1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2000-2001, 2003 David O'Brien 6 * Copyright (c) 1995-1996 Søren Schmidt 7 * Copyright (c) 1996 Peter Wemm 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer 15 * in this position and unchanged. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. The name of the author may not be used to endorse or promote products 20 * derived from this software without specific prior written permission 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_capsicum.h" 38 39 #include <sys/param.h> 40 #include <sys/capsicum.h> 41 #include <sys/compressor.h> 42 #include <sys/exec.h> 43 #include <sys/fcntl.h> 44 #include <sys/imgact.h> 45 #include <sys/imgact_elf.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 #include <sys/mman.h> 52 #include <sys/namei.h> 53 #include <sys/proc.h> 54 #include <sys/procfs.h> 55 #include <sys/ptrace.h> 56 #include <sys/racct.h> 57 #include <sys/resourcevar.h> 58 #include <sys/rwlock.h> 59 #include <sys/sbuf.h> 60 #include <sys/sf_buf.h> 61 #include <sys/smp.h> 62 #include <sys/systm.h> 63 #include <sys/signalvar.h> 64 #include <sys/stat.h> 65 #include <sys/sx.h> 66 #include <sys/syscall.h> 67 #include <sys/sysctl.h> 68 #include <sys/sysent.h> 69 #include <sys/vnode.h> 70 #include <sys/syslog.h> 71 #include <sys/eventhandler.h> 72 #include <sys/user.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_kern.h> 76 #include <vm/vm_param.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_extern.h> 81 82 #include <machine/elf.h> 83 #include <machine/md_var.h> 84 85 #define ELF_NOTE_ROUNDSIZE 4 86 #define OLD_EI_BRAND 8 87 88 static int __elfN(check_header)(const Elf_Ehdr *hdr); 89 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, 90 const char *interp, int32_t *osrel, uint32_t *fctl0); 91 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 92 u_long *entry); 93 static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 94 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); 95 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); 96 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, 97 int32_t *osrel); 98 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); 99 static boolean_t __elfN(check_note)(struct image_params *imgp, 100 Elf_Brandnote *checknote, int32_t *osrel, boolean_t *has_fctl0, 101 uint32_t *fctl0); 102 static vm_prot_t __elfN(trans_prot)(Elf_Word); 103 static Elf_Word __elfN(untrans_prot)(vm_prot_t); 104 105 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), 106 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 107 ""); 108 109 #define CORE_BUF_SIZE (16 * 1024) 110 111 int __elfN(fallback_brand) = -1; 112 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 113 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, 114 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); 115 116 static int elf_legacy_coredump = 0; 117 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, 118 &elf_legacy_coredump, 0, 119 "include all and only RW pages in core dumps"); 120 121 int __elfN(nxstack) = 122 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ 123 (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ 124 defined(__riscv) 125 1; 126 #else 127 0; 128 #endif 129 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, 130 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, 131 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); 132 133 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 134 int i386_read_exec = 0; 135 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, 136 "enable execution from readable segments"); 137 #endif 138 139 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; 140 static int 141 sysctl_pie_base(SYSCTL_HANDLER_ARGS) 142 { 143 u_long val; 144 int error; 145 146 val = __elfN(pie_base); 147 error = sysctl_handle_long(oidp, &val, 0, req); 148 if (error != 0 || req->newptr == NULL) 149 return (error); 150 if ((val & PAGE_MASK) != 0) 151 return (EINVAL); 152 __elfN(pie_base) = val; 153 return (0); 154 } 155 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, 156 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, 157 sysctl_pie_base, "LU", 158 "PIE load base without randomization"); 159 160 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, 161 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 162 ""); 163 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) 164 165 static int __elfN(aslr_enabled) = 0; 166 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, 167 &__elfN(aslr_enabled), 0, 168 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 169 ": enable address map randomization"); 170 171 static int __elfN(pie_aslr_enabled) = 0; 172 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, 173 &__elfN(pie_aslr_enabled), 0, 174 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 175 ": enable address map randomization for PIE binaries"); 176 177 static int __elfN(aslr_honor_sbrk) = 1; 178 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, 179 &__elfN(aslr_honor_sbrk), 0, 180 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); 181 182 static int __elfN(aslr_stack_gap) = 3; 183 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, 184 &__elfN(aslr_stack_gap), 0, 185 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 186 ": maximum percentage of main stack to waste on a random gap"); 187 188 static int __elfN(sigfastblock) = 1; 189 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, 190 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, 191 "enable sigfastblock for new processes"); 192 193 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; 194 195 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) 196 197 static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; 198 199 Elf_Brandnote __elfN(freebsd_brandnote) = { 200 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), 201 .hdr.n_descsz = sizeof(int32_t), 202 .hdr.n_type = NT_FREEBSD_ABI_TAG, 203 .vendor = FREEBSD_ABI_VENDOR, 204 .flags = BN_TRANSLATE_OSREL, 205 .trans_osrel = __elfN(freebsd_trans_osrel) 206 }; 207 208 static bool 209 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) 210 { 211 uintptr_t p; 212 213 p = (uintptr_t)(note + 1); 214 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 215 *osrel = *(const int32_t *)(p); 216 217 return (true); 218 } 219 220 static const char GNU_ABI_VENDOR[] = "GNU"; 221 static int GNU_KFREEBSD_ABI_DESC = 3; 222 223 Elf_Brandnote __elfN(kfreebsd_brandnote) = { 224 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), 225 .hdr.n_descsz = 16, /* XXX at least 16 */ 226 .hdr.n_type = 1, 227 .vendor = GNU_ABI_VENDOR, 228 .flags = BN_TRANSLATE_OSREL, 229 .trans_osrel = kfreebsd_trans_osrel 230 }; 231 232 static bool 233 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) 234 { 235 const Elf32_Word *desc; 236 uintptr_t p; 237 238 p = (uintptr_t)(note + 1); 239 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 240 241 desc = (const Elf32_Word *)p; 242 if (desc[0] != GNU_KFREEBSD_ABI_DESC) 243 return (false); 244 245 /* 246 * Debian GNU/kFreeBSD embed the earliest compatible kernel version 247 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way. 248 */ 249 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; 250 251 return (true); 252 } 253 254 int 255 __elfN(insert_brand_entry)(Elf_Brandinfo *entry) 256 { 257 int i; 258 259 for (i = 0; i < MAX_BRANDS; i++) { 260 if (elf_brand_list[i] == NULL) { 261 elf_brand_list[i] = entry; 262 break; 263 } 264 } 265 if (i == MAX_BRANDS) { 266 printf("WARNING: %s: could not insert brandinfo entry: %p\n", 267 __func__, entry); 268 return (-1); 269 } 270 return (0); 271 } 272 273 int 274 __elfN(remove_brand_entry)(Elf_Brandinfo *entry) 275 { 276 int i; 277 278 for (i = 0; i < MAX_BRANDS; i++) { 279 if (elf_brand_list[i] == entry) { 280 elf_brand_list[i] = NULL; 281 break; 282 } 283 } 284 if (i == MAX_BRANDS) 285 return (-1); 286 return (0); 287 } 288 289 int 290 __elfN(brand_inuse)(Elf_Brandinfo *entry) 291 { 292 struct proc *p; 293 int rval = FALSE; 294 295 sx_slock(&allproc_lock); 296 FOREACH_PROC_IN_SYSTEM(p) { 297 if (p->p_sysent == entry->sysvec) { 298 rval = TRUE; 299 break; 300 } 301 } 302 sx_sunlock(&allproc_lock); 303 304 return (rval); 305 } 306 307 static Elf_Brandinfo * 308 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, 309 int32_t *osrel, uint32_t *fctl0) 310 { 311 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; 312 Elf_Brandinfo *bi, *bi_m; 313 boolean_t ret, has_fctl0; 314 int i, interp_name_len; 315 316 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; 317 318 /* 319 * We support four types of branding -- (1) the ELF EI_OSABI field 320 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string 321 * branding w/in the ELF header, (3) path of the `interp_path' 322 * field, and (4) the ".note.ABI-tag" ELF section. 323 */ 324 325 /* Look for an ".note.ABI-tag" ELF section */ 326 bi_m = NULL; 327 for (i = 0; i < MAX_BRANDS; i++) { 328 bi = elf_brand_list[i]; 329 if (bi == NULL) 330 continue; 331 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) 332 continue; 333 if (hdr->e_machine == bi->machine && (bi->flags & 334 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { 335 has_fctl0 = false; 336 *fctl0 = 0; 337 *osrel = 0; 338 ret = __elfN(check_note)(imgp, bi->brand_note, osrel, 339 &has_fctl0, fctl0); 340 /* Give brand a chance to veto check_note's guess */ 341 if (ret && bi->header_supported) { 342 ret = bi->header_supported(imgp, osrel, 343 has_fctl0 ? fctl0 : NULL); 344 } 345 /* 346 * If note checker claimed the binary, but the 347 * interpreter path in the image does not 348 * match default one for the brand, try to 349 * search for other brands with the same 350 * interpreter. Either there is better brand 351 * with the right interpreter, or, failing 352 * this, we return first brand which accepted 353 * our note and, optionally, header. 