for now */
750 		return (ENOEXEC);
751 	}
752 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
753 	if (!aligned(phdr, Elf_Addr))
754 		return (ENOEXEC);
755 	n = 0;
756 	baddr = 0;
757 	for (i = 0; i < hdr->e_phnum; i++) {
758 		switch (phdr[i].p_type) {
759 		case PT_LOAD:
760 			if (n == 0)
761 				baddr = phdr[i].p_vaddr;
762 			n++;
763 			break;
764 		case PT_INTERP:
765 			/* Path to interpreter */
766 			if (phdr[i].p_filesz > MAXPATHLEN ||
767 			    phdr[i].p_offset > PAGE_SIZE ||
768 			    phdr[i].p_filesz > PAGE_SIZE - phdr[i].p_offset)
769 				return (ENOEXEC);
770 			interp = imgp->image_header + phdr[i].p_offset;
771 			interp_name_len = phdr[i].p_filesz;
772 			break;
773 		case PT_GNU_STACK:
774 			if (__elfN(nxstack))
775 				imgp->stack_prot =
776 				    __elfN(trans_prot)(phdr[i].p_flags);
777 			break;
778 		}
779 	}
780 
781 	brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len,
782 	    &osrel);
783 	if (brand_info == NULL) {
784 		uprintf("ELF binary type \"%u\" not known.\n",
785 		    hdr->e_ident[EI_OSABI]);
786 		return (ENOEXEC);
787 	}
788 	if (hdr->e_type == ET_DYN) {
789 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0)
790 			return (ENOEXEC);
791 		/*
792 		 * Honour the base load address from the dso if it is
793 		 * non-zero for some reason.
794 		 */
795 		if (baddr == 0)
796 			et_dyn_addr = ET_DYN_LOAD_ADDR;
797 		else
798 			et_dyn_addr = 0;
799 	} else
800 		et_dyn_addr = 0;
801 	sv = brand_info->sysvec;
802 	if (interp != NULL && brand_info->interp_newpath != NULL)
803 		newinterp = brand_info->interp_newpath;
804 
805 	/*
806 	 * Avoid a possible deadlock if the current address space is destroyed
807 	 * and that address space maps the locked vnode.  In the common case,
808 	 * the locked vnode's v_usecount is decremented but remains greater
809 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
810 	 * However, in cases where the vnode lock is external, such as nullfs,
811 	 * v_usecount may become zero.
812 	 *
813 	 * The VV_TEXT flag prevents modifications to the executable while
814 	 * the vnode is unlocked.
815 	 */
816 	VOP_UNLOCK(imgp->vp, 0);
817 
818 	error = exec_new_vmspace(imgp, sv);
819 	imgp->proc->p_sysent = sv;
820 
821 	vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
822 	if (error)
823 		return (error);
824 
825 	for (i = 0; i < hdr->e_phnum; i++) {
826 		switch (phdr[i].p_type) {
827 		case PT_LOAD:	/* Loadable segment */
828 			if (phdr[i].p_memsz == 0)
829 				break;
830 			prot = __elfN(trans_prot)(phdr[i].p_flags);
831 			error = __elfN(load_section)(imgp, phdr[i].p_offset,
832 			    (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr,
833 			    phdr[i].p_memsz, phdr[i].p_filesz, prot,
834 			    sv->sv_pagesize);
835 			if (error != 0)
836 				return (error);
837 
838 			/*
839 			 * If this segment contains the program headers,
840 			 * remember their virtual address for the AT_PHDR
841 			 * aux entry. Static binaries don't usually include
842 			 * a PT_PHDR entry.
843 			 */
844 			if (phdr[i].p_offset == 0 &&
845 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
846 				<= phdr[i].p_filesz)
847 				proghdr = phdr[i].p_vaddr + hdr->e_phoff +
848 				    et_dyn_addr;
849 
850 			seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
851 			seg_size = round_page(phdr[i].p_memsz +
852 			    phdr[i].p_vaddr + et_dyn_addr - seg_addr);
853 
854 			/*
855 			 * Make the largest executable segment the official
856 			 * text segment and all others data.
857 			 *
858 			 * Note that obreak() assumes that data_addr +
859 			 * data_size == end of data load area, and the ELF
860 			 * file format expects segments to be sorted by
861 			 * address.  If multiple data segments exist, the
862 			 * last one will be used.
863 			 */
864 
865 			if (phdr[i].p_flags & PF_X && text_size < seg_size) {
866 				text_size = seg_size;
867 				text_addr = seg_addr;
868 			} else {
869 				data_size = seg_size;
870 				data_addr = seg_addr;
871 			}
872 			total_size += seg_size;
873 			break;
874 		case PT_PHDR: 	/* Program header table info */
875 			proghdr = phdr[i].p_vaddr + et_dyn_addr;
876 			break;
877 		default:
878 			break;
879 		}
880 	}
881 
882 	if (data_addr == 0 && data_size == 0) {
883 		data_addr = text_addr;
884 		data_size = text_size;
885 	}
886 
887 	entry = (u_long)hdr->e_entry + et_dyn_addr;
888 
889 	/*
890 	 * Check limits.  It should be safe to check the
891 	 * limits after loading the segments since we do
892 	 * not actually fault in all the segments pages.
893 	 */
894 	PROC_LOCK(imgp->proc);
895 	if (data_size > lim_cur(imgp->proc, RLIMIT_DATA) ||
896 	    text_size > maxtsiz ||
897 	    total_size > lim_cur(imgp->proc, RLIMIT_VMEM) ||
898 	    racct_set(imgp->proc, RACCT_DATA, data_size) != 0 ||
899 	    racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) {
900 		PROC_UNLOCK(imgp->proc);
901 		return (ENOMEM);
902 	}
903 
904 	vmspace = imgp->proc->p_vmspace;
905 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
906 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
907 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
908 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
909 
910 	/*
911 	 * We load the dynamic linker where a userland call
912 	 * to mmap(0, ...) would put it.  The rationale behind this
913 	 * calculation is that it leaves room for the heap to grow to
914 	 * its maximum allowed size.
