1 /*- 2 * Copyright (c) 2017 Dell EMC 3 * Copyright (c) 2000 David O'Brien 4 * Copyright (c) 1995-1996 Søren Schmidt 5 * Copyright (c) 1996 Peter Wemm 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer 13 * in this position and unchanged. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_capsicum.h" 36 #include "opt_compat.h" 37 #include "opt_gzio.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/exec.h> 42 #include <sys/fcntl.h> 43 #include <sys/gzio.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/pioctl.h> 54 #include <sys/proc.h> 55 #include <sys/procfs.h> 56 #include <sys/ptrace.h> 57 #include <sys/racct.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int interp_name_len, int32_t *osrel); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry, size_t pagesize); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 96 size_t pagesize); 97 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 98 static boolean_t __elfN(freebsd_trans_osrel)(const Elf_Note *note, 99 int32_t *osrel); 100 static boolean_t kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 101 static boolean_t __elfN(check_note)(struct image_params *imgp, 102 Elf_Brandnote *checknote, int32_t *osrel); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW, 0, 107 ""); 108 109 #define CORE_BUF_SIZE (16 * 1024) 110 111 int __elfN(fallback_brand) = -1; 112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 113 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 114 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 115 116 static int elf_legacy_coredump = 0; 117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 118 &elf_legacy_coredump, 0, 119 "include all and only RW pages in core dumps"); 120 121 int __elfN(nxstack) = 122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 123 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 133 #if defined(__amd64__) 134 int i386_read_exec = 0; 135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 136 "enable execution from readable segments"); 137 #endif 138 #endif 139 140 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 141 142 #define trunc_page_ps(va, ps) rounddown2(va, ps) 143 #define round_page_ps(va, ps) roundup2(va, ps) 144 #define aligned(a, t) (trunc_page_ps((u_long)(a), sizeof(t)) == (u_long)(a)) 145 146 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 147 148 Elf_Brandnote __elfN(freebsd_brandnote) = { 149 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 150 .hdr.n_descsz = sizeof(int32_t), 151 .hdr.n_type = NT_FREEBSD_ABI_TAG, 152 .vendor = FREEBSD_ABI_VENDOR, 153 .flags = BN_TRANSLATE_OSREL, 154 .trans_osrel = __elfN(freebsd_trans_osrel) 155 }; 156 157 static boolean_t 158 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 159 { 160 uintptr_t p; 161 162 p = (uintptr_t)(note + 1); 163 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 164 *osrel = *(const int32_t *)(p); 165 166 return (TRUE); 167 } 168 169 static const char GNU_ABI_VENDOR[] = "GNU"; 170 static int GNU_KFREEBSD_ABI_DESC = 3; 171 172 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 173 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 174 .hdr.n_descsz = 16, /* XXX at least 16 */ 175 .hdr.n_type = 1, 176 .vendor = GNU_ABI_VENDOR, 177 .flags = BN_TRANSLATE_OSREL, 178 .trans_osrel = kfreebsd_trans_osrel 179 }; 180 181 static boolean_t 182 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 183 { 184 const Elf32_Word *desc; 185 uintptr_t p; 186 187 p = (uintptr_t)(note + 1); 188 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 189 190 desc = (const Elf32_Word *)p; 191 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 192 return (FALSE); 193 194 /* 195 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 196 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 197 */ 198 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 199 200 return (TRUE); 201 } 202 203 int 204 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 205 { 206 int i; 207 208 for (i = 0; i < MAX_BRANDS; i++) { 209 if (elf_brand_list[i] == NULL) { 210 elf_brand_list[i] = entry; 211 break; 212 } 213 } 214 if (i == MAX_BRANDS) { 215 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 216 __func__, entry); 217 return (-1); 218 } 219 return (0); 220 } 221 222 int 223 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 224 { 225 int i; 226 227 for (i = 0; i < MAX_BRANDS; i++) { 228 if (elf_brand_list[i] == entry) { 229 elf_brand_list[i] = NULL; 230 break; 231 } 232 } 233 if (i == MAX_BRANDS) 234 return (-1); 235 return (0); 236 } 237 238 int 239 __elfN(brand_inuse)(Elf_Brandinfo *entry) 240 { 241 struct proc *p; 242 int rval = FALSE; 243 244 sx_slock(&allproc_lock); 245 FOREACH_PROC_IN_SYSTEM(p) { 246 if (p->p_sysent == entry->sysvec) { 247 rval = TRUE; 248 break; 249 } 250 } 251 sx_sunlock(&allproc_lock); 252 253 return (rval); 254 } 255 256 static Elf_Brandinfo * 257 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 258 int interp_name_len, int32_t *osrel) 259 { 260 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 261 Elf_Brandinfo *bi, *bi_m; 262 boolean_t ret; 263 int i; 264 265 /* 266 * We support four types of branding -- (1) the ELF EI_OSABI field 267 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 268 * branding w/in the ELF header, (3) path of the `interp_path' 269 * field, and (4) the ".note.ABI-tag" ELF section. 270 */ 271 272 /* Look for an ".note.ABI-tag" ELF section */ 273 bi_m = NULL; 274 for (i = 0; i < MAX_BRANDS; i++) { 275 bi = elf_brand_list[i]; 276 if (bi == NULL) 277 continue; 278 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 279 continue; 280 if (hdr->e_machine == bi->machine && (bi->flags & 281 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 282 ret = __elfN(check_note)(imgp, bi->brand_note, osrel); 283 /* Give brand a chance to veto check_note's guess */ 284 if (ret && bi->header_supported) 285 ret = bi->header_supported(imgp); 286 /* 287 * If note checker claimed the binary, but the 288 * interpreter path in the image does not 289 * match default one for the brand, try to 290 * search for other brands with the same 291 * interpreter. Either there is better brand 292 * with the right interpreter, or, failing 293 * this, we return first brand which accepted 294 * our note and, optionally, header. 295 */ 296 if (ret && bi_m == NULL && interp != NULL && 297 (bi->interp_path == NULL || 298 (strlen(bi->interp_path) + 1 != interp_name_len || 299 strncmp(interp, bi->interp_path, interp_name_len) 300 != 0))) { 301 bi_m = bi; 302 ret = 0; 303 } 304 if (ret) 305 return (bi); 306 } 307 } 308 if (bi_m != NULL) 309 return (bi_m); 310 311 /* If the executable has a brand, search for it in the brand list. */ 312 for (i = 0; i < MAX_BRANDS; i++) { 313 bi = elf_brand_list[i]; 314 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 315 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 316 continue; 317 if (hdr->e_machine == bi->machine && 318 (hdr->e_ident[EI_OSABI] == bi->brand || 319 (bi->compat_3_brand != NULL && 320 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 321 bi->compat_3_brand) == 0))) { 322 /* Looks good, but give brand a chance to veto */ 323 if (!bi->header_supported || 324 bi->header_supported(imgp)) { 325 /* 326 * Again, prefer strictly matching 327 * interpreter path. 328 */ 329 if (interp_name_len == 0 && 330 bi->interp_path == NULL) 331 return (bi); 332 if (bi->interp_path != NULL && 333 strlen(bi->interp_path) + 1 == 334 interp_name_len && strncmp(interp, 335 bi->interp_path, interp_name_len) == 0) 336 return (bi); 337 if (bi_m == NULL) 338 bi_m = bi; 339 } 340 } 341 } 342 if (bi_m != NULL) 343 return (bi_m); 344 345 /* No known brand, see if the header is recognized by any brand */ 346 for (i = 0; i < MAX_BRANDS; i++) { 347 bi = elf_brand_list[i]; 348 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 349 bi->header_supported == NULL) 350 continue; 351 if (hdr->e_machine == bi->machine) { 352 ret = bi->header_supported(imgp); 353 if (ret) 354 return (bi); 355 } 356 } 357 358 /* Lacking a known brand, search for a recognized interpreter. */ 359 if (interp != NULL) { 360 for (i = 0; i < MAX_BRANDS; i++) { 361 bi = elf_brand_list[i]; 362 if (bi == NULL || (bi->flags & 363 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 364 != 0) 365 continue; 366 if (hdr->e_machine == bi->machine && 367 bi->interp_path != NULL && 368 /* ELF image p_filesz includes terminating zero */ 369 strlen(bi->interp_path) + 1 == interp_name_len && 370 strncmp(interp, bi->interp_path, interp_name_len) 371 == 0) 372 return (bi); 373 } 374 } 375 376 /* Lacking a recognized interpreter, try the default brand */ 377 for (i = 0; i < MAX_BRANDS; i++) { 378 bi = elf_brand_list[i]; 379 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 380 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 381 continue; 382 if (hdr->e_machine == bi->machine && 383 __elfN(fallback_brand) == bi->brand) 384 return (bi); 385 } 386 return (NULL); 387 } 388 389 static int 390 __elfN(check_header)(const Elf_Ehdr *hdr) 391 { 392 Elf_Brandinfo *bi; 393 int i; 394 395 if (!IS_ELF(*hdr) || 396 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 397 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 398 hdr->e_ident[EI_VERSION] != EV_CURRENT || 399 hdr->e_phentsize != sizeof(Elf_Phdr) || 400 hdr->e_version != ELF_TARG_VER) 401 return (ENOEXEC); 402 403 /* 404 * Make sure we have at least one brand for this machine. 