354 */ 355 if (ret && bi_m == NULL && interp != NULL && 356 (bi->interp_path == NULL || 357 (strlen(bi->interp_path) + 1 != interp_name_len || 358 strncmp(interp, bi->interp_path, interp_name_len) 359 != 0))) { 360 bi_m = bi; 361 ret = 0; 362 } 363 if (ret) 364 return (bi); 365 } 366 } 367 if (bi_m != NULL) 368 return (bi_m); 369 370 /* If the executable has a brand, search for it in the brand list. */ 371 for (i = 0; i < MAX_BRANDS; i++) { 372 bi = elf_brand_list[i]; 373 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 374 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 375 continue; 376 if (hdr->e_machine == bi->machine && 377 (hdr->e_ident[EI_OSABI] == bi->brand || 378 (bi->compat_3_brand != NULL && 379 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], 380 bi->compat_3_brand) == 0))) { 381 /* Looks good, but give brand a chance to veto */ 382 if (bi->header_supported == NULL || 383 bi->header_supported(imgp, NULL, NULL)) { 384 /* 385 * Again, prefer strictly matching 386 * interpreter path. 387 */ 388 if (interp_name_len == 0 && 389 bi->interp_path == NULL) 390 return (bi); 391 if (bi->interp_path != NULL && 392 strlen(bi->interp_path) + 1 == 393 interp_name_len && strncmp(interp, 394 bi->interp_path, interp_name_len) == 0) 395 return (bi); 396 if (bi_m == NULL) 397 bi_m = bi; 398 } 399 } 400 } 401 if (bi_m != NULL) 402 return (bi_m); 403 404 /* No known brand, see if the header is recognized by any brand */ 405 for (i = 0; i < MAX_BRANDS; i++) { 406 bi = elf_brand_list[i]; 407 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || 408 bi->header_supported == NULL) 409 continue; 410 if (hdr->e_machine == bi->machine) { 411 ret = bi->header_supported(imgp, NULL, NULL); 412 if (ret) 413 return (bi); 414 } 415 } 416 417 /* Lacking a known brand, search for a recognized interpreter. */ 418 if (interp != NULL) { 419 for (i = 0; i < MAX_BRANDS; i++) { 420 bi = elf_brand_list[i]; 421 if (bi == NULL || (bi->flags & 422 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) 423 != 0) 424 continue; 425 if (hdr->e_machine == bi->machine && 426 bi->interp_path != NULL && 427 /* ELF image p_filesz includes terminating zero */ 428 strlen(bi->interp_path) + 1 == interp_name_len && 429 strncmp(interp, bi->interp_path, interp_name_len) 430 == 0 && (bi->header_supported == NULL || 431 bi->header_supported(imgp, NULL, NULL))) 432 return (bi); 433 } 434 } 435 436 /* Lacking a recognized interpreter, try the default brand */ 437 for (i = 0; i < MAX_BRANDS; i++) { 438 bi = elf_brand_list[i]; 439 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || 440 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) 441 continue; 442 if (hdr->e_machine == bi->machine && 443 __elfN(fallback_brand) == bi->brand && 444 (bi->header_supported == NULL || 445 bi->header_supported(imgp, NULL, NULL))) 446 return (bi); 447 } 448 return (NULL); 449 } 450 451 static bool 452 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) 453 { 454 return (hdr->e_phoff <= PAGE_SIZE && 455 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); 456 } 457 458 static int 459 __elfN(check_header)(const Elf_Ehdr *hdr) 460 { 461 Elf_Brandinfo *bi; 462 int i; 463 464 if (!IS_ELF(*hdr) || 465 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || 466 hdr->e_ident[EI_DATA] != ELF_TARG_DATA || 467 hdr->e_ident[EI_VERSION] != EV_CURRENT || 468 hdr->e_phentsize != sizeof(Elf_Phdr) || 469 hdr->e_version != ELF_TARG_VER) 470 return (ENOEXEC); 471 472 /* 473 * Make sure we have at least one brand for this machine. 474 */ 475 476 for (i = 0; i < MAX_BRANDS; i++) { 477 bi = elf_brand_list[i]; 478 if (bi != NULL && bi->machine == hdr->e_machine) 479 break; 480 } 481 if (i == MAX_BRANDS) 482 return (ENOEXEC); 483 484 return (0); 485 } 486 487 static int 488 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 489 vm_offset_t start, vm_offset_t end, vm_prot_t prot) 490 { 491 struct sf_buf *sf; 492 int error; 493 vm_offset_t off; 494 495 /* 496 * Create the page if it doesn't exist yet. Ignore errors. 497 */ 498 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - 499 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); 500 501 /* 502 * Find the page from the underlying object. 503 */ 504 if (object != NULL) { 505 sf = vm_imgact_map_page(object, offset); 506 if (sf == NULL) 507 return (KERN_FAILURE); 508 off = offset - trunc_page(offset); 509 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, 510 end - start); 511 vm_imgact_unmap_page(sf); 512 if (error != 0) 513 return (KERN_FAILURE); 514 } 515 516 return (KERN_SUCCESS); 517 } 518 519 static int 520 __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, 521 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, 522 int cow) 523 { 524 struct sf_buf *sf; 525 vm_offset_t off; 526 vm_size_t sz; 527 int error, locked, rv; 528 529 if (start != trunc_page(start)) { 530 rv = __elfN(map_partial)(map, object, offset, start, 531 round_page(start), prot); 532 if (rv != KERN_SUCCESS) 533 return (rv); 534 offset += round_page(start) - start; 535 start = round_page(start); 536 } 537 if (end != round_page(end)) { 538 rv = __elfN(map_partial)(map, object, offset + 539 trunc_page(end) - start, trunc_page(end), end, prot); 540 if (rv != KERN_SUCCESS) 541 return (rv); 542 end = trunc_page(end); 543 } 544 if (start >= end) 545 return (KERN_SUCCESS); 546 if ((offset & PAGE_MASK) != 0) { 547 /* 548 * The mapping is not page aligned. This means that we have 549 * to copy the data. 550 */ 551 rv = vm_map_fixed(map, NULL, 0, start, end - start, 552 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); 553 if (rv != KERN_SUCCESS) 554 return (rv); 555 if (object == NULL) 556 return (KERN_SUCCESS); 557 for (; start < end; start += sz) { 558 sf = vm_imgact_map_page(object, offset); 559 if (sf == NULL) 560 return (KERN_FAILURE); 561 off = offset - trunc_page(offset); 562 sz = end - start; 563 if (sz > PAGE_SIZE - off) 564 sz = PAGE_SIZE - off; 565 error = copyout((caddr_t)sf_buf_kva(sf) + off, 566 (caddr_t)start, sz); 567 vm_imgact_unmap_page(sf); 568 if (error != 0) 569 return (KERN_FAILURE); 570 offset += sz; 571 } 572 } else { 573 vm_object_reference(object); 574 rv = vm_map_fixed(map, object, offset, start, end - start, 575 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | 576 (object != NULL ? MAP_VN_EXEC : 0)); 577 if (rv != KERN_SUCCESS) { 578 locked = VOP_ISLOCKED(imgp->vp); 579 VOP_UNLOCK(imgp->vp); 580 vm_object_deallocate(object); 581 vn_lock(imgp->vp, locked | LK_RETRY); 582 return (rv); 583 } else if (object != NULL) { 584 MPASS(imgp->vp->v_object == object); 585 VOP_SET_TEXT_CHECKED(imgp->vp); 586 } 587 } 588 return (KERN_SUCCESS); 589 } 590 591 static int 592 __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, 593 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) 594 { 595 struct sf_buf *sf; 596 size_t map_len; 597 vm_map_t map; 598 vm_object_t object; 599 vm_offset_t map_addr; 600 int error, rv, cow; 601 size_t copy_len; 602 vm_ooffset_t file_addr; 603 604 /* 605 * It's necessary to fail if the filsz + offset taken from the 606 * header is greater than the actual file pager object's size. 607 * If we were to allow this, then the vm_map_find() below would 608 * walk right off the end of the file object and into the ether. 609 * 610 * While I'm here, might as well check for something else that 611 * is invalid: filsz cannot be greater than memsz. 612 */ 613 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || 614 filsz > memsz) { 615 uprintf("elf_load_section: truncated ELF file\n"); 616 return (ENOEXEC); 617 } 618 619 object = imgp->object; 620 map = &imgp->proc->p_vmspace->vm_map; 621 map_addr = trunc_page((vm_offset_t)vmaddr); 622 file_addr = trunc_page(offset); 623 624 /* 625 * We have two choices. We can either clear the data in the last page 626 * of an oversized mapping, or we can start the anon mapping a page 627 * early and copy the initialized data into that first page. We 628 * choose the second. 629 */ 630 if (filsz == 0) 631 map_len = 0; 632 else if (memsz > filsz) 633 map_len = trunc_page(offset + filsz) - file_addr; 634 else 635 map_len = round_page(offset + filsz) - file_addr; 636 637 if (map_len != 0) { 638 /* cow flags: don't dump readonly sections in core */ 639 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | 640 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); 641 642 rv = __elfN(map_insert)(imgp, map, object, file_addr, 643 map_addr, map_addr + map_len, prot, cow); 644 if (rv != KERN_SUCCESS) 645 return (EINVAL); 646 647 /* we can stop now if we've covered it all */ 648 if (memsz == filsz) 649 return (0); 650 } 651 652 /* 653 * We have to get the remaining bit of the file into the first part 654 * of the oversized map segment. This is normally because the .data 655 * segment in the file is extended to provide bss. It's a neat idea 656 * to try and save a page, but it's a pain in the behind to implement. 657 */ 658 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + 659 filsz); 660 map_addr = trunc_page((vm_offset_t)vmaddr + filsz); 661 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; 662 663 /* This had damn well better be true! */ 664 if (map_len != 0) { 665 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, 666 map_addr + map_len, prot, 0); 667 if (rv != KERN_SUCCESS) 668 return (EINVAL); 669 } 670 671 if (copy_len != 0) { 672 sf = vm_imgact_map_page(object, offset + filsz); 673 if (sf == NULL) 674 return (EIO); 675 676 /* send the page fragment to user space */ 677 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, 678 copy_len); 679 vm_imgact_unmap_page(sf); 680 if (error != 0) 681 return (error); 682 } 683 684 /* 685 * Remove write access to the page if it was only granted by map_insert 686 * to allow copyout. 687 */ 688 if ((prot & VM_PROT_WRITE) == 0) 689 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + 690 map_len), prot, FALSE); 691 692 return (0); 693 } 694 695 static int 696 __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, 697 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) 698 { 699 vm_prot_t prot; 700 u_long base_addr; 701 bool first; 702 int error, i; 703 704 ASSERT_VOP_LOCKED(imgp->vp, __func__); 705 706 base_addr = 0; 707 first = true; 708 709 for (i = 0; i < hdr->e_phnum; i++) { 710 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 711 continue; 712 713 /* Loadable segment */ 714 prot = __elfN(trans_prot)(phdr[i].p_flags); 715 error = __elfN(load_section)(imgp, phdr[i].p_offset, 716 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, 717 phdr[i].p_memsz, phdr[i].p_filesz, prot); 718 if (error != 0) 719 return (error); 720 721 /* 722 * Establish the base address if this is the first segment. 723 */ 724 if (first) { 725 base_addr = trunc_page(phdr[i].p_vaddr + rbase); 726 first = false; 727 } 728 } 729 730 if (base_addrp != NULL) 731 *base_addrp = base_addr; 732 733 return (0); 734 } 735 736 /* 737 * Load the file "file" into memory. It may be either a shared object 738 * or an executable. 