915 	 */
916 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(imgp->proc,
917 	    RLIMIT_DATA));
918 	PROC_UNLOCK(imgp->proc);
919 
920 	imgp->entry_addr = entry;
921 
922 	if (interp != NULL) {
923 		int have_interp = FALSE;
924 		VOP_UNLOCK(imgp->vp, 0);
925 		if (brand_info->emul_path != NULL &&
926 		    brand_info->emul_path[0] != '\0') {
927 			path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
928 			snprintf(path, MAXPATHLEN, "%s%s",
929 			    brand_info->emul_path, interp);
930 			error = __elfN(load_file)(imgp->proc, path, &addr,
931 			    &imgp->entry_addr, sv->sv_pagesize);
932 			free(path, M_TEMP);
933 			if (error == 0)
934 				have_interp = TRUE;
935 		}
936 		if (!have_interp && newinterp != NULL) {
937 			error = __elfN(load_file)(imgp->proc, newinterp, &addr,
938 			    &imgp->entry_addr, sv->sv_pagesize);
939 			if (error == 0)
940 				have_interp = TRUE;
941 		}
942 		if (!have_interp) {
943 			error = __elfN(load_file)(imgp->proc, interp, &addr,
944 			    &imgp->entry_addr, sv->sv_pagesize);
945 		}
946 		vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY);
947 		if (error != 0) {
948 			uprintf("ELF interpreter %s not found\n", interp);
949 			return (error);
950 		}
951 	} else
952 		addr = et_dyn_addr;
953 
954 	/*
955 	 * Construct auxargs table (used by the fixup routine)
956 	 */
957 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
958 	elf_auxargs->execfd = -1;
959 	elf_auxargs->phdr = proghdr;
960 	elf_auxargs->phent = hdr->e_phentsize;
961 	elf_auxargs->phnum = hdr->e_phnum;
962 	elf_auxargs->pagesz = PAGE_SIZE;
963 	elf_auxargs->base = addr;
964 	elf_auxargs->flags = 0;
965 	elf_auxargs->entry = entry;
966 
967 	imgp->auxargs = elf_auxargs;
968 	imgp->interpreted = 0;
969 	imgp->reloc_base = addr;
970 	imgp->proc->p_osrel = osrel;
971 
972 	return (error);
973 }
974 
975 #define	suword __CONCAT(suword, __ELF_WORD_SIZE)
976 
977 int
978 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp)
979 {
980 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
981 	Elf_Addr *base;
982 	Elf_Addr *pos;
983 
984 	base = (Elf_Addr *)*stack_base;
985 	pos = base + (imgp->args->argc + imgp->args->envc + 2);
986 
987 	if (args->execfd != -1)
988 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
989 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
990 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
991 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
992 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
993 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
994 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
995 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
996 	if (imgp->execpathp != 0)
997 		AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
998 	AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate);
999 	if (imgp->canary != 0) {
1000 		AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary);
1001 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1002 	}
1003 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1004 	if (imgp->pagesizes != 0) {
1005 		AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes);
1006 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1007 	}
1008 	if (imgp->sysent->sv_timekeep_base != 0) {
1009 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1010 		    imgp->sysent->sv_timekeep_base);
1011 	}
1012 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1013 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1014 	    imgp->sysent->sv_stackprot);
1015 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1016 
1017 	free(imgp->auxargs, M_TEMP);
1018 	imgp->auxargs = NULL;
1019 
1020 	base--;
1021 	suword(base, (long)imgp->args->argc);
1022 	*stack_base = (register_t *)base;
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Code for generating ELF core dumps.
1028  */
1029 
1030 typedef void (*segment_callback)(vm_map_entry_t, void *);
1031 
1032 /* Closure for cb_put_phdr(). */
1033 struct phdr_closure {
1034 	Elf_Phdr *phdr;		/* Program header to fill in */
1035 	Elf_Off offset;		/* Offset of segment in core file */
1036 };
1037 
1038 /* Closure for cb_size_segment(). */
1039 struct sseg_closure {
1040 	int count;		/* Count of writable segments. */
1041 	size_t size;		/* Total size of all writable segments. */
1042 };
1043 
1044 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *);
1045 
1046 struct note_info {
1047 	int		type;		/* Note type. */
1048 	outfunc_t 	outfunc; 	/* Output function. */
1049 	void		*outarg;	/* Argument for the output function. */
1050 	size_t		outsize;	/* Output size. */
1051 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1052 };
1053 
1054 TAILQ_HEAD(note_info_list, note_info);
1055 
1056 static void cb_put_phdr(vm_map_entry_t, void *);
1057 static void cb_size_segment(vm_map_entry_t, void *);
1058 static void each_writable_segment(struct thread *, segment_callback, void *);
1059 static int __elfN(corehdr)(struct thread *, struct vnode *, struct ucred *,
1060     int, void *, size_t, struct note_info_list *, size_t, gzFile);
1061 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *,
1062     size_t *);
1063 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t);
1064 static void __elfN(putnote)(struct note_info *, struct sbuf *);
1065 static size_t register_note(struct note_info_list *, int, outfunc_t, void *);
1066 static int sbuf_drain_core_output(void *, const char *, int);
1067 static int sbuf_drain_count(void *arg, const char *data, int len);
1068 
1069 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *);
1070 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1071 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *);
1072 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1073 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *);
1074 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1075 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1076 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1077 static void note_procstat_files(void *, struct sbuf *, size_t *);
1078 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1079 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1080 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1081 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1082 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1083 
1084 #ifdef COMPRESS_USER_CORES
1085 extern int compress_user_cores;
1086 extern int compress_user_cores_gzlevel;
1087 #endif
1088 
1089 static int
1090 core_output(struct vnode *vp, void *base, size_t len, off_t offset,
1091     struct ucred *active_cred, struct ucred *file_cred,
1092     struct thread *td, char *core_buf, gzFile gzfile) {
1093 
1094 	int error;
1095 	if (gzfile) {
1096 #ifdef COMPRESS_USER_CORES
1097 		error = compress_core(gzfile, base, core_buf, len, td);
1098 #else
1099 		panic("shouldn't be here");
1100 #endif
1101 	} else {
1102 		error = vn_rdwr_inchunks(UIO_WRITE, vp, base, len, offset,
1103 		    UIO_USERSPACE, IO_UNIT | IO_DIRECT, active_cred, file_cred,
1104 		    NULL, td);
1105 	}
1106 	return (error);
1107 }
1108 
1109 /* Coredump output parameters for sbuf drain routine. */
1110 struct sbuf_drain_core_params {
1111 	off_t		offset;
1112 	struct ucred	*active_cred;
1113 	struct ucred	*file_cred;
1114 	struct thread	*td;
1115 	struct vnode	*vp;
1116 #ifdef COMPRESS_USER_CORES
1117 	gzFile		gzfile;
1118 #endif
1119 };
1120 
1121 /*
1122  * Drain into a core file.
