1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/reg.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sf_buf.h> 62 #include <sys/smp.h> 63 #include <sys/systm.h> 64 #include <sys/signalvar.h> 65 #include <sys/stat.h> 66 #include <sys/sx.h> 67 #include <sys/syscall.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysent.h> 70 #include <sys/vnode.h> 71 #include <sys/syslog.h> 72 #include <sys/eventhandler.h> 73 #include <sys/user.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 83 #include <machine/elf.h> 84 #include <machine/md_var.h> 85 86 #define ELF_NOTE_ROUNDSIZE 4 87 #define OLD_EI_BRAND 8 88 89 static int __elfN(check_header)(const Elf_Ehdr *hdr); 90 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 91 const char *interp, int32_t *osrel, uint32_t *fctl0); 92 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 93 u_long *entry); 94 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 95 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 96 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 97 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 98 int32_t *osrel); 99 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 100 static boolean_t __elfN(check_note)(struct image_params *imgp, 101 Elf_Brandnote *checknote, int32_t *osrel, boolean_t *has_fctl0, 102 uint32_t *fctl0); 103 static vm_prot_t __elfN(trans_prot)(Elf_Word); 104 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 105 106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 107 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 ""); 109 110 int __elfN(fallback_brand) = -1; 111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 114 115 static int elf_legacy_coredump = 0; 116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 117 &elf_legacy_coredump, 0, 118 "include all and only RW pages in core dumps"); 119 120 int __elfN(nxstack) = 121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 122 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 123 defined(__riscv) 124 1; 125 #else 126 0; 127 #endif 128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 131 132 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 133 int i386_read_exec = 0; 134 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 135 "enable execution from readable segments"); 136 #endif 137 138 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 139 static int 140 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 141 { 142 u_long val; 143 int error; 144 145 val = __elfN(pie_base); 146 error = sysctl_handle_long(oidp, &val, 0, req); 147 if (error != 0 || req->newptr == NULL) 148 return (error); 149 if ((val & PAGE_MASK) != 0) 150 return (EINVAL); 151 __elfN(pie_base) = val; 152 return (0); 153 } 154 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 155 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 156 sysctl_pie_base, "LU", 157 "PIE load base without randomization"); 158 159 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 160 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 161 ""); 162 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 163 164 static int __elfN(aslr_enabled) = 0; 165 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 166 &__elfN(aslr_enabled), 0, 167 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 168 ": enable address map randomization"); 169 170 static int __elfN(pie_aslr_enabled) = 0; 171 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 172 &__elfN(pie_aslr_enabled), 0, 173 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 174 ": enable address map randomization for PIE binaries"); 175 176 static int __elfN(aslr_honor_sbrk) = 1; 177 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 178 &__elfN(aslr_honor_sbrk), 0, 179 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 180 181 static int __elfN(aslr_stack_gap) = 3; 182 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 183 &__elfN(aslr_stack_gap), 0, 184 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 185 ": maximum percentage of main stack to waste on a random gap"); 186 187 static int __elfN(sigfastblock) = 1; 188 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 189 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 190 "enable sigfastblock for new processes"); 191 192 static bool __elfN(allow_wx) = true; 193 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx, 194 CTLFLAG_RWTUN, &__elfN(allow_wx), 0, 195 "Allow pages to be mapped simultaneously writable and executable"); 196 197 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 198 199 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 200 201 Elf_Brandnote __elfN(freebsd_brandnote) = { 202 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 203 .hdr.n_descsz = sizeof(int32_t), 204 .hdr.n_type = NT_FREEBSD_ABI_TAG, 205 .vendor = FREEBSD_ABI_VENDOR, 206 .flags = BN_TRANSLATE_OSREL, 207 .trans_osrel = __elfN(freebsd_trans_osrel) 208 }; 209 210 static bool 211 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 212 { 213 uintptr_t p; 214 215 p = (uintptr_t)(note + 1); 216 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 217 *osrel = *(const int32_t *)(p); 218 219 return (true); 220 } 221 222 static const char GNU_ABI_VENDOR[] = "GNU"; 223 static int GNU_KFREEBSD_ABI_DESC = 3; 224 225 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 226 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 227 .hdr.n_descsz = 16, /* XXX at least 16 */ 228 .hdr.n_type = 1, 229 .vendor = GNU_ABI_VENDOR, 230 .flags = BN_TRANSLATE_OSREL, 231 .trans_osrel = kfreebsd_trans_osrel 232 }; 233 234 static bool 235 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 236 { 237 const Elf32_Word *desc; 238 uintptr_t p; 239 240 p = (uintptr_t)(note + 1); 241 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 242 243 desc = (const Elf32_Word *)p; 244 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 245 return (false); 246 247 /* 248 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 249 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 250 */ 251 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 252 253 return (true); 254 } 255 256 int 257 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 258 { 259 int i; 260 261 for (i = 0; i < MAX_BRANDS; i++) { 262 if (elf_brand_list[i] == NULL) { 263 elf_brand_list[i] = entry; 264 break; 265 } 266 } 267 if (i == MAX_BRANDS) { 268 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 269 __func__, entry); 270 return (-1); 271 } 272 return (0); 273 } 274 275 int 276 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 277 { 278 int i; 279 280 for (i = 0; i < MAX_BRANDS; i++) { 281 if (elf_brand_list[i] == entry) { 282 elf_brand_list[i] = NULL; 283 break; 284 } 285 } 286 if (i == MAX_BRANDS) 287 return (-1); 288 return (0); 289 } 290 291 int 292 __elfN(brand_inuse)(Elf_Brandinfo *entry) 293 { 294 struct proc *p; 295 int rval = FALSE; 296 297 sx_slock(&allproc_lock); 298 FOREACH_PROC_IN_SYSTEM(p) { 299 if (p->p_sysent == entry->sysvec) { 300 rval = TRUE; 301 break; 302 } 303 } 304 sx_sunlock(&allproc_lock); 305 306 return (rval); 307 } 308 309 static Elf_Brandinfo * 310 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 311 int32_t *osrel, uint32_t *fctl0) 312 { 313 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 314 Elf_Brandinfo *bi, *bi_m; 315 boolean_t ret, has_fctl0; 316 int i, interp_name_len; 317 318 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 319 320 /* 321 * We support four types of branding -- (1) the ELF EI_OSABI field 322 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 323 * branding w/in the ELF header, (3) path of the `interp_path' 324 * field, and (4) the ".note.ABI-tag" ELF section. 325 */ 326 327 /* Look for an ".note.ABI-tag" ELF section */ 328 bi_m = NULL; 329 for (i = 0; i < MAX_BRANDS; i++) { 330 bi = elf_brand_list[i]; 331 if (bi == NULL) 332 continue; 333 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 334 continue; 335 if (hdr->e_machine == bi->machine && (bi->flags & 336 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 337 has_fctl0 = false; 338 *fctl0 = 0; 339 *osrel = 0; 340 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 341 &has_fctl0, fctl0); 342 /* Give brand a chance to veto check_note's guess */ 343 if (ret && bi->header_supported) { 344 ret = bi->header_supported(imgp, osrel, 345 has_fctl0 ? fctl0 : NULL); 346 } 347 /* 348 * If note checker claimed the binary, but the 349 * interpreter path in the image does not 350 * match default one for the brand, try to 351 * search for other brands with the same 352 * interpreter. Either there is better brand 353 * with the right interpreter, or, failing 354 * this, we return first brand which accepted 355 * our note and, optionally, header. 