739 * 740 * The "addr" reference parameter is in/out. On entry, it specifies 741 * the address where a shared object should be loaded. If the file is 742 * an executable, this value is ignored. On exit, "addr" specifies 743 * where the file was actually loaded. 744 * 745 * The "entry" reference parameter is out only. On exit, it specifies 746 * the entry point for the loaded file. 747 */ 748 static int 749 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, 750 u_long *entry) 751 { 752 struct { 753 struct nameidata nd; 754 struct vattr attr; 755 struct image_params image_params; 756 } *tempdata; 757 const Elf_Ehdr *hdr = NULL; 758 const Elf_Phdr *phdr = NULL; 759 struct nameidata *nd; 760 struct vattr *attr; 761 struct image_params *imgp; 762 u_long rbase; 763 u_long base_addr = 0; 764 int error; 765 766 #ifdef CAPABILITY_MODE 767 /* 768 * XXXJA: This check can go away once we are sufficiently confident 769 * that the checks in namei() are correct. 770 */ 771 if (IN_CAPABILITY_MODE(curthread)) 772 return (ECAPMODE); 773 #endif 774 775 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); 776 nd = &tempdata->nd; 777 attr = &tempdata->attr; 778 imgp = &tempdata->image_params; 779 780 /* 781 * Initialize part of the common data 782 */ 783 imgp->proc = p; 784 imgp->attr = attr; 785 786 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, 787 UIO_SYSSPACE, file, curthread); 788 if ((error = namei(nd)) != 0) { 789 nd->ni_vp = NULL; 790 goto fail; 791 } 792 NDFREE(nd, NDF_ONLY_PNBUF); 793 imgp->vp = nd->ni_vp; 794 795 /* 796 * Check permissions, modes, uid, etc on the file, and "open" it. 797 */ 798 error = exec_check_permissions(imgp); 799 if (error) 800 goto fail; 801 802 error = exec_map_first_page(imgp); 803 if (error) 804 goto fail; 805 806 imgp->object = nd->ni_vp->v_object; 807 808 hdr = (const Elf_Ehdr *)imgp->image_header; 809 if ((error = __elfN(check_header)(hdr)) != 0) 810 goto fail; 811 if (hdr->e_type == ET_DYN) 812 rbase = *addr; 813 else if (hdr->e_type == ET_EXEC) 814 rbase = 0; 815 else { 816 error = ENOEXEC; 817 goto fail; 818 } 819 820 /* Only support headers that fit within first page for now */ 821 if (!__elfN(phdr_in_zero_page)(hdr)) { 822 error = ENOEXEC; 823 goto fail; 824 } 825 826 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 827 if (!aligned(phdr, Elf_Addr)) { 828 error = ENOEXEC; 829 goto fail; 830 } 831 832 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); 833 if (error != 0) 834 goto fail; 835 836 *addr = base_addr; 837 *entry = (unsigned long)hdr->e_entry + rbase; 838 839 fail: 840 if (imgp->firstpage) 841 exec_unmap_first_page(imgp); 842 843 if (nd->ni_vp) { 844 if (imgp->textset) 845 VOP_UNSET_TEXT_CHECKED(nd->ni_vp); 846 vput(nd->ni_vp); 847 } 848 free(tempdata, M_TEMP); 849 850 return (error); 851 } 852 853 static u_long 854 __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, 855 u_int align) 856 { 857 u_long rbase, res; 858 859 MPASS(vm_map_min(map) <= minv); 860 MPASS(maxv <= vm_map_max(map)); 861 MPASS(minv < maxv); 862 MPASS(minv + align < maxv); 863 arc4rand(&rbase, sizeof(rbase), 0); 864 res = roundup(minv, (u_long)align) + rbase % (maxv - minv); 865 res &= ~((u_long)align - 1); 866 if (res >= maxv) 867 res -= align; 868 KASSERT(res >= minv, 869 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", 870 res, minv, maxv, rbase)); 871 KASSERT(res < maxv, 872 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", 873 res, maxv, minv, rbase)); 874 return (res); 875 } 876 877 static int 878 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, 879 const Elf_Phdr *phdr, u_long et_dyn_addr) 880 { 881 struct vmspace *vmspace; 882 const char *err_str; 883 u_long text_size, data_size, total_size, text_addr, data_addr; 884 u_long seg_size, seg_addr; 885 int i; 886 887 err_str = NULL; 888 text_size = data_size = total_size = text_addr = data_addr = 0; 889 890 for (i = 0; i < hdr->e_phnum; i++) { 891 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) 892 continue; 893 894 seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); 895 seg_size = round_page(phdr[i].p_memsz + 896 phdr[i].p_vaddr + et_dyn_addr - seg_addr); 897 898 /* 899 * Make the largest executable segment the official 900 * text segment and all others data. 901 * 902 * Note that obreak() assumes that data_addr + data_size == end 903 * of data load area, and the ELF file format expects segments 904 * to be sorted by address. If multiple data segments exist, 905 * the last one will be used. 906 */ 907 908 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { 909 text_size = seg_size; 910 text_addr = seg_addr; 911 } else { 912 data_size = seg_size; 913 data_addr = seg_addr; 914 } 915 total_size += seg_size; 916 } 917 918 if (data_addr == 0 && data_size == 0) { 919 data_addr = text_addr; 920 data_size = text_size; 921 } 922 923 /* 924 * Check limits. It should be safe to check the 925 * limits after loading the segments since we do 926 * not actually fault in all the segments pages. 927 */ 928 PROC_LOCK(imgp->proc); 929 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) 930 err_str = "Data segment size exceeds process limit"; 931 else if (text_size > maxtsiz) 932 err_str = "Text segment size exceeds system limit"; 933 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) 934 err_str = "Total segment size exceeds process limit"; 935 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) 936 err_str = "Data segment size exceeds resource limit"; 937 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) 938 err_str = "Total segment size exceeds resource limit"; 939 PROC_UNLOCK(imgp->proc); 940 if (err_str != NULL) { 941 uprintf("%s\n", err_str); 942 return (ENOMEM); 943 } 944 945 vmspace = imgp->proc->p_vmspace; 946 vmspace->vm_tsize = text_size >> PAGE_SHIFT; 947 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; 948 vmspace->vm_dsize = data_size >> PAGE_SHIFT; 949 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; 950 951 return (0); 952 } 953 954 static int 955 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, 956 char **interpp, bool *free_interpp) 957 { 958 struct thread *td; 959 char *interp; 960 int error, interp_name_len; 961 962 KASSERT(phdr->p_type == PT_INTERP, 963 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); 964 ASSERT_VOP_LOCKED(imgp->vp, __func__); 965 966 td = curthread; 967 968 /* Path to interpreter */ 969 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { 970 uprintf("Invalid PT_INTERP\n"); 971 return (ENOEXEC); 972 } 973 974 interp_name_len = phdr->p_filesz; 975 if (phdr->p_offset > PAGE_SIZE || 976 interp_name_len > PAGE_SIZE - phdr->p_offset) { 977 /* 978 * The vnode lock might be needed by the pagedaemon to 979 * clean pages owned by the vnode. Do not allow sleep 980 * waiting for memory with the vnode locked, instead 981 * try non-sleepable allocation first, and if it 982 * fails, go to the slow path were we drop the lock 983 * and do M_WAITOK. A text reference prevents 984 * modifications to the vnode content. 985 */ 986 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); 987 if (interp == NULL) { 988 VOP_UNLOCK(imgp->vp); 989 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); 990 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 991 } 992 993 error = vn_rdwr(UIO_READ, imgp->vp, interp, 994 interp_name_len, phdr->p_offset, 995 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, 996 NOCRED, NULL, td); 997 if (error != 0) { 998 free(interp, M_TEMP); 999 uprintf("i/o error PT_INTERP %d\n", error); 1000 return (error); 1001 } 1002 interp[interp_name_len] = '\0'; 1003 1004 *interpp = interp; 1005 *free_interpp = true; 1006 return (0); 1007 } 1008 1009 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; 1010 if (interp[interp_name_len - 1] != '\0') { 1011 uprintf("Invalid PT_INTERP\n"); 1012 return (ENOEXEC); 1013 } 1014 1015 *interpp = interp; 1016 *free_interpp = false; 1017 return (0); 1018 } 1019 1020 static int 1021 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, 1022 const char *interp, u_long *addr, u_long *entry) 1023 { 1024 char *path; 1025 int error; 1026 1027 if (brand_info->emul_path != NULL && 1028 brand_info->emul_path[0] != '\0') { 1029 path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 1030 snprintf(path, MAXPATHLEN, "%s%s", 1031 brand_info->emul_path, interp); 1032 error = __elfN(load_file)(imgp->proc, path, addr, entry); 1033 free(path, M_TEMP); 1034 if (error == 0) 1035 return (0); 1036 } 1037 1038 if (brand_info->interp_newpath != NULL && 1039 (brand_info->interp_path == NULL || 1040 strcmp(interp, brand_info->interp_path) == 0)) { 1041 error = __elfN(load_file)(imgp->proc, 1042 brand_info->interp_newpath, addr, entry); 1043 if (error == 0) 1044 return (0); 1045 } 1046 1047 error = __elfN(load_file)(imgp->proc, interp, addr, entry); 1048 if (error == 0) 1049 return (0); 1050 1051 uprintf("ELF interpreter %s not found, error %d\n", interp, error); 1052 return (error); 1053 } 1054 1055 /* 1056 * Impossible et_dyn_addr initial value indicating that the real base 1057 * must be calculated later with some randomization applied. 1058 */ 1059 #define ET_DYN_ADDR_RAND 1 1060 1061 static int 1062 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) 1063 { 1064 struct thread *td; 1065 const Elf_Ehdr *hdr; 1066 const Elf_Phdr *phdr; 1067 Elf_Auxargs *elf_auxargs; 1068 struct vmspace *vmspace; 1069 vm_map_t map; 1070 char *interp; 1071 Elf_Brandinfo *brand_info; 1072 struct sysentvec *sv; 1073 u_long addr, baddr, et_dyn_addr, entry, proghdr; 1074 u_long maxalign, mapsz, maxv, maxv1; 1075 uint32_t fctl0; 1076 int32_t osrel; 1077 bool free_interp; 1078 int error, i, n; 1079 1080 hdr = (const Elf_Ehdr *)imgp->image_header; 1081 1082 /* 1083 * Do we have a valid ELF header ? 1084 * 1085 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later 1086 * if particular brand doesn't support it. 1087 */ 1088 if (__elfN(check_header)(hdr) != 0 || 1089 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) 1090 return (-1); 1091 1092 /* 1093 * From here on down, we return an errno, not -1, as we've 1094 * detected an ELF file. 1095 */ 1096 1097 if (!