1123  */
1124 static int
1125 sbuf_drain_core_output(void *arg, const char *data, int len)
1126 {
1127 	struct sbuf_drain_core_params *p;
1128 	int error, locked;
1129 
1130 	p = (struct sbuf_drain_core_params *)arg;
1131 
1132 	/*
1133 	 * Some kern_proc out routines that print to this sbuf may
1134 	 * call us with the process lock held. Draining with the
1135 	 * non-sleepable lock held is unsafe. The lock is needed for
1136 	 * those routines when dumping a live process. In our case we
1137 	 * can safely release the lock before draining and acquire
1138 	 * again after.
1139 	 */
1140 	locked = PROC_LOCKED(p->td->td_proc);
1141 	if (locked)
1142 		PROC_UNLOCK(p->td->td_proc);
1143 #ifdef COMPRESS_USER_CORES
1144 	if (p->gzfile != Z_NULL)
1145 		error = compress_core(p->gzfile, NULL, __DECONST(char *, data),
1146 		    len, p->td);
1147 	else
1148 #endif
1149 		error = vn_rdwr_inchunks(UIO_WRITE, p->vp,
1150 		    __DECONST(void *, data), len, p->offset, UIO_SYSSPACE,
1151 		    IO_UNIT | IO_DIRECT, p->active_cred, p->file_cred, NULL,
1152 		    p->td);
1153 	if (locked)
1154 		PROC_LOCK(p->td->td_proc);
1155 	if (error != 0)
1156 		return (-error);
1157 	p->offset += len;
1158 	return (len);
1159 }
1160 
1161 /*
1162  * Drain into a counter.
1163  */
1164 static int
1165 sbuf_drain_count(void *arg, const char *data __unused, int len)
1166 {
1167 	size_t *sizep;
1168 
1169 	sizep = (size_t *)arg;
1170 	*sizep += len;
1171 	return (len);
1172 }
1173 
1174 int
1175 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1176 {
1177 	struct ucred *cred = td->td_ucred;
1178 	int error = 0;
1179 	struct sseg_closure seginfo;
1180 	struct note_info_list notelst;
1181 	struct note_info *ninfo;
1182 	void *hdr;
1183 	size_t hdrsize, notesz, coresize;
1184 
1185 	gzFile gzfile = Z_NULL;
1186 	char *core_buf = NULL;
1187 #ifdef COMPRESS_USER_CORES
1188 	char gzopen_flags[8];
1189 	char *p;
1190 	int doing_compress = flags & IMGACT_CORE_COMPRESS;
1191 #endif
1192 
1193 	hdr = NULL;
1194 	TAILQ_INIT(&notelst);
1195 
1196 #ifdef COMPRESS_USER_CORES
1197         if (doing_compress) {
1198                 p = gzopen_flags;
1199                 *p++ = 'w';
1200                 if (compress_user_cores_gzlevel >= 0 &&
1201                     compress_user_cores_gzlevel <= 9)
1202                         *p++ = '0' + compress_user_cores_gzlevel;
1203                 *p = 0;
1204                 gzfile = gz_open("", gzopen_flags, vp);
1205                 if (gzfile == Z_NULL) {
1206                         error = EFAULT;
1207                         goto done;
1208                 }
1209                 core_buf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1210                 if (!core_buf) {
1211                         error = ENOMEM;
1212                         goto done;
1213                 }
1214         }
1215 #endif
1216 
1217 	/* Size the program segments. */
1218 	seginfo.count = 0;
1219 	seginfo.size = 0;
1220 	each_writable_segment(td, cb_size_segment, &seginfo);
1221 
1222 	/*
1223 	 * Collect info about the core file header area.
1224 	 */
1225 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1226 	__elfN(prepare_notes)(td, &notelst, &notesz);
1227 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1228 
1229 #ifdef RACCT
1230 	PROC_LOCK(td->td_proc);
1231 	error = racct_add(td->td_proc, RACCT_CORE, coresize);
1232 	PROC_UNLOCK(td->td_proc);
1233 	if (error != 0) {
1234 		error = EFAULT;
1235 		goto done;
1236 	}
1237 #endif
1238 	if (coresize >= limit) {
1239 		error = EFAULT;
1240 		goto done;
1241 	}
1242 
1243 	/*
1244 	 * Allocate memory for building the header, fill it up,
1245 	 * and write it out following the notes.