356 */ 357 if (ret && bi_m == NULL && interp != NULL && 358 (bi->interp_path == NULL || 359 (strlen(bi->interp_path) + 1 != interp_name_len || 360 strncmp(interp, bi->interp_path, interp_name_len) 361 != 0))) { 362 bi_m = bi; 363 ret = 0; 364 } 365 if (ret) 366 return (bi); 367 } 368 } 369 if (bi_m != NULL) 370 return (bi_m); 371 372 /* If the executable has a brand, search for it in the brand list. */ 373 for (i = 0; i < MAX_BRANDS; i++) { 374 bi = elf_brand_list[i]; 375 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 376 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 377 continue; 378 if (hdr->e_machine == bi->machine && 379 (hdr->e_ident[EI_OSABI] == bi->brand || 380 (bi->compat_3_brand != NULL && 381 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 382 bi->compat_3_brand) == 0))) { 383 /* Looks good, but give brand a chance to veto */ 384 if (bi->header_supported == NULL || 385 bi->header_supported(imgp, NULL, NULL)) { 386 /* 387 * Again, prefer strictly matching 388 * interpreter path. 389 */ 390 if (interp_name_len == 0 && 391 bi->interp_path == NULL) 392 return (bi); 393 if (bi->interp_path != NULL && 394 strlen(bi->interp_path) + 1 == 395 interp_name_len && strncmp(interp, 396 bi->interp_path, interp_name_len) == 0) 397 return (bi); 398 if (bi_m == NULL) 399 bi_m = bi; 400 } 401 } 402 } 403 if (bi_m != NULL) 404 return (bi_m); 405 406 /* No known brand, see if the header is recognized by any brand */ 407 for (i = 0; i < MAX_BRANDS; i++) { 408 bi = elf_brand_list[i]; 409 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 410 bi->header_supported == NULL) 411 continue; 412 if (hdr->e_machine == bi->machine) { 413 ret = bi->header_supported(imgp, NULL, NULL); 414 if (ret) 415 return (bi); 416 } 417 } 418 419 /* Lacking a known brand, search for a recognized interpreter. */ 420 if (interp != NULL) { 421 for (i = 0; i < MAX_BRANDS; i++) { 422 bi = elf_brand_list[i]; 423 if (bi == NULL || (bi->flags & 424 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 425 != 0) 426 continue; 427 if (hdr->e_machine == bi->machine && 428 bi->interp_path != NULL && 429 /* ELF image p_filesz includes terminating zero */ 430 strlen(bi->interp_path) + 1 == interp_name_len && 431 strncmp(interp, bi->interp_path, interp_name_len) 432 == 0 && (bi->header_supported == NULL || 433 bi->header_supported(imgp, NULL, NULL))) 434 return (bi); 435 } 436 } 437 438 /* Lacking a recognized interpreter, try the default brand */ 439 for (i = 0; i < MAX_BRANDS; i++) { 440 bi = elf_brand_list[i]; 441 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 442 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 443 continue; 444 if (hdr->e_machine == bi->machine && 445 __elfN(fallback_brand) == bi->brand && 446 (bi->header_supported == NULL || 447 bi->header_supported(imgp, NULL, NULL))) 448 return (bi); 449 } 450 return (NULL); 451 } 452 453 static bool 454 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 455 { 456 return (hdr->e_phoff <= PAGE_SIZE && 457 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 458 } 459 460 static int 461 __elfN(check_header)(const Elf_Ehdr *hdr) 462 { 463 Elf_Brandinfo *bi; 464 int i; 465 466 if (!IS_ELF(*hdr) || 467 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 468 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 469 hdr->e_ident[EI_VERSION] != EV_CURRENT || 470 hdr->e_phentsize != sizeof(Elf_Phdr) || 471 hdr->e_version != ELF_TARG_VER) 472 return (ENOEXEC); 473 474 /* 475 * Make sure we have at least one brand for this machine. 476 */ 477 478 for (i = 0; i < MAX_BRANDS; i++) { 479 bi = elf_brand_list[i]; 480 if (bi != NULL && bi->machine == hdr->e_machine) 481 break; 482 } 483 if (i == MAX_BRANDS) 484 return (ENOEXEC); 485 486 return (0); 487 } 488 489 static int 490 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 491 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 492 { 493 struct sf_buf *sf; 494 int error; 495 vm_offset_t off; 496 497 /* 498 * Create the page if it doesn't exist yet. Ignore errors. 499 */ 500 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 501 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 502 503 /* 504 * Find the page from the underlying object. 505 */ 506 if (object != NULL) { 507 sf = vm_imgact_map_page(object, offset); 508 if (sf == NULL) 509 return (KERN_FAILURE); 510 off = offset - trunc_page(offset); 511 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 512 end - start); 513 vm_imgact_unmap_page(sf); 514 if (error != 0) 515 return (KERN_FAILURE); 516 } 517 518 return (KERN_SUCCESS); 519 } 520 521 static int 522 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 523 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 524 int cow) 525 { 526 struct sf_buf *sf; 527 vm_offset_t off; 528 vm_size_t sz; 529 int error, locked, rv; 530 531 if (start != trunc_page(start)) { 532 rv = __elfN(map_partial)(map, object, offset, start, 533 round_page(start), prot); 534 if (rv != KERN_SUCCESS) 535 return (rv); 536 offset += round_page(start) - start; 537 start = round_page(start); 538 } 539 if (end != round_page(end)) { 540 rv = __elfN(map_partial)(map, object, offset + 541 trunc_page(end) - start, trunc_page(end), end, prot); 542 if (rv != KERN_SUCCESS) 543 return (rv); 544 end = trunc_page(end); 545 } 546 if (start >= end) 547 return (KERN_SUCCESS); 548 if ((offset & PAGE_MASK) != 0) { 549 /* 550 * The mapping is not page aligned. This means that we have 551 * to copy the data. 552 */ 553 rv = vm_map_fixed(map, NULL, 0, start, end - start, 554 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 555 if (rv != KERN_SUCCESS) 556 return (rv); 557 if (object == NULL) 558 return (KERN_SUCCESS); 559 for (; start < end; start += sz) { 560 sf = vm_imgact_map_page(object, offset); 561 if (sf == NULL) 562 return (KERN_FAILURE); 563 off = offset - trunc_page(offset); 564 sz = end - start; 565 if (sz > PAGE_SIZE - off) 566 sz = PAGE_SIZE - off; 567 error = copyout((caddr_t)sf_buf_kva(sf) + off, 568 (caddr_t)start, sz); 569 vm_imgact_unmap_page(sf); 570 if (error != 0) 571 return (KERN_FAILURE); 572 offset += sz; 573 } 574 } else { 575 vm_object_reference(object); 576 rv = vm_map_fixed(map, object, offset, start, end - start, 577 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 578 (object != NULL ? MAP_VN_EXEC : 0)); 579 if (rv != KERN_SUCCESS) { 580 locked = VOP_ISLOCKED(imgp->vp); 581 VOP_UNLOCK(imgp->vp); 582 vm_object_deallocate(object); 583 vn_lock(imgp->vp, locked | LK_RETRY); 584 return (rv); 585 } else if (object != NULL) { 586 MPASS(imgp->vp->v_object == object); 587 VOP_SET_TEXT_CHECKED(imgp->vp); 588 } 589 } 590 return (KERN_SUCCESS); 591 } 592 593 static int 594 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 595 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 596 { 597 struct sf_buf *sf; 598 size_t map_len; 599 vm_map_t map; 600 vm_object_t object; 601 vm_offset_t map_addr; 602 int error, rv, cow; 603 size_t copy_len; 604 vm_ooffset_t file_addr; 605 606 /* 607 * It's necessary to fail if the filsz + offset taken from the 608 * header is greater than the actual file pager object's size. 609 * If we were to allow this, then the vm_map_find() below would 610 * walk right off the end of the file object and into the ether. 611 * 612 * While I'm here, might as well check for something else that 613 * is invalid: filsz cannot be greater than memsz. 614 */ 615 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 616 filsz > memsz) { 617 uprintf("elf_load_section: truncated ELF file\n"); 618 return (ENOEXEC); 619 } 620 621 object = imgp->object; 622 map = &imgp->proc->p_vmspace->vm_map; 623 map_addr = trunc_page((vm_offset_t)vmaddr); 624 file_addr = trunc_page(offset); 625 626 /* 627 * We have two choices. We can either clear the data in the last page 628 * of an oversized mapping, or we can start the anon mapping a page 629 * early and copy the initialized data into that first page. We 630 * choose the second. 631 */ 632 if (filsz == 0) 633 map_len = 0; 634 else if (memsz > filsz) 635 map_len = trunc_page(offset + filsz) - file_addr; 636 else 637 map_len = round_page(offset + filsz) - file_addr; 638 639 if (map_len != 0) { 640 /* cow flags: don't dump readonly sections in core */ 641 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 642 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 643 644 rv = __elfN(map_insert)(imgp, map, object, file_addr, 645 map_addr, map_addr + map_len, prot, cow); 646 if (rv != KERN_SUCCESS) 647 return (EINVAL); 648 649 /* we can stop now if we've covered it all */ 650 if (memsz == filsz) 651 return (0); 652 } 653 654 /* 655 * We have to get the remaining bit of the file into the first part 656 * of the oversized map segment. This is normally because the .data 657 * segment in the file is extended to provide bss. It's a neat idea 658 * to try and save a page, but it's a pain in the behind to implement. 659 */ 660 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 661 filsz); 662 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 663 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 664 665 /* This had damn well better be true! */ 666 if (map_len != 0) { 667 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 668 map_addr + map_len, prot, 0); 669 if (rv != KERN_SUCCESS) 670 return (EINVAL); 671 } 672 673 if (copy_len != 0) { 674 sf = vm_imgact_map_page(object, offset + filsz); 675 if (sf == NULL) 676 return (EIO); 677 678 /* send the page fragment to user space */ 679 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 680 copy_len); 681 vm_imgact_unmap_page(sf); 682 if (error != 0) 683 return (error); 684 } 685 686 /* 687 * Remove write access to the page if it was only granted by map_insert 688 * to allow copyout. 689 */ 690 if ((prot & VM_PROT_WRITE) == 0) 691 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 692 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT); 693 694 return (0); 695 } 696 697 static int 698 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 699 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 700 { 701 vm_prot_t prot; 702 u_long base_addr; 703 bool first; 704 int error, i; 705 706 ASSERT_VOP_LOCKED(imgp->vp, __func__); 707 708 base_addr = 0; 709 first = true; 710 711 for (i = 0; i < hdr->e_phnum; i++) { 712 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 713 continue; 714 715 /* Loadable segment */ 716 prot = __elfN(trans_prot)(phdr[i].p_flags); 717 error = __elfN(load_section)(imgp, phdr[i].p_offset, 718 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 719 phdr[i].p_memsz, phdr[i].p_filesz, prot); 720 if (error != 0) 721 return (error); 722 723 /* 724 * Establish the base address if this is the first segment. 725 */ 726 if (first) { 727 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 728 first = false; 729 } 730 } 731 732 if (base_addrp != NULL) 733 *base_addrp = base_addr; 734 735 return (0); 736 } 737 738 /* 739 * Load the file "file" into memory. It may be either a shared object 740 * or an executable. 