405 */ 406 407 for (i = 0; i < MAX_BRANDS; i++) { 408 bi = elf_brand_list[i]; 409 if (bi != NULL && bi->machine == hdr->e_machine) 410 break; 411 } 412 if (i == MAX_BRANDS) 413 return (ENOEXEC); 414 415 return (0); 416 } 417 418 static int 419 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 420 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 421 { 422 struct sf_buf *sf; 423 int error; 424 vm_offset_t off; 425 426 /* 427 * Create the page if it doesn't exist yet. Ignore errors. 428 */ 429 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 430 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 431 432 /* 433 * Find the page from the underlying object. 434 */ 435 if (object != NULL) { 436 sf = vm_imgact_map_page(object, offset); 437 if (sf == NULL) 438 return (KERN_FAILURE); 439 off = offset - trunc_page(offset); 440 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 441 end - start); 442 vm_imgact_unmap_page(sf); 443 if (error != 0) 444 return (KERN_FAILURE); 445 } 446 447 return (KERN_SUCCESS); 448 } 449 450 static int 451 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 452 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 453 int cow) 454 { 455 struct sf_buf *sf; 456 vm_offset_t off; 457 vm_size_t sz; 458 int error, locked, rv; 459 460 if (start != trunc_page(start)) { 461 rv = __elfN(map_partial)(map, object, offset, start, 462 round_page(start), prot); 463 if (rv != KERN_SUCCESS) 464 return (rv); 465 offset += round_page(start) - start; 466 start = round_page(start); 467 } 468 if (end != round_page(end)) { 469 rv = __elfN(map_partial)(map, object, offset + 470 trunc_page(end) - start, trunc_page(end), end, prot); 471 if (rv != KERN_SUCCESS) 472 return (rv); 473 end = trunc_page(end); 474 } 475 if (start >= end) 476 return (KERN_SUCCESS); 477 if ((offset & PAGE_MASK) != 0) { 478 /* 479 * The mapping is not page aligned. This means that we have 480 * to copy the data. 481 */ 482 rv = vm_map_fixed(map, NULL, 0, start, end - start, 483 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 484 if (rv != KERN_SUCCESS) 485 return (rv); 486 if (object == NULL) 487 return (KERN_SUCCESS); 488 for (; start < end; start += sz) { 489 sf = vm_imgact_map_page(object, offset); 490 if (sf == NULL) 491 return (KERN_FAILURE); 492 off = offset - trunc_page(offset); 493 sz = end - start; 494 if (sz > PAGE_SIZE - off) 495 sz = PAGE_SIZE - off; 496 error = copyout((caddr_t)sf_buf_kva(sf) + off, 497 (caddr_t)start, sz); 498 vm_imgact_unmap_page(sf); 499 if (error != 0) 500 return (KERN_FAILURE); 501 offset += sz; 502 } 503 } else { 504 vm_object_reference(object); 505 rv = vm_map_fixed(map, object, offset, start, end - start, 506 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL); 507 if (rv != KERN_SUCCESS) { 508 locked = VOP_ISLOCKED(imgp->vp); 509 VOP_UNLOCK(imgp->vp, 0); 510 vm_object_deallocate(object); 511 vn_lock(imgp->vp, locked | LK_RETRY); 512 return (rv); 513 } 514 } 515 return (KERN_SUCCESS); 516 } 517 518 static int 519 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 520 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot, 521 size_t pagesize) 522 { 523 struct sf_buf *sf; 524 size_t map_len; 525 vm_map_t map; 526 vm_object_t object; 527 vm_offset_t off, map_addr; 528 int error, rv, cow; 529 size_t copy_len; 530 vm_ooffset_t file_addr; 531 532 /* 533 * It's necessary to fail if the filsz + offset taken from the 534 * header is greater than the actual file pager object's size. 535 * If we were to allow this, then the vm_map_find() below would 536 * walk right off the end of the file object and into the ether. 537 * 538 * While I'm here, might as well check for something else that 539 * is invalid: filsz cannot be greater than memsz. 540 */ 541 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 542 filsz > memsz) { 543 uprintf("elf_load_section: truncated ELF file\n"); 544 return (ENOEXEC); 545 } 546 547 object = imgp->object; 548 map = &imgp->proc->p_vmspace->vm_map; 549 map_addr = trunc_page_ps((vm_offset_t)vmaddr, pagesize); 550 file_addr = trunc_page_ps(offset, pagesize); 551 552 /* 553 * We have two choices. We can either clear the data in the last page 554 * of an oversized mapping, or we can start the anon mapping a page 555 * early and copy the initialized data into that first page. We 556 * choose the second. 557 */ 558 if (filsz == 0) 559 map_len = 0; 560 else if (memsz > filsz) 561 map_len = trunc_page_ps(offset + filsz, pagesize) - file_addr; 562 else 563 map_len = round_page_ps(offset + filsz, pagesize) - file_addr; 564 565 if (map_len != 0) { 566 /* cow flags: don't dump readonly sections in core */ 567 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 568 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 569 570 rv = __elfN(map_insert)(imgp, map, 571 object, 572 file_addr, /* file offset */ 573 map_addr, /* virtual start */ 574 map_addr + map_len,/* virtual end */ 575 prot, 576 cow); 577 if (rv != KERN_SUCCESS) 578 return (EINVAL); 579 580 /* we can stop now if we've covered it all */ 581 if (memsz == filsz) 582 return (0); 583 } 584 585 586 /* 587 * We have to get the remaining bit of the file into the first part 588 * of the oversized map segment. This is normally because the .data 589 * segment in the file is extended to provide bss. It's a neat idea 590 * to try and save a page, but it's a pain in the behind to implement. 591 */ 592 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page_ps(offset + 593 filsz, pagesize); 594 map_addr = trunc_page_ps((vm_offset_t)vmaddr + filsz, pagesize); 595 map_len = round_page_ps((vm_offset_t)vmaddr + memsz, pagesize) - 596 map_addr; 597 598 /* This had damn well better be true! */ 599 if (map_len != 0) { 600 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 601 map_addr + map_len, prot, 0); 602 if (rv != KERN_SUCCESS) 603 return (EINVAL); 604 } 605 606 if (copy_len != 0) { 607 sf = vm_imgact_map_page(object, offset + filsz); 608 if (sf == NULL) 609 return (EIO); 610 611 /* send the page fragment to user space */ 612 off = trunc_page_ps(offset + filsz, pagesize) - 613 trunc_page(offset + filsz); 614 error = copyout((caddr_t)sf_buf_kva(sf) + off, 615 (caddr_t)map_addr, copy_len); 616 vm_imgact_unmap_page(sf); 617 if (error != 0) 618 return (error); 619 } 620 621 /* 622 * Remove write access to the page if it was only granted by map_insert 623 * to allow copyout. 624 */ 625 if ((prot & VM_PROT_WRITE) == 0) 626 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 627 map_len), prot, FALSE); 628 629 return (0); 630 } 631 632 /* 633 * Load the file "file" into memory. It may be either a shared object 634 * or an executable. 635 * 636 * The "addr" reference parameter is in/out. On entry, it specifies 637 * the address where a shared object should be loaded. If the file is 638 * an executable, this value is ignored. On exit, "addr" specifies 639 * where the file was actually loaded. 640 * 641 * The "entry" reference parameter is out only. On exit, it specifies 642 * the entry point for the loaded file. 643 */ 644 static int 645 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 646 u_long *entry, size_t pagesize) 647 { 648 struct { 649 struct nameidata nd; 650 struct vattr attr; 651 struct image_params image_params; 652 } *tempdata; 653 const Elf_Ehdr *hdr = NULL; 654 const Elf_Phdr *phdr = NULL; 655 struct nameidata *nd; 656 struct vattr *attr; 657 struct image_params *imgp; 658 vm_prot_t prot; 659 u_long rbase; 660 u_long base_addr = 0; 661 int error, i, numsegs; 662 663 #ifdef CAPABILITY_MODE 664 /* 665 * XXXJA: This check can go away once we are sufficiently confident 666 * that the checks in namei() are correct. 