1246 	 */
1247 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1248 	if (hdr == NULL) {
1249 		error = EINVAL;
1250 		goto done;
1251 	}
1252 	error = __elfN(corehdr)(td, vp, cred, seginfo.count, hdr, hdrsize,
1253 	    &notelst, notesz, gzfile);
1254 
1255 	/* Write the contents of all of the writable segments. */
1256 	if (error == 0) {
1257 		Elf_Phdr *php;
1258 		off_t offset;
1259 		int i;
1260 
1261 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1262 		offset = round_page(hdrsize + notesz);
1263 		for (i = 0; i < seginfo.count; i++) {
1264 			error = core_output(vp, (caddr_t)(uintptr_t)php->p_vaddr,
1265 			    php->p_filesz, offset, cred, NOCRED, curthread, core_buf, gzfile);
1266 			if (error != 0)
1267 				break;
1268 			offset += php->p_filesz;
1269 			php++;
1270 		}
1271 	}
1272 	if (error) {
1273 		log(LOG_WARNING,
1274 		    "Failed to write core file for process %s (error %d)\n",
1275 		    curproc->p_comm, error);
1276 	}
1277 
1278 done:
1279 #ifdef COMPRESS_USER_CORES
1280 	if (core_buf)
1281 		free(core_buf, M_TEMP);
1282 	if (gzfile)
1283 		gzclose(gzfile);
1284 #endif
1285 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1286 		TAILQ_REMOVE(&notelst, ninfo, link);
1287 		free(ninfo, M_TEMP);
1288 	}
1289 	if (hdr != NULL)
1290 		free(hdr, M_TEMP);
1291 
1292 	return (error);
1293 }
1294 
1295 /*
1296  * A callback for each_writable_segment() to write out the segment's
1297  * program header entry.
1298  */
1299 static void
1300 cb_put_phdr(entry, closure)
1301 	vm_map_entry_t entry;
1302 	void *closure;
1303 {
1304 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1305 	Elf_Phdr *phdr = phc->phdr;
1306 
1307 	phc->offset = round_page(phc->offset);
1308 
1309 	phdr->p_type = PT_LOAD;
1310 	phdr->p_offset = phc->offset;
1311 	phdr->p_vaddr = entry->start;
1312 	phdr->p_paddr = 0;
1313 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1314 	phdr->p_align = PAGE_SIZE;
1315 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1316 
1317 	phc->offset += phdr->p_filesz;
1318 	phc->phdr++;
1319 }
1320 
1321 /*
1322  * A callback for each_writable_segment() to gather information about
1323  * the number of segments and their total size.
1324  */
1325 static void
1326 cb_size_segment(entry, closure)
1327 	vm_map_entry_t entry;
1328 	void *closure;
1329 {
1330 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1331 
1332 	ssc->count++;
1333 	ssc->size += entry->end - entry->start;
1334 }
1335 
1336 /*
1337  * For each writable segment in the process's memory map, call the given
1338  * function with a pointer to the map entry and some arbitrary
1339  * caller-supplied data.
1340  */
1341 static void
1342 each_writable_segment(td, func, closure)
1343 	struct thread *td;
1344 	segment_callback func;
1345 	void *closure;
1346 {
1347 	struct proc *p = td->td_proc;
1348 	vm_map_t map = &p->p_vmspace->vm_map;
1349 	vm_map_entry_t entry;
1350 	vm_object_t backing_object, object;
1351 	boolean_t ignore_entry;
1352 
1353 	vm_map_lock_read(map);
1354 	for (entry = map->header.next; entry != &map->header;
1355 	    entry = entry->next) {
1356 		/*
1357 		 * Don't dump inaccessible mappings, deal with legacy
1358 		 * coredump mode.
1359 		 *
1360 		 * Note that read-only segments related to the elf binary
1361 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1362 		 * need to arbitrarily ignore such segments.
1363 		 */
1364 		if (elf_legacy_coredump) {
1365 			if ((entry->protection & VM_PROT_RW) != VM_PROT_RW)
1366 				continue;
1367 		} else {
1368 			if ((entry->protection & VM_PROT_ALL) == 0)
1369 				continue;
1370 		}
1371 
1372 		/*
1373 		 * Dont include memory segment in the coredump if
1374 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1375 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1376 		 * kernel map).
1377 		 */
1378 		if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP))
1379 			continue;
1380 
1381 		if ((object = entry->object.vm_object) == NULL)
1382 			continue;
1383 
1384 		/* Ignore memory-mapped devices and such things. */
1385 		VM_OBJECT_RLOCK(object);
1386 		while ((backing_object = object->backing_object) != NULL) {
1387 			VM_OBJECT_RLOCK(backing_object);
1388 			VM_OBJECT_RUNLOCK(object);
1389 			object = backing_object;
1390 		}
1391 		ignore_entry = object->type != OBJT_DEFAULT &&
1392 		    object->type != OBJT_SWAP && object->type != OBJT_VNODE;
1393 		VM_OBJECT_RUNLOCK(object);
1394 		if (ignore_entry)
1395 			continue;
1396 
1397 		(*func)(entry, closure);
1398 	}
1399 	vm_map_unlock_read(map);
1400 }
1401 
1402 /*
1403  * Write the core file header to the file, including padding up to
1404  * the page boundary.
1405  */
1406 static int
1407 __elfN(corehdr)(struct thread *td, struct vnode *vp, struct ucred *cred,
1408     int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst,
1409     size_t notesz, gzFile gzfile)
1410 {
1411 	struct sbuf_drain_core_params params;
1412 	struct note_info *ninfo;
1413 	struct sbuf *sb;
1414 	int error;
1415 
1416 	/* Fill in the header. */
1417 	bzero(hdr, hdrsize);
1418 	__elfN(puthdr)(td, hdr, hdrsize, numsegs, notesz);
1419 
1420 	params.offset = 0;
1421 	params.active_cred = cred;
1422 	params.file_cred = NOCRED;
1423 	params.td = td;
1424 	params.vp = vp;
1425 #ifdef COMPRESS_USER_CORES
1426 	params.gzfile = gzfile;
1427 #endif
1428 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1429 	sbuf_set_drain(sb, sbuf_drain_core_output, &params);
1430 	sbuf_start_section(sb, NULL);
1431 	sbuf_bcat(sb, hdr, hdrsize);
1432 	TAILQ_FOREACH(ninfo, notelst, link)
1433 	    __elfN(putnote)(ninfo, sb);
1434 	/* Align up to a page boundary for the program segments. */
1435 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1436 	error = sbuf_finish(sb);
1437 	sbuf_delete(sb);
1438 
1439 	return (error);
1440 }
1441 
1442 static void
1443 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1444     size_t *sizep)
1445 {
1446 	struct proc *p;
1447 	struct thread *thr;
1448 	size_t size;
1449 
1450 	p = td->td_proc;
1451 	size = 0;
1452 
1453 	size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p);
1454 
1455 	/*
1456 	 * To have the debugger select the right thread (LWP) as the initial
1457 	 * thread, we dump the state of the thread passed to us in td first.