__elfN(phdr_in_zero_page)(hdr)) { 1098 uprintf("Program headers not in the first page\n"); 1099 return (ENOEXEC); 1100 } 1101 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 1102 if (!aligned(phdr, Elf_Addr)) { 1103 uprintf("Unaligned program headers\n"); 1104 return (ENOEXEC); 1105 } 1106 1107 n = error = 0; 1108 baddr = 0; 1109 osrel = 0; 1110 fctl0 = 0; 1111 entry = proghdr = 0; 1112 interp = NULL; 1113 free_interp = false; 1114 td = curthread; 1115 maxalign = PAGE_SIZE; 1116 mapsz = 0; 1117 1118 for (i = 0; i < hdr->e_phnum; i++) { 1119 switch (phdr[i].p_type) { 1120 case PT_LOAD: 1121 if (n == 0) 1122 baddr = phdr[i].p_vaddr; 1123 if (phdr[i].p_align > maxalign) 1124 maxalign = phdr[i].p_align; 1125 mapsz += phdr[i].p_memsz; 1126 n++; 1127 1128 /* 1129 * If this segment contains the program headers, 1130 * remember their virtual address for the AT_PHDR 1131 * aux entry. Static binaries don't usually include 1132 * a PT_PHDR entry. 1133 */ 1134 if (phdr[i].p_offset == 0 && 1135 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize 1136 <= phdr[i].p_filesz) 1137 proghdr = phdr[i].p_vaddr + hdr->e_phoff; 1138 break; 1139 case PT_INTERP: 1140 /* Path to interpreter */ 1141 if (interp != NULL) { 1142 uprintf("Multiple PT_INTERP headers\n"); 1143 error = ENOEXEC; 1144 goto ret; 1145 } 1146 error = __elfN(get_interp)(imgp, &phdr[i], &interp, 1147 &free_interp); 1148 if (error != 0) 1149 goto ret; 1150 break; 1151 case PT_GNU_STACK: 1152 if (__elfN(nxstack)) 1153 imgp->stack_prot = 1154 __elfN(trans_prot)(phdr[i].p_flags); 1155 imgp->stack_sz = phdr[i].p_memsz; 1156 break; 1157 case PT_PHDR: /* Program header table info */ 1158 proghdr = phdr[i].p_vaddr; 1159 break; 1160 } 1161 } 1162 1163 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); 1164 if (brand_info == NULL) { 1165 uprintf("ELF binary type \"%u\" not known.\n", 1166 hdr->e_ident[EI_OSABI]); 1167 error = ENOEXEC; 1168 goto ret; 1169 } 1170 sv = brand_info->sysvec; 1171 et_dyn_addr = 0; 1172 if (hdr->e_type == ET_DYN) { 1173 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { 1174 uprintf("Cannot execute shared object\n"); 1175 error = ENOEXEC; 1176 goto ret; 1177 } 1178 /* 1179 * Honour the base load address from the dso if it is 1180 * non-zero for some reason. 1181 */ 1182 if (baddr == 0) { 1183 if ((sv->sv_flags & SV_ASLR) == 0 || 1184 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) 1185 et_dyn_addr = __elfN(pie_base); 1186 else if ((__elfN(pie_aslr_enabled) && 1187 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || 1188 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) 1189 et_dyn_addr = ET_DYN_ADDR_RAND; 1190 else 1191 et_dyn_addr = __elfN(pie_base); 1192 } 1193 } 1194 1195 /* 1196 * Avoid a possible deadlock if the current address space is destroyed 1197 * and that address space maps the locked vnode. In the common case, 1198 * the locked vnode's v_usecount is decremented but remains greater 1199 * than zero. Consequently, the vnode lock is not needed by vrele(). 1200 * However, in cases where the vnode lock is external, such as nullfs, 1201 * v_usecount may become zero. 1202 * 1203 * The VV_TEXT flag prevents modifications to the executable while 1204 * the vnode is unlocked. 1205 */ 1206 VOP_UNLOCK(imgp->vp); 1207 1208 /* 1209 * Decide whether to enable randomization of user mappings. 1210 * First, reset user preferences for the setid binaries. 1211 * Then, account for the support of the randomization by the 1212 * ABI, by user preferences, and make special treatment for 1213 * PIE binaries. 1214 */ 1215 if (imgp->credential_setid) { 1216 PROC_LOCK(imgp->proc); 1217 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); 1218 PROC_UNLOCK(imgp->proc); 1219 } 1220 if ((sv->sv_flags & SV_ASLR) == 0 || 1221 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || 1222 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { 1223 KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, 1224 ("et_dyn_addr == RAND and !ASLR")); 1225 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || 1226 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || 1227 et_dyn_addr == ET_DYN_ADDR_RAND) { 1228 imgp->map_flags |= MAP_ASLR; 1229 /* 1230 * If user does not care about sbrk, utilize the bss 1231 * grow region for mappings as well. We can select 1232 * the base for the image anywere and still not suffer 1233 * from the fragmentation. 1234 */ 1235 if (!__elfN(aslr_honor_sbrk) || 1236 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) 1237 imgp->map_flags |= MAP_ASLR_IGNSTART; 1238 } 1239 1240 error = exec_new_vmspace(imgp, sv); 1241 vmspace = imgp->proc->p_vmspace; 1242 map = &vmspace->vm_map; 1243 1244 imgp->proc->p_sysent = sv; 1245 1246 maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); 1247 if (et_dyn_addr == ET_DYN_ADDR_RAND) { 1248 KASSERT((map->flags & MAP_ASLR) != 0, 1249 ("ET_DYN_ADDR_RAND but !MAP_ASLR")); 1250 et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, 1251 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), 1252 /* reserve half of the address space to interpreter */ 1253 maxv / 2, 1UL << flsl(maxalign)); 1254 } 1255 1256 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1257 if (error != 0) 1258 goto ret; 1259 1260 error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); 1261 if (error != 0) 1262 goto ret; 1263 1264 error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); 1265 if (error != 0) 1266 goto ret; 1267 1268 entry = (u_long)hdr->e_entry + et_dyn_addr; 1269 1270 /* 1271 * We load the dynamic linker where a userland call 1272 * to mmap(0, ...) would put it. The rationale behind this 1273 * calculation is that it leaves room for the heap to grow to 1274 * its maximum allowed size. 1275 */ 1276 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, 1277 RLIMIT_DATA)); 1278 if ((map->flags & MAP_ASLR) != 0) { 1279 maxv1 = maxv / 2 + addr / 2; 1280 MPASS(maxv1 >= addr); /* No overflow */ 1281 map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, 1282 MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); 1283 } else { 1284 map->anon_loc = addr; 1285 } 1286 1287 imgp->entry_addr = entry; 1288 1289 if (interp != NULL) { 1290 VOP_UNLOCK(imgp->vp); 1291 if ((map->flags & MAP_ASLR) != 0) { 1292 /* Assume that interpeter fits into 1/4 of AS */ 1293 maxv1 = maxv / 2 + addr / 2; 1294 MPASS(maxv1 >= addr); /* No overflow */ 1295 addr = __CONCAT(rnd_, __elfN(base))(map, addr, 1296 maxv1, PAGE_SIZE); 1297 } 1298 error = __elfN(load_interp)(imgp, brand_info, interp, &addr, 1299 &imgp->entry_addr); 1300 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1301 if (error != 0) 1302 goto ret; 1303 } else 1304 addr = et_dyn_addr; 1305 1306 /* 1307 * Construct auxargs table (used by the copyout_auxargs routine) 1308 */ 1309 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); 1310 if (elf_auxargs == NULL) { 1311 VOP_UNLOCK(imgp->vp); 1312 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); 1313 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 1314 } 1315 elf_auxargs->execfd = -1; 1316 elf_auxargs->phdr = proghdr + et_dyn_addr; 1317 elf_auxargs->phent = hdr->e_phentsize; 1318 elf_auxargs->phnum = hdr->e_phnum; 1319 elf_auxargs->pagesz = PAGE_SIZE; 1320 elf_auxargs->base = addr; 1321 elf_auxargs->flags = 0; 1322 elf_auxargs->entry = entry; 1323 elf_auxargs->hdr_eflags = hdr->e_flags; 1324 1325 imgp->auxargs = elf_auxargs; 1326 imgp->interpreted = 0; 1327 imgp->reloc_base = addr; 1328 imgp->proc->p_osrel = osrel; 1329 imgp->proc->p_fctl0 = fctl0; 1330 imgp->proc->p_elf_machine = hdr->e_machine; 1331 imgp->proc->p_elf_flags = hdr->e_flags; 1332 1333 ret: 1334 if (free_interp) 1335 free(interp, M_TEMP); 1336 return (error); 1337 } 1338 1339 #define suword __CONCAT(suword, __ELF_WORD_SIZE) 1340 1341 int 1342 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) 1343 { 1344 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; 1345 Elf_Auxinfo *argarray, *pos; 1346 int error; 1347 1348 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, 1349 M_WAITOK | M_ZERO); 1350 1351 if (args->execfd != -1) 1352 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); 1353 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); 1354 AUXARGS_ENTRY(pos, AT_PHENT, args->phent); 1355 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); 1356 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); 1357 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); 1358 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); 1359 AUXARGS_ENTRY(pos, AT_BASE, args->base); 1360 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); 1361 if (imgp->execpathp != 0) 1362 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); 1363 AUXARGS_ENTRY(pos, AT_OSRELDATE, 1364 imgp->proc->p_ucred->cr_prison->pr_osreldate); 1365 if (imgp->canary != 0) { 1366 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); 1367 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); 1368 } 1369 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); 1370 if (imgp->pagesizes != 0) { 1371 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); 1372 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); 1373 } 1374 if (imgp->sysent->sv_timekeep_base != 0) { 1375 AUXARGS_ENTRY(pos, AT_TIMEKEEP, 1376 imgp->sysent->sv_timekeep_base); 1377 } 1378 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj 1379 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : 1380 imgp->sysent->sv_stackprot); 1381 if (imgp->sysent->sv_hwcap != NULL) 1382 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); 1383 if (imgp->sysent->sv_hwcap2 != NULL) 1384 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); 1385 AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? 1386 ELF_BSDF_SIGFASTBLK : 0); 1387 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); 1388 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); 1389 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); 1390 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); 1391 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); 1392 if (imgp->sysent->sv_fxrng_gen_base != 0) 1393 AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base); 1394 AUXARGS_ENTRY(pos, AT_NULL, 0); 1395 1396 free(imgp->auxargs, M_TEMP); 1397 imgp->auxargs = NULL; 1398 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); 1399 1400 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); 1401 free(argarray, M_TEMP); 1402 return (error); 1403 } 1404 1405 int 1406 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) 1407 { 1408 Elf_Addr *base; 1409 1410 base = (Elf_Addr *)*stack_base; 1411 base--; 1412 if (suword(base, imgp->args->argc) == -1) 1413 return (EFAULT); 1414 *stack_base = (uintptr_t)base; 1415 return (0); 1416 } 1417 1418 /* 1419 * Code for generating ELF core dumps. 