667 */ 668 if (IN_CAPABILITY_MODE(curthread)) 669 return (ECAPMODE); 670 #endif 671 672 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK); 673 nd = &tempdata->nd; 674 attr = &tempdata->attr; 675 imgp = &tempdata->image_params; 676 677 /* 678 * Initialize part of the common data 679 */ 680 imgp->proc = p; 681 imgp->attr = attr; 682 imgp->firstpage = NULL; 683 imgp->image_header = NULL; 684 imgp->object = NULL; 685 imgp->execlabel = NULL; 686 687 NDINIT(nd, LOOKUP, LOCKLEAF | FOLLOW, UIO_SYSSPACE, file, curthread); 688 if ((error = namei(nd)) != 0) { 689 nd->ni_vp = NULL; 690 goto fail; 691 } 692 NDFREE(nd, NDF_ONLY_PNBUF); 693 imgp->vp = nd->ni_vp; 694 695 /* 696 * Check permissions, modes, uid, etc on the file, and "open" it. 697 */ 698 error = exec_check_permissions(imgp); 699 if (error) 700 goto fail; 701 702 error = exec_map_first_page(imgp); 703 if (error) 704 goto fail; 705 706 /* 707 * Also make certain that the interpreter stays the same, so set 708 * its VV_TEXT flag, too. 709 */ 710 VOP_SET_TEXT(nd->ni_vp); 711 712 imgp->object = nd->ni_vp->v_object; 713 714 hdr = (const Elf_Ehdr *)imgp->image_header; 715 if ((error = __elfN(check_header)(hdr)) != 0) 716 goto fail; 717 if (hdr->e_type == ET_DYN) 718 rbase = *addr; 719 else if (hdr->e_type == ET_EXEC) 720 rbase = 0; 721 else { 722 error = ENOEXEC; 723 goto fail; 724 } 725 726 /* Only support headers that fit within first page for now */ 727 if ((hdr->e_phoff > PAGE_SIZE) || 728 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 729 error = ENOEXEC; 730 goto fail; 731 } 732 733 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 734 if (!aligned(phdr, Elf_Addr)) { 735 error = ENOEXEC; 736 goto fail; 737 } 738 739 for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) { 740 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) { 741 /* Loadable segment */ 742 prot = __elfN(trans_prot)(phdr[i].p_flags); 743 error = __elfN(load_section)(imgp, phdr[i].p_offset, 744 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 745 phdr[i].p_memsz, phdr[i].p_filesz, prot, pagesize); 746 if (error != 0) 747 goto fail; 748 /* 749 * Establish the base address if this is the 750 * first segment. 751 */ 752 if (numsegs == 0) 753 base_addr = trunc_page(phdr[i].p_vaddr + 754 rbase); 755 numsegs++; 756 } 757 } 758 *addr = base_addr; 759 *entry = (unsigned long)hdr->e_entry + rbase; 760 761 fail: 762 if (imgp->firstpage) 763 exec_unmap_first_page(imgp); 764 765 if (nd->ni_vp) 766 vput(nd->ni_vp); 767 768 free(tempdata, M_TEMP); 769 770 return (error); 771 } 772 773 static int 774 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 775 { 776 struct thread *td; 777 const Elf_Ehdr *hdr; 778 const Elf_Phdr *phdr; 779 Elf_Auxargs *elf_auxargs; 780 struct vmspace *vmspace; 781 const char *err_str, *newinterp; 782 char *interp, *interp_buf, *path; 783 Elf_Brandinfo *brand_info; 784 struct sysentvec *sv; 785 vm_prot_t prot; 786 u_long text_size, data_size, total_size, text_addr, data_addr; 787 u_long seg_size, seg_addr, addr, baddr, et_dyn_addr, entry, proghdr; 788 int32_t osrel; 789 int error, i, n, interp_name_len, have_interp; 790 791 hdr = (const Elf_Ehdr *)imgp->image_header; 792 793 /* 794 * Do we have a valid ELF header ? 795 * 796 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 797 * if particular brand doesn't support it. 798 */ 799 if (__elfN(check_header)(hdr) != 0 || 800 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 801 return (-1); 802 803 /* 804 * From here on down, we return an errno, not -1, as we've 805 * detected an ELF file. 806 */ 807 808 if ((hdr->e_phoff > PAGE_SIZE) || 809 (u_int)hdr->e_phentsize * hdr->e_phnum > PAGE_SIZE - hdr->e_phoff) { 810 /* Only support headers in first page for now */ 811 uprintf("Program headers not in the first page\n"); 812 return (ENOEXEC); 813 } 814 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 815 if (!aligned(phdr, Elf_Addr)) { 816 uprintf("Unaligned program headers\n"); 817 return (ENOEXEC); 818 } 819 820 n = error = 0; 821 baddr = 0; 822 osrel = 0; 823 text_size = data_size = total_size = text_addr = data_addr = 0; 824 entry = proghdr = 0; 825 interp_name_len = 0; 826 err_str = newinterp = NULL; 827 interp = interp_buf = NULL; 828 td = curthread; 829 830 for (i = 0; i < hdr->e_phnum; i++) { 831 switch (phdr[i].p_type) { 832 case PT_LOAD: 833 if (n == 0) 834 baddr = phdr[i].p_vaddr; 835 n++; 836 break; 837 case PT_INTERP: 838 /* Path to interpreter */ 839 if (phdr[i].p_filesz > MAXPATHLEN) { 840 uprintf("Invalid PT_INTERP\n"); 841 error = ENOEXEC; 842 goto ret; 843 } 844 if (interp != NULL) { 845 uprintf("Multiple PT_INTERP headers\n"); 846 error = ENOEXEC; 847 goto ret; 848 } 849 interp_name_len = phdr[i].p_filesz; 850 if (phdr[i].p_offset > PAGE_SIZE || 851 interp_name_len > PAGE_SIZE - phdr[i].p_offset) { 852 VOP_UNLOCK(imgp->vp, 0); 853 interp_buf = malloc(interp_name_len + 1, M_TEMP, 854 M_WAITOK); 855 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 856 error = vn_rdwr(UIO_READ, imgp->vp, interp_buf, 857 interp_name_len, phdr[i].p_offset, 858 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 859 NOCRED, NULL, td); 860 if (error != 0) { 861 uprintf("i/o error PT_INTERP\n"); 862 goto ret; 863 } 864 interp_buf[interp_name_len] = '\0'; 865 interp = interp_buf; 866 } else { 867 interp = __DECONST(char *, imgp->image_header) + 868 phdr[i].p_offset; 869 } 870 break; 871 case PT_GNU_STACK: 872 if (__elfN(nxstack)) 873 imgp->stack_prot = 874 __elfN(trans_prot)(phdr[i].p_flags); 875 imgp->stack_sz = phdr[i].p_memsz; 876 break; 877 } 878 } 879 880 brand_info = __elfN(get_brandinfo)(imgp, interp, interp_name_len, 881 &osrel); 882 if (brand_info == NULL) { 883 uprintf("ELF binary type \"%u\" not known.\n", 884 hdr->e_ident[EI_OSABI]); 885 error = ENOEXEC; 886 goto ret; 887 } 888 et_dyn_addr = 0; 889 if (hdr->e_type == ET_DYN) { 890 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 891 uprintf("Cannot execute shared object\n"); 892 error = ENOEXEC; 893 goto ret; 894 } 895 /* 896 * Honour the base load address from the dso if it is 897 * non-zero for some reason. 898 */ 899 if (baddr == 0) 900 et_dyn_addr = ET_DYN_LOAD_ADDR; 901 } 902 sv = brand_info->sysvec; 903 if (interp != NULL && brand_info->interp_newpath != NULL) 904 newinterp = brand_info->interp_newpath; 905 906 /* 907 * Avoid a possible deadlock if the current address space is destroyed 908 * and that address space maps the locked vnode. In the common case, 909 * the locked vnode's v_usecount is decremented but remains greater 910 * than zero. Consequently, the vnode lock is not needed by vrele(). 911 * However, in cases where the vnode lock is external, such as nullfs, 912 * v_usecount may become zero. 913 * 914 * The VV_TEXT flag prevents modifications to the executable while 915 * the vnode is unlocked. 916 */ 917 VOP_UNLOCK(imgp->vp, 0); 918 919 error = exec_new_vmspace(imgp, sv); 920 imgp->proc->p_sysent = sv; 921 922 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 923 if (error != 0) 924 goto ret; 925 926 for (i = 0; i < hdr->e_phnum; i++) { 927 switch (phdr[i].p_type) { 928 case PT_LOAD: /* Loadable segment */ 929 if (phdr[i].p_memsz == 0) 930 break; 931 prot = __elfN(trans_prot)(phdr[i].p_flags); 932 error = __elfN(load_section)(imgp, phdr[i].p_offset, 933 (caddr_t)(uintptr_t)phdr[i].p_vaddr + et_dyn_addr, 934 phdr[i].p_memsz, phdr[i].p_filesz, prot, 935 sv->sv_pagesize); 936 if (error != 0) 937 goto ret; 938 939 /* 940 * If this segment contains the program headers, 941 * remember their virtual address for the AT_PHDR 942 * aux entry. Static binaries don't usually include 943 * a PT_PHDR entry. 944 */ 945 if (phdr[i].p_offset == 0 && 946 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 947 <= phdr[i].p_filesz) 948 proghdr = phdr[i].p_vaddr + hdr->e_phoff + 949 et_dyn_addr; 950 951 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 952 seg_size = round_page(phdr[i].p_memsz + 953 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 954 955 /* 956 * Make the largest executable segment the official 957 * text segment and all others data. 958 * 959 * Note that obreak() assumes that data_addr + 960 * data_size == end of data load area, and the ELF 961 * file format expects segments to be sorted by 962 * address. If multiple data segments exist, the 963 * last one will be used. 964 */ 965 966 if (phdr[i].p_flags & PF_X && text_size < seg_size) { 967 text_size = seg_size; 968 text_addr = seg_addr; 969 } else { 970 data_size = seg_size; 971 data_addr = seg_addr; 972 } 973 total_size += seg_size; 974 break; 975 case PT_PHDR: /* Program header table info */ 976 proghdr = phdr[i].p_vaddr + et_dyn_addr; 977 break; 978 default: 979 break; 980 } 981 } 982 983 if (data_addr == 0 && data_size == 0) { 984 data_addr = text_addr; 985 data_size = text_size; 986 } 987 988 entry = (u_long)hdr->e_entry + et_dyn_addr; 989 990 /* 991 * Check limits. It should be safe to check the 992 * limits after loading the segments since we do 993 * not actually fault in all the segments pages. 