1458 	 * This is the thread that causes the core dump and thus likely to
1459 	 * be the right thread one wants to have selected in the debugger.
1460 	 */
1461 	thr = td;
1462 	while (thr != NULL) {
1463 		size += register_note(list, NT_PRSTATUS,
1464 		    __elfN(note_prstatus), thr);
1465 		size += register_note(list, NT_FPREGSET,
1466 		    __elfN(note_fpregset), thr);
1467 		size += register_note(list, NT_THRMISC,
1468 		    __elfN(note_thrmisc), thr);
1469 		size += register_note(list, -1,
1470 		    __elfN(note_threadmd), thr);
1471 
1472 		thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) :
1473 		    TAILQ_NEXT(thr, td_plist);
1474 		if (thr == td)
1475 			thr = TAILQ_NEXT(thr, td_plist);
1476 	}
1477 
1478 	size += register_note(list, NT_PROCSTAT_PROC,
1479 	    __elfN(note_procstat_proc), p);
1480 	size += register_note(list, NT_PROCSTAT_FILES,
1481 	    note_procstat_files, p);
1482 	size += register_note(list, NT_PROCSTAT_VMMAP,
1483 	    note_procstat_vmmap, p);
1484 	size += register_note(list, NT_PROCSTAT_GROUPS,
1485 	    note_procstat_groups, p);
1486 	size += register_note(list, NT_PROCSTAT_UMASK,
1487 	    note_procstat_umask, p);
1488 	size += register_note(list, NT_PROCSTAT_RLIMIT,
1489 	    note_procstat_rlimit, p);
1490 	size += register_note(list, NT_PROCSTAT_OSREL,
1491 	    note_procstat_osrel, p);
1492 	size += register_note(list, NT_PROCSTAT_PSSTRINGS,
1493 	    __elfN(note_procstat_psstrings), p);
1494 	size += register_note(list, NT_PROCSTAT_AUXV,
1495 	    __elfN(note_procstat_auxv), p);
1496 
1497 	*sizep = size;
1498 }
1499 
1500 static void
1501 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1502     size_t notesz)
1503 {
1504 	Elf_Ehdr *ehdr;
1505 	Elf_Phdr *phdr;
1506 	struct phdr_closure phc;
1507 
1508 	ehdr = (Elf_Ehdr *)hdr;
1509 	phdr = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr));
1510 
1511 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1512 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1513 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1514 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1515 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1516 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1517 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1518 	ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
1519 	ehdr->e_ident[EI_ABIVERSION] = 0;
1520 	ehdr->e_ident[EI_PAD] = 0;
1521 	ehdr->e_type = ET_CORE;
1522 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1523 	ehdr->e_machine = ELF_ARCH32;
1524 #else
1525 	ehdr->e_machine = ELF_ARCH;
1526 #endif
1527 	ehdr->e_version = EV_CURRENT;
1528 	ehdr->e_entry = 0;
1529 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1530 	ehdr->e_flags = 0;
1531 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1532 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1533 	ehdr->e_phnum = numsegs + 1;
1534 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1535 	ehdr->e_shnum = 0;
1536 	ehdr->e_shstrndx = SHN_UNDEF;
1537 
1538 	/*
1539 	 * Fill in the program header entries.
1540 	 */
1541 
1542 	/* The note segement. */
1543 	phdr->p_type = PT_NOTE;
1544 	phdr->p_offset = hdrsize;
1545 	phdr->p_vaddr = 0;
1546 	phdr->p_paddr = 0;
1547 	phdr->p_filesz = notesz;
1548 	phdr->p_memsz = 0;
1549 	phdr->p_flags = PF_R;
1550 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1551 	phdr++;
1552 
1553 	/* All the writable segments from the program. */
1554 	phc.phdr = phdr;
1555 	phc.offset = round_page(hdrsize + notesz);
1556 	each_writable_segment(td, cb_put_phdr, &phc);
1557 }
1558 
1559 static size_t
1560 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg)
1561 {
1562 	struct note_info *ninfo;
1563 	size_t size, notesize;
1564 
1565 	size = 0;
1566 	out(arg, NULL, &size);
1567 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
1568 	ninfo->type = type;
1569 	ninfo->outfunc = out;
1570 	ninfo->outarg = arg;
1571 	ninfo->outsize = size;
1572 	TAILQ_INSERT_TAIL(list, ninfo, link);
1573 
1574 	if (type == -1)
1575 		return (size);
1576 
1577 	notesize = sizeof(Elf_Note) +		/* note header */
1578 	    roundup2(8, ELF_NOTE_ROUNDSIZE) +	/* note name ("FreeBSD") */
1579 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
1580 
1581 	return (notesize);
1582 }
1583 
1584 static void
1585 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb)
1586 {
1587 	Elf_Note note;
1588 	ssize_t old_len;
1589 
1590 	if (ninfo->type == -1) {
1591 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1592 		return;
1593 	}
1594 
1595 	note.n_namesz = 8; /* strlen("FreeBSD") + 1 */
1596 	note.n_descsz = ninfo->outsize;
1597 	note.n_type = ninfo->type;
1598 
1599 	sbuf_bcat(sb, &note, sizeof(note));
1600 	sbuf_start_section(sb, &old_len);
1601 	sbuf_bcat(sb, "FreeBSD", note.n_namesz);
1602 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1603 	if (note.n_descsz == 0)
1604 		return;
1605 	sbuf_start_section(sb, &old_len);
1606 	ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
1607 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
1608 }
1609 
1610 /*
1611  * Miscellaneous note out functions.