741 * 742 * The "addr" reference parameter is in/out. On entry, it specifies 743 * the address where a shared object should be loaded. If the file is 744 * an executable, this value is ignored. On exit, "addr" specifies 745 * where the file was actually loaded. 746 * 747 * The "entry" reference parameter is out only. On exit, it specifies 748 * the entry point for the loaded file. 749 */ 750 static int 751 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 752 u_long *entry) 753 { 754 struct { 755 struct nameidata nd; 756 struct vattr attr; 757 struct image_params image_params; 758 } *tempdata; 759 const Elf_Ehdr *hdr = NULL; 760 const Elf_Phdr *phdr = NULL; 761 struct nameidata *nd; 762 struct vattr *attr; 763 struct image_params *imgp; 764 u_long rbase; 765 u_long base_addr = 0; 766 int error; 767 768 #ifdef CAPABILITY_MODE 769 /* 770 * XXXJA: This check can go away once we are sufficiently confident 771 * that the checks in namei() are correct. 772 */ 773 if (IN_CAPABILITY_MODE(curthread)) 774 return (ECAPMODE); 775 #endif 776 777 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 778 nd = &tempdata->nd; 779 attr = &tempdata->attr; 780 imgp = &tempdata->image_params; 781 782 /* 783 * Initialize part of the common data 784 */ 785 imgp->proc = p; 786 imgp->attr = attr; 787 788 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 789 UIO_SYSSPACE, file, curthread); 790 if ((error = namei(nd)) != 0) { 791 nd->ni_vp = NULL; 792 goto fail; 793 } 794 NDFREE(nd, NDF_ONLY_PNBUF); 795 imgp->vp = nd->ni_vp; 796 797 /* 798 * Check permissions, modes, uid, etc on the file, and "open" it. 799 */ 800 error = exec_check_permissions(imgp); 801 if (error) 802 goto fail; 803 804 error = exec_map_first_page(imgp); 805 if (error) 806 goto fail; 807 808 imgp->object = nd->ni_vp->v_object; 809 810 hdr = (const Elf_Ehdr *)imgp->image_header; 811 if ((error = __elfN(check_header)(hdr)) != 0) 812 goto fail; 813 if (hdr->e_type == ET_DYN) 814 rbase = *addr; 815 else if (hdr->e_type == ET_EXEC) 816 rbase = 0; 817 else { 818 error = ENOEXEC; 819 goto fail; 820 } 821 822 /* Only support headers that fit within first page for now */ 823 if (!__elfN(phdr_in_zero_page)(hdr)) { 824 error = ENOEXEC; 825 goto fail; 826 } 827 828 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 829 if (!aligned(phdr, Elf_Addr)) { 830 error = ENOEXEC; 831 goto fail; 832 } 833 834 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 835 if (error != 0) 836 goto fail; 837 838 *addr = base_addr; 839 *entry = (unsigned long)hdr->e_entry + rbase; 840 841 fail: 842 if (imgp->firstpage) 843 exec_unmap_first_page(imgp); 844 845 if (nd->ni_vp) { 846 if (imgp->textset) 847 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 848 vput(nd->ni_vp); 849 } 850 free(tempdata, M_TEMP); 851 852 return (error); 853 } 854 855 static u_long 856 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 857 u_int align) 858 { 859 u_long rbase, res; 860 861 MPASS(vm_map_min(map) <= minv); 862 MPASS(maxv <= vm_map_max(map)); 863 MPASS(minv < maxv); 864 MPASS(minv + align < maxv); 865 arc4rand(&rbase, sizeof(rbase), 0); 866 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 867 res &= ~((u_long)align - 1); 868 if (res >= maxv) 869 res -= align; 870 KASSERT(res >= minv, 871 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 872 res, minv, maxv, rbase)); 873 KASSERT(res < maxv, 874 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 875 res, maxv, minv, rbase)); 876 return (res); 877 } 878 879 static int 880 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 881 const Elf_Phdr *phdr, u_long et_dyn_addr) 882 { 883 struct vmspace *vmspace; 884 const char *err_str; 885 u_long text_size, data_size, total_size, text_addr, data_addr; 886 u_long seg_size, seg_addr; 887 int i; 888 889 err_str = NULL; 890 text_size = data_size = total_size = text_addr = data_addr = 0; 891 892 for (i = 0; i < hdr->e_phnum; i++) { 893 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 894 continue; 895 896 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 897 seg_size = round_page(phdr[i].p_memsz + 898 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 899 900 /* 901 * Make the largest executable segment the official 902 * text segment and all others data. 903 * 904 * Note that obreak() assumes that data_addr + data_size == end 905 * of data load area, and the ELF file format expects segments 906 * to be sorted by address. If multiple data segments exist, 907 * the last one will be used. 908 */ 909 910 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 911 text_size = seg_size; 912 text_addr = seg_addr; 913 } else { 914 data_size = seg_size; 915 data_addr = seg_addr; 916 } 917 total_size += seg_size; 918 } 919 920 if (data_addr == 0 && data_size == 0) { 921 data_addr = text_addr; 922 data_size = text_size; 923 } 924 925 /* 926 * Check limits. It should be safe to check the 927 * limits after loading the segments since we do 928 * not actually fault in all the segments pages. 929 */ 930 PROC_LOCK(imgp->proc); 931 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 932 err_str = "Data segment size exceeds process limit"; 933 else if (text_size > maxtsiz) 934 err_str = "Text segment size exceeds system limit"; 935 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 936 err_str = "Total segment size exceeds process limit"; 937 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 938 err_str = "Data segment size exceeds resource limit"; 939 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 940 err_str = "Total segment size exceeds resource limit"; 941 PROC_UNLOCK(imgp->proc); 942 if (err_str != NULL) { 943 uprintf("%s\n", err_str); 944 return (ENOMEM); 945 } 946 947 vmspace = imgp->proc->p_vmspace; 948 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 949 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 950 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 951 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 952 953 return (0); 954 } 955 956 static int 957 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 958 char **interpp, bool *free_interpp) 959 { 960 struct thread *td; 961 char *interp; 962 int error, interp_name_len; 963 964 KASSERT(phdr->p_type == PT_INTERP, 965 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 966 ASSERT_VOP_LOCKED(imgp->vp, __func__); 967 968 td = curthread; 969 970 /* Path to interpreter */ 971 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 972 uprintf("Invalid PT_INTERP\n"); 973 return (ENOEXEC); 974 } 975 976 interp_name_len = phdr->p_filesz; 977 if (phdr->p_offset > PAGE_SIZE || 978 interp_name_len > PAGE_SIZE - phdr->p_offset) { 979 /* 980 * The vnode lock might be needed by the pagedaemon to 981 * clean pages owned by the vnode. Do not allow sleep 982 * waiting for memory with the vnode locked, instead 983 * try non-sleepable allocation first, and if it 984 * fails, go to the slow path were we drop the lock 985 * and do M_WAITOK. A text reference prevents 986 * modifications to the vnode content. 987 */ 988 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 989 if (interp == NULL) { 990 VOP_UNLOCK(imgp->vp); 991 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 992 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 993 } 994 995 error = vn_rdwr(UIO_READ, imgp->vp, interp, 996 interp_name_len, phdr->p_offset, 997 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 998 NOCRED, NULL, td); 999 if (error != 0) { 1000 free(interp, M_TEMP); 1001 uprintf("i/o error PT_INTERP %d\n", error); 1002 return (error); 1003 } 1004 interp[interp_name_len] = '\0'; 1005 1006 *interpp = interp; 1007 *free_interpp = true; 1008 return (0); 1009 } 1010 1011 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1012 if (interp[interp_name_len - 1] != '\0') { 1013 uprintf("Invalid PT_INTERP\n"); 1014 return (ENOEXEC); 1015 } 1016 1017 *interpp = interp; 1018 *free_interpp = false; 1019 return (0); 1020 } 1021 1022 static int 1023 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1024 const char *interp, u_long *addr, u_long *entry) 1025 { 1026 char *path; 1027 int error; 1028 1029 if (brand_info->emul_path != NULL && 1030 brand_info->emul_path[0] != '\0') { 1031 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1032 snprintf(path, MAXPATHLEN, "%s%s", 1033 brand_info->emul_path, interp); 1034 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1035 free(path, M_TEMP); 1036 if (error == 0) 1037 return (0); 1038 } 1039 1040 if (brand_info->interp_newpath != NULL && 1041 (brand_info->interp_path == NULL || 1042 strcmp(interp, brand_info->interp_path) == 0)) { 1043 error = __elfN(load_file)(imgp->proc, 1044 brand_info->interp_newpath, addr, entry); 1045 if (error == 0) 1046 return (0); 1047 } 1048 1049 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1050 if (error == 0) 1051 return (0); 1052 1053 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1054 return (error); 1055 } 1056 1057 /* 1058 * Impossible et_dyn_addr initial value indicating that the real base 1059 * must be calculated later with some randomization applied. 1060 */ 1061 #define ET_DYN_ADDR_RAND 1 1062 1063 static int 1064 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1065 { 1066 struct thread *td; 1067 const Elf_Ehdr *hdr; 1068 const Elf_Phdr *phdr; 1069 Elf_Auxargs *elf_auxargs; 1070 struct vmspace *vmspace; 1071 vm_map_t map; 1072 char *interp; 1073 Elf_Brandinfo *brand_info; 1074 struct sysentvec *sv; 1075 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1076 u_long maxalign, mapsz, maxv, maxv1; 1077 uint32_t fctl0; 1078 int32_t osrel; 1079 bool free_interp; 1080 int error, i, n; 1081 1082 hdr = (const Elf_Ehdr *)imgp->image_header; 1083 1084 /* 1085 * Do we have a valid ELF header ? 