994 */ 995 PROC_LOCK(imgp->proc); 996 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 997 err_str = "Data segment size exceeds process limit"; 998 else if (text_size > maxtsiz) 999 err_str = "Text segment size exceeds system limit"; 1000 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 1001 err_str = "Total segment size exceeds process limit"; 1002 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 1003 err_str = "Data segment size exceeds resource limit"; 1004 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 1005 err_str = "Total segment size exceeds resource limit"; 1006 if (err_str != NULL) { 1007 PROC_UNLOCK(imgp->proc); 1008 uprintf("%s\n", err_str); 1009 error = ENOMEM; 1010 goto ret; 1011 } 1012 1013 vmspace = imgp->proc->p_vmspace; 1014 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 1015 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 1016 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 1017 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 1018 1019 /* 1020 * We load the dynamic linker where a userland call 1021 * to mmap(0, ...) would put it. The rationale behind this 1022 * calculation is that it leaves room for the heap to grow to 1023 * its maximum allowed size. 1024 */ 1025 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1026 RLIMIT_DATA)); 1027 PROC_UNLOCK(imgp->proc); 1028 1029 imgp->entry_addr = entry; 1030 1031 if (interp != NULL) { 1032 have_interp = FALSE; 1033 VOP_UNLOCK(imgp->vp, 0); 1034 if (brand_info->emul_path != NULL && 1035 brand_info->emul_path[0] != '\0') { 1036 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1037 snprintf(path, MAXPATHLEN, "%s%s", 1038 brand_info->emul_path, interp); 1039 error = __elfN(load_file)(imgp->proc, path, &addr, 1040 &imgp->entry_addr, sv->sv_pagesize); 1041 free(path, M_TEMP); 1042 if (error == 0) 1043 have_interp = TRUE; 1044 } 1045 if (!have_interp && newinterp != NULL && 1046 (brand_info->interp_path == NULL || 1047 strcmp(interp, brand_info->interp_path) == 0)) { 1048 error = __elfN(load_file)(imgp->proc, newinterp, &addr, 1049 &imgp->entry_addr, sv->sv_pagesize); 1050 if (error == 0) 1051 have_interp = TRUE; 1052 } 1053 if (!have_interp) { 1054 error = __elfN(load_file)(imgp->proc, interp, &addr, 1055 &imgp->entry_addr, sv->sv_pagesize); 1056 } 1057 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 1058 if (error != 0) { 1059 uprintf("ELF interpreter %s not found, error %d\n", 1060 interp, error); 1061 goto ret; 1062 } 1063 } else 1064 addr = et_dyn_addr; 1065 1066 /* 1067 * Construct auxargs table (used by the fixup routine) 1068 */ 1069 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1070 elf_auxargs->execfd = -1; 1071 elf_auxargs->phdr = proghdr; 1072 elf_auxargs->phent = hdr->e_phentsize; 1073 elf_auxargs->phnum = hdr->e_phnum; 1074 elf_auxargs->pagesz = PAGE_SIZE; 1075 elf_auxargs->base = addr; 1076 elf_auxargs->flags = 0; 1077 elf_auxargs->entry = entry; 1078 elf_auxargs->hdr_eflags = hdr->e_flags; 1079 1080 imgp->auxargs = elf_auxargs; 1081 imgp->interpreted = 0; 1082 imgp->reloc_base = addr; 1083 imgp->proc->p_osrel = osrel; 1084 imgp->proc->p_elf_machine = hdr->e_machine; 1085 imgp->proc->p_elf_flags = hdr->e_flags; 1086 1087 ret: 1088 free(interp_buf, M_TEMP); 1089 return (error); 1090 } 1091 1092 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1093 1094 int 1095 __elfN(freebsd_fixup)(register_t **stack_base, struct image_params *imgp) 1096 { 1097 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1098 Elf_Addr *base; 1099 Elf_Addr *pos; 1100 1101 base = (Elf_Addr *)*stack_base; 1102 pos = base + (imgp->args->argc + imgp->args->envc + 2); 1103 1104 if (args->execfd != -1) 1105 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1106 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1107 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1108 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1109 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1110 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1111 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1112 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1113 #ifdef AT_EHDRFLAGS 1114 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1115 #endif 1116 if (imgp->execpathp != 0) 1117 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp); 1118 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1119 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1120 if (imgp->canary != 0) { 1121 AUXARGS_ENTRY(pos, AT_CANARY, imgp->canary); 1122 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1123 } 1124 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1125 if (imgp->pagesizes != 0) { 1126 AUXARGS_ENTRY(pos, AT_PAGESIZES, imgp->pagesizes); 1127 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1128 } 1129 if (imgp->sysent->sv_timekeep_base != 0) { 1130 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1131 imgp->sysent->sv_timekeep_base); 1132 } 1133 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1134 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1135 imgp->sysent->sv_stackprot); 1136 AUXARGS_ENTRY(pos, AT_NULL, 0); 1137 1138 free(imgp->auxargs, M_TEMP); 1139 imgp->auxargs = NULL; 1140 1141 base--; 1142 suword(base, (long)imgp->args->argc); 1143 *stack_base = (register_t *)base; 1144 return (0); 1145 } 1146 1147 /* 1148 * Code for generating ELF core dumps. 1149 */ 1150 1151 typedef void (*segment_callback)(vm_map_entry_t, void *); 1152 1153 /* Closure for cb_put_phdr(). */ 1154 struct phdr_closure { 1155 Elf_Phdr *phdr; /* Program header to fill in */ 1156 Elf_Off offset; /* Offset of segment in core file */ 1157 }; 1158 1159 /* Closure for cb_size_segment(). */ 1160 struct sseg_closure { 1161 int count; /* Count of writable segments. */ 1162 size_t size; /* Total size of all writable segments. */ 1163 }; 1164 1165 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1166 1167 struct note_info { 1168 int type; /* Note type. */ 1169 outfunc_t outfunc; /* Output function. */ 1170 void *outarg; /* Argument for the output function. */ 1171 size_t outsize; /* Output size. */ 1172 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1173 }; 1174 1175 TAILQ_HEAD(note_info_list, note_info); 1176 1177 /* Coredump output parameters. */ 1178 struct coredump_params { 1179 off_t offset; 1180 struct ucred *active_cred; 1181 struct ucred *file_cred; 1182 struct thread *td; 1183 struct vnode *vp; 1184 struct gzio_stream *gzs; 1185 }; 1186 1187 static void cb_put_phdr(vm_map_entry_t, void *); 1188 static void cb_size_segment(vm_map_entry_t, void *); 1189 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1190 enum uio_seg); 1191 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1192 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1193 struct note_info_list *, size_t); 1194 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1195 size_t *); 1196 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1197 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1198 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1199 static int sbuf_drain_core_output(void *, const char *, int); 1200 static int sbuf_drain_count(void *arg, const char *data, int len); 1201 1202 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1203 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1204 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1205 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1206 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1207 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1208 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1209 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1210 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1211 static void note_procstat_files(void *, struct sbuf *, size_t *); 1212 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1213 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1214 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1215 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1216 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1217 1218 #ifdef GZIO 1219 extern int compress_user_cores_gzlevel; 1220 1221 /* 1222 * Write out a core segment to the compression stream. 1223 */ 1224 static int 1225 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1226 { 1227 u_int chunk_len; 1228 int error; 1229 1230 while (len > 0) { 1231 chunk_len = MIN(len, CORE_BUF_SIZE); 1232 1233 /* 1234 * We can get EFAULT error here. 1235 * In that case zero out the current chunk of the segment. 