1612  */
1613 
1614 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1615 #include <compat/freebsd32/freebsd32.h>
1616 
1617 typedef struct prstatus32 elf_prstatus_t;
1618 typedef struct prpsinfo32 elf_prpsinfo_t;
1619 typedef struct fpreg32 elf_prfpregset_t;
1620 typedef struct fpreg32 elf_fpregset_t;
1621 typedef struct reg32 elf_gregset_t;
1622 typedef struct thrmisc32 elf_thrmisc_t;
1623 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
1624 typedef struct kinfo_proc32 elf_kinfo_proc_t;
1625 typedef uint32_t elf_ps_strings_t;
1626 #else
1627 typedef prstatus_t elf_prstatus_t;
1628 typedef prpsinfo_t elf_prpsinfo_t;
1629 typedef prfpregset_t elf_prfpregset_t;
1630 typedef prfpregset_t elf_fpregset_t;
1631 typedef gregset_t elf_gregset_t;
1632 typedef thrmisc_t elf_thrmisc_t;
1633 #define ELF_KERN_PROC_MASK	0
1634 typedef struct kinfo_proc elf_kinfo_proc_t;
1635 typedef vm_offset_t elf_ps_strings_t;
1636 #endif
1637 
1638 static void
1639 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
1640 {
1641 	struct proc *p;
1642 	elf_prpsinfo_t *psinfo;
1643 
1644 	p = (struct proc *)arg;
1645 	if (sb != NULL) {
1646 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
1647 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
1648 		psinfo->pr_version = PRPSINFO_VERSION;
1649 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
1650 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
1651 		/*
1652 		 * XXX - We don't fill in the command line arguments properly
1653 		 * yet.
1654 		 */
1655 		strlcpy(psinfo->pr_psargs, p->p_comm,
1656 		    sizeof(psinfo->pr_psargs));
1657 
1658 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
1659 		free(psinfo, M_TEMP);
1660 	}
1661 	*sizep = sizeof(*psinfo);
1662 }
1663 
1664 static void
1665 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep)
1666 {
1667 	struct thread *td;
1668 	elf_prstatus_t *status;
1669 
1670 	td = (struct thread *)arg;
1671 	if (sb != NULL) {
1672 		KASSERT(*sizep == sizeof(*status), ("invalid size"));
1673 		status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK);
1674 		status->pr_version = PRSTATUS_VERSION;
1675 		status->pr_statussz = sizeof(elf_prstatus_t);
1676 		status->pr_gregsetsz = sizeof(elf_gregset_t);
1677 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
1678 		status->pr_osreldate = osreldate;
1679 		status->pr_cursig = td->td_proc->p_sig;
1680 		status->pr_pid = td->td_tid;
1681 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1682 		fill_regs32(td, &status->pr_reg);
1683 #else
1684 		fill_regs(td, &status->pr_reg);
1685 #endif
1686 		sbuf_bcat(sb, status, sizeof(*status));
1687 		free(status, M_TEMP);
1688 	}
1689 	*sizep = sizeof(*status);
1690 }
1691 
1692 static void
1693 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep)
1694 {
1695 	struct thread *td;
1696 	elf_prfpregset_t *fpregset;
1697 
1698 	td = (struct thread *)arg;
1699 	if (sb != NULL) {
1700 		KASSERT(*sizep == sizeof(*fpregset), ("invalid size"));
1701 		fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK);
1702 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1703 		fill_fpregs32(td, fpregset);
1704 #else
1705 		fill_fpregs(td, fpregset);
1706 #endif
1707 		sbuf_bcat(sb, fpregset, sizeof(*fpregset));
1708 		free(fpregset, M_TEMP);
1709 	}
1710 	*sizep = sizeof(*fpregset);
1711 }
1712 
1713 static void
1714 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep)
1715 {
1716 	struct thread *td;
1717 	elf_thrmisc_t thrmisc;
1718 
1719 	td = (struct thread *)arg;
1720 	if (sb != NULL) {
1721 		KASSERT(*sizep == sizeof(thrmisc), ("invalid size"));
1722 		bzero(&thrmisc._pad, sizeof(thrmisc._pad));
1723 		strcpy(thrmisc.pr_tname, td->td_name);
1724 		sbuf_bcat(sb, &thrmisc, sizeof(thrmisc));
1725 	}
1726 	*sizep = sizeof(thrmisc);
1727 }
1728 
1729 /*
1730  * Allow for MD specific notes, as well as any MD
1731  * specific preparations for writing MI notes.