1086 * 1087 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1088 * if particular brand doesn't support it. 1089 */ 1090 if (__elfN(check_header)(hdr) != 0 || 1091 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1092 return (-1); 1093 1094 /* 1095 * From here on down, we return an errno, not -1, as we've 1096 * detected an ELF file. 1097 */ 1098 1099 if (!__elfN(phdr_in_zero_page)(hdr)) { 1100 uprintf("Program headers not in the first page\n"); 1101 return (ENOEXEC); 1102 } 1103 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1104 if (!aligned(phdr, Elf_Addr)) { 1105 uprintf("Unaligned program headers\n"); 1106 return (ENOEXEC); 1107 } 1108 1109 n = error = 0; 1110 baddr = 0; 1111 osrel = 0; 1112 fctl0 = 0; 1113 entry = proghdr = 0; 1114 interp = NULL; 1115 free_interp = false; 1116 td = curthread; 1117 maxalign = PAGE_SIZE; 1118 mapsz = 0; 1119 1120 for (i = 0; i < hdr->e_phnum; i++) { 1121 switch (phdr[i].p_type) { 1122 case PT_LOAD: 1123 if (n == 0) 1124 baddr = phdr[i].p_vaddr; 1125 if (phdr[i].p_align > maxalign) 1126 maxalign = phdr[i].p_align; 1127 mapsz += phdr[i].p_memsz; 1128 n++; 1129 1130 /* 1131 * If this segment contains the program headers, 1132 * remember their virtual address for the AT_PHDR 1133 * aux entry. Static binaries don't usually include 1134 * a PT_PHDR entry. 1135 */ 1136 if (phdr[i].p_offset == 0 && 1137 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1138 <= phdr[i].p_filesz) 1139 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1140 break; 1141 case PT_INTERP: 1142 /* Path to interpreter */ 1143 if (interp != NULL) { 1144 uprintf("Multiple PT_INTERP headers\n"); 1145 error = ENOEXEC; 1146 goto ret; 1147 } 1148 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1149 &free_interp); 1150 if (error != 0) 1151 goto ret; 1152 break; 1153 case PT_GNU_STACK: 1154 if (__elfN(nxstack)) 1155 imgp->stack_prot = 1156 __elfN(trans_prot)(phdr[i].p_flags); 1157 imgp->stack_sz = phdr[i].p_memsz; 1158 break; 1159 case PT_PHDR: /* Program header table info */ 1160 proghdr = phdr[i].p_vaddr; 1161 break; 1162 } 1163 } 1164 1165 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1166 if (brand_info == NULL) { 1167 uprintf("ELF binary type \"%u\" not known.\n", 1168 hdr->e_ident[EI_OSABI]); 1169 error = ENOEXEC; 1170 goto ret; 1171 } 1172 sv = brand_info->sysvec; 1173 et_dyn_addr = 0; 1174 if (hdr->e_type == ET_DYN) { 1175 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1176 uprintf("Cannot execute shared object\n"); 1177 error = ENOEXEC; 1178 goto ret; 1179 } 1180 /* 1181 * Honour the base load address from the dso if it is 1182 * non-zero for some reason. 1183 */ 1184 if (baddr == 0) { 1185 if ((sv->sv_flags & SV_ASLR) == 0 || 1186 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1187 et_dyn_addr = __elfN(pie_base); 1188 else if ((__elfN(pie_aslr_enabled) && 1189 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1190 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1191 et_dyn_addr = ET_DYN_ADDR_RAND; 1192 else 1193 et_dyn_addr = __elfN(pie_base); 1194 } 1195 } 1196 1197 /* 1198 * Avoid a possible deadlock if the current address space is destroyed 1199 * and that address space maps the locked vnode. In the common case, 1200 * the locked vnode's v_usecount is decremented but remains greater 1201 * than zero. Consequently, the vnode lock is not needed by vrele(). 1202 * However, in cases where the vnode lock is external, such as nullfs, 1203 * v_usecount may become zero. 1204 * 1205 * The VV_TEXT flag prevents modifications to the executable while 1206 * the vnode is unlocked. 1207 */ 1208 VOP_UNLOCK(imgp->vp); 1209 1210 /* 1211 * Decide whether to enable randomization of user mappings. 1212 * First, reset user preferences for the setid binaries. 1213 * Then, account for the support of the randomization by the 1214 * ABI, by user preferences, and make special treatment for 1215 * PIE binaries. 1216 */ 1217 if (imgp->credential_setid) { 1218 PROC_LOCK(imgp->proc); 1219 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE | 1220 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 1221 PROC_UNLOCK(imgp->proc); 1222 } 1223 if ((sv->sv_flags & SV_ASLR) == 0 || 1224 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1225 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1226 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1227 ("et_dyn_addr == RAND and !ASLR")); 1228 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1229 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1230 et_dyn_addr == ET_DYN_ADDR_RAND) { 1231 imgp->map_flags |= MAP_ASLR; 1232 /* 1233 * If user does not care about sbrk, utilize the bss 1234 * grow region for mappings as well. We can select 1235 * the base for the image anywere and still not suffer 1236 * from the fragmentation. 1237 */ 1238 if (!__elfN(aslr_honor_sbrk) || 1239 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1240 imgp->map_flags |= MAP_ASLR_IGNSTART; 1241 } 1242 1243 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 && 1244 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) || 1245 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0) 1246 imgp->map_flags |= MAP_WXORX; 1247 1248 error = exec_new_vmspace(imgp, sv); 1249 vmspace = imgp->proc->p_vmspace; 1250 map = &vmspace->vm_map; 1251 1252 imgp->proc->p_sysent = sv; 1253 imgp->proc->p_elf_brandinfo = brand_info; 1254 1255 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1256 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1257 KASSERT((map->flags & MAP_ASLR) != 0, 1258 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1259 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1260 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1261 /* reserve half of the address space to interpreter */ 1262 maxv / 2, 1UL << flsl(maxalign)); 1263 } 1264 1265 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1266 if (error != 0) 1267 goto ret; 1268 1269 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1270 if (error != 0) 1271 goto ret; 1272 1273 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1274 if (error != 0) 1275 goto ret; 1276 1277 entry = (u_long)hdr->e_entry + et_dyn_addr; 1278 1279 /* 1280 * We load the dynamic linker where a userland call 1281 * to mmap(0, ...) would put it. The rationale behind this 1282 * calculation is that it leaves room for the heap to grow to 1283 * its maximum allowed size. 1284 */ 1285 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1286 RLIMIT_DATA)); 1287 if ((map->flags & MAP_ASLR) != 0) { 1288 maxv1 = maxv / 2 + addr / 2; 1289 MPASS(maxv1 >= addr); /* No overflow */ 1290 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1291 (MAXPAGESIZES > 1 && pagesizes[1] != 0) ? 1292 pagesizes[1] : pagesizes[0]); 1293 } else { 1294 map->anon_loc = addr; 1295 } 1296 1297 imgp->entry_addr = entry; 1298 1299 if (interp != NULL) { 1300 VOP_UNLOCK(imgp->vp); 1301 if ((map->flags & MAP_ASLR) != 0) { 1302 /* Assume that interpreter fits into 1/4 of AS */ 1303 maxv1 = maxv / 2 + addr / 2; 1304 MPASS(maxv1 >= addr); /* No overflow */ 1305 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1306 maxv1, PAGE_SIZE); 1307 } 1308 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1309 &imgp->entry_addr); 1310 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1311 if (error != 0) 1312 goto ret; 1313 } else 1314 addr = et_dyn_addr; 1315 1316 /* 1317 * Construct auxargs table (used by the copyout_auxargs routine) 1318 */ 1319 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1320 if (elf_auxargs == NULL) { 1321 VOP_UNLOCK(imgp->vp); 1322 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1323 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1324 } 1325 elf_auxargs->execfd = -1; 1326 elf_auxargs->phdr = proghdr + et_dyn_addr; 1327 elf_auxargs->phent = hdr->e_phentsize; 1328 elf_auxargs->phnum = hdr->e_phnum; 1329 elf_auxargs->pagesz = PAGE_SIZE; 1330 elf_auxargs->base = addr; 1331 elf_auxargs->flags = 0; 1332 elf_auxargs->entry = entry; 1333 elf_auxargs->hdr_eflags = hdr->e_flags; 1334 1335 imgp->auxargs = elf_auxargs; 1336 imgp->interpreted = 0; 1337 imgp->reloc_base = addr; 1338 imgp->proc->p_osrel = osrel; 1339 imgp->proc->p_fctl0 = fctl0; 1340 imgp->proc->p_elf_flags = hdr->e_flags; 1341 1342 ret: 1343 if (free_interp) 1344 free(interp, M_TEMP); 1345 return (error); 1346 } 1347 1348 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE) 1349 1350 int 1351 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1352 { 1353 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1354 Elf_Auxinfo *argarray, *pos; 1355 int error; 1356 1357 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1358 M_WAITOK | M_ZERO); 1359 1360 if (args->execfd != -1) 1361 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1362 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1363 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1364 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1365 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1366 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1367 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1368 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1369 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1370 if (imgp->execpathp != 0) 1371 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1372 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1373 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1374 if (imgp->canary != 0) { 1375 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1376 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1377 } 1378 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1379 if (imgp->pagesizes != 0) { 1380 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1381 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1382 } 1383 if (imgp->sysent->sv_timekeep_base != 0) { 1384 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1385 imgp->sysent->sv_timekeep_base); 1386 } 1387 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1388 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1389 imgp->sysent->sv_stackprot); 1390 if (imgp->sysent->sv_hwcap != NULL) 1391 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1392 if (imgp->sysent->sv_hwcap2 != NULL) 1393 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1394 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1395 ELF_BSDF_SIGFASTBLK : 0); 1396 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1397 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1398 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1399 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1400 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1401 if (imgp->sysent->sv_fxrng_gen_base != 0) 1402 AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base); 1403 AUXARGS_ENTRY(pos, AT_NULL, 0); 1404 1405 free(imgp->auxargs, M_TEMP); 1406 imgp->auxargs = NULL; 1407 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1408 1409 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1410 free(argarray, M_TEMP); 1411 return (error); 1412 } 1413 1414 int 1415 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1416 { 1417 Elf_Addr *base; 1418 1419 base = (Elf_Addr *)*stack_base; 1420 base--; 1421 if (elf_suword(base, imgp->args->argc) == -1) 1422 return (EFAULT); 1423 *stack_base = (uintptr_t)base; 1424 return (0); 1425 } 1426 1427 /* 1428 * Code for generating ELF core dumps. 1429 */ 1430 1431 typedef void (*segment_callback)(vm_map_entry_t, void *); 1432 1433 /* Closure for cb_put_phdr(). */ 1434 struct phdr_closure { 1435 Elf_Phdr *phdr; /* Program header to fill in */ 1436 Elf_Off offset; /* Offset of segment in core file */ 1437 }; 1438 1439 struct note_info { 1440 int type; /* Note type. */ 1441 outfunc_t outfunc; /* Output function. */ 1442 void *outarg; /* Argument for the output function. */ 1443 size_t outsize; /* Output size. */ 1444 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1445 }; 1446 1447 TAILQ_HEAD(note_info_list, note_info); 1448 1449 extern int compress_user_cores; 1450 extern int compress_user_cores_level; 1451 1452 static void cb_put_phdr(vm_map_entry_t, void *); 1453 static void cb_size_segment(vm_map_entry_t, void *); 1454 static void each_dumpable_segment(struct thread *, segment_callback, void *, 1455 int); 1456 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1457 struct note_info_list *, size_t, int); 1458 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *); 1459 1460 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1461 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1462 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1463 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1464 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1465 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1466 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1467 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1468 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1469 static void note_procstat_files(void *, struct sbuf *, size_t *); 1470 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1471 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1472 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1473 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1474 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1475 1476 static int 1477 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1478 { 1479 1480 return (core_write((struct coredump_params *)arg, base, len, offset, 1481 UIO_SYSSPACE, NULL)); 1482 } 1483 1484 int 1485 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1486 { 1487 struct ucred *cred = td->td_ucred; 1488 int compm, error = 0; 1489 struct sseg_closure seginfo; 1490 struct note_info_list notelst; 1491 struct coredump_params params; 1492 struct note_info *ninfo; 1493 void *hdr, *tmpbuf; 1494 size_t hdrsize, notesz, coresize; 1495 1496 hdr = NULL; 1497 tmpbuf = NULL; 1498 TAILQ_INIT(¬elst); 1499 1500 /* Size the program segments. */ 1501 __elfN(size_segments)(td, &seginfo, flags); 1502 1503 /* 1504 * Collect info about the core file header area. 1505 */ 1506 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1507 if (seginfo.count + 1 >= PN_XNUM) 1508 hdrsize += sizeof(Elf_Shdr); 1509 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz); 1510 coresize = round_page(hdrsize + notesz) + seginfo.size; 1511 1512 /* Set up core dump parameters. */ 1513 params.offset = 0; 1514 params.active_cred = cred; 1515 params.file_cred = NOCRED; 1516 params.td = td; 1517 params.vp = vp; 1518 params.comp = NULL; 1519 1520 #ifdef RACCT 1521 if (racct_enable) { 1522 PROC_LOCK(td->td_proc); 1523 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1524 PROC_UNLOCK(td->td_proc); 1525 if (error != 0) { 1526 error = EFAULT; 1527 goto done; 1528 } 1529 } 1530 #endif 1531 if (coresize >= limit) { 1532 error = EFAULT; 1533 goto done; 1534 } 1535 1536 /* Create a compression stream if necessary. */ 1537 compm = compress_user_cores; 1538 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP && 1539 compm == 0) 1540 compm = COMPRESS_GZIP; 1541 if (compm != 0) { 1542 params.comp = compressor_init(core_compressed_write, 1543 compm, CORE_BUF_SIZE, 1544 compress_user_cores_level, ¶ms); 1545 if (params.comp == NULL) { 1546 error = EFAULT; 1547 goto done; 1548 } 1549 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1550 } 1551 1552 /* 1553 * Allocate memory for building the header, fill it up, 1554 * and write it out following the notes. 1555 */ 1556 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1557 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1558 notesz, flags); 1559 1560 /* Write the contents of all of the writable segments. */ 1561 if (error == 0) { 1562 Elf_Phdr *php; 1563 off_t offset; 1564 int i; 1565 1566 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1567 offset = round_page(hdrsize + notesz); 1568 for (i = 0; i < seginfo.count; i++) { 1569 error = core_output((char *)(uintptr_t)php->p_vaddr, 1570 php->p_filesz, offset, ¶ms, tmpbuf); 1571 if (error != 0) 1572 break; 1573 offset += php->p_filesz; 1574 php++; 1575 } 1576 if (error == 0 && params.comp != NULL) 1577 error = compressor_flush(params.comp); 1578 } 1579 if (error) { 1580 log(LOG_WARNING, 1581 "Failed to write core file for process %s (error %d)\n", 1582 curproc->p_comm, error); 1583 } 1584 1585 done: 1586 free(tmpbuf, M_TEMP); 1587 if (params.comp != NULL) 1588 compressor_fini(params.comp); 1589 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1590 TAILQ_REMOVE(¬elst, ninfo, link); 1591 free(ninfo, M_TEMP); 1592 } 1593 if (hdr != NULL) 1594 free(hdr, M_TEMP); 1595 1596 return (error); 1597 } 1598 1599 /* 1600 * A callback for each_dumpable_segment() to write out the segment's 1601 * program header entry. 1602 */ 1603 static void 1604 cb_put_phdr(vm_map_entry_t entry, void *closure) 1605 { 1606 struct phdr_closure *phc = (struct phdr_closure *)closure; 1607 Elf_Phdr *phdr = phc->phdr; 1608 1609 phc->offset = round_page(phc->offset); 1610 1611 phdr->p_type = PT_LOAD; 1612 phdr->p_offset = phc->offset; 1613 phdr->p_vaddr = entry->start; 1614 phdr->p_paddr = 0; 1615 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1616 phdr->p_align = PAGE_SIZE; 1617 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1618 1619 phc->offset += phdr->p_filesz; 1620 phc->phdr++; 1621 } 1622 1623 /* 1624 * A callback for each_dumpable_segment() to gather information about 1625 * the number of segments and their total size. 1626 */ 1627 static void 1628 cb_size_segment(vm_map_entry_t entry, void *closure) 1629 { 1630 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1631 1632 ssc->count++; 1633 ssc->size += entry->end - entry->start; 1634 } 1635 1636 void 1637 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo, 1638 int flags) 1639 { 1640 seginfo->count = 0; 1641 seginfo->size = 0; 1642 1643 each_dumpable_segment(td, cb_size_segment, seginfo, flags); 1644 } 1645 1646 /* 1647 * For each writable segment in the process's memory map, call the given 1648 * function with a pointer to the map entry and some arbitrary 1649 * caller-supplied data. 1650 */ 1651 static void 1652 each_dumpable_segment(struct thread *td, segment_callback func, void *closure, 1653 int flags) 1654 { 1655 struct proc *p = td->td_proc; 1656 vm_map_t map = &p->p_vmspace->vm_map; 1657 vm_map_entry_t entry; 1658 vm_object_t backing_object, object; 1659 bool ignore_entry; 1660 1661 vm_map_lock_read(map); 1662 VM_MAP_ENTRY_FOREACH(entry, map) { 1663 /* 1664 * Don't dump inaccessible mappings, deal with legacy 1665 * coredump mode. 1666 * 1667 * Note that read-only segments related to the elf binary 1668 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1669 * need to arbitrarily ignore such segments. 1670 */ 1671 if ((flags & SVC_ALL) == 0) { 1672 if (elf_legacy_coredump) { 1673 if ((entry->protection & VM_PROT_RW) != 1674 VM_PROT_RW) 1675 continue; 1676 } else { 1677 if ((entry->protection & VM_PROT_ALL) == 0) 1678 continue; 1679 } 1680 } 1681 1682 /* 1683 * Dont include memory segment in the coredump if 1684 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1685 * madvise(2). Do not dump submaps (i.e. parts of the 1686 * kernel map). 1687 */ 1688 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 1689 continue; 1690 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 && 1691 (flags & SVC_ALL) == 0) 1692 continue; 1693 if ((object = entry->object.vm_object) == NULL) 1694 continue; 1695 1696 /* Ignore memory-mapped devices and such things. */ 1697 VM_OBJECT_RLOCK(object); 1698 while ((backing_object = object->backing_object) != NULL) { 1699 VM_OBJECT_RLOCK(backing_object); 1700 VM_OBJECT_RUNLOCK(object); 1701 object = backing_object; 1702 } 1703 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1704 VM_OBJECT_RUNLOCK(object); 1705 if (ignore_entry) 1706 continue; 1707 1708 (*func)(entry, closure); 1709 } 1710 vm_map_unlock_read(map); 1711 } 1712 1713 /* 1714 * Write the core file header to the file, including padding up to 1715 * the page boundary. 