1236 */ 1237 error = copyin(base, buf, chunk_len); 1238 if (error != 0) 1239 bzero(buf, chunk_len); 1240 error = gzio_write(p->gzs, buf, chunk_len); 1241 if (error != 0) 1242 break; 1243 base += chunk_len; 1244 len -= chunk_len; 1245 } 1246 return (error); 1247 } 1248 1249 static int 1250 core_gz_write(void *base, size_t len, off_t offset, void *arg) 1251 { 1252 1253 return (core_write((struct coredump_params *)arg, base, len, offset, 1254 UIO_SYSSPACE)); 1255 } 1256 #endif /* GZIO */ 1257 1258 static int 1259 core_write(struct coredump_params *p, const void *base, size_t len, 1260 off_t offset, enum uio_seg seg) 1261 { 1262 1263 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1264 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1265 p->active_cred, p->file_cred, NULL, p->td)); 1266 } 1267 1268 static int 1269 core_output(void *base, size_t len, off_t offset, struct coredump_params *p, 1270 void *tmpbuf) 1271 { 1272 int error; 1273 1274 #ifdef GZIO 1275 if (p->gzs != NULL) 1276 return (compress_chunk(p, base, tmpbuf, len)); 1277 #endif 1278 /* 1279 * EFAULT is a non-fatal error that we can get, for example, 1280 * if the segment is backed by a file but extends beyond its 1281 * end. 1282 */ 1283 error = core_write(p, base, len, offset, UIO_USERSPACE); 1284 if (error == EFAULT) { 1285 log(LOG_WARNING, "Failed to fully fault in a core file segment " 1286 "at VA %p with size 0x%zx to be written at offset 0x%jx " 1287 "for process %s\n", base, len, offset, curproc->p_comm); 1288 1289 /* 1290 * Write a "real" zero byte at the end of the target region 1291 * in the case this is the last segment. 1292 * The intermediate space will be implicitly zero-filled. 1293 */ 1294 error = core_write(p, zero_region, 1, offset + len - 1, 1295 UIO_SYSSPACE); 1296 } 1297 return (error); 1298 } 1299 1300 /* 1301 * Drain into a core file. 1302 */ 1303 static int 1304 sbuf_drain_core_output(void *arg, const char *data, int len) 1305 { 1306 struct coredump_params *p; 1307 int error, locked; 1308 1309 p = (struct coredump_params *)arg; 1310 1311 /* 1312 * Some kern_proc out routines that print to this sbuf may 1313 * call us with the process lock held. Draining with the 1314 * non-sleepable lock held is unsafe. The lock is needed for 1315 * those routines when dumping a live process. In our case we 1316 * can safely release the lock before draining and acquire 1317 * again after. 1318 */ 1319 locked = PROC_LOCKED(p->td->td_proc); 1320 if (locked) 1321 PROC_UNLOCK(p->td->td_proc); 1322 #ifdef GZIO 1323 if (p->gzs != NULL) 1324 error = gzio_write(p->gzs, __DECONST(char *, data), len); 1325 else 1326 #endif 1327 error = core_write(p, __DECONST(void *, data), len, p->offset, 1328 UIO_SYSSPACE); 1329 if (locked) 1330 PROC_LOCK(p->td->td_proc); 1331 if (error != 0) 1332 return (-error); 1333 p->offset += len; 1334 return (len); 1335 } 1336 1337 /* 1338 * Drain into a counter. 1339 */ 1340 static int 1341 sbuf_drain_count(void *arg, const char *data __unused, int len) 1342 { 1343 size_t *sizep; 1344 1345 sizep = (size_t *)arg; 1346 *sizep += len; 1347 return (len); 1348 } 1349 1350 int 1351 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1352 { 1353 struct ucred *cred = td->td_ucred; 1354 int error = 0; 1355 struct sseg_closure seginfo; 1356 struct note_info_list notelst; 1357 struct coredump_params params; 1358 struct note_info *ninfo; 1359 void *hdr, *tmpbuf; 1360 size_t hdrsize, notesz, coresize; 1361 #ifdef GZIO 1362 boolean_t compress; 1363 1364 compress = (flags & IMGACT_CORE_COMPRESS) != 0; 1365 #endif 1366 hdr = NULL; 1367 tmpbuf = NULL; 1368 TAILQ_INIT(¬elst); 1369 1370 /* Size the program segments. */ 1371 seginfo.count = 0; 1372 seginfo.size = 0; 1373 each_dumpable_segment(td, cb_size_segment, &seginfo); 1374 1375 /* 1376 * Collect info about the core file header area. 1377 */ 1378 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1379 if (seginfo.count + 1 >= PN_XNUM) 1380 hdrsize += sizeof(Elf_Shdr); 1381 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1382 coresize = round_page(hdrsize + notesz) + seginfo.size; 1383 1384 /* Set up core dump parameters. */ 1385 params.offset = 0; 1386 params.active_cred = cred; 1387 params.file_cred = NOCRED; 1388 params.td = td; 1389 params.vp = vp; 1390 params.gzs = NULL; 1391 1392 #ifdef RACCT 1393 if (racct_enable) { 1394 PROC_LOCK(td->td_proc); 1395 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1396 PROC_UNLOCK(td->td_proc); 1397 if (error != 0) { 1398 error = EFAULT; 1399 goto done; 1400 } 1401 } 1402 #endif 1403 if (coresize >= limit) { 1404 error = EFAULT; 1405 goto done; 1406 } 1407 1408 #ifdef GZIO 1409 /* Create a compression stream if necessary. */ 1410 if (compress) { 1411 params.gzs = gzio_init(core_gz_write, GZIO_DEFLATE, 1412 CORE_BUF_SIZE, compress_user_cores_gzlevel, ¶ms); 1413 if (params.gzs == NULL) { 1414 error = EFAULT; 1415 goto done; 1416 } 1417 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1418 } 1419 #endif 1420 1421 /* 1422 * Allocate memory for building the header, fill it up, 1423 * and write it out following the notes. 1424 */ 1425 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1426 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1427 notesz); 1428 1429 /* Write the contents of all of the writable segments. */ 1430 if (error == 0) { 1431 Elf_Phdr *php; 1432 off_t offset; 1433 int i; 1434 1435 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1436 offset = round_page(hdrsize + notesz); 1437 for (i = 0; i < seginfo.count; i++) { 1438 error = core_output((caddr_t)(uintptr_t)php->p_vaddr, 1439 php->p_filesz, offset, ¶ms, tmpbuf); 1440 if (error != 0) 1441 break; 1442 offset += php->p_filesz; 1443 php++; 1444 } 1445 #ifdef GZIO 1446 if (error == 0 && compress) 1447 error = gzio_flush(params.gzs); 1448 #endif 1449 } 1450 if (error) { 1451 log(LOG_WARNING, 1452 "Failed to write core file for process %s (error %d)\n", 1453 curproc->p_comm, error); 1454 } 1455 1456 done: 1457 #ifdef GZIO 1458 if (compress) { 1459 free(tmpbuf, M_TEMP); 1460 if (params.gzs != NULL) 1461 gzio_fini(params.gzs); 1462 } 1463 #endif 1464 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1465 TAILQ_REMOVE(¬elst, ninfo, link); 1466 free(ninfo, M_TEMP); 1467 } 1468 if (hdr != NULL) 1469 free(hdr, M_TEMP); 1470 1471 return (error); 1472 } 1473 1474 /* 1475 * A callback for each_dumpable_segment() to write out the segment's 1476 * program header entry. 1477 */ 1478 static void 1479 cb_put_phdr(entry, closure) 1480 vm_map_entry_t entry; 1481 void *closure; 1482 { 1483 struct phdr_closure *phc = (struct phdr_closure *)closure; 1484 Elf_Phdr *phdr = phc->phdr; 1485 1486 phc->offset = round_page(phc->offset); 1487 1488 phdr->p_type = PT_LOAD; 1489 phdr->p_offset = phc->offset; 1490 phdr->p_vaddr = entry->start; 1491 phdr->p_paddr = 0; 1492 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1493 phdr->p_align = PAGE_SIZE; 1494 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1495 1496 phc->offset += phdr->p_filesz; 1497 phc->phdr++; 1498 } 1499 1500 /* 1501 * A callback for each_dumpable_segment() to gather information about 1502 * the number of segments and their total size. 1503 */ 1504 static void 1505 cb_size_segment(vm_map_entry_t entry, void *closure) 1506 { 1507 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1508 1509 ssc->count++; 1510 ssc->size += entry->end - entry->start; 1511 } 1512 1513 /* 1514 * For each writable segment in the process's memory map, call the given 1515 * function with a pointer to the map entry and some arbitrary 1516 * caller-supplied data. 1517 */ 1518 static void 1519 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1520 { 1521 struct proc *p = td->td_proc; 1522 vm_map_t map = &p->p_vmspace->vm_map; 1523 vm_map_entry_t entry; 1524 vm_object_t backing_object, object; 1525 boolean_t ignore_entry; 1526 1527 vm_map_lock_read(map); 1528 for (entry = map->header.next; entry != &map->header; 1529 entry = entry->next) { 1530 /* 1531 * Don't dump inaccessible mappings, deal with legacy 1532 * coredump mode. 1533 * 1534 * Note that read-only segments related to the elf binary 1535 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1536 * need to arbitrarily ignore such segments. 1537 */ 1538 if (elf_legacy_coredump) { 1539 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1540 continue; 1541 } else { 1542 if ((entry->protection & VM_PROT_ALL) == 0) 1543 continue; 1544 } 1545 1546 /* 1547 * Dont include memory segment in the coredump if 1548 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1549 * madvise(2). Do not dump submaps (i.e. parts of the 1550 * kernel map). 1551 */ 1552 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1553 continue; 1554 1555 if ((object = entry->object.vm_object) == NULL) 1556 continue; 1557 1558 /* Ignore memory-mapped devices and such things. */ 1559 VM_OBJECT_RLOCK(object); 1560 while ((backing_object = object->backing_object) != NULL) { 1561 VM_OBJECT_RLOCK(backing_object); 1562 VM_OBJECT_RUNLOCK(object); 1563 object = backing_object; 1564 } 1565 ignore_entry = object->type != OBJT_DEFAULT && 1566 object->type != OBJT_SWAP && object->type != OBJT_VNODE && 1567 object->type != OBJT_PHYS; 1568 VM_OBJECT_RUNLOCK(object); 1569 if (ignore_entry) 1570 continue; 1571 1572 (*func)(entry, closure); 1573 } 1574 vm_map_unlock_read(map); 1575 } 1576 1577 /* 1578 * Write the core file header to the file, including padding up to 1579 * the page boundary. 