1732  */
1733 static void
1734 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
1735 {
1736 	struct thread *td;
1737 	void *buf;
1738 	size_t size;
1739 
1740 	td = (struct thread *)arg;
1741 	size = *sizep;
1742 	buf = NULL;
1743 	if (size != 0 && sb != NULL)
1744 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
1745 	size = 0;
1746 	__elfN(dump_thread)(td, buf, &size);
1747 	KASSERT(*sizep == size, ("invalid size"));
1748 	if (size != 0 && sb != NULL)
1749 		sbuf_bcat(sb, buf, size);
1750 	*sizep = size;
1751 }
1752 
1753 #ifdef KINFO_PROC_SIZE
1754 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
1755 #endif
1756 
1757 static void
1758 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
1759 {
1760 	struct proc *p;
1761 	size_t size;
1762 	int structsize;
1763 
1764 	p = (struct proc *)arg;
1765 	size = sizeof(structsize) + p->p_numthreads *
1766 	    sizeof(elf_kinfo_proc_t);
1767 
1768 	if (sb != NULL) {
1769 		KASSERT(*sizep == size, ("invalid size"));
1770 		structsize = sizeof(elf_kinfo_proc_t);
1771 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1772 		PROC_LOCK(p);
1773 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
1774 	}
1775 	*sizep = size;
1776 }
1777 
1778 #ifdef KINFO_FILE_SIZE
1779 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
1780 #endif
1781 
1782 static void
1783 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
1784 {
1785 	struct proc *p;
1786 	size_t size;
1787 	int structsize;
1788 
1789 	p = (struct proc *)arg;
1790 	if (sb == NULL) {
1791 		size = 0;
1792 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
1793 		sbuf_set_drain(sb, sbuf_drain_count, &size);
1794 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1795 		PROC_LOCK(p);
1796 		kern_proc_filedesc_out(p, sb, -1);
1797 		sbuf_finish(sb);
1798 		sbuf_delete(sb);
1799 		*sizep = size;
1800 	} else {
1801 		structsize = sizeof(struct kinfo_file);
1802 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1803 		PROC_LOCK(p);
1804 		kern_proc_filedesc_out(p, sb, -1);
1805 	}
1806 }
1807 
1808 #ifdef KINFO_VMENTRY_SIZE
1809 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1810 #endif
1811 
1812 static void
1813 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
1814 {
1815 	struct proc *p;
1816 	size_t size;
1817 	int structsize;
1818 
1819 	p = (struct proc *)arg;
1820 	if (sb == NULL) {
1821 		size = 0;
1822 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
1823 		sbuf_set_drain(sb, sbuf_drain_count, &size);
1824 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1825 		PROC_LOCK(p);
1826 		kern_proc_vmmap_out(p, sb);
1827 		sbuf_finish(sb);
1828 		sbuf_delete(sb);
1829 		*sizep = size;
1830 	} else {
1831 		structsize = sizeof(struct kinfo_vmentry);
1832 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1833 		PROC_LOCK(p);
1834 		kern_proc_vmmap_out(p, sb);
1835 	}
1836 }
1837 
1838 static void
1839 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
1840 {
1841 	struct proc *p;
1842 	size_t size;
1843 	int structsize;
1844 
1845 	p = (struct proc *)arg;
1846 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
1847 	if (sb != NULL) {
1848 		KASSERT(*sizep == size, ("invalid size"));
1849 		structsize = sizeof(gid_t);
1850 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1851 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
1852 		    sizeof(gid_t));
1853 	}
1854 	*sizep = size;
1855 }
1856 
1857 static void
1858 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
1859 {
1860 	struct proc *p;
1861 	size_t size;
1862 	int structsize;
1863 
1864 	p = (struct proc *)arg;
1865 	size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask);
1866 	if (sb != NULL) {
1867 		KASSERT(*sizep == size, ("invalid size"));
1868 		structsize = sizeof(p->p_fd->fd_cmask);
1869 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1870 		sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask));
1871 	}
1872 	*sizep = size;
1873 }
1874 
1875 static void
1876 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
1877 {
1878 	struct proc *p;
1879 	struct rlimit rlim[RLIM_NLIMITS];
1880 	size_t size;
1881 	int structsize, i;
1882 
1883 	p = (struct proc *)arg;
1884 	size = sizeof(structsize) + sizeof(rlim);
1885 	if (sb != NULL) {
1886 		KASSERT(*sizep == size, ("invalid size"));
1887 		structsize = sizeof(rlim);
1888 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1889 		PROC_LOCK(p);
1890 		for (i = 0; i < RLIM_NLIMITS; i++)
1891 			lim_rlimit(p, i, &rlim[i]);
1892 		PROC_UNLOCK(p);
1893 		sbuf_bcat(sb, rlim, sizeof(rlim));
1894 	}
1895 	*sizep = size;
1896 }
1897 
1898 static void
1899 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
1900 {
1901 	struct proc *p;
1902 	size_t size;
1903 	int structsize;
1904 
1905 	p = (struct proc *)arg;
1906 	size = sizeof(structsize) + sizeof(p->p_osrel);
1907 	if (sb != NULL) {
1908 		KASSERT(*sizep == size, ("invalid size"));
1909 		structsize = sizeof(p->p_osrel);
1910 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1911 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
1912 	}
1913 	*sizep = size;
1914 }
1915 
1916 static void
1917 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
1918 {
1919 	struct proc *p;
1920 	elf_ps_strings_t ps_strings;
1921 	size_t size;
1922 	int structsize;
1923 
1924 	p = (struct proc *)arg;
1925 	size = sizeof(structsize) + sizeof(ps_strings);
1926 	if (sb != NULL) {
1927 		KASSERT(*sizep == size, ("invalid size"));
1928 		structsize = sizeof(ps_strings);
1929 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
1930 		ps_strings = PTROUT(p->p_sysent->sv_psstrings);
1931 #else
1932 		ps_strings = p->p_sysent->sv_psstrings;
1933 #endif
1934 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1935 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
1936 	}
1937 	*sizep = size;
1938 }
1939 
1940 static void
1941 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
1942 {
1943 	struct proc *p;
1944 	size_t size;
1945 	int structsize;
1946 
1947 	p = (struct proc *)arg;
1948 	if (sb == NULL) {
1949 		size = 0;
1950 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
1951 		sbuf_set_drain(sb, sbuf_drain_count, &size);
1952 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1953 		PHOLD(p);
1954 		proc_getauxv(curthread, p, sb);
1955 		PRELE(p);
1956 		sbuf_finish(sb);
1957 		sbuf_delete(sb);
1958 		*sizep = size;
1959 	} else {
1960 		structsize = sizeof(Elf_Auxinfo);
1961 		sbuf_bcat(sb, &structsize, sizeof(structsize));
1962 		PHOLD(p);
1963 		proc_getauxv(curthread, p, sb);
1964 		PRELE(p);
1965 	}
1966 }
1967 
1968 static boolean_t
1969 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote,
1970     int32_t *osrel, const Elf_Phdr *pnote)
1971 {
1972 	const Elf_Note *note, *note0, *note_end;
1973 	const char *note_name;
1974 	int i;
1975 
1976 	if (pnote == NULL || pnote->p_offset > PAGE_SIZE ||
1977 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset)
1978 		return (FALSE);
1979 
1980 	note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset);
1981 	note_end = (const Elf_Note *)(imgp->image_header +
1982 	    pnote->p_offset + pnote->p_filesz);
1983 	for (i = 0; i < 100 && note >= note0 && note < note_end; i++) {
1984 		if (!aligned(note, Elf32_Addr) || (const char *)note_end -
1985 		    (const char *)note < sizeof(Elf_Note))
1986 			return (FALSE);
1987 		if (note->n_namesz != checknote->hdr.n_namesz ||
1988 		    note->n_descsz != checknote->hdr.n_descsz ||
1989 		    note->n_type != checknote->hdr.n_type)
1990 			goto nextnote;
1991 		note_name = (const char *)(note + 1);
1992 		if (note_name + checknote->hdr.n_namesz >=
1993 		    (const char *)note_end || strncmp(checknote->vendor,
1994 		    note_name, checknote->hdr.n_namesz) != 0)
1995 			goto nextnote;
1996 
1997 		/*
1998 		 * Fetch the osreldate for binary
1999 		 * from the ELF OSABI-note if necessary.