1420 */ 1421 1422 typedef void (*segment_callback)(vm_map_entry_t, void *); 1423 1424 /* Closure for cb_put_phdr(). */ 1425 struct phdr_closure { 1426 Elf_Phdr *phdr; /* Program header to fill in */ 1427 Elf_Off offset; /* Offset of segment in core file */ 1428 }; 1429 1430 /* Closure for cb_size_segment(). */ 1431 struct sseg_closure { 1432 int count; /* Count of writable segments. */ 1433 size_t size; /* Total size of all writable segments. */ 1434 }; 1435 1436 typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); 1437 1438 struct note_info { 1439 int type; /* Note type. */ 1440 outfunc_t outfunc; /* Output function. */ 1441 void *outarg; /* Argument for the output function. */ 1442 size_t outsize; /* Output size. */ 1443 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ 1444 }; 1445 1446 TAILQ_HEAD(note_info_list, note_info); 1447 1448 /* Coredump output parameters. */ 1449 struct coredump_params { 1450 off_t offset; 1451 struct ucred *active_cred; 1452 struct ucred *file_cred; 1453 struct thread *td; 1454 struct vnode *vp; 1455 struct compressor *comp; 1456 }; 1457 1458 extern int compress_user_cores; 1459 extern int compress_user_cores_level; 1460 1461 static void cb_put_phdr(vm_map_entry_t, void *); 1462 static void cb_size_segment(vm_map_entry_t, void *); 1463 static int core_write(struct coredump_params *, const void *, size_t, off_t, 1464 enum uio_seg, size_t *); 1465 static void each_dumpable_segment(struct thread *, segment_callback, void *); 1466 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, 1467 struct note_info_list *, size_t); 1468 static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, 1469 size_t *); 1470 static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); 1471 static void __elfN(putnote)(struct note_info *, struct sbuf *); 1472 static size_t register_note(struct note_info_list *, int, outfunc_t, void *); 1473 static int sbuf_drain_core_output(void *, const char *, int); 1474 1475 static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); 1476 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); 1477 static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); 1478 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); 1479 static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); 1480 static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); 1481 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); 1482 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); 1483 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); 1484 static void note_procstat_files(void *, struct sbuf *, size_t *); 1485 static void note_procstat_groups(void *, struct sbuf *, size_t *); 1486 static void note_procstat_osrel(void *, struct sbuf *, size_t *); 1487 static void note_procstat_rlimit(void *, struct sbuf *, size_t *); 1488 static void note_procstat_umask(void *, struct sbuf *, size_t *); 1489 static void note_procstat_vmmap(void *, struct sbuf *, size_t *); 1490 1491 /* 1492 * Write out a core segment to the compression stream. 1493 */ 1494 static int 1495 compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) 1496 { 1497 u_int chunk_len; 1498 int error; 1499 1500 while (len > 0) { 1501 chunk_len = MIN(len, CORE_BUF_SIZE); 1502 1503 /* 1504 * We can get EFAULT error here. 1505 * In that case zero out the current chunk of the segment. 1506 */ 1507 error = copyin(base, buf, chunk_len); 1508 if (error != 0) 1509 bzero(buf, chunk_len); 1510 error = compressor_write(p->comp, buf, chunk_len); 1511 if (error != 0) 1512 break; 1513 base += chunk_len; 1514 len -= chunk_len; 1515 } 1516 return (error); 1517 } 1518 1519 static int 1520 core_compressed_write(void *base, size_t len, off_t offset, void *arg) 1521 { 1522 1523 return (core_write((struct coredump_params *)arg, base, len, offset, 1524 UIO_SYSSPACE, NULL)); 1525 } 1526 1527 static int 1528 core_write(struct coredump_params *p, const void *base, size_t len, 1529 off_t offset, enum uio_seg seg, size_t *resid) 1530 { 1531 1532 return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), 1533 len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, 1534 p->active_cred, p->file_cred, resid, p->td)); 1535 } 1536 1537 static int 1538 core_output(char *base, size_t len, off_t offset, struct coredump_params *p, 1539 void *tmpbuf) 1540 { 1541 vm_map_t map; 1542 struct mount *mp; 1543 size_t resid, runlen; 1544 int error; 1545 bool success; 1546 1547 KASSERT((uintptr_t)base % PAGE_SIZE == 0, 1548 ("%s: user address %p is not page-aligned", __func__, base)); 1549 1550 if (p->comp != NULL) 1551 return (compress_chunk(p, base, tmpbuf, len)); 1552 1553 map = &p->td->td_proc->p_vmspace->vm_map; 1554 for (; len > 0; base += runlen, offset += runlen, len -= runlen) { 1555 /* 1556 * Attempt to page in all virtual pages in the range. If a 1557 * virtual page is not backed by the pager, it is represented as 1558 * a hole in the file. This can occur with zero-filled 1559 * anonymous memory or truncated files, for example. 1560 */ 1561 for (runlen = 0; runlen < len; runlen += PAGE_SIZE) { 1562 error = vm_fault(map, (uintptr_t)base + runlen, 1563 VM_PROT_READ, VM_FAULT_NOFILL, NULL); 1564 if (runlen == 0) 1565 success = error == KERN_SUCCESS; 1566 else if ((error == KERN_SUCCESS) != success) 1567 break; 1568 } 1569 1570 if (success) { 1571 error = core_write(p, base, runlen, offset, 1572 UIO_USERSPACE, &resid); 1573 if (error != 0) { 1574 if (error != EFAULT) 1575 break; 1576 1577 /* 1578 * EFAULT may be returned if the user mapping 1579 * could not be accessed, e.g., because a mapped 1580 * file has been truncated. Skip the page if no 1581 * progress was made, to protect against a 1582 * hypothetical scenario where vm_fault() was 1583 * successful but core_write() returns EFAULT 1584 * anyway. 1585 */ 1586 runlen -= resid; 1587 if (runlen == 0) { 1588 success = false; 1589 runlen = PAGE_SIZE; 1590 } 1591 } 1592 } 1593 if (!success) { 1594 error = vn_start_write(p->vp, &mp, V_WAIT); 1595 if (error != 0) 1596 break; 1597 vn_lock(p->vp, LK_EXCLUSIVE | LK_RETRY); 1598 error = vn_truncate_locked(p->vp, offset + runlen, 1599 false, p->td->td_ucred); 1600 VOP_UNLOCK(p->vp); 1601 vn_finished_write(mp); 1602 if (error != 0) 1603 break; 1604 } 1605 } 1606 return (error); 1607 } 1608 1609 /* 1610 * Drain into a core file. 1611 */ 1612 static int 1613 sbuf_drain_core_output(void *arg, const char *data, int len) 1614 { 1615 struct coredump_params *p; 1616 int error, locked; 1617 1618 p = (struct coredump_params *)arg; 1619 1620 /* 1621 * Some kern_proc out routines that print to this sbuf may 1622 * call us with the process lock held. Draining with the 1623 * non-sleepable lock held is unsafe. The lock is needed for 1624 * those routines when dumping a live process. In our case we 1625 * can safely release the lock before draining and acquire 1626 * again after. 1627 */ 1628 locked = PROC_LOCKED(p->td->td_proc); 1629 if (locked) 1630 PROC_UNLOCK(p->td->td_proc); 1631 if (p->comp != NULL) 1632 error = compressor_write(p->comp, __DECONST(char *, data), len); 1633 else 1634 error = core_write(p, __DECONST(void *, data), len, p->offset, 1635 UIO_SYSSPACE, NULL); 1636 if (locked) 1637 PROC_LOCK(p->td->td_proc); 1638 if (error != 0) 1639 return (-error); 1640 p->offset += len; 1641 return (len); 1642 } 1643 1644 int 1645 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) 1646 { 1647 struct ucred *cred = td->td_ucred; 1648 int error = 0; 1649 struct sseg_closure seginfo; 1650 struct note_info_list notelst; 1651 struct coredump_params params; 1652 struct note_info *ninfo; 1653 void *hdr, *tmpbuf; 1654 size_t hdrsize, notesz, coresize; 1655 1656 hdr = NULL; 1657 tmpbuf = NULL; 1658 TAILQ_INIT(¬elst); 1659 1660 /* Size the program segments. */ 1661 seginfo.count = 0; 1662 seginfo.size = 0; 1663 each_dumpable_segment(td, cb_size_segment, &seginfo); 1664 1665 /* 1666 * Collect info about the core file header area. 1667 */ 1668 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); 1669 if (seginfo.count + 1 >= PN_XNUM) 1670 hdrsize += sizeof(Elf_Shdr); 1671 __elfN(prepare_notes)(td, ¬elst, ¬esz); 1672 coresize = round_page(hdrsize + notesz) + seginfo.size; 1673 1674 /* Set up core dump parameters. */ 1675 params.offset = 0; 1676 params.active_cred = cred; 1677 params.file_cred = NOCRED; 1678 params.td = td; 1679 params.vp = vp; 1680 params.comp = NULL; 1681 1682 #ifdef RACCT 1683 if (racct_enable) { 1684 PROC_LOCK(td->td_proc); 1685 error = racct_add(td->td_proc, RACCT_CORE, coresize); 1686 PROC_UNLOCK(td->td_proc); 1687 if (error != 0) { 1688 error = EFAULT; 1689 goto done; 1690 } 1691 } 1692 #endif 1693 if (coresize >= limit) { 1694 error = EFAULT; 1695 goto done; 1696 } 1697 1698 /* Create a compression stream if necessary. */ 1699 if (compress_user_cores != 0) { 1700 params.comp = compressor_init(core_compressed_write, 1701 compress_user_cores, CORE_BUF_SIZE, 1702 compress_user_cores_level, ¶ms); 1703 if (params.comp == NULL) { 1704 error = EFAULT; 1705 goto done; 1706 } 1707 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); 1708 } 1709 1710 /* 1711 * Allocate memory for building the header, fill it up, 1712 * and write it out following the notes. 1713 */ 1714 hdr = malloc(hdrsize, M_TEMP, M_WAITOK); 1715 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, 1716 notesz); 1717 1718 /* Write the contents of all of the writable segments. */ 1719 if (error == 0) { 1720 Elf_Phdr *php; 1721 off_t offset; 1722 int i; 1723 1724 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; 1725 offset = round_page(hdrsize + notesz); 1726 for (i = 0; i < seginfo.count; i++) { 1727 error = core_output((char *)(uintptr_t)php->p_vaddr, 1728 php->p_filesz, offset, ¶ms, tmpbuf); 1729 if (error != 0) 1730 break; 1731 offset += php->p_filesz; 1732 php++; 1733 } 1734 if (error == 0 && params.comp != NULL) 1735 error = compressor_flush(params.comp); 1736 } 1737 if (error) { 1738 log(LOG_WARNING, 1739 "Failed to write core file for process %s (error %d)\n", 1740 curproc->p_comm, error); 1741 } 1742 1743 done: 1744 free(tmpbuf, M_TEMP); 1745 if (params.comp != NULL) 1746 compressor_fini(params.comp); 1747 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { 1748 TAILQ_REMOVE(¬elst, ninfo, link); 1749 free(ninfo, M_TEMP); 1750 } 1751 if (hdr != NULL) 1752 free(hdr, M_TEMP); 1753 1754 return (error); 1755 } 1756 1757 /* 1758 * A callback for each_dumpable_segment() to write out the segment's 1759 * program header entry. 