1580 */ 1581 static int 1582 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1583 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1584 { 1585 struct note_info *ninfo; 1586 struct sbuf *sb; 1587 int error; 1588 1589 /* Fill in the header. */ 1590 bzero(hdr, hdrsize); 1591 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1592 1593 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1594 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1595 sbuf_start_section(sb, NULL); 1596 sbuf_bcat(sb, hdr, hdrsize); 1597 TAILQ_FOREACH(ninfo, notelst, link) 1598 __elfN(putnote)(ninfo, sb); 1599 /* Align up to a page boundary for the program segments. */ 1600 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1601 error = sbuf_finish(sb); 1602 sbuf_delete(sb); 1603 1604 return (error); 1605 } 1606 1607 static void 1608 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1609 size_t *sizep) 1610 { 1611 struct proc *p; 1612 struct thread *thr; 1613 size_t size; 1614 1615 p = td->td_proc; 1616 size = 0; 1617 1618 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1619 1620 /* 1621 * To have the debugger select the right thread (LWP) as the initial 1622 * thread, we dump the state of the thread passed to us in td first. 1623 * This is the thread that causes the core dump and thus likely to 1624 * be the right thread one wants to have selected in the debugger. 1625 */ 1626 thr = td; 1627 while (thr != NULL) { 1628 size += register_note(list, NT_PRSTATUS, 1629 __elfN(note_prstatus), thr); 1630 size += register_note(list, NT_FPREGSET, 1631 __elfN(note_fpregset), thr); 1632 size += register_note(list, NT_THRMISC, 1633 __elfN(note_thrmisc), thr); 1634 size += register_note(list, NT_PTLWPINFO, 1635 __elfN(note_ptlwpinfo), thr); 1636 size += register_note(list, -1, 1637 __elfN(note_threadmd), thr); 1638 1639 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1640 TAILQ_NEXT(thr, td_plist); 1641 if (thr == td) 1642 thr = TAILQ_NEXT(thr, td_plist); 1643 } 1644 1645 size += register_note(list, NT_PROCSTAT_PROC, 1646 __elfN(note_procstat_proc), p); 1647 size += register_note(list, NT_PROCSTAT_FILES, 1648 note_procstat_files, p); 1649 size += register_note(list, NT_PROCSTAT_VMMAP, 1650 note_procstat_vmmap, p); 1651 size += register_note(list, NT_PROCSTAT_GROUPS, 1652 note_procstat_groups, p); 1653 size += register_note(list, NT_PROCSTAT_UMASK, 1654 note_procstat_umask, p); 1655 size += register_note(list, NT_PROCSTAT_RLIMIT, 1656 note_procstat_rlimit, p); 1657 size += register_note(list, NT_PROCSTAT_OSREL, 1658 note_procstat_osrel, p); 1659 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1660 __elfN(note_procstat_psstrings), p); 1661 size += register_note(list, NT_PROCSTAT_AUXV, 1662 __elfN(note_procstat_auxv), p); 1663 1664 *sizep = size; 1665 } 1666 1667 static void 1668 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1669 size_t notesz) 1670 { 1671 Elf_Ehdr *ehdr; 1672 Elf_Phdr *phdr; 1673 Elf_Shdr *shdr; 1674 struct phdr_closure phc; 1675 1676 ehdr = (Elf_Ehdr *)hdr; 1677 1678 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1679 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1680 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1681 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1682 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1683 ehdr->e_ident[EI_DATA] = ELF_DATA; 1684 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1685 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1686 ehdr->e_ident[EI_ABIVERSION] = 0; 1687 ehdr->e_ident[EI_PAD] = 0; 1688 ehdr->e_type = ET_CORE; 1689 ehdr->e_machine = td->td_proc->p_elf_machine; 1690 ehdr->e_version = EV_CURRENT; 1691 ehdr->e_entry = 0; 1692 ehdr->e_phoff = sizeof(Elf_Ehdr); 1693 ehdr->e_flags = td->td_proc->p_elf_flags; 1694 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1695 ehdr->e_phentsize = sizeof(Elf_Phdr); 1696 ehdr->e_shentsize = sizeof(Elf_Shdr); 1697 ehdr->e_shstrndx = SHN_UNDEF; 1698 if (numsegs + 1 < PN_XNUM) { 1699 ehdr->e_phnum = numsegs + 1; 1700 ehdr->e_shnum = 0; 1701 } else { 1702 ehdr->e_phnum = PN_XNUM; 1703 ehdr->e_shnum = 1; 1704 1705 ehdr->e_shoff = ehdr->e_phoff + 1706 (numsegs + 1) * ehdr->e_phentsize; 1707 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1708 ("e_shoff: %zu, hdrsize - shdr: %zu", 1709 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1710 1711 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1712 memset(shdr, 0, sizeof(*shdr)); 1713 /* 1714 * A special first section is used to hold large segment and 1715 * section counts. This was proposed by Sun Microsystems in 1716 * Solaris and has been adopted by Linux; the standard ELF 1717 * tools are already familiar with the technique. 1718 * 1719 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1720 * (or 12-7 depending on the version of the document) for more 1721 * details. 1722 */ 1723 shdr->sh_type = SHT_NULL; 1724 shdr->sh_size = ehdr->e_shnum; 1725 shdr->sh_link = ehdr->e_shstrndx; 1726 shdr->sh_info = numsegs + 1; 1727 } 1728 1729 /* 1730 * Fill in the program header entries. 1731 */ 1732 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1733 1734 /* The note segement. */ 1735 phdr->p_type = PT_NOTE; 1736 phdr->p_offset = hdrsize; 1737 phdr->p_vaddr = 0; 1738 phdr->p_paddr = 0; 1739 phdr->p_filesz = notesz; 1740 phdr->p_memsz = 0; 1741 phdr->p_flags = PF_R; 1742 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1743 phdr++; 1744 1745 /* All the writable segments from the program. */ 1746 phc.phdr = phdr; 1747 phc.offset = round_page(hdrsize + notesz); 1748 each_dumpable_segment(td, cb_put_phdr, &phc); 1749 } 1750 1751 static size_t 1752 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 1753 { 1754 struct note_info *ninfo; 1755 size_t size, notesize; 1756 1757 size = 0; 1758 out(arg, NULL, &size); 1759 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1760 ninfo->type = type; 1761 ninfo->outfunc = out; 1762 ninfo->outarg = arg; 1763 ninfo->outsize = size; 1764 TAILQ_INSERT_TAIL(list, ninfo, link); 1765 1766 if (type == -1) 1767 return (size); 1768 1769 notesize = sizeof(Elf_Note) + /* note header */ 1770 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1771 /* note name */ 1772 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1773 1774 return (notesize); 1775 } 1776 1777 static size_t 1778 append_note_data(const void *src, void *dst, size_t len) 1779 { 1780 size_t padded_len; 1781 1782 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1783 if (dst != NULL) { 1784 bcopy(src, dst, len); 1785 bzero((char *)dst + len, padded_len - len); 1786 } 1787 return (padded_len); 1788 } 1789 1790 size_t 1791 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1792 { 1793 Elf_Note *note; 1794 char *buf; 1795 size_t notesize; 1796 1797 buf = dst; 1798 if (buf != NULL) { 1799 note = (Elf_Note *)buf; 1800 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1801 note->n_descsz = size; 1802 note->n_type = type; 1803 buf += sizeof(*note); 1804 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1805 sizeof(FREEBSD_ABI_VENDOR)); 1806 append_note_data(src, buf, size); 1807 if (descp != NULL) 1808 *descp = buf; 1809 } 1810 1811 notesize = sizeof(Elf_Note) + /* note header */ 1812 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1813 /* note name */ 1814 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1815 1816 return (notesize); 1817 } 1818 1819 static void 1820 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 1821 { 1822 Elf_Note note; 1823 ssize_t old_len, sect_len; 1824 size_t new_len, descsz, i; 1825 1826 if (ninfo->type == -1) { 1827 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1828 return; 1829 } 1830 1831 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1832 note.n_descsz = ninfo->outsize; 1833 note.n_type = ninfo->type; 1834 1835 sbuf_bcat(sb, ¬e, sizeof(note)); 1836 sbuf_start_section(sb, &old_len); 1837 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 1838 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1839 if (note.n_descsz == 0) 1840 return; 1841 sbuf_start_section(sb, &old_len); 1842 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1843 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1844 if (sect_len < 0) 1845 return; 1846 1847 new_len = (size_t)sect_len; 1848 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1849 if (new_len < descsz) { 1850 /* 1851 * It is expected that individual note emitters will correctly 1852 * predict their expected output size and fill up to that size 1853 * themselves, padding in a format-specific way if needed. 1854 * However, in case they don't, just do it here with zeros. 1855 */ 1856 for (i = 0; i < descsz - new_len; i++) 1857 sbuf_putc(sb, 0); 1858 } else if (new_len > descsz) { 1859 /* 1860 * We can't always truncate sb -- we may have drained some 1861 * of it already. 