2000 		 */
2001 		if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
2002 		    checknote->trans_osrel != NULL)
2003 			return (checknote->trans_osrel(note, osrel));
2004 		return (TRUE);
2005 
2006 nextnote:
2007 		note = (const Elf_Note *)((const char *)(note + 1) +
2008 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2009 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2010 	}
2011 
2012 	return (FALSE);
2013 }
2014 
2015 /*
2016  * Try to find the appropriate ABI-note section for checknote,
2017  * fetch the osreldate for binary from the ELF OSABI-note. Only the
2018  * first page of the image is searched, the same as for headers.
2019  */
2020 static boolean_t
2021 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
2022     int32_t *osrel)
2023 {
2024 	const Elf_Phdr *phdr;
2025 	const Elf_Ehdr *hdr;
2026 	int i;
2027 
2028 	hdr = (const Elf_Ehdr *)imgp->image_header;
2029 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2030 
2031 	for (i = 0; i < hdr->e_phnum; i++) {
2032 		if (phdr[i].p_type == PT_NOTE &&
2033 		    __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i]))
2034 			return (TRUE);
2035 	}
2036 	return (FALSE);
2037 
2038 }
2039 
2040 /*
2041  * Tell kern_execve.c about it, with a little help from the linker.
2042  */
2043 static struct execsw __elfN(execsw) = {
2044 	__CONCAT(exec_, __elfN(imgact)),
2045 	__XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2046 };
2047 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2048 
2049 #ifdef COMPRESS_USER_CORES
2050 /*
2051  * Compress and write out a core segment for a user process.
2052  *
2053  * 'inbuf' is the starting address of a VM segment in the process' address
2054  * space that is to be compressed and written out to the core file.  'dest_buf'
2055  * is a buffer in the kernel's address space.  The segment is copied from
2056  * 'inbuf' to 'dest_buf' first before being processed by the compression
2057  * routine gzwrite().  This copying is necessary because the content of the VM
2058  * segment may change between the compression pass and the crc-computation pass
2059  * in gzwrite().  This is because realtime threads may preempt the UNIX kernel.
2060  *
2061  * If inbuf is NULL it is assumed that data is already copied to 'dest_buf'.
2062  */
2063 static int
2064 compress_core (gzFile file, char *inbuf, char *dest_buf, unsigned int len,
2065     struct thread *td)
2066 {
2067 	int len_compressed;
2068 	int error = 0;
2069 	unsigned int chunk_len;
2070 
2071 	while (len) {
2072 		if (inbuf != NULL) {
2073 			chunk_len = (len > CORE_BUF_SIZE) ? CORE_BUF_SIZE : len;
2074 			copyin(inbuf, dest_buf, chunk_len);
2075 			inbuf += chunk_len;
2076 		} else {
2077 			chunk_len = len;
2078 		}
2079 		len_compressed = gzwrite(file, dest_buf, chunk_len);
2080 
2081 		EVENTHANDLER_INVOKE(app_coredump_progress, td, len_compressed);
2082 
2083 		if ((unsigned int)len_compressed != chunk_len) {
2084 			log(LOG_WARNING,
2085 			    "compress_core: length mismatch (0x%x returned, "
2086 			    "0x%x expected)\n", len_compressed, chunk_len);
2087 			EVENTHANDLER_INVOKE(app_coredump_error, td,
2088 			    "compress_core: length mismatch %x -> %x",
2089 			    chunk_len, len_compressed);
2090 			error = EFAULT;
2091 			break;
2092 		}
2093 		len -= chunk_len;
2094 		maybe_yield();
2095 	}
2096 
2097 	return (error);
2098 }
2099 #endif /* COMPRESS_USER_CORES */
2100 
2101 static vm_prot_t
2102 __elfN(trans_prot)(Elf_Word flags)
2103 {
2104 	vm_prot_t prot;
2105 
2106 	prot = 0;
2107 	if (flags & PF_X)
2108 		prot |= VM_PROT_EXECUTE;
2109 	if (flags & PF_W)
2110 		prot |= VM_PROT_WRITE;
2111 	if (flags & PF_R)
2112 		prot |= VM_PROT_READ;
2113 #if __ELF_WORD_SIZE == 32
2114 #if defined(__amd64__) || defined(__ia64__)
2115 	if (i386_read_exec && (flags & PF_R))
2116 		prot |= VM_PROT_EXECUTE;
2117 #endif
2118 #endif
2119 	return (prot);
2120 }
2121 
2122 static Elf_Word
2123 __elfN(untrans_prot)(vm_prot_t prot)
2124 {
2125 	Elf_Word flags;
2126 
2127 	flags = 0;
2128 	if (prot & VM_PROT_EXECUTE)
2129 		flags |= PF_X;
2130 	if (prot & VM_PROT_READ)
2131 		flags |= PF_R;
2132 	if (prot & VM_PROT_WRITE)
2133 		flags |= PF_W;
2134 	return (flags);
2135 }
2136