1760 */ 1761 static void 1762 cb_put_phdr(vm_map_entry_t entry, void *closure) 1763 { 1764 struct phdr_closure *phc = (struct phdr_closure *)closure; 1765 Elf_Phdr *phdr = phc->phdr; 1766 1767 phc->offset = round_page(phc->offset); 1768 1769 phdr->p_type = PT_LOAD; 1770 phdr->p_offset = phc->offset; 1771 phdr->p_vaddr = entry->start; 1772 phdr->p_paddr = 0; 1773 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; 1774 phdr->p_align = PAGE_SIZE; 1775 phdr->p_flags = __elfN(untrans_prot)(entry->protection); 1776 1777 phc->offset += phdr->p_filesz; 1778 phc->phdr++; 1779 } 1780 1781 /* 1782 * A callback for each_dumpable_segment() to gather information about 1783 * the number of segments and their total size. 1784 */ 1785 static void 1786 cb_size_segment(vm_map_entry_t entry, void *closure) 1787 { 1788 struct sseg_closure *ssc = (struct sseg_closure *)closure; 1789 1790 ssc->count++; 1791 ssc->size += entry->end - entry->start; 1792 } 1793 1794 /* 1795 * For each writable segment in the process's memory map, call the given 1796 * function with a pointer to the map entry and some arbitrary 1797 * caller-supplied data. 1798 */ 1799 static void 1800 each_dumpable_segment(struct thread *td, segment_callback func, void *closure) 1801 { 1802 struct proc *p = td->td_proc; 1803 vm_map_t map = &p->p_vmspace->vm_map; 1804 vm_map_entry_t entry; 1805 vm_object_t backing_object, object; 1806 bool ignore_entry; 1807 1808 vm_map_lock_read(map); 1809 VM_MAP_ENTRY_FOREACH(entry, map) { 1810 /* 1811 * Don't dump inaccessible mappings, deal with legacy 1812 * coredump mode. 1813 * 1814 * Note that read-only segments related to the elf binary 1815 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer 1816 * need to arbitrarily ignore such segments. 1817 */ 1818 if (elf_legacy_coredump) { 1819 if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) 1820 continue; 1821 } else { 1822 if ((entry->protection & VM_PROT_ALL) == 0) 1823 continue; 1824 } 1825 1826 /* 1827 * Dont include memory segment in the coredump if 1828 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in 1829 * madvise(2). Do not dump submaps (i.e. parts of the 1830 * kernel map). 1831 */ 1832 if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) 1833 continue; 1834 1835 if ((object = entry->object.vm_object) == NULL) 1836 continue; 1837 1838 /* Ignore memory-mapped devices and such things. */ 1839 VM_OBJECT_RLOCK(object); 1840 while ((backing_object = object->backing_object) != NULL) { 1841 VM_OBJECT_RLOCK(backing_object); 1842 VM_OBJECT_RUNLOCK(object); 1843 object = backing_object; 1844 } 1845 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; 1846 VM_OBJECT_RUNLOCK(object); 1847 if (ignore_entry) 1848 continue; 1849 1850 (*func)(entry, closure); 1851 } 1852 vm_map_unlock_read(map); 1853 } 1854 1855 /* 1856 * Write the core file header to the file, including padding up to 1857 * the page boundary. 1858 */ 1859 static int 1860 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, 1861 size_t hdrsize, struct note_info_list *notelst, size_t notesz) 1862 { 1863 struct note_info *ninfo; 1864 struct sbuf *sb; 1865 int error; 1866 1867 /* Fill in the header. */ 1868 bzero(hdr, hdrsize); 1869 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); 1870 1871 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); 1872 sbuf_set_drain(sb, sbuf_drain_core_output, p); 1873 sbuf_start_section(sb, NULL); 1874 sbuf_bcat(sb, hdr, hdrsize); 1875 TAILQ_FOREACH(ninfo, notelst, link) 1876 __elfN(putnote)(ninfo, sb); 1877 /* Align up to a page boundary for the program segments. */ 1878 sbuf_end_section(sb, -1, PAGE_SIZE, 0); 1879 error = sbuf_finish(sb); 1880 sbuf_delete(sb); 1881 1882 return (error); 1883 } 1884 1885 static void 1886 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, 1887 size_t *sizep) 1888 { 1889 struct proc *p; 1890 struct thread *thr; 1891 size_t size; 1892 1893 p = td->td_proc; 1894 size = 0; 1895 1896 size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); 1897 1898 /* 1899 * To have the debugger select the right thread (LWP) as the initial 1900 * thread, we dump the state of the thread passed to us in td first. 1901 * This is the thread that causes the core dump and thus likely to 1902 * be the right thread one wants to have selected in the debugger. 1903 */ 1904 thr = td; 1905 while (thr != NULL) { 1906 size += register_note(list, NT_PRSTATUS, 1907 __elfN(note_prstatus), thr); 1908 size += register_note(list, NT_FPREGSET, 1909 __elfN(note_fpregset), thr); 1910 size += register_note(list, NT_THRMISC, 1911 __elfN(note_thrmisc), thr); 1912 size += register_note(list, NT_PTLWPINFO, 1913 __elfN(note_ptlwpinfo), thr); 1914 size += register_note(list, -1, 1915 __elfN(note_threadmd), thr); 1916 1917 thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : 1918 TAILQ_NEXT(thr, td_plist); 1919 if (thr == td) 1920 thr = TAILQ_NEXT(thr, td_plist); 1921 } 1922 1923 size += register_note(list, NT_PROCSTAT_PROC, 1924 __elfN(note_procstat_proc), p); 1925 size += register_note(list, NT_PROCSTAT_FILES, 1926 note_procstat_files, p); 1927 size += register_note(list, NT_PROCSTAT_VMMAP, 1928 note_procstat_vmmap, p); 1929 size += register_note(list, NT_PROCSTAT_GROUPS, 1930 note_procstat_groups, p); 1931 size += register_note(list, NT_PROCSTAT_UMASK, 1932 note_procstat_umask, p); 1933 size += register_note(list, NT_PROCSTAT_RLIMIT, 1934 note_procstat_rlimit, p); 1935 size += register_note(list, NT_PROCSTAT_OSREL, 1936 note_procstat_osrel, p); 1937 size += register_note(list, NT_PROCSTAT_PSSTRINGS, 1938 __elfN(note_procstat_psstrings), p); 1939 size += register_note(list, NT_PROCSTAT_AUXV, 1940 __elfN(note_procstat_auxv), p); 1941 1942 *sizep = size; 1943 } 1944 1945 static void 1946 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, 1947 size_t notesz) 1948 { 1949 Elf_Ehdr *ehdr; 1950 Elf_Phdr *phdr; 1951 Elf_Shdr *shdr; 1952 struct phdr_closure phc; 1953 1954 ehdr = (Elf_Ehdr *)hdr; 1955 1956 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1957 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1958 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1959 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1960 ehdr->e_ident[EI_CLASS] = ELF_CLASS; 1961 ehdr->e_ident[EI_DATA] = ELF_DATA; 1962 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1963 ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; 1964 ehdr->e_ident[EI_ABIVERSION] = 0; 1965 ehdr->e_ident[EI_PAD] = 0; 1966 ehdr->e_type = ET_CORE; 1967 ehdr->e_machine = td->td_proc->p_elf_machine; 1968 ehdr->e_version = EV_CURRENT; 1969 ehdr->e_entry = 0; 1970 ehdr->e_phoff = sizeof(Elf_Ehdr); 1971 ehdr->e_flags = td->td_proc->p_elf_flags; 1972 ehdr->e_ehsize = sizeof(Elf_Ehdr); 1973 ehdr->e_phentsize = sizeof(Elf_Phdr); 1974 ehdr->e_shentsize = sizeof(Elf_Shdr); 1975 ehdr->e_shstrndx = SHN_UNDEF; 1976 if (numsegs + 1 < PN_XNUM) { 1977 ehdr->e_phnum = numsegs + 1; 1978 ehdr->e_shnum = 0; 1979 } else { 1980 ehdr->e_phnum = PN_XNUM; 1981 ehdr->e_shnum = 1; 1982 1983 ehdr->e_shoff = ehdr->e_phoff + 1984 (numsegs + 1) * ehdr->e_phentsize; 1985 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), 1986 ("e_shoff: %zu, hdrsize - shdr: %zu", 1987 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); 1988 1989 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); 1990 memset(shdr, 0, sizeof(*shdr)); 1991 /* 1992 * A special first section is used to hold large segment and 1993 * section counts. This was proposed by Sun Microsystems in 1994 * Solaris and has been adopted by Linux; the standard ELF 1995 * tools are already familiar with the technique. 1996 * 1997 * See table 7-7 of the Solaris "Linker and Libraries Guide" 1998 * (or 12-7 depending on the version of the document) for more 1999 * details. 2000 */ 2001 shdr->sh_type = SHT_NULL; 2002 shdr->sh_size = ehdr->e_shnum; 2003 shdr->sh_link = ehdr->e_shstrndx; 2004 shdr->sh_info = numsegs + 1; 2005 } 2006 2007 /* 2008 * Fill in the program header entries. 2009 */ 2010 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); 2011 2012 /* The note segement. */ 2013 phdr->p_type = PT_NOTE; 2014 phdr->p_offset = hdrsize; 2015 phdr->p_vaddr = 0; 2016 phdr->p_paddr = 0; 2017 phdr->p_filesz = notesz; 2018 phdr->p_memsz = 0; 2019 phdr->p_flags = PF_R; 2020 phdr->p_align = ELF_NOTE_ROUNDSIZE; 2021 phdr++; 2022 2023 /* All the writable segments from the program. */ 2024 phc.phdr = phdr; 2025 phc.offset = round_page(hdrsize + notesz); 2026 each_dumpable_segment(td, cb_put_phdr, &phc); 2027 } 2028 2029 static size_t 2030 register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) 2031 { 2032 struct note_info *ninfo; 2033 size_t size, notesize; 2034 2035 size = 0; 2036 out(arg, NULL, &size); 2037 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); 2038 ninfo->type = type; 2039 ninfo->outfunc = out; 2040 ninfo->outarg = arg; 2041 ninfo->outsize = size; 2042 TAILQ_INSERT_TAIL(list, ninfo, link); 2043 2044 if (type == -1) 2045 return (size); 2046 2047 notesize = sizeof(Elf_Note) + /* note header */ 2048 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2049 /* note name */ 2050 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2051 2052 return (notesize); 2053 } 2054 2055 static size_t 2056 append_note_data(const void *src, void *dst, size_t len) 2057 { 2058 size_t padded_len; 2059 2060 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); 2061 if (dst != NULL) { 2062 bcopy(src, dst, len); 2063 bzero((char *)dst + len, padded_len - len); 2064 } 2065 return (padded_len); 2066 } 2067 2068 size_t 2069 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) 2070 { 2071 Elf_Note *note; 2072 char *buf; 2073 size_t notesize; 2074 2075 buf = dst; 2076 if (buf != NULL) { 2077 note = (Elf_Note *)buf; 2078 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2079 note->n_descsz = size; 2080 note->n_type = type; 2081 buf += sizeof(*note); 2082 buf += append_note_data(FREEBSD_ABI_VENDOR, buf, 2083 sizeof(FREEBSD_ABI_VENDOR)); 2084 append_note_data(src, buf, size); 2085 if (descp != NULL) 2086 *descp = buf; 2087 } 2088 2089 notesize = sizeof(Elf_Note) + /* note header */ 2090 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + 2091 /* note name */ 2092 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ 2093 2094 return (notesize); 2095 } 2096 2097 static void 2098 __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) 2099 { 2100 Elf_Note note; 2101 ssize_t old_len, sect_len; 2102 size_t new_len, descsz, i; 2103 2104 if (ninfo->type == -1) { 2105 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2106 return; 2107 } 2108 2109 note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); 2110 note.n_descsz = ninfo->outsize; 2111 note.n_type = ninfo->type; 2112 2113 sbuf_bcat(sb, ¬e, sizeof(note)); 2114 sbuf_start_section(sb, &old_len); 2115 sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); 2116 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2117 if (note.n_descsz == 0) 2118 return; 2119 sbuf_start_section(sb, &old_len); 2120 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); 2121 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); 2122 if (sect_len < 0) 2123 return; 2124 2125 new_len = (size_t)sect_len; 2126 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); 2127 if (new_len < descsz) { 2128 /* 2129 * It is expected that individual note emitters will correctly 2130 * predict their expected output size and fill up to that size 2131 * themselves, padding in a format-specific way if needed. 