1862 */ 1863 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 1864 "read it (%zu > %zu). Since it is longer than " 1865 "expected, this coredump's notes are corrupt. THIS " 1866 "IS A BUG in the note_procstat routine for type %u.\n", 1867 __func__, (unsigned)note.n_type, new_len, descsz, 1868 (unsigned)note.n_type)); 1869 } 1870 } 1871 1872 /* 1873 * Miscellaneous note out functions. 1874 */ 1875 1876 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1877 #include <compat/freebsd32/freebsd32.h> 1878 1879 typedef struct prstatus32 elf_prstatus_t; 1880 typedef struct prpsinfo32 elf_prpsinfo_t; 1881 typedef struct fpreg32 elf_prfpregset_t; 1882 typedef struct fpreg32 elf_fpregset_t; 1883 typedef struct reg32 elf_gregset_t; 1884 typedef struct thrmisc32 elf_thrmisc_t; 1885 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 1886 typedef struct kinfo_proc32 elf_kinfo_proc_t; 1887 typedef uint32_t elf_ps_strings_t; 1888 #else 1889 typedef prstatus_t elf_prstatus_t; 1890 typedef prpsinfo_t elf_prpsinfo_t; 1891 typedef prfpregset_t elf_prfpregset_t; 1892 typedef prfpregset_t elf_fpregset_t; 1893 typedef gregset_t elf_gregset_t; 1894 typedef thrmisc_t elf_thrmisc_t; 1895 #define ELF_KERN_PROC_MASK 0 1896 typedef struct kinfo_proc elf_kinfo_proc_t; 1897 typedef vm_offset_t elf_ps_strings_t; 1898 #endif 1899 1900 static void 1901 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 1902 { 1903 struct sbuf sbarg; 1904 size_t len; 1905 char *cp, *end; 1906 struct proc *p; 1907 elf_prpsinfo_t *psinfo; 1908 int error; 1909 1910 p = (struct proc *)arg; 1911 if (sb != NULL) { 1912 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 1913 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 1914 psinfo->pr_version = PRPSINFO_VERSION; 1915 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 1916 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 1917 PROC_LOCK(p); 1918 if (p->p_args != NULL) { 1919 len = sizeof(psinfo->pr_psargs) - 1; 1920 if (len > p->p_args->ar_length) 1921 len = p->p_args->ar_length; 1922 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 1923 PROC_UNLOCK(p); 1924 error = 0; 1925 } else { 1926 _PHOLD(p); 1927 PROC_UNLOCK(p); 1928 sbuf_new(&sbarg, psinfo->pr_psargs, 1929 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 1930 error = proc_getargv(curthread, p, &sbarg); 1931 PRELE(p); 1932 if (sbuf_finish(&sbarg) == 0) 1933 len = sbuf_len(&sbarg) - 1; 1934 else 1935 len = sizeof(psinfo->pr_psargs) - 1; 1936 sbuf_delete(&sbarg); 1937 } 1938 if (error || len == 0) 1939 strlcpy(psinfo->pr_psargs, p->p_comm, 1940 sizeof(psinfo->pr_psargs)); 1941 else { 1942 KASSERT(len < sizeof(psinfo->pr_psargs), 1943 ("len is too long: %zu vs %zu", len, 1944 sizeof(psinfo->pr_psargs))); 1945 cp = psinfo->pr_psargs; 1946 end = cp + len - 1; 1947 for (;;) { 1948 cp = memchr(cp, '\0', end - cp); 1949 if (cp == NULL) 1950 break; 1951 *cp = ' '; 1952 } 1953 } 1954 psinfo->pr_pid = p->p_pid; 1955 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 1956 free(psinfo, M_TEMP); 1957 } 1958 *sizep = sizeof(*psinfo); 1959 } 1960 1961 static void 1962 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 1963 { 1964 struct thread *td; 1965 elf_prstatus_t *status; 1966 1967 td = (struct thread *)arg; 1968 if (sb != NULL) { 1969 KASSERT(*sizep == sizeof(*status), ("invalid size")); 1970 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 1971 status->pr_version = PRSTATUS_VERSION; 1972 status->pr_statussz = sizeof(elf_prstatus_t); 1973 status->pr_gregsetsz = sizeof(elf_gregset_t); 1974 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 1975 status->pr_osreldate = osreldate; 1976 status->pr_cursig = td->td_proc->p_sig; 1977 status->pr_pid = td->td_tid; 1978 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 1979 fill_regs32(td, &status->pr_reg); 1980 #else 1981 fill_regs(td, &status->pr_reg); 1982 #endif 1983 sbuf_bcat(sb, status, sizeof(*status)); 1984 free(status, M_TEMP); 1985 } 1986 *sizep = sizeof(*status); 1987 } 1988 1989 static void 1990 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 1991 { 1992 struct thread *td; 1993 elf_prfpregset_t *fpregset; 1994 1995 td = (struct thread *)arg; 1996 if (sb != NULL) { 1997 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 1998 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 1999 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2000 fill_fpregs32(td, fpregset); 2001 #else 2002 fill_fpregs(td, fpregset); 2003 #endif 2004 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2005 free(fpregset, M_TEMP); 2006 } 2007 *sizep = sizeof(*fpregset); 2008 } 2009 2010 static void 2011 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2012 { 2013 struct thread *td; 2014 elf_thrmisc_t thrmisc; 2015 2016 td = (struct thread *)arg; 2017 if (sb != NULL) { 2018 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2019 bzero(&thrmisc._pad, sizeof(thrmisc._pad)); 2020 strcpy(thrmisc.pr_tname, td->td_name); 2021 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2022 } 2023 *sizep = sizeof(thrmisc); 2024 } 2025 2026 static void 2027 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2028 { 2029 struct thread *td; 2030 size_t size; 2031 int structsize; 2032 struct ptrace_lwpinfo pl; 2033 2034 td = (struct thread *)arg; 2035 size = sizeof(structsize) + sizeof(struct ptrace_lwpinfo); 2036 if (sb != NULL) { 2037 KASSERT(*sizep == size, ("invalid size")); 2038 structsize = sizeof(struct ptrace_lwpinfo); 2039 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2040 bzero(&pl, sizeof(pl)); 2041 pl.pl_lwpid = td->td_tid; 2042 pl.pl_event = PL_EVENT_NONE; 2043 pl.pl_sigmask = td->td_sigmask; 2044 pl.pl_siglist = td->td_siglist; 2045 if (td->td_si.si_signo != 0) { 2046 pl.pl_event = PL_EVENT_SIGNAL; 2047 pl.pl_flags |= PL_FLAG_SI; 2048 pl.pl_siginfo = td->td_si; 2049 } 2050 strcpy(pl.pl_tdname, td->td_name); 2051 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2052 sbuf_bcat(sb, &pl, sizeof(struct ptrace_lwpinfo)); 2053 } 2054 *sizep = size; 2055 } 2056 2057 /* 2058 * Allow for MD specific notes, as well as any MD 2059 * specific preparations for writing MI notes. 2060 */ 2061 static void 2062 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2063 { 2064 struct thread *td; 2065 void *buf; 2066 size_t size; 2067 2068 td = (struct thread *)arg; 2069 size = *sizep; 2070 if (size != 0 && sb != NULL) 2071 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2072 else 2073 buf = NULL; 2074 size = 0; 2075 __elfN(dump_thread)(td, buf, &size); 2076 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2077 if (size != 0 && sb != NULL) 2078 sbuf_bcat(sb, buf, size); 2079 free(buf, M_TEMP); 2080 *sizep = size; 2081 } 2082 2083 #ifdef KINFO_PROC_SIZE 2084 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2085 #endif 2086 2087 static void 2088 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2089 { 2090 struct proc *p; 2091 size_t size; 2092 int structsize; 2093 2094 p = (struct proc *)arg; 2095 size = sizeof(structsize) + p->p_numthreads * 2096 sizeof(elf_kinfo_proc_t); 2097 2098 if (sb != NULL) { 2099 KASSERT(*sizep == size, ("invalid size")); 2100 structsize = sizeof(elf_kinfo_proc_t); 2101 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2102 sx_slock(&proctree_lock); 2103 PROC_LOCK(p); 2104 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2105 sx_sunlock(&proctree_lock); 2106 } 2107 *sizep = size; 2108 } 2109 2110 #ifdef KINFO_FILE_SIZE 2111 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2112 #endif 2113 2114 static void 2115 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2116 { 2117 struct proc *p; 2118 size_t size, sect_sz, i; 2119 ssize_t start_len, sect_len; 2120 int structsize, filedesc_flags; 2121 2122 if (coredump_pack_fileinfo) 2123 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2124 else 2125 filedesc_flags = 0; 2126 2127 p = (struct proc *)arg; 2128 structsize = sizeof(struct kinfo_file); 2129 if (sb == NULL) { 2130 size = 0; 2131 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2132 sbuf_set_drain(sb, sbuf_drain_count, &size); 2133 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2134 PROC_LOCK(p); 2135 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2136 sbuf_finish(sb); 2137 sbuf_delete(sb); 2138 *sizep = size; 2139 } else { 2140 sbuf_start_section(sb, &start_len); 2141 2142 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2143 PROC_LOCK(p); 2144 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2145 filedesc_flags); 2146 2147 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2148 if (sect_len < 0) 2149 return; 2150 sect_sz = sect_len; 2151 2152 KASSERT(sect_sz <= *sizep, 2153 ("kern_proc_filedesc_out did not respect maxlen; " 2154 "requested %zu, got %zu", *sizep - sizeof(structsize), 2155 sect_sz - sizeof(structsize))); 2156 2157 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2158 sbuf_putc(sb, 