1716 */ 1717 static int 1718 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1719 size_t hdrsize, struct note_info_list *notelst, size_t notesz, 1720 int flags) 1721 { 1722 struct note_info *ninfo; 1723 struct sbuf *sb; 1724 int error; 1725 1726 /* Fill in the header. */ 1727 bzero(hdr, hdrsize); 1728 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags); 1729 1730 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1731 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1732 sbuf_start_section(sb, NULL); 1733 sbuf_bcat(sb, hdr, hdrsize); 1734 TAILQ_FOREACH(ninfo, notelst, link) 1735 __elfN(putnote)(p->td, ninfo, sb); 1736 /* Align up to a page boundary for the program segments. */ 1737 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1738 error = sbuf_finish(sb); 1739 sbuf_delete(sb); 1740 1741 return (error); 1742 } 1743 1744 void 1745 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1746 size_t *sizep) 1747 { 1748 struct proc *p; 1749 struct thread *thr; 1750 size_t size; 1751 1752 p = td->td_proc; 1753 size = 0; 1754 1755 size += __elfN(register_note)(td, list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1756 1757 /* 1758 * To have the debugger select the right thread (LWP) as the initial 1759 * thread, we dump the state of the thread passed to us in td first. 1760 * This is the thread that causes the core dump and thus likely to 1761 * be the right thread one wants to have selected in the debugger. 1762 */ 1763 thr = td; 1764 while (thr != NULL) { 1765 size += __elfN(register_note)(td, list, NT_PRSTATUS, 1766 __elfN(note_prstatus), thr); 1767 size += __elfN(register_note)(td, list, NT_FPREGSET, 1768 __elfN(note_fpregset), thr); 1769 size += __elfN(register_note)(td, list, NT_THRMISC, 1770 __elfN(note_thrmisc), thr); 1771 size += __elfN(register_note)(td, list, NT_PTLWPINFO, 1772 __elfN(note_ptlwpinfo), thr); 1773 size += __elfN(register_note)(td, list, -1, 1774 __elfN(note_threadmd), thr); 1775 1776 thr = thr == td ? TAILQ_FIRST(&p->p_threads) : 1777 TAILQ_NEXT(thr, td_plist); 1778 if (thr == td) 1779 thr = TAILQ_NEXT(thr, td_plist); 1780 } 1781 1782 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC, 1783 __elfN(note_procstat_proc), p); 1784 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES, 1785 note_procstat_files, p); 1786 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP, 1787 note_procstat_vmmap, p); 1788 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS, 1789 note_procstat_groups, p); 1790 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK, 1791 note_procstat_umask, p); 1792 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT, 1793 note_procstat_rlimit, p); 1794 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL, 1795 note_procstat_osrel, p); 1796 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS, 1797 __elfN(note_procstat_psstrings), p); 1798 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV, 1799 __elfN(note_procstat_auxv), p); 1800 1801 *sizep = size; 1802 } 1803 1804 void 1805 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1806 size_t notesz, int flags) 1807 { 1808 Elf_Ehdr *ehdr; 1809 Elf_Phdr *phdr; 1810 Elf_Shdr *shdr; 1811 struct phdr_closure phc; 1812 Elf_Brandinfo *bi; 1813 1814 ehdr = (Elf_Ehdr *)hdr; 1815 bi = td->td_proc->p_elf_brandinfo; 1816 1817 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1818 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1819 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1820 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1821 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1822 ehdr->e_ident[EI_DATA] = ELF_DATA; 1823 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1824 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi; 1825 ehdr->e_ident[EI_ABIVERSION] = 0; 1826 ehdr->e_ident[EI_PAD] = 0; 1827 ehdr->e_type = ET_CORE; 1828 ehdr->e_machine = bi->machine; 1829 ehdr->e_version = EV_CURRENT; 1830 ehdr->e_entry = 0; 1831 ehdr->e_phoff = sizeof(Elf_Ehdr); 1832 ehdr->e_flags = td->td_proc->p_elf_flags; 1833 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1834 ehdr->e_phentsize = sizeof(Elf_Phdr); 1835 ehdr->e_shentsize = sizeof(Elf_Shdr); 1836 ehdr->e_shstrndx = SHN_UNDEF; 1837 if (numsegs + 1 < PN_XNUM) { 1838 ehdr->e_phnum = numsegs + 1; 1839 ehdr->e_shnum = 0; 1840 } else { 1841 ehdr->e_phnum = PN_XNUM; 1842 ehdr->e_shnum = 1; 1843 1844 ehdr->e_shoff = ehdr->e_phoff + 1845 (numsegs + 1) * ehdr->e_phentsize; 1846 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1847 ("e_shoff: %zu, hdrsize - shdr: %zu", 1848 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1849 1850 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1851 memset(shdr, 0, sizeof(*shdr)); 1852 /* 1853 * A special first section is used to hold large segment and 1854 * section counts. This was proposed by Sun Microsystems in 1855 * Solaris and has been adopted by Linux; the standard ELF 1856 * tools are already familiar with the technique. 1857 * 1858 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1859 * (or 12-7 depending on the version of the document) for more 1860 * details. 1861 */ 1862 shdr->sh_type = SHT_NULL; 1863 shdr->sh_size = ehdr->e_shnum; 1864 shdr->sh_link = ehdr->e_shstrndx; 1865 shdr->sh_info = numsegs + 1; 1866 } 1867 1868 /* 1869 * Fill in the program header entries. 1870 */ 1871 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 1872 1873 /* The note segement. */ 1874 phdr->p_type = PT_NOTE; 1875 phdr->p_offset = hdrsize; 1876 phdr->p_vaddr = 0; 1877 phdr->p_paddr = 0; 1878 phdr->p_filesz = notesz; 1879 phdr->p_memsz = 0; 1880 phdr->p_flags = PF_R; 1881 phdr->p_align = ELF_NOTE_ROUNDSIZE; 1882 phdr++; 1883 1884 /* All the writable segments from the program. */ 1885 phc.phdr = phdr; 1886 phc.offset = round_page(hdrsize + notesz); 1887 each_dumpable_segment(td, cb_put_phdr, &phc, flags); 1888 } 1889 1890 size_t 1891 __elfN(register_note)(struct thread *td, struct note_info_list *list, 1892 int type, outfunc_t out, void *arg) 1893 { 1894 const struct sysentvec *sv; 1895 struct note_info *ninfo; 1896 size_t size, notesize; 1897 1898 sv = td->td_proc->p_sysent; 1899 size = 0; 1900 out(arg, NULL, &size); 1901 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 1902 ninfo->type = type; 1903 ninfo->outfunc = out; 1904 ninfo->outarg = arg; 1905 ninfo->outsize = size; 1906 TAILQ_INSERT_TAIL(list, ninfo, link); 1907 1908 if (type == -1) 1909 return (size); 1910 1911 notesize = sizeof(Elf_Note) + /* note header */ 1912 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) + 1913 /* note name */ 1914 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1915 1916 return (notesize); 1917 } 1918 1919 static size_t 1920 append_note_data(const void *src, void *dst, size_t len) 1921 { 1922 size_t padded_len; 1923 1924 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 1925 if (dst != NULL) { 1926 bcopy(src, dst, len); 1927 bzero((char *)dst + len, padded_len - len); 1928 } 1929 return (padded_len); 1930 } 1931 1932 size_t 1933 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 1934 { 1935 Elf_Note *note; 1936 char *buf; 1937 size_t notesize; 1938 1939 buf = dst; 1940 if (buf != NULL) { 1941 note = (Elf_Note *)buf; 1942 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 1943 note->n_descsz = size; 1944 note->n_type = type; 1945 buf += sizeof(*note); 1946 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 1947 sizeof(FREEBSD_ABI_VENDOR)); 1948 append_note_data(src, buf, size); 1949 if (descp != NULL) 1950 *descp = buf; 1951 } 1952 1953 notesize = sizeof(Elf_Note) + /* note header */ 1954 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 1955 /* note name */ 1956 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 1957 1958 return (notesize); 1959 } 1960 1961 static void 1962 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb) 1963 { 1964 Elf_Note note; 1965 const struct sysentvec *sv; 1966 ssize_t old_len, sect_len; 1967 size_t new_len, descsz, i; 1968 1969 if (ninfo->type == -1) { 1970 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1971 return; 1972 } 1973 1974 sv = td->td_proc->p_sysent; 1975 1976 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1; 1977 note.n_descsz = ninfo->outsize; 1978 note.n_type = ninfo->type; 1979 1980 sbuf_bcat(sb, ¬e, sizeof(note)); 1981 sbuf_start_section(sb, &old_len); 1982 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor, 1983 strlen(sv->sv_elf_core_abi_vendor) + 1); 1984 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1985 if (note.n_descsz == 0) 1986 return; 1987 sbuf_start_section(sb, &old_len); 1988 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 1989 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 1990 if (sect_len < 0) 1991 return; 1992 1993 new_len = (size_t)sect_len; 1994 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 1995 if (new_len < descsz) { 1996 /* 1997 * It is expected that individual note emitters will correctly 1998 * predict their expected output size and fill up to that size 1999 * themselves, padding in a format-specific way if needed. 2000 * However, in case they don't, just do it here with zeros. 2001 */ 2002 for (i = 0; i < descsz - new_len; i++) 2003 sbuf_putc(sb, 0); 2004 } else if (new_len > descsz) { 2005 /* 2006 * We can't always truncate sb -- we may have drained some 2007 * of it already. 