2132 * However, in case they don't, just do it here with zeros. 2133 */ 2134 for (i = 0; i < descsz - new_len; i++) 2135 sbuf_putc(sb, 0); 2136 } else if (new_len > descsz) { 2137 /* 2138 * We can't always truncate sb -- we may have drained some 2139 * of it already. 2140 */ 2141 KASSERT(new_len == descsz, ("%s: Note type %u changed as we " 2142 "read it (%zu > %zu). Since it is longer than " 2143 "expected, this coredump's notes are corrupt. THIS " 2144 "IS A BUG in the note_procstat routine for type %u.\n", 2145 __func__, (unsigned)note.n_type, new_len, descsz, 2146 (unsigned)note.n_type)); 2147 } 2148 } 2149 2150 /* 2151 * Miscellaneous note out functions. 2152 */ 2153 2154 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2155 #include <compat/freebsd32/freebsd32.h> 2156 #include <compat/freebsd32/freebsd32_signal.h> 2157 2158 typedef struct prstatus32 elf_prstatus_t; 2159 typedef struct prpsinfo32 elf_prpsinfo_t; 2160 typedef struct fpreg32 elf_prfpregset_t; 2161 typedef struct fpreg32 elf_fpregset_t; 2162 typedef struct reg32 elf_gregset_t; 2163 typedef struct thrmisc32 elf_thrmisc_t; 2164 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 2165 typedef struct kinfo_proc32 elf_kinfo_proc_t; 2166 typedef uint32_t elf_ps_strings_t; 2167 #else 2168 typedef prstatus_t elf_prstatus_t; 2169 typedef prpsinfo_t elf_prpsinfo_t; 2170 typedef prfpregset_t elf_prfpregset_t; 2171 typedef prfpregset_t elf_fpregset_t; 2172 typedef gregset_t elf_gregset_t; 2173 typedef thrmisc_t elf_thrmisc_t; 2174 #define ELF_KERN_PROC_MASK 0 2175 typedef struct kinfo_proc elf_kinfo_proc_t; 2176 typedef vm_offset_t elf_ps_strings_t; 2177 #endif 2178 2179 static void 2180 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2181 { 2182 struct sbuf sbarg; 2183 size_t len; 2184 char *cp, *end; 2185 struct proc *p; 2186 elf_prpsinfo_t *psinfo; 2187 int error; 2188 2189 p = (struct proc *)arg; 2190 if (sb != NULL) { 2191 KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); 2192 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); 2193 psinfo->pr_version = PRPSINFO_VERSION; 2194 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); 2195 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); 2196 PROC_LOCK(p); 2197 if (p->p_args != NULL) { 2198 len = sizeof(psinfo->pr_psargs) - 1; 2199 if (len > p->p_args->ar_length) 2200 len = p->p_args->ar_length; 2201 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); 2202 PROC_UNLOCK(p); 2203 error = 0; 2204 } else { 2205 _PHOLD(p); 2206 PROC_UNLOCK(p); 2207 sbuf_new(&sbarg, psinfo->pr_psargs, 2208 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); 2209 error = proc_getargv(curthread, p, &sbarg); 2210 PRELE(p); 2211 if (sbuf_finish(&sbarg) == 0) 2212 len = sbuf_len(&sbarg) - 1; 2213 else 2214 len = sizeof(psinfo->pr_psargs) - 1; 2215 sbuf_delete(&sbarg); 2216 } 2217 if (error || len == 0) 2218 strlcpy(psinfo->pr_psargs, p->p_comm, 2219 sizeof(psinfo->pr_psargs)); 2220 else { 2221 KASSERT(len < sizeof(psinfo->pr_psargs), 2222 ("len is too long: %zu vs %zu", len, 2223 sizeof(psinfo->pr_psargs))); 2224 cp = psinfo->pr_psargs; 2225 end = cp + len - 1; 2226 for (;;) { 2227 cp = memchr(cp, '\0', end - cp); 2228 if (cp == NULL) 2229 break; 2230 *cp = ' '; 2231 } 2232 } 2233 psinfo->pr_pid = p->p_pid; 2234 sbuf_bcat(sb, psinfo, sizeof(*psinfo)); 2235 free(psinfo, M_TEMP); 2236 } 2237 *sizep = sizeof(*psinfo); 2238 } 2239 2240 static void 2241 __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) 2242 { 2243 struct thread *td; 2244 elf_prstatus_t *status; 2245 2246 td = (struct thread *)arg; 2247 if (sb != NULL) { 2248 KASSERT(*sizep == sizeof(*status), ("invalid size")); 2249 status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); 2250 status->pr_version = PRSTATUS_VERSION; 2251 status->pr_statussz = sizeof(elf_prstatus_t); 2252 status->pr_gregsetsz = sizeof(elf_gregset_t); 2253 status->pr_fpregsetsz = sizeof(elf_fpregset_t); 2254 status->pr_osreldate = osreldate; 2255 status->pr_cursig = td->td_proc->p_sig; 2256 status->pr_pid = td->td_tid; 2257 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2258 fill_regs32(td, &status->pr_reg); 2259 #else 2260 fill_regs(td, &status->pr_reg); 2261 #endif 2262 sbuf_bcat(sb, status, sizeof(*status)); 2263 free(status, M_TEMP); 2264 } 2265 *sizep = sizeof(*status); 2266 } 2267 2268 static void 2269 __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) 2270 { 2271 struct thread *td; 2272 elf_prfpregset_t *fpregset; 2273 2274 td = (struct thread *)arg; 2275 if (sb != NULL) { 2276 KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); 2277 fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); 2278 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2279 fill_fpregs32(td, fpregset); 2280 #else 2281 fill_fpregs(td, fpregset); 2282 #endif 2283 sbuf_bcat(sb, fpregset, sizeof(*fpregset)); 2284 free(fpregset, M_TEMP); 2285 } 2286 *sizep = sizeof(*fpregset); 2287 } 2288 2289 static void 2290 __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) 2291 { 2292 struct thread *td; 2293 elf_thrmisc_t thrmisc; 2294 2295 td = (struct thread *)arg; 2296 if (sb != NULL) { 2297 KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); 2298 bzero(&thrmisc, sizeof(thrmisc)); 2299 strcpy(thrmisc.pr_tname, td->td_name); 2300 sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); 2301 } 2302 *sizep = sizeof(thrmisc); 2303 } 2304 2305 static void 2306 __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) 2307 { 2308 struct thread *td; 2309 size_t size; 2310 int structsize; 2311 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2312 struct ptrace_lwpinfo32 pl; 2313 #else 2314 struct ptrace_lwpinfo pl; 2315 #endif 2316 2317 td = (struct thread *)arg; 2318 size = sizeof(structsize) + sizeof(pl); 2319 if (sb != NULL) { 2320 KASSERT(*sizep == size, ("invalid size")); 2321 structsize = sizeof(pl); 2322 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2323 bzero(&pl, sizeof(pl)); 2324 pl.pl_lwpid = td->td_tid; 2325 pl.pl_event = PL_EVENT_NONE; 2326 pl.pl_sigmask = td->td_sigmask; 2327 pl.pl_siglist = td->td_siglist; 2328 if (td->td_si.si_signo != 0) { 2329 pl.pl_event = PL_EVENT_SIGNAL; 2330 pl.pl_flags |= PL_FLAG_SI; 2331 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2332 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); 2333 #else 2334 pl.pl_siginfo = td->td_si; 2335 #endif 2336 } 2337 strcpy(pl.pl_tdname, td->td_name); 2338 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ 2339 sbuf_bcat(sb, &pl, sizeof(pl)); 2340 } 2341 *sizep = size; 2342 } 2343 2344 /* 2345 * Allow for MD specific notes, as well as any MD 2346 * specific preparations for writing MI notes. 2347 */ 2348 static void 2349 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) 2350 { 2351 struct thread *td; 2352 void *buf; 2353 size_t size; 2354 2355 td = (struct thread *)arg; 2356 size = *sizep; 2357 if (size != 0 && sb != NULL) 2358 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); 2359 else 2360 buf = NULL; 2361 size = 0; 2362 __elfN(dump_thread)(td, buf, &size); 2363 KASSERT(sb == NULL || *sizep == size, ("invalid size")); 2364 if (size != 0 && sb != NULL) 2365 sbuf_bcat(sb, buf, size); 2366 free(buf, M_TEMP); 2367 *sizep = size; 2368 } 2369 2370 #ifdef KINFO_PROC_SIZE 2371 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 2372 #endif 2373 2374 static void 2375 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) 2376 { 2377 struct proc *p; 2378 size_t size; 2379 int structsize; 2380 2381 p = (struct proc *)arg; 2382 size = sizeof(structsize) + p->p_numthreads * 2383 sizeof(elf_kinfo_proc_t); 2384 2385 if (sb != NULL) { 2386 KASSERT(*sizep == size, ("invalid size")); 2387 structsize = sizeof(elf_kinfo_proc_t); 2388 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2389 PROC_LOCK(p); 2390 kern_proc_out(p, sb, ELF_KERN_PROC_MASK); 2391 } 2392 *sizep = size; 2393 } 2394 2395 #ifdef KINFO_FILE_SIZE 2396 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); 2397 #endif 2398 2399 static void 2400 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) 2401 { 2402 struct proc *p; 2403 size_t size, sect_sz, i; 2404 ssize_t start_len, sect_len; 2405 int structsize, filedesc_flags; 2406 2407 if (coredump_pack_fileinfo) 2408 filedesc_flags = KERN_FILEDESC_PACK_KINFO; 2409 else 2410 filedesc_flags = 0; 2411 2412 p = (struct proc *)arg; 2413 structsize = sizeof(struct kinfo_file); 2414 if (sb == NULL) { 2415 size = 0; 2416 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2417 sbuf_set_drain(sb, sbuf_count_drain, &size); 2418 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2419 PROC_LOCK(p); 2420 kern_proc_filedesc_out(p, sb, -1, filedesc_flags); 2421 sbuf_finish(sb); 2422 sbuf_delete(sb); 2423 *sizep = size; 2424 } else { 2425 sbuf_start_section(sb, &start_len); 2426 2427 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2428 PROC_LOCK(p); 2429 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), 2430 filedesc_flags); 2431 2432 sect_len = sbuf_end_section(sb, start_len, 0, 0); 2433 if (sect_len < 0) 2434 return; 2435 sect_sz = sect_len; 2436 2437 KASSERT(sect_sz <= *sizep, 2438 ("kern_proc_filedesc_out did not respect maxlen; " 2439 "requested %zu, got %zu", *sizep - sizeof(structsize), 2440 sect_sz - sizeof(structsize))); 2441 2442 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) 2443 sbuf_putc(sb, 0); 2444 } 2445 } 2446 2447 #ifdef KINFO_VMENTRY_SIZE 2448 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2449 #endif 2450 2451 static void 2452 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) 2453 { 2454 struct proc *p; 2455 size_t size; 2456 int structsize, vmmap_flags; 2457 2458 if (coredump_pack_vmmapinfo) 2459 vmmap_flags = KERN_VMMAP_PACK_KINFO; 2460 else 2461 vmmap_flags = 0; 2462 2463 p = (struct proc *)arg; 2464 structsize = sizeof(struct kinfo_vmentry); 2465 if (sb == NULL) { 2466 size = 0; 2467 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2468 sbuf_set_drain(sb, sbuf_count_drain, &size); 2469 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2470 PROC_LOCK(p); 2471 kern_proc_vmmap_out(p, sb, -1, vmmap_flags); 2472 sbuf_finish(sb); 2473 sbuf_delete(sb); 2474 *sizep = size; 2475 } else { 2476 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2477 PROC_LOCK(p); 2478 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), 2479 vmmap_flags); 2480 } 2481 } 2482 2483 static void 2484 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) 2485 { 2486 struct proc *p; 2487 size_t size; 2488 int structsize; 2489 2490 p = (struct proc *)arg; 2491 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); 2492 if (sb != NULL) { 2493 KASSERT(*sizep == size, ("invalid size")); 2494 structsize = sizeof(gid_t); 2495 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2496 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * 2497 sizeof(gid_t)); 2498 } 2499 *sizep = size; 2500 } 2501 2502 static void 2503 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) 2504 { 2505 struct proc *p; 2506 size_t size; 2507 int structsize; 2508 2509 p = (struct proc *)arg; 2510 size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); 2511 if (sb != NULL) { 2512 KASSERT(*sizep == size, ("invalid size")); 2513 structsize = sizeof(p->p_fd->fd_cmask); 2514 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2515 sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); 2516 } 2517 *sizep = size; 2518 } 2519 2520 static void 2521 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) 2522 { 2523 struct proc *p; 2524 struct rlimit rlim[RLIM_NLIMITS]; 2525 size_t size; 2526 int structsize, i; 2527 2528 p = (struct proc *)arg; 2529 size = sizeof(structsize) + sizeof(rlim); 2530 if (sb != NULL) { 2531 KASSERT(*sizep == size, ("invalid size")); 2532 structsize = sizeof(rlim); 2533 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2534 PROC_LOCK(p); 2535 for (i = 0; i < RLIM_NLIMITS; i++) 2536 lim_rlimit_proc(p, i, &rlim[i]); 2537 PROC_UNLOCK(p); 2538 sbuf_bcat(sb, rlim, sizeof(rlim)); 2539 } 2540 *sizep = size; 2541 } 2542 2543 static void 2544 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) 2545 { 2546 struct proc *p; 2547 size_t size; 2548 int structsize; 2549 2550 p = (struct proc *)arg; 2551 size = sizeof(structsize) + sizeof(p->p_osrel); 2552 if (sb != NULL) { 2553 KASSERT(*sizep == size, ("invalid size")); 2554 structsize = sizeof(p->p_osrel); 2555 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2556 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); 2557 } 2558 *sizep = size; 2559 } 2560 2561 static void 2562 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) 2563 { 2564 struct proc *p; 2565 elf_ps_strings_t ps_strings; 2566 size_t size; 2567 int structsize; 2568 2569 p = (struct proc *)arg; 2570 size = sizeof(structsize) + sizeof(ps_strings); 2571 if (sb != NULL) { 2572 KASSERT(*sizep == size, ("invalid size")); 2573 structsize = sizeof(ps_strings); 2574 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 2575 ps_strings = PTROUT(p->p_sysent->sv_psstrings); 2576 #else 2577 ps_strings = p->p_sysent->sv_psstrings; 2578 #endif 2579 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2580 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); 2581 } 2582 *sizep = size; 2583 } 2584 2585 static void 2586 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) 2587 { 2588 struct proc *p; 2589 size_t size; 2590 int structsize; 2591 2592 p = (struct proc *)arg; 2593 if (sb == NULL) { 2594 size = 0; 2595 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); 2596 sbuf_set_drain(sb, sbuf_count_drain, &size); 2597 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2598 PHOLD(p); 2599 proc_getauxv(curthread, p, sb); 2600 PRELE(p); 2601 sbuf_finish(sb); 2602 sbuf_delete(sb); 2603 *sizep = size; 2604 } else { 2605 structsize = sizeof(Elf_Auxinfo); 2606 sbuf_bcat(sb, &structsize, sizeof(structsize)); 2607 PHOLD(p); 2608 proc_getauxv(curthread, p, sb); 2609 PRELE(p); 2610 } 2611 } 2612 2613 static boolean_t 2614 __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, 2615 const char *note_vendor, const Elf_Phdr *pnote, 2616 boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) 2617 { 2618 const Elf_Note *note, *note0, *note_end; 2619 const char *note_name; 2620 char *buf; 2621 int i, error; 2622 boolean_t res; 2623 2624 /* We need some limit, might as well use PAGE_SIZE. */ 2625 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) 2626 return (FALSE); 2627 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); 2628 if (pnote->p_offset > PAGE_SIZE || 2629 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { 2630 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); 2631 if (buf == NULL) { 2632 VOP_UNLOCK(imgp->vp); 2633 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); 2634 vn_lock(imgp->vp, LK_SHARED | LK_RETRY); 2635 } 2636 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, 2637 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, 2638 curthread->td_ucred, NOCRED, NULL, curthread); 2639 if (error != 0) { 2640 uprintf("i/o error PT_NOTE\n"); 2641 goto retf; 2642 } 2643 note = note0 = (const Elf_Note *)buf; 2644 note_end = (const Elf_Note *)(buf + pnote->p_filesz); 2645 } else { 2646 note = note0 = (const Elf_Note *)(imgp->image_header + 2647 pnote->p_offset); 2648 note_end = (const Elf_Note *)(imgp->image_header + 2649 pnote->p_offset + pnote->p_filesz); 2650 buf = NULL; 2651 } 2652 for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { 2653 if (!aligned(note, Elf32_Addr) || (const char *)note_end - 2654 (const char *)note < sizeof(Elf_Note)) { 2655 goto retf; 2656 } 2657 if (note->n_namesz != checknote->n_namesz || 2658 note->n_descsz != checknote->n_descsz || 2659 note->n_type != checknote->n_type) 2660 goto nextnote; 2661 note_name = (const char *)(note + 1); 2662 if (note_name + checknote->n_namesz >= 2663 (const char *)note_end || strncmp(note_vendor, 2664 note_name, checknote->n_namesz) != 0) 2665 goto nextnote; 2666 2667 if (cb(note, cb_arg, &res)) 2668 goto ret; 2669 nextnote: 2670 note = (const Elf_Note *)((const char *)(note + 1) + 2671 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + 2672 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); 2673 } 2674 retf: 2675 res = FALSE; 2676 ret: 2677 free(buf, M_TEMP); 2678 return (res); 2679 } 2680 2681 struct brandnote_cb_arg { 2682 Elf_Brandnote *brandnote; 2683 int32_t *osrel; 2684 }; 2685 2686 static boolean_t 2687 brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2688 { 2689 struct brandnote_cb_arg *arg; 2690 2691 arg = arg0; 2692 2693 /* 2694 * Fetch the osreldate for binary from the ELF OSABI-note if 2695 * necessary. 2696 */ 2697 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && 2698 arg->brandnote->trans_osrel != NULL ? 2699 arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; 2700 2701 return (TRUE); 2702 } 2703 2704 static Elf_Note fctl_note = { 2705 .n_namesz = sizeof(FREEBSD_ABI_VENDOR), 2706 .n_descsz = sizeof(uint32_t), 2707 .n_type = NT_FREEBSD_FEATURE_CTL, 2708 }; 2709 2710 struct fctl_cb_arg { 2711 boolean_t *has_fctl0; 2712 uint32_t *fctl0; 2713 }; 2714 2715 static boolean_t 2716 note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) 2717 { 2718 struct fctl_cb_arg *arg; 2719 const Elf32_Word *desc; 2720 uintptr_t p; 2721 2722 arg = arg0; 2723 p = (uintptr_t)(note + 1); 2724 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); 2725 desc = (const Elf32_Word *)p; 2726 *arg->has_fctl0 = TRUE; 2727 *arg->fctl0 = desc[0]; 2728 return (TRUE); 2729 } 2730 2731 /* 2732 * Try to find the appropriate ABI-note section for checknote, fetch 2733 * the osreldate and feature control flags for binary from the ELF 2734 * OSABI-note. Only the first page of the image is searched, the same 2735 * as for headers. 2736 */ 2737 static boolean_t 2738 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, 2739 int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0) 2740 { 2741 const Elf_Phdr *phdr; 2742 const Elf_Ehdr *hdr; 2743 struct brandnote_cb_arg b_arg; 2744 struct fctl_cb_arg f_arg; 2745 int i, j; 2746 2747 hdr = (const Elf_Ehdr *)imgp->image_header; 2748 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); 2749 b_arg.brandnote = brandnote; 2750 b_arg.osrel = osrel; 2751 f_arg.has_fctl0 = has_fctl0; 2752 f_arg.fctl0 = fctl0; 2753 2754 for (i = 0; i < hdr->e_phnum; i++) { 2755 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, 2756 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, 2757 &b_arg)) { 2758 for (j = 0; j < hdr->e_phnum; j++) { 2759 if (phdr[j].p_type == PT_NOTE && 2760 __elfN(parse_notes)(imgp, &fctl_note, 2761 FREEBSD_ABI_VENDOR, &phdr[j], 2762 note_fctl_cb, &f_arg)) 2763 break; 2764 } 2765 return (TRUE); 2766 } 2767 } 2768 return (FALSE); 2769 2770 } 2771 2772 /* 2773 * Tell kern_execve.c about it, with a little help from the linker. 2774 */ 2775 static struct execsw __elfN(execsw) = { 2776 .ex_imgact = __CONCAT(exec_, __elfN(imgact)), 2777 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) 2778 }; 2779 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); 2780 2781 static vm_prot_t 2782 __elfN(trans_prot)(Elf_Word flags) 2783 { 2784 vm_prot_t prot; 2785 2786 prot = 0; 2787 if (flags & PF_X) 2788 prot |= VM_PROT_EXECUTE; 2789 if (flags & PF_W) 2790 prot |= VM_PROT_WRITE; 2791 if (flags & PF_R) 2792 prot |= VM_PROT_READ; 2793 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) 2794 if (i386_read_exec && (flags & PF_R)) 2795 prot |= VM_PROT_EXECUTE; 2796 #endif 2797 return (prot); 2798 } 2799 2800 static Elf_Word 2801 __elfN(untrans_prot)(vm_prot_t prot) 2802 { 2803 Elf_Word flags; 2804 2805 flags = 0; 2806 if (prot & VM_PROT_EXECUTE) 2807 flags |= PF_X; 2808 if (prot & VM_PROT_READ) 2809 flags |= PF_R; 2810 if (prot & VM_PROT_WRITE) 2811 flags |= PF_W; 2812 return (flags); 2813 } 2814 2815 void 2816 __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) 2817 { 2818 uintptr_t range, rbase, gap; 2819 int pct; 2820 2821 if ((imgp->map_flags & MAP_ASLR) == 0) 2822 return; 2823 pct = __elfN(aslr_stack_gap); 2824 if (pct == 0) 2825 return; 2826 if (pct > 50) 2827 pct = 50; 2828 range = imgp->eff_stack_sz * pct / 100; 2829 arc4rand(&rbase, sizeof(rbase), 0); 2830 gap = rbase % range; 2831 gap &= ~(sizeof(u_long) - 1); 2832 *stack_base -= gap; 2833 } 2834