0); 2159 } 2160 } 2161 2162 #ifdef KINFO_VMENTRY_SIZE 2163 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2164 #endif 2165 2166 static void 2167 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2168 { 2169 struct proc *p; 2170 size_t size; 2171 int structsize, vmmap_flags; 2172 2173 if (coredump_pack_vmmapinfo) 2174 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2175 else 2176 vmmap_flags = 0; 2177 2178 p = (struct proc *)arg; 2179 structsize = sizeof(struct kinfo_vmentry); 2180 if (sb == NULL) { 2181 size = 0; 2182 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2183 sbuf_set_drain(sb, sbuf_drain_count, &size); 2184 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2185 PROC_LOCK(p); 2186 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2187 sbuf_finish(sb); 2188 sbuf_delete(sb); 2189 *sizep = size; 2190 } else { 2191 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2192 PROC_LOCK(p); 2193 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2194 vmmap_flags); 2195 } 2196 } 2197 2198 static void 2199 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2200 { 2201 struct proc *p; 2202 size_t size; 2203 int structsize; 2204 2205 p = (struct proc *)arg; 2206 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2207 if (sb != NULL) { 2208 KASSERT(*sizep == size, ("invalid size")); 2209 structsize = sizeof(gid_t); 2210 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2211 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2212 sizeof(gid_t)); 2213 } 2214 *sizep = size; 2215 } 2216 2217 static void 2218 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2219 { 2220 struct proc *p; 2221 size_t size; 2222 int structsize; 2223 2224 p = (struct proc *)arg; 2225 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2226 if (sb != NULL) { 2227 KASSERT(*sizep == size, ("invalid size")); 2228 structsize = sizeof(p->p_fd->fd_cmask); 2229 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2230 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2231 } 2232 *sizep = size; 2233 } 2234 2235 static void 2236 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2237 { 2238 struct proc *p; 2239 struct rlimit rlim[RLIM_NLIMITS]; 2240 size_t size; 2241 int structsize, i; 2242 2243 p = (struct proc *)arg; 2244 size = sizeof(structsize) + sizeof(rlim); 2245 if (sb != NULL) { 2246 KASSERT(*sizep == size, ("invalid size")); 2247 structsize = sizeof(rlim); 2248 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2249 PROC_LOCK(p); 2250 for (i = 0; i < RLIM_NLIMITS; i++) 2251 lim_rlimit_proc(p, i, &rlim[i]); 2252 PROC_UNLOCK(p); 2253 sbuf_bcat(sb, rlim, sizeof(rlim)); 2254 } 2255 *sizep = size; 2256 } 2257 2258 static void 2259 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2260 { 2261 struct proc *p; 2262 size_t size; 2263 int structsize; 2264 2265 p = (struct proc *)arg; 2266 size = sizeof(structsize) + sizeof(p->p_osrel); 2267 if (sb != NULL) { 2268 KASSERT(*sizep == size, ("invalid size")); 2269 structsize = sizeof(p->p_osrel); 2270 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2271 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2272 } 2273 *sizep = size; 2274 } 2275 2276 static void 2277 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2278 { 2279 struct proc *p; 2280 elf_ps_strings_t ps_strings; 2281 size_t size; 2282 int structsize; 2283 2284 p = (struct proc *)arg; 2285 size = sizeof(structsize) + sizeof(ps_strings); 2286 if (sb != NULL) { 2287 KASSERT(*sizep == size, ("invalid size")); 2288 structsize = sizeof(ps_strings); 2289 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2290 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2291 #else 2292 ps_strings = p->p_sysent->sv_psstrings; 2293 #endif 2294 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2295 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2296 } 2297 *sizep = size; 2298 } 2299 2300 static void 2301 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2302 { 2303 struct proc *p; 2304 size_t size; 2305 int structsize; 2306 2307 p = (struct proc *)arg; 2308 if (sb == NULL) { 2309 size = 0; 2310 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2311 sbuf_set_drain(sb, sbuf_drain_count, &size); 2312 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2313 PHOLD(p); 2314 proc_getauxv(curthread, p, sb); 2315 PRELE(p); 2316 sbuf_finish(sb); 2317 sbuf_delete(sb); 2318 *sizep = size; 2319 } else { 2320 structsize = sizeof(Elf_Auxinfo); 2321 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2322 PHOLD(p); 2323 proc_getauxv(curthread, p, sb); 2324 PRELE(p); 2325 } 2326 } 2327 2328 static boolean_t 2329 __elfN(parse_notes)(struct image_params *imgp, Elf_Brandnote *checknote, 2330 int32_t *osrel, const Elf_Phdr *pnote) 2331 { 2332 const Elf_Note *note, *note0, *note_end; 2333 const char *note_name; 2334 char *buf; 2335 int i, error; 2336 boolean_t res; 2337 2338 /* We need some limit, might as well use PAGE_SIZE. */ 2339 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2340 return (FALSE); 2341 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2342 if (pnote->p_offset > PAGE_SIZE || 2343 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2344 VOP_UNLOCK(imgp->vp, 0); 2345 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2346 vn_lock(imgp->vp, LK_EXCLUSIVE | LK_RETRY); 2347 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2348 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2349 curthread->td_ucred, NOCRED, NULL, curthread); 2350 if (error != 0) { 2351 uprintf("i/o error PT_NOTE\n"); 2352 res = FALSE; 2353 goto ret; 2354 } 2355 note = note0 = (const Elf_Note *)buf; 2356 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2357 } else { 2358 note = note0 = (const Elf_Note *)(imgp->image_header + 2359 pnote->p_offset); 2360 note_end = (const Elf_Note *)(imgp->image_header + 2361 pnote->p_offset + pnote->p_filesz); 2362 buf = NULL; 2363 } 2364 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2365 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2366 (const char *)note < sizeof(Elf_Note)) { 2367 res = FALSE; 2368 goto ret; 2369 } 2370 if (note->n_namesz != checknote->hdr.n_namesz || 2371 note->n_descsz != checknote->hdr.n_descsz || 2372 note->n_type != checknote->hdr.n_type) 2373 goto nextnote; 2374 note_name = (const char *)(note + 1); 2375 if (note_name + checknote->hdr.n_namesz >= 2376 (const char *)note_end || strncmp(checknote->vendor, 2377 note_name, checknote->hdr.n_namesz) != 0) 2378 goto nextnote; 2379 2380 /* 2381 * Fetch the osreldate for binary 2382 * from the ELF OSABI-note if necessary. 2383 */ 2384 if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 && 2385 checknote->trans_osrel != NULL) { 2386 res = checknote->trans_osrel(note, osrel); 2387 goto ret; 2388 } 2389 res = TRUE; 2390 goto ret; 2391 nextnote: 2392 note = (const Elf_Note *)((const char *)(note + 1) + 2393 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2394 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2395 } 2396 res = FALSE; 2397 ret: 2398 free(buf, M_TEMP); 2399 return (res); 2400 } 2401 2402 /* 2403 * Try to find the appropriate ABI-note section for checknote, 2404 * fetch the osreldate for binary from the ELF OSABI-note. Only the 2405 * first page of the image is searched, the same as for headers. 2406 */ 2407 static boolean_t 2408 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, 2409 int32_t *osrel) 2410 { 2411 const Elf_Phdr *phdr; 2412 const Elf_Ehdr *hdr; 2413 int i; 2414 2415 hdr = (const Elf_Ehdr *)imgp->image_header; 2416 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2417 2418 for (i = 0; i < hdr->e_phnum; i++) { 2419 if (phdr[i].p_type == PT_NOTE && 2420 __elfN(parse_notes)(imgp, checknote, osrel, &phdr[i])) 2421 return (TRUE); 2422 } 2423 return (FALSE); 2424 2425 } 2426 2427 /* 2428 * Tell kern_execve.c about it, with a little help from the linker. 2429 */ 2430 static struct execsw __elfN(execsw) = { 2431 __CONCAT(exec_, __elfN(imgact)), 2432 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2433 }; 2434 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2435 2436 static vm_prot_t 2437 __elfN(trans_prot)(Elf_Word flags) 2438 { 2439 vm_prot_t prot; 2440 2441 prot = 0; 2442 if (flags & PF_X) 2443 prot |= VM_PROT_EXECUTE; 2444 if (flags & PF_W) 2445 prot |= VM_PROT_WRITE; 2446 if (flags & PF_R) 2447 prot |= VM_PROT_READ; 2448 #if __ELF_WORD_SIZE == 32 2449 #if defined(__amd64__) 2450 if (i386_read_exec && (flags & PF_R)) 2451 prot |= VM_PROT_EXECUTE; 2452 #endif 2453 #endif 2454 return (prot); 2455 } 2456 2457 static Elf_Word 2458 __elfN(untrans_prot)(vm_prot_t prot) 2459 { 2460 Elf_Word flags; 2461 2462 flags = 0; 2463 if (prot & VM_PROT_EXECUTE) 2464 flags |= PF_X; 2465 if (prot & VM_PROT_READ) 2466 flags |= PF_R; 2467 if (prot & VM_PROT_WRITE) 2468 flags |= PF_W; 2469 return (flags); 2470 } 2471