2008 */ 2009 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2010 "read it (%zu > %zu). Since it is longer than " 2011 "expected, this coredump's notes are corrupt. THIS " 2012 "IS A BUG in the note_procstat routine for type %u.\n", 2013 __func__, (unsigned)note.n_type, new_len, descsz, 2014 (unsigned)note.n_type)); 2015 } 2016 } 2017 2018 /* 2019 * Miscellaneous note out functions. 2020 */ 2021 2022 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2023 #include <compat/freebsd32/freebsd32.h> 2024 #include <compat/freebsd32/freebsd32_signal.h> 2025 2026 typedef struct prstatus32 elf_prstatus_t; 2027 typedef struct prpsinfo32 elf_prpsinfo_t; 2028 typedef struct fpreg32 elf_prfpregset_t; 2029 typedef struct fpreg32 elf_fpregset_t; 2030 typedef struct reg32 elf_gregset_t; 2031 typedef struct thrmisc32 elf_thrmisc_t; 2032 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2033 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2034 typedef uint32_t elf_ps_strings_t; 2035 #else 2036 typedef prstatus_t elf_prstatus_t; 2037 typedef prpsinfo_t elf_prpsinfo_t; 2038 typedef prfpregset_t elf_prfpregset_t; 2039 typedef prfpregset_t elf_fpregset_t; 2040 typedef gregset_t elf_gregset_t; 2041 typedef thrmisc_t elf_thrmisc_t; 2042 #define ELF_KERN_PROC_MASK 0 2043 typedef struct kinfo_proc elf_kinfo_proc_t; 2044 typedef vm_offset_t elf_ps_strings_t; 2045 #endif 2046 2047 static void 2048 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2049 { 2050 struct sbuf sbarg; 2051 size_t len; 2052 char *cp, *end; 2053 struct proc *p; 2054 elf_prpsinfo_t *psinfo; 2055 int error; 2056 2057 p = arg; 2058 if (sb != NULL) { 2059 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2060 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2061 psinfo->pr_version = PRPSINFO_VERSION; 2062 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2063 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2064 PROC_LOCK(p); 2065 if (p->p_args != NULL) { 2066 len = sizeof(psinfo->pr_psargs) - 1; 2067 if (len > p->p_args->ar_length) 2068 len = p->p_args->ar_length; 2069 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2070 PROC_UNLOCK(p); 2071 error = 0; 2072 } else { 2073 _PHOLD(p); 2074 PROC_UNLOCK(p); 2075 sbuf_new(&sbarg, psinfo->pr_psargs, 2076 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2077 error = proc_getargv(curthread, p, &sbarg); 2078 PRELE(p); 2079 if (sbuf_finish(&sbarg) == 0) 2080 len = sbuf_len(&sbarg) - 1; 2081 else 2082 len = sizeof(psinfo->pr_psargs) - 1; 2083 sbuf_delete(&sbarg); 2084 } 2085 if (error || len == 0) 2086 strlcpy(psinfo->pr_psargs, p->p_comm, 2087 sizeof(psinfo->pr_psargs)); 2088 else { 2089 KASSERT(len < sizeof(psinfo->pr_psargs), 2090 ("len is too long: %zu vs %zu", len, 2091 sizeof(psinfo->pr_psargs))); 2092 cp = psinfo->pr_psargs; 2093 end = cp + len - 1; 2094 for (;;) { 2095 cp = memchr(cp, '\0', end - cp); 2096 if (cp == NULL) 2097 break; 2098 *cp = ' '; 2099 } 2100 } 2101 psinfo->pr_pid = p->p_pid; 2102 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2103 free(psinfo, M_TEMP); 2104 } 2105 *sizep = sizeof(*psinfo); 2106 } 2107 2108 static void 2109 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2110 { 2111 struct thread *td; 2112 elf_prstatus_t *status; 2113 2114 td = arg; 2115 if (sb != NULL) { 2116 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2117 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2118 status->pr_version = PRSTATUS_VERSION; 2119 status->pr_statussz = sizeof(elf_prstatus_t); 2120 status->pr_gregsetsz = sizeof(elf_gregset_t); 2121 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2122 status->pr_osreldate = osreldate; 2123 status->pr_cursig = td->td_proc->p_sig; 2124 status->pr_pid = td->td_tid; 2125 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2126 fill_regs32(td, &status->pr_reg); 2127 #else 2128 fill_regs(td, &status->pr_reg); 2129 #endif 2130 sbuf_bcat(sb, status, sizeof(*status)); 2131 free(status, M_TEMP); 2132 } 2133 *sizep = sizeof(*status); 2134 } 2135 2136 static void 2137 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2138 { 2139 struct thread *td; 2140 elf_prfpregset_t *fpregset; 2141 2142 td = arg; 2143 if (sb != NULL) { 2144 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2145 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2146 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2147 fill_fpregs32(td, fpregset); 2148 #else 2149 fill_fpregs(td, fpregset); 2150 #endif 2151 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2152 free(fpregset, M_TEMP); 2153 } 2154 *sizep = sizeof(*fpregset); 2155 } 2156 2157 static void 2158 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2159 { 2160 struct thread *td; 2161 elf_thrmisc_t thrmisc; 2162 2163 td = arg; 2164 if (sb != NULL) { 2165 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2166 bzero(&thrmisc, sizeof(thrmisc)); 2167 strcpy(thrmisc.pr_tname, td->td_name); 2168 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2169 } 2170 *sizep = sizeof(thrmisc); 2171 } 2172 2173 static void 2174 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2175 { 2176 struct thread *td; 2177 size_t size; 2178 int structsize; 2179 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2180 struct ptrace_lwpinfo32 pl; 2181 #else 2182 struct ptrace_lwpinfo pl; 2183 #endif 2184 2185 td = arg; 2186 size = sizeof(structsize) + sizeof(pl); 2187 if (sb != NULL) { 2188 KASSERT(*sizep == size, ("invalid size")); 2189 structsize = sizeof(pl); 2190 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2191 bzero(&pl, sizeof(pl)); 2192 pl.pl_lwpid = td->td_tid; 2193 pl.pl_event = PL_EVENT_NONE; 2194 pl.pl_sigmask = td->td_sigmask; 2195 pl.pl_siglist = td->td_siglist; 2196 if (td->td_si.si_signo != 0) { 2197 pl.pl_event = PL_EVENT_SIGNAL; 2198 pl.pl_flags |= PL_FLAG_SI; 2199 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2200 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2201 #else 2202 pl.pl_siginfo = td->td_si; 2203 #endif 2204 } 2205 strcpy(pl.pl_tdname, td->td_name); 2206 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2207 sbuf_bcat(sb, &pl, sizeof(pl)); 2208 } 2209 *sizep = size; 2210 } 2211 2212 /* 2213 * Allow for MD specific notes, as well as any MD 2214 * specific preparations for writing MI notes. 2215 */ 2216 static void 2217 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2218 { 2219 struct thread *td; 2220 void *buf; 2221 size_t size; 2222 2223 td = (struct thread *)arg; 2224 size = *sizep; 2225 if (size != 0 && sb != NULL) 2226 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2227 else 2228 buf = NULL; 2229 size = 0; 2230 __elfN(dump_thread)(td, buf, &size); 2231 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2232 if (size != 0 && sb != NULL) 2233 sbuf_bcat(sb, buf, size); 2234 free(buf, M_TEMP); 2235 *sizep = size; 2236 } 2237 2238 #ifdef KINFO_PROC_SIZE 2239 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2240 #endif 2241 2242 static void 2243 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2244 { 2245 struct proc *p; 2246 size_t size; 2247 int structsize; 2248 2249 p = arg; 2250 size = sizeof(structsize) + p->p_numthreads * 2251 sizeof(elf_kinfo_proc_t); 2252 2253 if (sb != NULL) { 2254 KASSERT(*sizep == size, ("invalid size")); 2255 structsize = sizeof(elf_kinfo_proc_t); 2256 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2257 sx_slock(&proctree_lock); 2258 PROC_LOCK(p); 2259 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2260 sx_sunlock(&proctree_lock); 2261 } 2262 *sizep = size; 2263 } 2264 2265 #ifdef KINFO_FILE_SIZE 2266 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2267 #endif 2268 2269 static void 2270 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2271 { 2272 struct proc *p; 2273 size_t size, sect_sz, i; 2274 ssize_t start_len, sect_len; 2275 int structsize, filedesc_flags; 2276 2277 if (coredump_pack_fileinfo) 2278 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2279 else 2280 filedesc_flags = 0; 2281 2282 p = arg; 2283 structsize = sizeof(struct kinfo_file); 2284 if (sb == NULL) { 2285 size = 0; 2286 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2287 sbuf_set_drain(sb, sbuf_count_drain, &size); 2288 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2289 PROC_LOCK(p); 2290 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2291 sbuf_finish(sb); 2292 sbuf_delete(sb); 2293 *sizep = size; 2294 } else { 2295 sbuf_start_section(sb, &start_len); 2296 2297 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2298 PROC_LOCK(p); 2299 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2300 filedesc_flags); 2301 2302 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2303 if (sect_len < 0) 2304 return; 2305 sect_sz = sect_len; 2306 2307 KASSERT(sect_sz <= *sizep, 2308 ("kern_proc_filedesc_out did not respect maxlen; " 2309 "requested %zu, got %zu", *sizep - sizeof(structsize), 2310 sect_sz - sizeof(structsize))); 2311 2312 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2313 sbuf_putc(sb, 0); 2314 } 2315 } 2316 2317 #ifdef KINFO_VMENTRY_SIZE 2318 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2319 #endif 2320 2321 static void 2322 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2323 { 2324 struct proc *p; 2325 size_t size; 2326 int structsize, vmmap_flags; 2327 2328 if (coredump_pack_vmmapinfo) 2329 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2330 else 2331 vmmap_flags = 0; 2332 2333 p = arg; 2334 structsize = sizeof(struct kinfo_vmentry); 2335 if (sb == NULL) { 2336 size = 0; 2337 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2338 sbuf_set_drain(sb, sbuf_count_drain, &size); 2339 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2340 PROC_LOCK(p); 2341 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2342 sbuf_finish(sb); 2343 sbuf_delete(sb); 2344 *sizep = size; 2345 } else { 2346 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2347 PROC_LOCK(p); 2348 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2349 vmmap_flags); 2350 } 2351 } 2352 2353 static void 2354 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2355 { 2356 struct proc *p; 2357 size_t size; 2358 int structsize; 2359 2360 p = arg; 2361 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2362 if (sb != NULL) { 2363 KASSERT(*sizep == size, ("invalid size")); 2364 structsize = sizeof(gid_t); 2365 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2366 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2367 sizeof(gid_t)); 2368 } 2369 *sizep = size; 2370 } 2371 2372 static void 2373 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2374 { 2375 struct proc *p; 2376 size_t size; 2377 int structsize; 2378 2379 p = arg; 2380 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask); 2381 if (sb != NULL) { 2382 KASSERT(*sizep == size, ("invalid size")); 2383 structsize = sizeof(p->p_pd->pd_cmask); 2384 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2385 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask)); 2386 } 2387 *sizep = size; 2388 } 2389 2390 static void 2391 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2392 { 2393 struct proc *p; 2394 struct rlimit rlim[RLIM_NLIMITS]; 2395 size_t size; 2396 int structsize, i; 2397 2398 p = arg; 2399 size = sizeof(structsize) + sizeof(rlim); 2400 if (sb != NULL) { 2401 KASSERT(*sizep == size, ("invalid size")); 2402 structsize = sizeof(rlim); 2403 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2404 PROC_LOCK(p); 2405 for (i = 0; i < RLIM_NLIMITS; i++) 2406 lim_rlimit_proc(p, i, &rlim[i]); 2407 PROC_UNLOCK(p); 2408 sbuf_bcat(sb, rlim, sizeof(rlim)); 2409 } 2410 *sizep = size; 2411 } 2412 2413 static void 2414 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2415 { 2416 struct proc *p; 2417 size_t size; 2418 int structsize; 2419 2420 p = arg; 2421 size = sizeof(structsize) + sizeof(p->p_osrel); 2422 if (sb != NULL) { 2423 KASSERT(*sizep == size, ("invalid size")); 2424 structsize = sizeof(p->p_osrel); 2425 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2426 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2427 } 2428 *sizep = size; 2429 } 2430 2431 static void 2432 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2433 { 2434 struct proc *p; 2435 elf_ps_strings_t ps_strings; 2436 size_t size; 2437 int structsize; 2438 2439 p = arg; 2440 size = sizeof(structsize) + sizeof(ps_strings); 2441 if (sb != NULL) { 2442 KASSERT(*sizep == size, ("invalid size")); 2443 structsize = sizeof(ps_strings); 2444 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2445 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2446 #else 2447 ps_strings = p->p_sysent->sv_psstrings; 2448 #endif 2449 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2450 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2451 } 2452 *sizep = size; 2453 } 2454 2455 static void 2456 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2457 { 2458 struct proc *p; 2459 size_t size; 2460 int structsize; 2461 2462 p = arg; 2463 if (sb == NULL) { 2464 size = 0; 2465 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo), 2466 SBUF_FIXEDLEN); 2467 sbuf_set_drain(sb, sbuf_count_drain, &size); 2468 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2469 PHOLD(p); 2470 proc_getauxv(curthread, p, sb); 2471 PRELE(p); 2472 sbuf_finish(sb); 2473 sbuf_delete(sb); 2474 *sizep = size; 2475 } else { 2476 structsize = sizeof(Elf_Auxinfo); 2477 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2478 PHOLD(p); 2479 proc_getauxv(curthread, p, sb); 2480 PRELE(p); 2481 } 2482 } 2483 2484 static boolean_t 2485 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2486 const char *note_vendor, const Elf_Phdr *pnote, 2487 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2488 { 2489 const Elf_Note *note, *note0, *note_end; 2490 const char *note_name; 2491 char *buf; 2492 int i, error; 2493 boolean_t res; 2494 2495 /* We need some limit, might as well use PAGE_SIZE. */ 2496 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2497 return (FALSE); 2498 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2499 if (pnote->p_offset > PAGE_SIZE || 2500 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2501 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2502 if (buf == NULL) { 2503 VOP_UNLOCK(imgp->vp); 2504 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2505 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2506 } 2507 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2508 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2509 curthread->td_ucred, NOCRED, NULL, curthread); 2510 if (error != 0) { 2511 uprintf("i/o error PT_NOTE\n"); 2512 goto retf; 2513 } 2514 note = note0 = (const Elf_Note *)buf; 2515 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2516 } else { 2517 note = note0 = (const Elf_Note *)(imgp->image_header + 2518 pnote->p_offset); 2519 note_end = (const Elf_Note *)(imgp->image_header + 2520 pnote->p_offset + pnote->p_filesz); 2521 buf = NULL; 2522 } 2523 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2524 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2525 (const char *)note < sizeof(Elf_Note)) { 2526 goto retf; 2527 } 2528 if (note->n_namesz != checknote->n_namesz || 2529 note->n_descsz != checknote->n_descsz || 2530 note->n_type != checknote->n_type) 2531 goto nextnote; 2532 note_name = (const char *)(note + 1); 2533 if (note_name + checknote->n_namesz >= 2534 (const char *)note_end || strncmp(note_vendor, 2535 note_name, checknote->n_namesz) != 0) 2536 goto nextnote; 2537 2538 if (cb(note, cb_arg, &res)) 2539 goto ret; 2540 nextnote: 2541 note = (const Elf_Note *)((const char *)(note + 1) + 2542 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2543 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2544 } 2545 retf: 2546 res = FALSE; 2547 ret: 2548 free(buf, M_TEMP); 2549 return (res); 2550 } 2551 2552 struct brandnote_cb_arg { 2553 Elf_Brandnote *brandnote; 2554 int32_t *osrel; 2555 }; 2556 2557 static boolean_t 2558 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2559 { 2560 struct brandnote_cb_arg *arg; 2561 2562 arg = arg0; 2563 2564 /* 2565 * Fetch the osreldate for binary from the ELF OSABI-note if 2566 * necessary. 2567 */ 2568 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2569 arg->brandnote->trans_osrel != NULL ? 2570 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2571 2572 return (TRUE); 2573 } 2574 2575 static Elf_Note fctl_note = { 2576 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2577 .n_descsz = sizeof(uint32_t), 2578 .n_type = NT_FREEBSD_FEATURE_CTL, 2579 }; 2580 2581 struct fctl_cb_arg { 2582 boolean_t *has_fctl0; 2583 uint32_t *fctl0; 2584 }; 2585 2586 static boolean_t 2587 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2588 { 2589 struct fctl_cb_arg *arg; 2590 const Elf32_Word *desc; 2591 uintptr_t p; 2592 2593 arg = arg0; 2594 p = (uintptr_t)(note + 1); 2595 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2596 desc = (const Elf32_Word *)p; 2597 *arg->has_fctl0 = TRUE; 2598 *arg->fctl0 = desc[0]; 2599 *res = TRUE; 2600 return (TRUE); 2601 } 2602 2603 /* 2604 * Try to find the appropriate ABI-note section for checknote, fetch 2605 * the osreldate and feature control flags for binary from the ELF 2606 * OSABI-note. Only the first page of the image is searched, the same 2607 * as for headers. 2608 */ 2609 static boolean_t 2610 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2611 int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0) 2612 { 2613 const Elf_Phdr *phdr; 2614 const Elf_Ehdr *hdr; 2615 struct brandnote_cb_arg b_arg; 2616 struct fctl_cb_arg f_arg; 2617 int i, j; 2618 2619 hdr = (const Elf_Ehdr *)imgp->image_header; 2620 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2621 b_arg.brandnote = brandnote; 2622 b_arg.osrel = osrel; 2623 f_arg.has_fctl0 = has_fctl0; 2624 f_arg.fctl0 = fctl0; 2625 2626 for (i = 0; i < hdr->e_phnum; i++) { 2627 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2628 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2629 &b_arg)) { 2630 for (j = 0; j < hdr->e_phnum; j++) { 2631 if (phdr[j].p_type == PT_NOTE && 2632 __elfN(parse_notes)(imgp, &fctl_note, 2633 FREEBSD_ABI_VENDOR, &phdr[j], 2634 note_fctl_cb, &f_arg)) 2635 break; 2636 } 2637 return (TRUE); 2638 } 2639 } 2640 return (FALSE); 2641 2642 } 2643 2644 /* 2645 * Tell kern_execve.c about it, with a little help from the linker. 2646 */ 2647 static struct execsw __elfN(execsw) = { 2648 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2649 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2650 }; 2651 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2652 2653 static vm_prot_t 2654 __elfN(trans_prot)(Elf_Word flags) 2655 { 2656 vm_prot_t prot; 2657 2658 prot = 0; 2659 if (flags & PF_X) 2660 prot |= VM_PROT_EXECUTE; 2661 if (flags & PF_W) 2662 prot |= VM_PROT_WRITE; 2663 if (flags & PF_R) 2664 prot |= VM_PROT_READ; 2665 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2666 if (i386_read_exec && (flags & PF_R)) 2667 prot |= VM_PROT_EXECUTE; 2668 #endif 2669 return (prot); 2670 } 2671 2672 static Elf_Word 2673 __elfN(untrans_prot)(vm_prot_t prot) 2674 { 2675 Elf_Word flags; 2676 2677 flags = 0; 2678 if (prot & VM_PROT_EXECUTE) 2679 flags |= PF_X; 2680 if (prot & VM_PROT_READ) 2681 flags |= PF_R; 2682 if (prot & VM_PROT_WRITE) 2683 flags |= PF_W; 2684 return (flags); 2685 } 2686 2687 vm_size_t 2688 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) 2689 { 2690 uintptr_t range, rbase, gap; 2691 int pct; 2692 2693 pct = __elfN(aslr_stack_gap); 2694 if (pct == 0) 2695 return (0); 2696 if (pct > 50) 2697 pct = 50; 2698 range = imgp->eff_stack_sz * pct / 100; 2699 arc4rand(&rbase, sizeof(rbase), 0); 2700 gap = rbase % range; 2701 gap &= ~(sizeof(u_long) - 1); 2702 *stack_base -= gap; 2703 return (gap); 2704 } 2705